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Ingénieurs et architectes suisses 29 mai 1980

Les criteres de rupture en analyse

des contraintes

1" partie: Généralités

par Nicolas Xenophontidis, Lausanne

Le terme de rupture, utilisé dans I’exposé, a la signification générale de défaillance
du matériau. Apres quelques rappels théoriques de ’état de contrainte, nous défi-
nissons les critéres de rupture basés sur la limite d’écoulement, la contrainte de
traction ainsi que la contrainte de rupture réelle. Les sollicitations variables sont
également abordées et nous donnons un critére de rupture pour la fatigue oligo-
cyclique ainsi que divers critéres en fatigue classique. Nous terminons ce travail
en donnant quelques indications sur le choix des critéres de rupture.

1. Introduction

Lors du projet d’'un élément de machine
ou d’un élément de structure, les ingé-
nieurs sont fréquemment confrontés a
des problémes de contraintes combi-
nées.

On constate d’autre part que les pro-
priétés mécaniques des matériaux sont
habituellement déterminées avec des
machines d’essais appliquant des charges
monoaxiales & une éprouvette.

Ainsi, pour les matériaux ductiles, I’essai
de traction est couramment utilisé tandis
que pour les matériaux fragiles on effec-
tue habituellement des essais de com-
pression. Quelquefois, des essais de
torsion sont effectués sur des tubes cir-
culaires. Ces derniers essais ne condui-
sent pas a des résultats précis, puisque
seule la surface extérieure est soumise a
la torsion maximum.

La contrainte d’écoulement définit la
rupture élastique pour les matériaux
ductiles, tandis que la contrainte de rup-
ture définit la rupture plastique pour les
matériaux ductiles et fragiles.

L’état général de contraintes en un point
d’une piéce sollicitée peut étre représenté
par les trois contraintes principales
o1, 09 et gz (fig. 1). Pour I’élément consi-
déré dans la figure ci-dessous, la valeur
de la contrainte d’écoulement ou de
rupture n’est pas la méme que pour une
sollicitation monoaxiale.

Suite a cette constatation, on peut se
demander jusqu’ou peut étre sollicité
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Fig. 1. — Elément sollicit¢ par les trois con-
traintes principales ., oa et os.

avec sécurité dans un cas de contraintes
combinées un matériau sollicité mono-
axialement et supportant une contrainte
connue.

Pour répondre a cette question, on doit
appliquer une théorie de rupture ou
théorie de la résistance. Il importe de
noter que le terme « théorie de la résis-
tance » ne reflete pas complétement
I’essence de la question, puisqu’il ne
s’agit pas littéralement de résistance,
mais de changement qualitatif des pro-
priétés des matériaux.

Lors de I’établissement et I'application
des théories de rupture, le raisonnement
suit les deux étapes exposées ci-dessous.

1) Une théorie est élaborée pour expli-
quer la rupture d’une éprouvette nor-
malisée. Prenons par exemple ’essai
de traction et considérons comme
rupture [’écoulement initial. Nous
admettons alors la théorie selon
laquelle I’écoulement en traction est
survenu a la suite du dépassement
des possibilités du matériau de sup-
porter un des points suivants :

a) une contrainte normale,

b) une contrainte de cisaillement,
¢) une déformation normale,

d) une déformation de cisaillement,
e) un travail de distorsion, etc.

2) Les résultats de I'essai normalisé sont
utilisés pour obtenir la valeur du
critére choisi. Supposons par exemple
que Ilessai de traction normalisé
donne une contrainte d’écoulement
égale a4 5000 bar '. Nous admettons
alors que I'écoulement dans ce maté-
riau aura lieu sous une combinaison
de charges qui conduisent respective-
ment :

a) a une contrainte normale plus
élevée que celle de 5000 bar,

b) a une contrainte de cisaillement
plus élevée que 2500 bar,

¢) a une déformation normale plus
¢levée que celle donnée par P'essai
normalisé,

L 100 bar ~ 1,02 kg/mm? = 102 kg/cm?2.

d) a une déformation de cisaillement
plus élevée que celle donnée par
I’essai normalisé,

e¢) a un travail de distorsion plus
¢levé que celui donné par I’essai
normalisé.

Dans les paragraphes qui suivent, nous
donnons les principales théories de rup-
ture pour les contraintes statiques et les
contraintes variables. Nous notons que,
sous certaines sollicitations, il n’a pas
été possible de développer une théorie
de rupture satisfaisante. C’est le cas
des matériaux sollicités triaxialement a
hautes températures ainsi que ceux sol-
licités par un choc. Enfin, nous avons
réalisé le développement des relations
contraintes-déformations dans la zone
plastique, étant donné que ces relations
sont intimement liées aux théories de
rupture.

La difficulté de I'édification d’une théorie
de rupture réside naturellement dans nos
connaissances insuffisantes des processus
s’écoulant dans les matériaux, des maté-
riaux différents se comportant de maniére
différente. Aussi, arrive-t-il qu’une hypo-
these valable pour un matériau parti-
culier conduise a des résultats inaccep-
tables pour un autre. Les expériences
de controle peuvent confirmer dans un
cas une hypothése et la réfuter dans un
autre. C’est pourquoi le critére de rup-
ture n’a pas un caractére général.

Dans les calculs numériques, les circons-
tances mentionnées conduisent a cer-
taines divergences. Aussi, ne faut-il pas
s’étonner si le résultat de calcul d’une
des théories est quelque peu différent du
résultat donné par une autre. Ceci
s’explique par I'imperfection des hypo-
theéses de rupture.

