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CONSTRUCTION MÉTALLIQUE Ingénieurs et architectes suisses 11 octobre 1979

Probabilité de ruine d'une
poutre-caisson
par simulation de Monte Carlo

par Pierre-Yves Monnier et Peter Schmalz, Sherbrooke (Canada)

Malgré le fait que les structures dimensionnées selon les normes ne s'effondrent

pas en général, il est intéressant de connaître leur vraie probabilité
de ruine, surtout à cause des conséquences économiques.
Les auteurs considèrent une poutre-caisson appuyée comme poutre simple
et soumise à une charge uniformément répartie. Sur la base de données

statistiques réelles, provenant d'essais ou bien basées sur des hypothèses
raisonnables et justifiables, le moment factorisé Mc et le moment résistant
ultime Mu sont calculés par simulation de Monte Carlo. Après interpolation,

on attribue à la variable Z Mu—Mc une distribution de fréquence
normale (gaussienne). Ensuite, la probabilité de ruine est calculée selon une
technique mathématique éprouvée.
D'une manière générale, les valeurs de la probabilité de ruine d'une poutre-
caisson dimensionnée selon la norme SIA 161 (Projet N 5124-8 du 3.10.78)
se situent dans un intervalle relativement étroit, présentant une limite
supérieure d'environ 10-11. Le présent travail montre que les paramètres les plus
importants pour une bonne estimation de la probabilité de ruine sont la
surcharge d'une part et la limite élastique de l'acier d'autre part. Les
valeurs de la probabilité de ruine de poutres-caissons dimensionnées selon
le projet de révision de la norme SIA 161 sont tout à fait comparables à

celles calculées d'après d'autres codes semi-probabilistes basés sur le
dimensionnement aux états limites (Limit States Design).

1. Introduction

L'expérience montre qu'en général les

structures dimensionnées en accord avec
les normes ne s'effondrent pas. Il est
intéressant cependant de connaître leur
probabilité de ruine P^ine) à cause des

conséquences économiques.
Vu l'importance de la probabilité de
ruine et l'importance des poutres en
flexion, nous nous proposons dans cette
étude de déterminer la probabilité de
ruine des poutres métalliques en flexion,
dimensionnées selon le projet de norme
SIA 161 N 5124-8 du 3.10.78, proposé à
l'assemblée des délégués du 25 novembre
1978. Nous appellerons ce projet « norme
SIA 161 E» ou tout simplement
« norme » dans cette recherche.
Dans cette étude, nous considérons une
poutre simple en flexion, latéralement
non-appuyée sauf aux extrémités (appuis
à fourches). La section transversale est
celle d'une poutre-caisson (fig. 1). Le
choix de cette section a été retenu pour
la raison suivante : comme nous étudions
la variation de la probabilité de ruine en
fonction des différents paramètres, il
convient de choisir un type de section
dont les élancements (bje, hjt; fig. 1)

restent constants, ce qui nous permet
d'obtenir des résultats sur un champ
d'étude continu. Ces résultats sont
comparables entre eux sur tout le domaine de
variation des paramètres. En choisissant

par exemple une section en I, il aurait
été très difficile de garder ces élancements
constants (passage de IPE à HEA, HEB,
ou HEM, passage aux composés-soudés

pour les grandes portées par exem-
pie).
En plus de cette raison, le choix d'une
poutre-caisson nous a paru intéressant

parce que cette section présente une
grande rigidité torsionnelle.
Le principe du calcul de la probabilité
de ruine est expliqué ci-dessous. Nous
dimensionnons d'abord la poutre selon
les formules de la norme, en utilisant les
valeurs nominales (souvent égales aux
valeurs moyennes) des variables.
Ensuite, nous calculons la probabilité de

ruine par simulation de Monte Carlo sur
la base de données statistiques réelles

[4] a.

1 Projet de révision de la norme SIA 161

N 5124-8 du 3.10.78.
2 Les chiffres entre crochets renvoient à la
bibliographie en fin d'article.

