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CONSTRUCTION METALLIQUE

Ingénieurs et architectes suisses 11 octobre 1979

Probabilité de ruine d’une
poutre-caisson
par simulation de Monte Carlo

par Pierre-Yves Monnier et Peter Schmalz, Sherbrooke (Canada)

Malgré le fait que les structures dimensionnées selon les normes ne s’effon-
drent pas en général, il est intéressant de connaitre leur vraie probabilité
de ruine, surtout a cause des conséquences économiques.

Les auteurs considérent une poutre-caisson appuyée comme poutre simple
et soumise a une charge uniformément répartie. Sur la base de données
statistiques réelles, provenant d’essais ou bien basées sur des hypothéses
raisonnables et justifiables, le moment factorisé M. et le moment résistant
ultime My sont calculés par simulation de Monte Carlo. Apreés interpola-
tion, on attribue a la variable Z = My—M. une distribution de fréquence
normale (gaussienne). Ensuite, la probabilité de ruine est calculée selon une
technique mathématique éprouvée.

D’une maniére générale, les valeurs de la probabilité de ruine d’une poutre-
caisson dimensionnée selon la norme SIA 161 (Projet N 5124-8 du 3.10.78)
se situent dans un intervalle relativement étroit, présentant une limite supé-
rieure d’environ 1071, Le présent travail montre que les paramétres les plus
importants pour une bonne estimation de la probabilité de ruine sont la
surcharge d’une part et la limite élastique de Pacier d’autre part. Les
valeurs de la probabilité de ruine de poutres-caissons dimensionnées selon
le projet de révision de la norme SIA 161 sont tout a fait comparables a
celles calculées d’apres d’autres codes semi-probabilistes basés sur le dimen-
sionnement aux états limites (Limit States Design).

restent constants, ce qui nous permet
d’obtenir des résultats sur un champ
d’étude continu. Ces résultats sont com-
parabies entre eux sur tout le domaine de
variation des paramétres. En choisissant
par exemple une section en I, il aurait
été treés difficile de garder ces élancements
constants (passage de IPE a HEA, HEB,
ou HEM, passage aux composés-soudés
pour les grandes portées par exem-
ple).

En plus de cette raison, le choix d’une
poutre-caisson nous a paru intéressant
parce que cette section présente une
grande rigidité torsionnelle.

Le principe du calcul de la probabilité
de ruine est expliqué ci-dessous. Nous
dimensionnons d’abord la poutre selon
les formules de la norme, en utilisant les
valeurs nominales (souvent égales aux
valeurs moyennes) des variables. En-
suite, nous calculons la probabilité de
ruine par simulation de Monte Carlo sur
la base de données statistiques réel-
les [4] 2.

1. Introduction

L’expérience montre qu’en général les
structures dimensionnées en accord avec
les normes ne s’effondrent pas. Il est
intéressant cependant de connaitre leur
probabilité de ruine ( Pryine) @ cause des
conséquences économiques.

Vu l'importance de la probabilité de
ruine et I'importance des poutres en
flexion, nous nous proposons dans cette
é¢tude de déterminer la probabilité de
ruine des poutres métalliques en flexion,
dimensionnées selon le projet de norme
SIA 161 N 5124-8 du 3.10.78, proposé a
I’assemblée des délégués du 25 novembre
1978. Nous appellerons ce projet « norme
SIA 161 E» ou tout simplement
«norme » dans cette recherche.

Dans cette étude, nous considérons une
poutre simple en flexion, latéralement
non-appuyée sauf aux extrémités (appuis
a fourches). La section transversale est
celle d’une poutre-caisson (fig. 1). Le
choix de cette section a été retenu pour
la raison suivante : comme nous étudions
la variation de la probabilité de ruine en
fonction des différents paramétres, il
convient de choisir un type de section
dont les élancements (b/e, h/t; fig. 1)

1 Projet de révision de la norme SIA 161
N 5124-8 du 3.10.78.

2 Les chiffres entre crochets renvoient a la
bibliographie en fin d’article.

Abstract

In this paper the probability of failure (Py)
using simulation techniques is calculated
for box beams. The beam is designed in
accordance with the Swiss Code SIA 161
(Projet de révision N 5124-8 du 3.10.78)
and the probability of failure is calculated
by Monte Carlo simulation, using real
statistical data. Values of P of such a
beam are located in a narrow range, with
an upper limit of about 10-11, The most
important parameters for a good estimates
of Py are the statistical live load and the
yield point of the steel. Values of the
probability of failure are found quite com-
parable with those for beams designed on
the basis of other semi-probabilistic codes.

