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MÉCANIQUE Ingénieurs et architectes suisses 29 mai 1980

Les critères de rupture en analyse
des contraintes

lre partie : Généralités

par Nicolas Xenophontidis, Lausanne

Le terme de rupture, utilisé dans l'exposé, a la signification générale de défaillance
du matériau. Après quelques rappels théoriques de l'état de contrainte, nous
définissons les critères de rupture basés sur la limite d'écoulement, la contrainte de
traction ainsi que la contrainte de rupture réelle. Les sollicitations variables sont
également abordées et nous donnons un critère de rupture pour la fatigue
oligocyclique ainsi que divers critères en fatigue classique. Nous terminons ce travail
en donnant quelques indications sur le choix des critères de rupture.

1. Introduction

Lors du projet d'un élément de machine
ou d'un élément de structure, les
ingénieurs sont fréquemment confrontés à
des problèmes de contraintes combinées.

On constate d'autre part que les

propriétés mécaniques des matériaux sont
habituellement déterminées avec des
machines d'essais appliquant des charges
monoaxiales à une éprouvette.
Ainsi, pour les matériaux ductiles, l'essai
de traction est couramment utilisé tandis
que pour les matériaux fragiles on effectue

habituellement des essais de
compression. Quelquefois, des essais de
torsion sont effectués sur des tubes
circulaires. Ces derniers essais ne conduisent

pas à des résultats précis, puisque
seule la surface extérieure est soumise à
la torsion maximum.
La contrainte d'écoulement définit la
rupture élastique pour les matériaux
ductiles, tandis que la contrainte de rupture

définit la rupture plastique pour les

matériaux ductiles et fragiles.
L'état général de contraintes en un point
d'une pièce sollicitée peut être représenté
par les trois contraintes principales
Ci, Oz et a3 (fig. 1). Pour l'élément considéré

dans la figure ci-dessous, la valeur
de la contrainte d'écoulement ou de

rupture n'est pas la même que pour une
sollicitation monoaxiale.
Suite à cette constatation, on peut se

demander jusqu'où peut être sollicité
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Fig. 1. — Elément sollicité par les trois
contraintes principales ai. oz et a».

avec sécurité dans un cas de contraintes
combinées un matériau sollicité mono-
axialement et supportant une contrainte
connue.
Pour répondre à cette question, on doit
appliquer une théorie de rupture ou
théorie de la résistance. Il importe de

noter que le terme « théorie de la
résistance » ne reflète pas complètement
l'essence de la question, puisqu'il ne
s'agit pas littéralement de résistance,
mais de changement qualitatif des
propriétés des matériaux.
Lors de l'établissement et l'application
des théories de rupture, le raisonnement
suit les deux étapes exposées ci-dessous.

1) Une théorie est élaborée pour expli¬

quer la rupture d'une éprouvette
normalisée. Prenons par exemple l'essai
de traction et considérons comme
rupture l'écoulement initial. Nous
admettons alors la théorie selon
laquelle l'écoulement en traction est

survenu à la suite du dépassement
des possibilités du matériau de
supporter un des points suivants :

a) une contrainte normale,

b) une contrainte de cisaillement,

c) une déformation normale,

d) une déformation de cisaillement,

e) un travail de distorsion, etc.

2) Les résultats de l'essai normalisé sont
utilisés pour obtenir la valeur du
critère choisi. Supposons par exemple
que l'essai de traction normalisé
donne une contrainte d'écoulement
égale à 5000 bar l. Nous admettons
alors que l'écoulement dans ce matériau

aura lieu sous une combinaison
de charges qui conduisent respectivement

:

a) à une contrainte normale plus
élevée que celle de 5000 bar,

b) à une contrainte de cisaillement
plus élevée que 2500 bar,

c) à une déformation normale plus
élevée que celle donnée par l'essai

normalisé,

1 100 bar^ 1,02 kg/mm2 102 kg/cm».

d) à une déformation de cisaillement
plus élevée que celle donnée par
l'essai normalisé,

e) à un travail de distorsion plus
élevé que celui donné par l'essai
normalisé.

Dans les paragraphes qui suivei|f, nous
donnons les principales théories de rupture

pour les contraintes statiques et les
contraintes variables. Nous notons que,
sous certaines sollicitations, il n'a pas
été possible de développa une théorie
de rupture satisfaisante. C'est le cas
des matériaux sollicités triaxialement à
hautes températures ainsi que ceux
sollicités par un choc. Enfin, nous avons
réalisé le développement des relations
contraintes-déformations dans la zone
plastique, étant donné que ces relations
sont intimement liées aux théories de

rupture.
La difficulté de l'édification d'une théorie
de rupture réside naturellement dans nos
connaissances insuffisantes des processus
s'écoulant dans les matériaux, des matériaux

différents se comportant de manière
différente. Aussi, arrive-t-il qu'une hypothèse

valable pour un matériau
particulier conduise à des résultats inacceptables

pour un autre. Les expériences
de contrôle peuvent confirmer dans un
cas une hypothèse et la réfuter dans un
autre. C'est pourquoi le critère de rupture

n'a pas un caractère général.

Dans les calculs numériques, les circonstances

mentionnées conduisent à
certaines divergences. Aussi, ne faut-il pas
s'étonner si le résultat de calcul d'une
des théories est quelque peu différent du
résultat donné par une autre. Ceci
s'explique par l'imperfection des
hypothèses de rupture.