Abstract

In this paper the probability of failure (Pf)
using simulation techniques is calculated
for box beams. The beam is designed in
accordance with the Swiss Code SIA 161

(Projet de révision N 5124-8 du 3.10.78)
and the probability of failure is calculated
by Monte Carlo simulation, using real
statistical data. Values of Pj of such a
beam are located in a narrow range, with
an upper limit of about 10-11. The most
important parameters for a good estimates
of Pf are the statistical live load and the
yield point of the steel. Values of the
probability of failure are found quite
comparable with those for beams designed on
the basis of other semi-probabilistic codes.

Chaque variable est caractérisée par sa
distribution de fréquence, sa valeur
moyenne et son écart-type. Ces informations

proviennent de résultats d'essais ou
de campagnes de mesures, ou alors sont
basées sur des hypothèses réalistes et
justifiables. En comparant les valeurs
des probabilités de ruine présentées ici
avec celles d'autres études, il est important

de se rappeler les diverses possibilités
et le choix que nous avons retenu dans
cette étude (tableau 3).
Nous avons, à titre comparatif, exécuté

une étude similaire pour des poutres en I.
Nous pouvons donc effectuer des comparaisons

ponctuelles entre les sections en
caisson et celles en I dans le but de vérifier

si l'ordre de grandeur des probabilités

de ruine est comparable dans
chaque cas.
Nous pensons que des études de nature
comparative comme la présente sont
particulièrement importantes aujourd'hui
où un grand nombre de codes sont
modifiés et passent d'un concept
déterministe à un concept semi-probabiliste ou
probabiliste.

X

K

>— m Jii in. *>
Fis. 1. — Poutre-caisson — Section transversale.
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2. La simulation de Monte Carlo

2.1 Généralités

Il y a plusieurs possibilités de déterminer
la probabilité de ruine. Parmi les plus
importantes, citons les suivantes :

— Effectuer un aussi grand nombre
d'essais à la ruine au laboratoire pour
qu'on puisse en tirer des conclusions
statistiques. Cette méthode est très
coûteuse et compliquée.

— Calculer, par des moyens analytiques,
la probabilité de ruine à partir de
données statistiques. Les méthodes
analytiques se limitent pratiquement
à des problèmes caractérisés par des

distributions de fréquence normales.

— Utiliser la simulation de Monte
Carlo [11].

Dans cette étude, nous avons retenu la
simulation de Monte Carlo pour les
raisons suivantes :

— Elle permet de tenir compte des don¬
nées statistiques réelles, en général
des variables aléatoires de distributions

statistiques connues, et de les
utiliser ensuite pour le calcul de la
probabilité de ruine.

— Elle permet de simuler un très grand
nombre d'expériences, et, de ce fait,
de travailler avec des moyens
statistiques.

— Elle rend possible d'atteindre quasi¬
ment n'importe quel degré de précision

voulu [11].

La technique de calcul est simple [4].
Chaque paramètre qui entre dans le calcul

du terme de charge ou de résistance
est associé à une distribution de fréquence
(distribution à deux paramètres) donnée.

Nous générons ensuite les variables
aléatoires associées au moyen de l'ordinateur.

En introduisant leurs valeurs dans
les calculs, nous trouvons les grandeurs
aléatoires de Mu et Mc M„ : moment
de résistance ultime, Mc : moment dû
aux charges). Il est évident qu'il faut
générer un grand nombre de valeurs pour
pouvoir les traiter statistiquement. C'est
en calculant les valeurs de Z =*. Mu—Mc
(fig. 3) que nous trouvons la probabilité
de ruine.
Il est bon cependant de faire une mise
en garde ici : la qualité des données est
essentielle. On ne peut obtenir des résultats

fiables qu'en utilisant des données
statistiques de premier ordre qui reflètent
de très près la réalité physique [8].