Chaque variable est caractérisée par sa
distribution de fréquence, sa valeur
moyenne et son écart-type. Ces informa-
tions proviennent de résultats d’essais ou
de campagnes de mesures, ou alors sont
basées sur des hypothéses réalistes et
justifiables. En comparant les valeurs
des probabilités de ruine présentées ici
avec celles d’autres études, il est impor-
tant de se rappeler les diverses possibilités
et le choix que nous avons retenu dans
cette étude (tableau 3).

Nous avons, a titre comparatif, exécuté
une étude similaire pour des poutres en I.
Nous pouvons donc effectuer des compa-
raisons ponctuelles entre les sections en
caisson et celles en I dans le but de véri-
fier si 'ordre de grandeur des probabi-
lités de ruine est comparable dans
chaque cas.

Nous pensons que des études de nature
comparative comme la présente sont
particuliérement importantes aujourd’hui
ou un grand nombre de codes sont
modifiés et passent d’un concept déter-
ministe & un concept semi-probabiliste ou
probabiliste.

I
|
|
|
|
|
I

1 T

Fig. 1. — Poutre-caisson — Section transversale.
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2. La simulation de Monte Carlo

2.1

11 y a plusieurs possibilités de déterminer
la probabilité de ruine. Parmi les plus
importantes, citons les suivantes :

Généralités

— Effectuer un aussi grand nombre
d’essais a la ruine au laboratoire pour
qu’on puisse en tirer des conclusions
statistiques. Cette méthode est trés
coliteuse et compliquée.

Calculer, par des moyens analytiques,
la probabilit¢é de ruine a partir de
données statistiques. Les méthodes
analytiques se limitent pratiquement
a des problémes caractérisés par des
distributions de fréquence normales.

Utiliser la simulation de Monte
Carlo [11].

Dans cette étude, nous avons retenu la
simulation de Monte Carlo pour les rai-
sons suivantes :

— Elle permet de tenir compte des don-
nées statistiques réelles, en général
des variables aléatoires de distribu-
tions statistiques connues, et de les
utiliser ensuite pour le calcul de la
probabilité de ruine.

Elle permet de simuler un trés grand
nombre d’expériences, et, de ce fait,
de travailler avec des moyens statis-
tiques.

Elle rend possible d’atteindre quasi-
ment n’importe quel degré de préci-
sion voulu [11].

La technique de calcul est simple [4].
Chaque paramétre qui entre dans le cal-
cul du terme de charge ou de résistance
est associé a une distribution de fréquence
(distribution a deux paramétres) don-
née.

Nous générons ensuite les variables aléa-
toires associées au moyen de I’ordina-
teur. En introduisant leurs valeurs dans
les calculs, nous trouvons les grandeurs
aléatoires de M, et M, ( M, : moment
de résistance ultime, M,: moment di
aux charges). Il est évident qu’il faut
générer un grand nombre de valeurs pour
pouvoir les traiter statistiguement. C’est
en calculant les valeurs de Z = M, — M,
(fig. 3) que nous trouvons la probabilité
de ruine.

Il est bon cependant de faire une mise
en garde ici : la qualité des données est
essentielle. On ne peut obtenir des résul-
tats fiables qu’en utilisant des données
statistiques de premier ordre qui reflétent
de trés prées la réalité physique [8].

2.2 Techniques de la simulation

Il existe plusieurs moyens d’obtenir la
probabilité de ruine par la méthode de
simulation. Le plus simple consiste a
faire le rapport du nombre d’échecs
( M,— M, < 0) au nombre total d’essais
(simulation directe) [6]. Ceci implique
que pour obtenir une probabilité de ruine