2. Quelques rappels théoriques de
I’état de contrainte

En un point donné d’un milieu continu,
I’état de contrainte est caractérisé par
le tenseur symétrique des contraintes :

011 012 013 l

2 = { 091 O Os (2.1)
I 031 032 033[
ou sous forme matricielle
011 O12 O13
[0ij] = | 021 02 09 2.2
031 032 Og3

Sur un élément de surface arbitrairement
—
orienté et a normale unitaire n, le vec-
>
teur contrainte p, est déterminé par les
formules de Cauchy

> >

pj = oymoup, =2Xn (2.3)

Les directions pour lesquelles les vec-
teurs p, et n sont colinéaires s’appellent
directions des contraintes principales.
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Pour ces directions, nous obtenons

— —
Pp = TN (2.4)
ou ¢ est la contrainte principale.
Il vient ainsi
—
(X—Io)n =0

ou

(aij—éijo') n; = 0 (25)

Dans les trois équations (2.5), il y a
quatre inconnues, les trois valeurs n; et
la valeur de o.

Pour obtenir les solutions non triviales
du systeme (2.5), il faut que

I O'i]'*(S{jU] =) (26)

ou bien
*—Le®+ Lo—L=0 (2.7
avec
L = a3 = trZ2
Iy = 2 (04 05— 045 0y) | (2.8)
ILi=loyl=detX ’

I

ou les I;
invariants
que.

sont appelés respectivement
linéaire, quadrique et cubi-

Les matériaux présentant, en général,
des propriétés mécaniques différentes
selon leur sollicitation en cisaillement ou
en compression uniforme, il est rationnel
de représenter le tenseur des contraintes
sous forme de somme.

Oy = 61']' akk/3 + Si]' (29)
ou
2= Om 21 =t ZD (2.10)
avec
om=—p=2% @11
3
ll 0 Ol
2;={0 10 (2.12)
lO 0 1[
. [1i=7
(5,;—]01.:#]. (2.13)
O11—Om Oz 013[
Zp =10 O22—0p O3 ¢ =
031 032 0-33_‘Uml
S Sie Slal
= {851 Saz Sog (2.14)

So Sz Su

ou o, représente la pression moyenne
ou hydrostatique et d;; le symbole de
Kronecker. Les 3 tenseurs 2, 7,2 et 2
représentent respectivement le tenseur
unité, le tenseur sphérique et le déviateur
des contraintes qui caractérisent les con-
traintes tangentielles en un point.

Les directions principales du déviateur
des contraintes 2, et du tenseur des
contraintes 2 coincident. Quant aux
valeurs principales S;, elles différent de
o; par la valeur de la pression moyenne.

Sk = O—0y (2.15)
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Elles pourront étre évidemment définies
par I’équation cubique

S3 + IQDS*I:;D — 0 (2.16)

Les invariants du déviateur seront facile-
ment obtenus par les relations (2.17) en
remplagant og;, g et g3 respectivement
par Sp, S et Ss.

Ainsi, avec

I, = 0,4+ 02+ 03

Iy = —(0102 + 0203 + 0301) ¢ (2.17)
13 = 010203
nous obtenons
110 = 0
Lp = s [(01—02)% + (62— 03)* +
+ (03— 01)%]
I3p = 81 82 S5
(2.18)

La grandeur non négative

=+ Vp (2.19)
est appelée intensité des contraintes

tangentielles.

Examinons les valeurs extrema de la

contrainte de cisaillement. La compo-
—

sante normale du vecteur p, en un point
est obtenue par la relation

Op = Oy hy i (220)

Il vient ainsi pour la contrainte tan-
gentielle 7,
T = Pp— O, 2.21)
ou
12 = gin} + o3nd + oing —
— (o1} + a9nd + a3nd)?  (2.22)

ou n; sont les cosinus directeurs de la
normale au plan considéré.

Pour obtenir les valeurs extrema de la
relation (2.22), nous posons

F=12—Amn (2.23)

avec A grandeur scalaire quelconque.

L’équation (2.23) est une fonction des
cosinus directeurs et sa valeur extremum
est obtenue par les conditions

JF B
In;
Nous avons alors :
n [O‘% ‘20'1 (O’]II? + O':Il::‘;+
- ogn3) + A1 =0
ny [03—20% (01} + oonl
+ ogn?) + A1 =0
ng [63—203 (o0 + Gand +
Faognd) + A] =0

Les équations (2.24) avec la condition
mn; — | conduisent a la détermination
des n; qui correspondent aux valeurs
extrema de 7,.

Nous obtenons les solutions suivantes :

n=41 n=0 n=0
=7, =0
n =0 ny = +1n3 =20 (2.25)
- 7,=0
m =20 n=0 ng= 41
= g5 = 0
1 1
m=0 n=4-— ng=+4—
V2 \
O2—03
> Ty = >
1 1
m=+-—n=0 ng=4—
Lk V3 226
03— 0
> Ty = 5
1 1
m=+-—n=4-— n3=20
V2 V2
iy 01— 02
n 2

Les solutions (2.25) donnent évidem-
ment les valeurs minima, tandis que les
expressions (2.26) donnent les valeurs
maxima.

Nous finirons ce paragraphe par la
notion des contraintes octatrédrales.
Les plans octaédraux sont les huit plans
dont la normale est inclinée uniformé-
ment par rapport aux directions princi-
pales. Du fait que mn; = 1, il résulte
que

(2.27)

2 2 2

Ny = Ng = Ng = —=

1 2 373
La relation (2.22) qui donne la con-

trainte tangenticlle devient :

2 1 2 $ 2
2 = - (0} + 0% + dd) —

w

1 >
‘§(01+0’2+03)“=

| :
=9 [(01—02)? + (02—03)* +

+ (03— 0a1)°] (2.28)

A Taide de la relation (2.18), la con-
trainte octatrédrale de cisaillement s’écrit
alors

2
To = 3120

(2.29)

(a suivre)
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