2.2 Techniques de la simulation

Il existe plusieurs moyens d'obtenir la
probabilité de ruine par la méthode de
simulation. Le plus simple consiste à
faire le rapport du nombre d'échecs

Mu—Mc < 0) au nombre total d'essais
(simulation directe) [6]. Ceci implique
que pour obtenir une probabilité de ruine
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Tableau 1

D I M E M S I ONNEMENT
MATERIAU : Fe 360, o, - 23. N/mm2, E 210 kN/mm2, v - 0,3
GEOMETRIE : Poutre simple, < harge unlformécène repartie.

C lisson, rapport de section : h/b ¦ 2,5
Portée : L 15 0 m

CHARGES

POIDS PROPRE ; Béton, 15 cm d'épaisseur. 25 kN/m3 sur 2,5 m

G * 9,4 N/mm

SURCHARGE 400 kg/m2 (SIA-160-16.1) 4 kN/m2 sur 2,5 m

q 10,0 N/mn

ELANCEMENTS

AILES 41,7 50,3 52,7
AMES 89,3 125 ,7 150,0

PARAMETRES

UNITE
b mm 300,0 352,0 348,0
e mm 7.2 7,0 6,6
h mm 750,0 880 ,0 870,0
t mm 8,4 7,0 5,8
Formule M - M„u D

M M
u y Mu ' HD(P>

GG N/mm 1,30 1,33 1,13
I

y
K

mm 31584,0 10» 43379,0 10" 35168,0 10"
mm1* 77330,0 101* 109176,0 101* 90319,0 lO"

w mm3 3198,0 103 3972,0 103 3454,0 103

z mm3 3985,0 103 4978,0 103 4185,0 103

n - 1,13 1,13
X - 115,6 104,0
°DW N/mm* 155,1 191,6
°Dv S/mm* 4763,2 5211,9

°cr,D N/mm 4765,7
0,25

5215,4
0,24

°D N/mm2 292,6 289,9
M kN-m 935,7 933,4 930,9
H

c
kN-m 931,5 932,9 923,9

de l'ordre de 10~u, il faut simuler un
nombre « astronomique » d'essais.
Une deuxième méthode est d'utiliser des

moyens statistiques qui permettent, pour
un certain niveau de confiance choisi, de
calculer des bornes supérieures et
inférieures de la probabilité de ruine, ceci

même dans le cas où aucun échec n'a été
enregistré [3]. Cependant, dans notre
étude, les valeurs ainsi obtenues peuvent
se situer dans un intervalle assez grand.
Une troisième méthode (celle choisie)
consiste à attribuer à la variable
Z Af„—M0 après interpolation, tout
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Tableau 2

EES STATISTIQUES
ELANCEMENTS : AILES 4 1.7

AMES 89,3
50,3

125,7
52,7

150,0

PARAMETRE DIST TOLERANCE UNITE

arithmétique
écart-type

la
épaisse
hauteur
épaisse
portée
: distr
cons tan
DIST N

DIST L

DIST G

d élasticité
d'élasticité

de la dalle
de la poutre
rge de

d imensionnem
rge statlstiqu
r du caisson
eur des ailes
r du caisson
eur des âmes

kN/mm2 210,0 6,70 210,0 6,70 210,0 6,70 7

0,3 - 0,3 - 0,3
N/mm2 270,3 24,3 270,3 24,3 270,3 24,3 10

Q

QS

N/mm 9,4
N/mm 1,30
N/mm 10,0
N/mm 1,5

9.4 0,313 9 ,4
1,33 - 1,13

10,0 - 10,0
1.5 0,5 1,5

rmale
gnormale

1,0 %

10 ,0 7.

1,0 x

10,0 z

50,8 10"3

7,2
750,0

8,4
15,0

1,00
0,24 0,23

352,0
7,0

2,50 880,0 2,93
0,28 7,0 0,23
0,017 15,0 0,017

6,6 0,22
70,0 2,90
5,8 0.19

15,0 0,017

ä

Fréquence

Zone de génération des données

adoptée de Z=M[j-Mc:
MALE

-^

1

i

/ \pistribution/ \^ NOR

i \-
1

/ \
p • mrruine

I i i i l i > I l l I

^—Moyenne de Z

Z

3. Application

Ftg. 3. — Distribution de Z Mu—Mc.