272

0|
h
/b
9 b
8 —
=
N
6
5
£
o o o o o o
— ol o o o
4 g 9 3 ] I s © @ 8
E4 ® © = = o i ~
"
=
3 —
My = Mp =1,00 Mp
2| VALABLE POUR: \
b
o =T
] —
T -89,3
1 | | | | | I | | |
0 (m) 5 10 15 20 25 30 35 40 45 50
Portée
Fig. 2. — Abaque de dimensionnement.
TABLEAU 1
DIMENSIONNEMENT
MATERIAU : Fe 360, o, = 235 N/mm?, E = 210 kN/mm?, v = 0,3
GEOMETRIE : Poutre simple, charge uniformément répartie.
Caisson, rapport de section : h/b = 2,5
Portée : L = 15,0 m
CHARGES
POIDS PROPRE : Béton, 15 cm d'épaisseur, 25 kN/m3 sur 2,5 m
G = 9,4 N/mm
SURCHARGE 1 400 kg/m? (SIA-160-16.1) = 4 kN/m? sur 2,5 m
Q = 10,0 N/mm
ELANCEMENTS
AILES WLy 50,3 5957
AMES 89,3 1257 150,0
PARAMETRES
UNITE
b mm 300,0 352,0 348,0
e mm 7,2 7,0 6,6
h nm 750,0 880,0 870,0
t mm 8,4 7,0 5,8
Formule : Mu = MD Mu =M Mu = MD(P)
GG N/mm 1,30 1,33 1,13
I, mm“ 31584,0 10“ 43379,0 104 35168,0 10"
K mm“ 77330,0 10% 109176,0 10% 90319,0 10"
W mm?  3198,0 103 3972,0 103 3454,0 103
z, mm3 3985,0 10°? 4978,0 103 4185,0 103
- Lis13 1,09
- 115,6 104,0
o N/mm? 155,1 191,6
Dw
o N/mm? 4763,2 5211,9
Dv
o N/mm  4765,7 5215,4
_cr,D
s - 0,25 0,24
% N/mm? 292,6 289,9
M, kN-m 935,7 933,4 930,9
M kN-m 931,5 932,9 923,9

de Pordre de 107!, il faut simuler un
nombre « astronomique » d’essais.

Une deuxiéme méthode est d’utiliser des
moyens statistiques qui permettent, pour
un certain niveau de confiance choisi, de
calculer des bornes supérieures et infé-
rieures de la probabilité de ruine, ceci

méme dans le cas ol aucun échec n’a été
enregistré [3]. Cependant, dans notre
étude, les valeurs ainsi obtenues peuvent
se situer dans un intervalle assez grand.
Une troisietme méthode (celle choisie)
consiste a attribuer a la variable
Z = M,— M, aprés interpolation, tout
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Fig. 3. — Distribution de Z = Mu— M_.

ou partie d’une distribution de fréquence
connue ou choisie [8]. Nous calculons
alors la probabilité de ruine selon une
des techniques mathématiques éprouvées
[6, 12].

Dans le cas étudié, exceptés OS et oy,
toutes les distributions sont normales
(gaussiennes). Dans le cas de la limite
d’élasticité oy, la distribution lognormale
choisie [9, 14] se rapproche beaucoup
de la normale. De méme pour la sur-
charge OS, la distribution gamma [5, 16]
est elle aussi similaire a la normale. De
plus, l'influence de la surcharge statis-
tique dans le calcul de M, est faible
(~15 %). Pour cette raison, et en vertu
du théoréme de la limite centrale [4],
nous associons la distribution résultante
de Z = M,— M, a une normale.

On peut décider d’ajuster toute la courbe
a une normale ou essayer de ne modeler
que la queue de Z = M, — M, [8]. Notre
choix s’est porté sur I’ajustement de toute
la courbe par une distribution normale.
A Taide de la méthode des moments [4]
(1er moment = moyenne arithmétique,
2¢ moment = écart-type), on calcule les

estimateurs de Z(/\7IZ et gz). Le calcul

de la probabilité de ruine s’effectue alors
facilement avec des moyens analytiques
connus [6, 12].

Fournissons quelques indications : il faut
générer environ 10000 termes pour
obtenir des résultats fiables et compa-
rables [17]. Nous comptons alors (avec
des données d’input réalistes), 60-80 se-
condes d’unité centrale d’ordinateur
(CPU) (6-8 secondes/1000 termes) pour
le calcul complet. Nous réservons une
zone de mémoire centrale de 200 k, ce
qui permet, sur IMB 360 (Université de
Sherbrooke) de générer 13 000 pas envi-
ron. Notons que 140 k sont réservés
uniquement au stockage des valeurs de
M, et de M, avant leur traitement sta-
tistique. Le calcul de la probabilité de
ruine est effectué¢ directement par un
sous-programme de ’ordinateur.