2. Quelques rappels théoriques de

l'état de contrainte

En un point donné d'un milieu continu,
l'état de contrainte est caractérisé par
le tenseur symétrique des contraintes :

27
011 012 018 |
021 022 023 »

031 032 033

(2.1)

ou sous forme matricielle

[0y]
MfciPlS 013

021 022 023

031 032 083

(2.2)

Sur un élément de surface arbitrairement

orienté et à normale unitaire », le vec-
—^

teur contrainte p„ est déterminé par les

formules de Cauchy
—? —*¦

Pi a« «i oup„ £ n (2.3)

Les directions pour lesquelles les

vecteurs p„ et n sont colinéaires s'appellent
directions des contraintes principales.
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Pour ces directions, nous obtenons

Z on* (2.4)

ou a est la contrainte principale.

Il vient ainsi

(E-Ia)~n 0

ou

(atj—ôij&) rij 0 (2.5)

Dans les trois équations (2.5), il y a

quatre inconnues, les trois valeurs «j et
la valeur de a.
Pour obtenir les solutions non triviales
du système (2.5), il faut que

I 00-«5«0 1 0 (2.6)

ou bien

ffS-TiO-2 + /20-/3 0 (2.7)

h — 0« tr L
h % (0« 0»—00 0«)

h — I 0y I det E
(2.8)

où les I{ sont appelés respectivement
invariants linéaire, quadrique et cubique.

Les matériaux présentant, en général,
des propriétés mécaniques différentes
selon leur sollicitation en cisaillement ou
en compression uniforme, il est rationnel
de représenter le tenseur des contraintes
sous forme de somme.

0« tf« 0**/3 + St] (2.9)
ou

E=amE1 + ED (2.10)

avec

0**:

| 1 0 0

i {0 1 0
(0 0 1

„-I1 '-'"~\0 i^j

(2.11)

(2.12)

(2.13)

£D
011--0m 012 013
021 022 —0m 023

031 032 033"-0m

Su "12 Sl3J
"21 "22 "23 /
"31 "32 "33 J

(2.14)

où am représente la pression moyenne
ou hydrostatique et ôy le symbole de
Kronecker. Les 3 tenseursEit amEx et ED
représentent respectivement le tenseur
unité, le tenseur sphérique et le déviateur
des contraintes qui caractérisent les
contraintes tangentielles en un point.
Les directions principales du déviateur
des contraintes E„ et du tenseur des
contraintes E coïncident. Quant aux
valeurs principales Su elles diffèrent de
<7j par la valeur de la pression moyenne.

Ok—0„ (2.15)

Elles pourront être évidemment définies

par l'équation cubique

S3 + hnS-hn 0 (2.16)

Les invariants du déviateur seront facilement

obtenus par les relations (2.17) en
remplaçant oï, o"2 et <t3 respectivement
par Slt S2 et S3.

Ainsi, avec

h 01 + 02 + 03

h —(0102 + 0203

Z3 010203

030l) (2.17)

nous obtenons

/id 0

ho Ve [(01-02)2 + (02-03)2
+ (03-0l)2]

I3D — Si S% S3

La grandeur non négative

T + S/ho

(2.

(2.19)

est appelée intensité des contraintes
tangentielles.
Examinons les valeurs extrema de la
contrainte de cisaillement. La compo-

—>

santé normale du vecteur pn en un point
est obtenue par la relation

0« «i n, (2.20)

Il vient ainsi pour la contrainte
tangentielle T„

^n PlPj-On (2.21)
ou

1%, afni + aini + ain% -
- (ffi«f + 02«! + 03«§)2 (2.22)

où «j sont les cosinus directeurs de la
normale au plan considéré.
Pour obtenir les valeurs extrema de la
relation (2.22), nous posons

F=x\-Xn(nt (2.23)

avec A grandeur scalaire quelconque.

L'équation (2.23) est une fonction des
cosinus directeurs et sa valeur extremum
est obtenue par les conditions

0
drti

Nous avons alors :

ni \a\—2oi (ai«? + 02«!+
+ 03«1) + A] 0

"2 \o\— 202 (01"î + 02"! +
+ <TS»i) + A] 0

»8 [0I — 2CT3 (<Ti«? + OV»! +
+ 03«|) + A] 0

Les équations (2.24) avec la condition
iiiiii 1 conduisent à la détermination
des «j qui correspondent aux valeurs
extrema de t„.

(2.24)

Nous obtenons les solutions suivantes

«1 ± 1 «2 0 «3 0

-*T„= 0

«i 0 «2 rt 1 "3 0

-* t„ 0

«! 0 /J2 0 «3 i 1

-* T„ 0

1 1

«j 0 «2 ± -= «3 ± —B
\/2 \2

(2.25)

t„
02—03

(2-26)

«1=4; —= «2 0 «3 i —I
S/2 V3

03—01

1 1

«1 ± -= «2 ± —r «3 0
y/2 s/2

01 — 02

Les solutions (2.25) donnent^gvidem-
ment les valeurs minima, tandis que les
expressions (2.26) donnent les valeurs
maxima.
Nous finirons ce paragraphe par la
notion des contraintes octatrédraleMal
Les plans octaédraux sont les huit plans
dont la normale est inclinée uniformément

par rapport aux directions principales.

Du fait que «,-«s 1, il résulte
que

«? «1 «1 \ (2-27)

La relation (2.22) qui donne la
contrainte tangentielle devient :

To
3

(0? + 0! + 03)

- Ö (0i + 02 + 0s)2

0 [(01-02)2 + (02-0s)

+ (03- 0i)2] (2.28)

A l'aide de la relation (2.18), la
contrainte octatrédrale de cisaillement s'écrit
alors

To -JiD (2.29)

(à suivre)
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