ou partie d'une distribution de fréquence
connue ou choisie [8]. Nous calculons
alors la probabilité de ruine selon une
des techniques mathématiques éprouvées
[6, 12].
Dans le cas étudié, exceptés QS et oy,
toutes les distributions sont normales
(gaussiennes). Dans le cas de la limite
d'élasticité oy, la distribution lognormale
choisie [9, 14] se rapproche beaucoup
de la normale. De même pour la
surcharge QS, la distribution gamma [5, 16]
est elle aussi similaire à la normale. De
plus, l'influence de la surcharge statistique

dans le calcul de Mc est faible
(~15 %). Pour cette raison, et en vertu
du théorème de la limite centrale [4],
nous associons la distribution résultante
de Z Mu—Me à une normale.
On peut décider d'ajuster toute la courbe
à une normale ou essayer de ne modeler
que la queue de Z Mu — Mc [8]. Notre
choix s'est porté sur l'ajustement de toute
la courbe par une distribution normale.
A l'aide de la méthode des moments [4]
(1er moment moyenne arithmétique,
2e moment écart-type), on calcule les

estimateurs de Z (Mz et cz). Le calcul

de la probabilité de ruine s'effectue alors
facilement avec des moyens analytiques
connus [6, 12].
Fournissons quelques indications : il faut
générer environ 10 000 termes pour
obtenir des résultats fiables et comparables

[17]. Nous comptons alors (avec
des données d'input réalistes), 60-80
secondes d'unité centrale d'ordinateur
(CPU) (6-8 secondes/1000 termes) pour
le calcul complet. Nous réservons une
zone de mémoire centrale de 200 k, ce
qui permet, sur 1MB 360 (Université de
Sherbrooke) de générer 13 000 pas environ.

Notons que 140 k sont réservés
uniquement au stockage des valeurs de
M„ et de Me avant leur traitement
statistique. Le calcul de la probabilité de
ruine est effectué directement par un
sous-programme de l'ordinateur.
Remarquons ici qu'il serait possible de
diminuer le coût d'ordinateur en utilisant

des méthodes numériques plus
sophistiquées [17]. Une solution serait par
exemple de ne générer des variables que
dans la région des queues des distributions,

zone de calcul de la probabilité
de ruine.

L'étude porte sur le cas mentionné en
introduction, à savoir une poutre simple
soumise à une charge uniformément
répartie. Cette poutre supporte une dalle
en béton sans aucune action mixte acier-
béton. Pour déterminer d'une part les
effets des charges factorisées et pour
calculer d'autre part la résistance, nous
appliquons la norme SIA 161 E. 11 est
entendu que pour tous les exemples,
c'est la norme SIA 161 E qui fait foi, et
que les hypothèses de calcul non
mentionnées explicitement sont celles à la
base de cette norme.

a) Le dimensionnement

Le dimensionnement se fait selon la
norme en introduisant les valeurs nominales

des paramètres dans les formules.
Nous choisissons (tableau 1) 3§äßj|Bi§i
férents rapports d'élancement des ailes
et des âmes, ce qui nous donne trois
exemples caractéristiques différents :

— b/e 41,7; h/t 89,3 : Mu MD
{1} (Norme : Tableau 3 4-1)

— b/e 50,3 ; h/t 125,7 : Mu My
{2} (Norme : Tableau 3 6-2)

— b/e 52,7 ; h/t 150,0 : M,
MD(P) {3}

Le choix de ces rapports (b/e et h/t) permet

de couvrir les trois formules de
dimensionnement possibles d'une part
(formules {1}, {2}, {3}) et de nous trouver
toujours proche d'une limite d'élancement

d'autre part (tableau 3 4-Jfiwf.
tableau 3 6-2 de la norme). Le critère
de dimensionnement est celui du poids
minimum.
Pour faciliter le dimensionnement, nous
avons construit une abaque de
dimensionnement h/b—L (formule {li, fig. 2).
Cette abaque indique le rapport MD/MP
en fonction de la portée L et du
rapport h/b.
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Tableau 3