Remarquons ici qu’il serait possible de
diminuer le cott d’ordinateur en utili-
sant des méthodes numériques plus so-
phistiquées [17]. Une solution serait par
exemple de ne générer des variables que
dans la région des queues des distribu-
tions, zone de calcul de la probabilité
de ruine.

TABLEAU 2
DONNEES STATISTIQUES
ELANCEMENTS : AILES 41,7 50,3 52,7
AMES 89,3 125,17 150,0
SYMBOLE PARAMETRE DIST TOLERANCE UNITE M 9 i o M o SOURCE
Moo moyenne arithmétique MATERIAU
gf } Temice b velasETETE E N - kN/mm® 210,0 6,70 210,0 6,70 210,0 6,70 7
E : module d'élasticité ¥ Gire i = 0,3 - 053 = 053 5 =
G : poids de la dalle o LN - N/mm2 270,3 24,3 2703 124 ;3 270,3 24,3 10
GG : poids de la poutre
Q : surcharge de CHARGES
05 ¢ surcharst meatiseiene.  © N - e 94 0,013 54 0313 s 013 8
b : largeur du caisson GG - - N/mm 1,30 - 1,33 = 1,13
e : épaisseur des ailes
h : hauteur du caisson Q = = N/mm 10,0 - 10,0 o 10,0 =
t : épaisseur des ames Qs GA - N/mm 1,5 0,5 LyS Gy 150 05 5
L : portée
DIST : distribution GEOMETRIE
m o omen N b N 1,02 wm  300,0 1,00 352,0 1,17 348,0 1,16 2
LN : DIST Lognormale e N 10,0 7 mm 7,2 0,24 7,0 0,23 6,6 0,22 2
¢4 = DIST Gawma h N 1,0 2 mm  750,0 2,50 880,0 2,93 870,0 2,90 2
t N 10,0 7 mm 8,4 0,28 7,0 0,23 5,8 0,19 2
L N 50,8 10-3 m 15,0 0,017 15,0 0,017 1530 0017 2
3. Application
Zone de génération des données
| L’étude porte sur le cas mentionné en
" | introduction, & savoir une poutre simple
= soumise a une charge uniformément ré-
-9 & o 5 .
El Distribution adoptée de Z=M-Mq: partie. Cette poutre supporte une dalle
2 NORMALE en béton sans aucune action mixte acier-
= béton. Pour déterminer d’une part les
effets des charges factorisées et pour cal-
\ culer d’autre part la résistance, nous ap-
- z pliquons la norme SIA 161 E. 1l est
P uine ‘Li entendu que pour tous les exemples,
Moyenne de Z : My c’est la norme SIA 161 E qui fait foi, et
que les hypothéses de calcul non men-

tionnées explicitement sont celles a la
base de cette norme.

a) Le dimensionnement

Le dimensionnement se fait selon la
norme en introduisant les valeurs nomi-
nales des paramétres dans les formules.
Nous choisissons (tableau 1) trois dif-
férents rapports d’élancement des ailes
et des ames, ce qui nous donne trois
exemples caractéristiques différents :
— ble =41,7; h/t = 89,3: M, = M,
{1} (Norme : Tableau 3 4-1)
— ble = 50,3 ; h/t = 125,7: M, = M,
{2} (Norme : Tableau 3 6-2)
— ble = 52,7; h/t = 150,0 : M,
= Mp (P) {3}
Le choix de ces rapports (b/e et h/t) per-
met de couvrir les trois formules de
dimensionnement possibles d’une part
(formules {1}, {2}, {3}) et de nous trouver
toujours proche d’une limite d’élance-
ment d’autre part (tableau 3 4-1 et
tableau 3 6-2 de la norme). Le critére
de dimensionnement est celui du poids
minimum.
Pour faciliter le dimensionnement, nous
avons construit une abaque de dimen-
sionnement 4/b— L (formule {1}, fig. 2).
Cette abaque indique le rapport M, /Mp
en fonction de la portée L et du rap-
port h/b.
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TABLEAU 3