DEFINITION DE LA PROBABILITE DE RUINE

QUELQUES EXEMPLES POSSIBLES

EFFETS DES CHARGES RESISTANCE

Calculés selon .es Calculée selon les
Normes suisses Normes suisses

Valeur mesurée II Calculée selon les
Normes suisses

Calculés selon LesIII Reelle
Normes suisses

Valeur mesurée IV Réelle

Choix pour l'ét jde : exemple II

Tableau 4

PROBABILITE DE RUINE

ELANCEMENTS AILES
AMES

41,7
89,3

50,3
125,7

52,7
150,0

(valeur de base) 3,4 10-

ILITE DES PARAMETRES
PARAMETRE NOUVEAU

géométrique
TT 284 ,4"t
TT - 289,1_"f
M » 276,1

- 25,6
- 29,8

27,3

N/mm2

H/mm2

H/mm2

6,7 10-
3,1 10"
1,4 10"
2,1 10"
1,3 10-

6.7 10-
4,2 10"
6,1 10"

4.8 10"

4,0 10"

5.0 10"
6.1 10"

4,3 10"
1,9 10"
1,5 10"

b) Les données statistiques (tableau 2)
Ce tableau suscite quelques commentaires

:

— Nous avons retenu la distribution
lognormale pour représenter oy [9,
14]. Les valeurs présentées sont tirées
de l'article de Galambos et Ra-
vindra [10].

— Pour ce qui est de la distribution de
la surcharge statistique (charge vive),
nous avons retenu, en accord avec
d'autres auteurs [5, 16] une distribution

gamma. Les valeurs caractéristiques

(moyenne et écart-type) ont
été tirées de campagnes de mesures.

— Toutes les autres variables sauf celles
mentionnées ci-dessus suivent une
distribution normale, ce qui est
en accord avec des recherches de
Johnson par exemple [13].

— Pour calculer les écarts-types d'après
les tolérances (données par un code

par exemple) et les valeurs moyennes,
nous avons utilisé la « règle des
3 o» [12]. Cette règle énonce que
la déviation maximale de la moyenne
devrait être de 3 a, ce qui correspond
à une probabilité de 1,35 10-8.

c) Le calcul de la probabilité de ruine

Il est à noter que pour le calcul de la
probabilité de ruine, nous déterminons
(tableau 3, cas II) la résistance selon la
norme SIA 161 E et nous calculons les
effets des charges à partir de valeurs
mesurées (basées sur des résultats de

campagnes de mesures). Si nos résultats
sont comparés avec ceux d'autres
auteurs, ceci doit être gardé à l'esprit.
D'ailleurs, le tableau 4 nous montre
quelle serait la valeur de la probabilité
de ruine en supposant que la surcharge
statistique soit égale à la surcharge de
dimensionnement.
Les valeurs de la probabilité de ruine
obtenues dans les trois exemples cités
plus haut sont énumérées dans le
tableau 4 (valeur de base).
Nous étudions la variation de la probabilité

de ruine en fonction de différents
paramètres. Pour ce faire, nous calculons

systématiquement la probabilité de
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ruine en variant les rapports géométriques

et la portée, ce qui amène les résultats

présentés dans les diagrammes 1 à 3.
Dans le but d'effectuer des comparaisons
ponctuelles, nous étudions le cas des

profilés laminés. Ces profilés sont dimen-
sionnés, pour une portée donnée, selon
le critère du poids minimum. Les valeurs
de leur probabilité de ruine sont calculées
sur la même base et selon les mêmes
procédés que celles des poutres-caissons.
Ces valeurs sont reportées dans le
tableau 5.

4. Résultats

4.1 Résultats généraux
Les résultats présentés dans cette étude
comprennent deux parties :

—¦ D'une part, nous effectuons le calcul
de la probabilité de ruine en variant
la portée de 5 à 50 mètres et en
attribuant à h/b diverses valeurs allant
de 1 à 8, ceci pour les trois élancements
des exemples du tableau 2. Nous
trouvons alors des courbes illustrant
la variation de la probabilité de ruine
selon la portée (diagrammes 1 à 3).