TABLEAU 4

DEFINITION DE LA PROBABILITE DE RUINE
QUELQUES EXEMPLES POSSIBLES
EFFETS DES CHARGES RESISTANCE

Calculés selon o Calculée selon les

Normes suisses

les

Normes suisses

Calculée selon les
Valeur mesurée I1

Normes suisses

les
Il

Calculés selon
Réelle
Normes suisses

Valeur mesurée IV Réelle

Choix pour 1'étude : exemple II

PROBABILITE DE RUINE
Caisson, Fe 360, of “ 235 N/mmz, h/b = 2,5 ; portée : L = 15,0 m
ELANCEMENTS : AILES 41,7 50,3 52,7
AMES 89,3 1257 150,0
P, (valeur de base) 3,4 10=13 1,1 10713 2,3 10713
ruine
SENSIBILITE DES PARAMETRES
PARAMETRE NOUVEAU UNITE SOURCE
ﬁ§s= Q = 10,0 ; 9gs” 1,45 N/mm 6,7 107 61 D=7 5.0 T0T%
I =0 - 3,1 10715 4.2 1015 @,1 10715
géométriques
R; = 284,4 T ™ 25,6 N/mm? 1,4 10713 6,1 107'% 4,3 1071% 10
1%: = 289,1 o = 29,8 N/mm? 2,1 10-!! 4,8 10711 1,9 107! 10
_;f = 276,1 ca: = 27,3 N/mm?2 1,3 10-!! 4,0 10-!! 1,5 10711 10

b) Les données statistiques (tableau 2)

Ce tableau suscite quelques commen-
taires :

— Nous avons retenu la distribution
lognormale pour représenter oy [9,
14]. Les valeurs présentées sont tirées
de larticle de Galambos et Ra-
vindra [10].

Pour ce qui est de la distribution de
la surcharge statistique (charge vive),
nous avons retenu, en accord avec
d’autres auteurs [5, 16] une distribu-
tion gamma. Les valeurs caractéris-
tiques (moyenne et écart-type) ont
été tirées de campagnes de mesures.
Toutes les autres variables sauf celles
mentionnées ci-dessus suivent une
distribution normale, ce qui est
en accord avec des recherches de
Johnson par exemple [13].

Pour calculer les écarts-types d’aprés
les tolérances (données par un code
par exemple) et les valeurs moyennes,
nous avons utilisé la «régle des
30» [12]. Cette regle énonce que
la déviation maximale de la moyenne
devrait étre de 3 o, ce qui correspond
a une probabilité de 1,35 1073,

c) Le calcul de la probabilité de ruine

Il est & noter que pour le calcul de la
probabilité de ruine, nous déterminons
(tableau 3, cas II) la résistance selon la
norme SIA 161 E et nous calculons les
effets des charges a partir de valeurs
mesurées (basées sur des résultats de
campagnes de mesures). Si nos résultats
sont comparés avec ceux d’autres au-
teurs, ceci doit étre gardé a Iesprit.
Drailleurs, le tableau 4 nous montre
quelle serait la valeur de la probabilité
de ruine en supposant que la surcharge
statistique soit égale a la surcharge de
dimensionnement.

Les valeurs de la probabilité de ruine
obtenues dans les trois exemples cités
plus haut sont énumérées dans le ta-
bleau 4 (valeur de base).

Nous étudions la variation de la proba-
bilité de ruine en fonction de différents
parametres. Pour ce faire, nous calcu-
lons systématiquement la probabilité de
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ruine en variant les rapports géométri-
ques et la portée, ce qui amene les résul-
tats présentés dans les diagrammes 1 a 3.
Dans le but d’effectuer des comparaisons
ponctuelles, nous étudions le cas des
profilés laminés. Ces profilés sont dimen-
sionnés, pour une portée donnée, selon
le critére du poids minimum. Les valeurs
de leur probabilité de ruine sont calculées
sur la méme base et selon les mémes
procédés que celles des poutres-caissons.
Ces valeurs sont reportées dans le
tableau 5.

4. Résultats

4.1

Les résultats présentés dans cette étude
comprennent deux parties :

— D’une part, nous effectuons le calcul
de la probabilité de ruine en variant
la portée de 5 a 50 métres et en attri-
buant a 4/b diverses valeurs allant
de 1 a8, cecipour les trois élancements
des exemples du tableau 2. Nous
trouvons alors des courbes illustrant
la variation de la probabilité de ruine
selon la portée (diagrammes 1 a 3).