— D'autre part, nous pouvons étudier
la variation de la probabilité de ruine
en fonction des trois élancements et
de la portée en choisissant un rapport
h/b constant (h/b 2,5)
(diagramme 4).

a) Diagrammes 1,2, 3
Si nous examinons ces diagrammes, dont
chacun est valable pour une certaine
valeur de b/e et h/t, nous remarquons
que la probabilité de ruine se situe entre
10"14 et lO-11.
Une première observation nous révèle

que le niveau maximum de la probabilité
de ruine se situe à «s 10-11. Cette limite
est respectée dans tous les cas envisagés
ici.
La probabilité de ruine diminue en fonction

du rapport h/b si le dimensionnement

est gouverné par la formule
Mu MD (b/e 41,7, h/t 89,3 ;

diagramme 1). Cette diminution ne devient
plus sensible que lorsque h/b > 5 (fig. 2,

diagramme 1). Cette variation de la
probabilité de ruine est plus ou moins régulière

et fonction de h/b surtout. Il est à
retenir que plus h/b augmente, plus la
probabilité de ruine diminue.

b) Diagramme 4

Ce diagramme représente la probabilité
de ruine en fonction de la portée pour un
rapport h/b constante 2,5, pour les
trois élancements b/e et h/t que nous
avons choisis pour notre étude. Nous
constatons que les trois courbes sont
assez semblables et se situent dans un
intervalle étroit. On remarque que la
norme SIA 161 E fournit, pour un jeu
réaliste de données, des valeurs de la
probabilité de ruine ne dépendant pour ainsi
dire pas des élancements b/e et h/t. La
probabilité de ruine ne dépend donc
quasiment pas de la formule régissant le
dimensionnement, ce qui veut dire que
la norme fait preuve de consistance et
d'homogénéité.

4.2 Sensibilité de la probabilité de ruine

En reprenant les trois exemples de
dimensionnement (tableau 1, tableau 2 ;
h/b 2,5, L 15,0 m), nous calculons
la probabilité de ruine en changeant les
valeurs de certains paramètres. Ainsi,
nous obtenons la sensibilité de la probabilité

de ruine par rapport à ces para-

Tableau 5

PROBABILITE DE RUINE DES PROFILES

PROFILE PORTEE t"0 Pru Ine
IPE 140 2,0 1.2 10-1"
HEA 180 4,0 6,9 m-»
HEM 160 6,0 2,2 lO"'*
HEB 260 8,0 7,4 lO"16
HEB 320 10,0 3.3 io-'«
HEM C300 12,0 7.5 10-15

HEB 550 14,0 1.3 10"16

HEM 340 15,0 7.1 10-15
HEA 1000 16,0 3,1 io-16
HEM 900 18,0 7.9 lO"»5

Donnfies : "f.n" 23: H/mm2
TT - 270 ,3 a ¦

»f
24 ,3 H/mm2
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Fig. 4. — Diagramme 1. Fig. 5. — Diagramme 2.

mètres (tableau 4). Il est à noter que
nous ne considérons, dans les trois
alinéas suivants, que le changement d'un
seul paramètre (ou groupe de
paramètres) à la fois.

a) Variation de la surcharge

Jusqu'à maintenant, nous avons effectué
le calcul de la probabilité de ruine avec
une vraie surcharge mesurée. Ici, nous
introduisons à la place de la valeur
statistique mesurée, la surcharge de dimen¬

sionnement dans le calcul de la probabilité
de ruine. Pour les trois exemples-

types, le niveau de cette probabilité est
sensiblement le même:

bruine 5,0 10"7 à 6,7 10"'
La connaissance de la vraie surcharge
est donc prépondérante pour une bonne
estimation de la probabilité de ruine.

b) Variation de la géométrie
Dans ces calculs, nous considérons les
valeurs géométriques comme étant des

constantes, ce qui veut dire que nous
négligeons les tolérances géométriques.
Les valeurs correspondantes pour les
trois exemples sont comprises entre les
limites suivantes :

bruine 3,1 lO"15 à 6,1 10"16

En comparant les valeurs correspondantes
du tableau 4 (Prmne =1.1 10"18 à

3,4 10-13, valeurs de base), nous constatons

que l'influence des tolérances
géométriques n'est pas très importante.