Résultats généraux

D’autre part, nous pouvons étudier
la variation de la probabilité de ruine
en fonction des trois élancements et
de la portée en choisissant un rapport
h/b  constant (h/b = 2,5) (dia-
gramme 4).

a) Diagrammes 1, 2, 3

Si nous examinons ces diagrammes, dont
chacun est valable pour une certaine
valeur de b/e et h/t, nous remarquons
que la probabilité de ruine se situe entre
1074 et 10712,

Une premiére observation nous révele
que le niveau maximum de la probabilité
de ruine se situe & A~ 107!, Cette limite
est respectée dans tous les cas envisagés
ici.

La probabilité de ruine diminue en fonc-
tion du rapport A/b si le dimensionne-
ment est gouverné par la formule
M, = Mp (ble = 41,7, h/t = 89,3 ; dia-
gramme 1). Cette diminution ne devient
plus sensible que lorsque 2/b > 5 (fig. 2,

diagramme 1). Cette variation de la pro-
babilité de ruine est plus ou moins régu-
liere et fonction de A/b surtout. Il est a
retenit que plus A/b augmente, plus la
probabilité de ruine diminue.

b) Diagramme 4

Ce diagramme représente la probabilité
de ruine en fonction de la portée pour un
rapport #/b = constante = 2,5, pour les
trois élancements b/e et h/t que nous
avons choisis pour notre étude. Nous
constatons que les trois courbes sont
assez semblables et se situent dans un
intervalle étroit. On remarque que la
norme SIA 161 E fournit, pour un jeu
réaliste de données, des valeurs de la pro-
babilité de ruine ne dépendant pour ainsi
dire pas des élancements b/e et h/t. La
probabilit¢ de ruine ne dépend donc
quasiment pas de la formule régissant le
dimensionnement, ce qui veut dire que
la norme fait preuve de consistance et
d’homogénéité.

4.2 Sensibilité de la probabilité de ruine

En reprenant les trois exemples de dimen-
sionnement (tableau 1, tableau 2;
h/b = 2,5, L = 15,0 m), nous calculons
la probabilité de ruine en changeant les
valeurs de certains parameétres. Ainsi,
nous obtenons la sensibilité de la proba-
bilit¢ de ruine par rapport a ces para-

TABLEAU 5
PROBABILITE DE RUINE DES PROFILES
PROFILE  PORTEE [m] P .o
IPE 140 2,0 1,2 10-14
HEA 180 4,0 6,9 10-1%
HEM 160 6,0 2,2 1071V
HEB 260 8,0 7,4 10716
HEB 320 10,0 3,3-10718
HEM C300 12,0 745 10718
HEB 550 14,0 1,5 10716
HEM 340 15,0 7,1 10-18
HEA 1000 16,0 3,1 10716
HEM 900 18,0 7,9 10718
Données : o = 235 N/mm?

f,n
M =270,3 o_ = 24,3 N/gm?
ot of
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Elancements : b/e =41,7, h/t = 89,3 Elancements: b/e =50,3 ; h/t = 125,7
16 W 10 Wy
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L 1.0
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Fig. 4. — Diagramme 1.

Fig. 5. — Diagramme 2.

métres (tableau 4). Il est 4 noter que
nous ne considérons, dans les trois ali-
néas suivants, que le changement d’un
seul parametre (ou groupe de para-
métres) a la fois.

a) Variation de la surcharge

Jusqu’a maintenant, nous avons effectué
le calcul de la probabilité de ruine avec
une vraie surcharge mesurée. Ici, nous
introduisons a la place de la valeur sta-
tistique mesurée, la surcharge de dimen-

sionnement dans le calcul de la probabi-
lit¢ de ruine. Pour les trois exemples-
types, le niveau de cette probabilité est
sensiblement le méme :
Peooise = 5,0 1077 2 6,7 10°7

La connaissance de la vraie surcharge
est donc prépondérante pour une bonne
estimation de la probabilité de ruine.

b) Variation de la géométrie

Dans ces calculs, nous considérons les
valeurs géométriques comme étant des

constantes, ce qui veut dire que nous
négligeons les tolérances géométriques.
Les valeurs correspondantes pour les
trois exemples sont comprises entre les
limites suivantes :

Poiss =3,1 10724 6,1 10722
En comparant les valeurs correspondan-
tes du tableau 4 (Prype = 1,1 10723 3
3,4 10713, valeurs de base), nous consta-

tons que l'influence des tolérances géo-
métriques n’est pas trés importante.