10
10

Elancements: b/e 52,7-, h/t 150,0
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' io-B

S Iff
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*e h/,

503 25,7
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Fis. 6. — Diagramm« 3. Fis. 7. — Diagramme 4.
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c) Variation de Gf

Il faut dire qu'il est assez difficile de

trouver des données statistiques fiables ;
de plus les valeurs publiées varient beaucoup

suivant l'auteur et la provenance
des essais [10].

En étudiant les trois dernières lignes du
tableau 4, nous remarquons que la
probabilité de ruine est étroitement liée à
la variation des valeurs statistiques de la
limite élastique, oy est de ce fait un
paramètre très important. En regardant les
différentes formules de Mu, nous constatons

que oy apparaît toujours comme un
multiplicateur direct, ce qui explique la
grande sensibilité de la probabilité de

ruine par rapport à ce paramètre.

4.3 Comparaison avec les profilés

Les bases de cette comparaison sont
décrites au paragraphe 3 c (Le calcul de la

probabilité de ruine).
Si nous étudions les résultats de la poutre-
caisson et ceux des profilés laminés
(tableau 5), nous remarquons que les valeurs
de la probabilité de ruine de chaque
section sont toujours comparables et du
même ordre de grandeur.
D'ailleurs nous avons constaté que pour
une portée donnée, le poids d'un profilé
est environ le double de celui d'une
poutre-caisson, les deux sections ayant

Liste des symboles :

Matériaux :

E module d'élasticité
v coefficient de Poisson
Vf : limite d'élasticité
Of, » : valeur nominale de la limite

d'élasticité

Charges
G poids de la dalle en béton seule
GG poids de la poutre seule
Q surcharge de dimensionnement
QS surcharge statistique

Géométrie :
b largeur du caisson
e épaisseur des ailes
h hauteur du caisson
t épaisseur des âmes
L portée

Dimensionnement :

Mu moment de résistance ultime
MD moment de déversement
MD (F) moment de déversement

(largeur de participation)
Mv moment plastique
My moment limite élastique
Mc moment dû aux charges

Calcul de la probabilité de ruine :
Pruine probabilité de ruine
M} valeur moyenne de la variable/
°1 écart-type de la variable /
N distribution de fréquence

normale
LN distribution de fréquence

lognormale
GA distribution de fréquence

gamma

été dimensionnées sur la base du critère
du poids minimum dans chaque cas.

4.4 Conclusions

En résumé, la probabilité de ruine des

poutres-caissons analysées dans cette
étude varie entre 10~n et 10-14 si

h/b ^ 5. La variation entre ces valeurs
se fait d'une manière plus ou moins
constante. Si h/b > 5, la probabilité de
ruine diminue sensiblement, mais
graduellement.

D'une manière générale, nous pouvons
dire que toutes les valeurs de la probabilité

de ruine obtenues selon la norme
SIA 161 E sont situées dans un intervalle
assez étroit, qu'elles montrent une variation

continue et graduelle et présentent
une limite supérieure à environ 10-11.

Pour les poutres-caissons, la sensibilité
de la probabilité de ruine par rapport à
différents paramètres se résume comme
suit : l'influence des tolérances géométriques

est relativement faible et peu
significative ; les paramètres les plus
importants pour une bonne estimation
de la probabilité de ruine sont surtout la
surcharge QS et la limite élastique oy.
Remarquons encore que les valeurs de la
probabilité de ruine obtenues à l'aide de
la norme SIA 161 E sont tout à fait
comparables à celles calculées à partir d'autres

codes semi-probabilistes basés sur
le dimensionnement aux états limites
(Limit States Design), comme par exemple

le code canadien S16.1-1974 [1, 15].
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