Elancements : b/e = 52,7 ; h/t = 150,0 Rapport de section:h/b =2,5
10 Mo 16 Y% |t
1,0
AT o
o o NRLTIES,
/"/ l<_ 5.0 %% 527/150,0
= 1 h)
=k 25 ///"
12 -12 ///
16 = e 16 <
2 L % @ %2//'
s vd 3 /7
° B3 A/ 80 S _13 N/
10 % 10 &
2. / | F g
= T 7 = 7
o 0
S 4 £ 4
° 14 o <l
& 10 = 10
I5‘5 |6|5
168 15'
0(m) 10 20 30 40 50 Portée 0 (m) 10 20 30 40 50 Portée

Fig. 6. — Diagramme 3.

Fig. 7. — Diagramme 4.
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¢) Variation de o

Il faut dire qu’il est assez difficile de
trouver des données statistiques fiables;
de plus les valeurs publiées varient beau-
coup suivant l'auteur et la provenance
des essais [10].

En étudiant les trois derniéres lignes du
tableau 4, nous remarquons que la pro-
babilité de ruine est étroitement liée a
la variation des valeurs statistiques de la
limite élastique. oy est de ce fait un para-
metre trés important. En regardant les
différentes formules de M,, nous consta-
tons que gy apparait toujours comme un
multiplicateur direct, ce qui explique la
grande sensibilit¢ de la probabilité de
ruine par rapport a ce parametre.

4.3  Comparaison avec les profilés

Les bases de cette comparaison sont dé-
crites au paragraphe 3 ¢ (Le calcul de la
probabilité de ruine).

Sinous étudions les résultats de la poutre-
caisson et ceux des profilés laminés (ta-
bleau 5), nous remarquons que les valeurs
de la probabilité de ruine de chaque
section sont toujours comparables et du
méme ordre de grandeur.

Drailleurs nous avons constaté que pour
une portée donnée, le poids d’un profilé
est environ le double de celui d’une
poutre-caisson, les deux sections ayant

Liste des symboles :

Matériaux :

B : module d’¢lasticité

v : coefficient de Poisson

of : limite d’élasticité

Of, n : valeur nominale de la limite
d’élasticité

Charges :

G : poids de la dalle en béton seule

GG : poids de la poutre seule

(0] : surcharge de dimensionnement

Qs : surcharge statistique

Géométrie :

b : largeur du caisson

e : épaisseur des ailes

h : hauteur du caisson

t : épaisseur des ames

E : portée

Dimensionnement :

M, : moment de résistance ultime

Mp : moment de déversement

Mp ( P): moment de déversement
(largeur de participation)

M, : moment plastique
My : moment limite élastique
M, : moment di aux charges

Calcul de la probabilité de ruine :
Pryine : probabilité de ruine

My : valeur moyenne de la variable j

oy : écart-type de la variable j

N . distribution de fréquence
normale

LN : distribution de fréquence
lognormale

GA : distribution de fréquence
gamma

été dimensionnées sur la base du critére
du poids minimum dans chaque cas.

4.4 Conclusions

En résumé, la probabilité de ruine des
poutres-caissons analysées dans cette
étude varie entre 10711 et 10714 sij
h/b = 5. La variation entre ces valeurs
se fait d’une maniére plus ou moins
constante. Si 4/b > 5, la probabilité de
ruine diminue sensiblement, mais gra-
duellement.

D’une maniére générale, nous pouvons
dire que toutes les valeurs de la proba-
bilité de ruine obtenues selon la norme
SIA 161 E sont situées dans un intervalle
assez étroit, qu’elles montrent une varia-
tion continue et graduelle et présentent
une limite supérieure & environ 10711,

Pour les poutres-caissons, la sensibilité
de la probabilité de ruine par rapport a
différents paramétres se résume comme
suit : I'influence des tolérances géomé-
triques est relativement faible et peu
significative ; les parameétres les plus
importants pour une bonne estimation
de la probabilité de ruine sont surtout la
surcharge QS et la limite élastique oy.

Remarquons encore que les valeurs de la
probabilité de ruine obtenues a ’aide de
la norme SIA 161 E sont tout a fait com-
parables a celles calculées a partir d’au-
tres codes semi-probabilistes basés sur
le dimensionnement aux états limites
(Limit States Design), comme par exem-
ple le code canadien S16.1-1974 [1, 15].
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