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CALCUL PROBABILISTE DES STRUCTURES METALLIQUES

Ingénieurs et architectes suisses

13 septembre 1979

Application du calcul probabiliste
a ’étude des structures,
conclusions provisoires

par Bertrand Rouvé, Vevey

Depuis quelques années, griace aux études de risques liés a la construction
des centrales nucléaires, la notion de sécurité des structures s’est considé-
rablement modifiée, ’homme de la pratique ayant compris que la sécurité
n’est jamais absolue, mais toujours relative.

L’ingénieur civil doit, c’est ’'un des buts de son activité, réaliser des struc-
tures porteuses présentant une sécurité a la ruine optimale et uniforme, tout
en étant limité par des conditions techniques et économiques.

Le développement des méthodes probabilistes et leur application a la sécu-
rité des structures permet justement de se rapprocher de ce but. Nous allons
montrer comment dans les pages qui suivent.

On distingue trois niveaux auxquels on peut traiter les problémes de sécurité

des structures :

— niveau 3: méthode générale fondée sur la théorie des probabilités,
utilisée pour des structures exceptionnelles ou pour vérifier les simpli-

fications des niveaux inférieurs ;

— niveau 2: méthode probabiliste du premier ordre présentée ci-apreés ;
— niveau 1 : la sécurité requise est garantie par utilisation de coefficients
partiels de sécurité, indiqués par les normes de matériaux et de charges.

1. Principe du niveau 2 du calcul
probabiliste

1.1 Définitions

Le résultat d’une mesure répétitive quel-
conque prend chaque fois une certaine
valeur comprise entre des limites plus ou
moins larges : c’est une variable aléatoire.
La fréquence de ’occurrence de certaines
valeurs obéit a une loi de distribution de
probabilité.

Selon I'usage, on peut décrire cette loi
par une fonction de distribution F, (z).

11 est intéressant de comprendre I’analo-
gie entre les caractéristiques d’une sec-
tion en résistance des matériaux et les
parameétres de la loi de distribution
normale :

nombre des mesures N
—> aire de la section A

moyennes des mesures m

—> coordonnés au centre de gravité x,
ou y;

écart-type o
— rayon de giration i, ou i,

produit g%- N
—> moment d’inertie I, ou I,

L’analogie entre o et i, (i,) n’est bonne
que si le nombre des valeurs est élevé,
puisque I’écart-type se calcule fréquem-
ment au moyen de la formule
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la présence de N—1 au lieu de N au
dénominateur ne rendant I’analogie
qu’approximative.
Opérant cette correction simple, on pour-
rait ainsi calculer les caractéristiques
selon les 2 axes d’une section décomposée
en petits ¢éléments de surface égale, au
moyen des fonctions statistiques d’une
simple calculatrice de poche.

Dans la suite des calculs, nous admettons

que :

— la loi de distribution de chaque va-
riable est normale (courbe en cloche
de Gauss) ; elle peut aussi étre log-
normale, c’est-a-dire que les /loga-
rithmes des valeurs obéissent a une
loi de distribution normale; cette
hypotheése n’est cependant pas impé-
rative puisqu’il est possible, en sui-
vant certaines regles, de transformer
la loi de distribution.

— les différentes variables sont statisti-
quement indépendantes les unes des
autres ; si elles ne le sont pas, il faut
les rendre telles.

1.2 Méthode du premier ordre améliorée

Cette méthode de calcul probabiliste est
dite du premier ordre (et du moment
second), parce que les paramétres en sont
les valeurs moyennes et les écarts-types
des variables aléatoires, a I’exclusion de
moments supérieurs (biais, etc.).

Liste des notations principales

X; : i-éme variable aléatoire

x; : une valeur de cette variable aléa-
toire

xg* : valeur de conception de cette
variable aléatoire

my : moyenne des valeurs de la i-éme
variable aléatoire

oy écart-type de la i-eéme variable
aléatoire

vi ;. coefficient de variation de la i-éme
variable aléatoire (v; = gy/m;)

G : fonction qui exprime I'état-limite
de ruine

gi: dérivée de cette fonction selon la
i-éme variable

oz . é€cart-type de cette fonction :
o2 = Z of
B: une valeur de l'indice de fiabilité

Bo : valeur de I'indice de fiabilité a la
frontiére de ruine

g : charge permanente
g : charge variable
My : moment plastique d’une section

M, : moment fléchissant di a une
charge permanente

M, : moment fléchissant
charge variable

Les autres notations utilisées sont con-

formes a la liste de la norme SIA 161,

chap. 1.01.

di a une

I semble que cette méthode, présentée
par Hasofer et Lind [1] !, soit la premiére
qui reste indépendante du point de réfé-
rence et de la formulation de la fonction
qui exprime I’état-limite de ruine. En
outre, les cas-limites (écart-type trés faible
ou nul) sont aussi traités d’'une maniére
rigoureuse.

Le détail de la méthode se trouve dans la
littérature spécialisée, aussi ne revenons-
nous ici que sur ’essentiel. On peut dire
en bref qu’elle est une extension de la
loi de propagation des erreurs. Le prin-
cipe en est le suivant : on écrit la fonc-
tion-limite de ruine G = G ( X;) a l'aide
des n variables aléatoires X;; celle-ci
représente une surface dans un systéme
d’axes a n dimensions, dont I’origine se
trouve au point ou toutes les variables
sont & leur valeur moyenne m; et dont
I’échelle est la méme pour tous les axes,
I'unité étant un écart-type, o;. Il convient
de calculer la distance la plus courte
entre 1’origine et la surface-limite. Cette
distance, qui est aussi le rayon de la
sphére (a n dimensions) d’égale proba-
bilité, est l'indice de fiabilité [3,.

La méthode est applicable & des variables
obéissant a une loi de distribution aussi
bien normale que log-normale. Il est
d’usage d’utiliser la premiére loi pour les
sollicitations et la seconde (log-normale)
pour les variables exprimant la résistance,
puisque celles-ci sont en général essen-
tiellement positives.

Pour le calcul de la fonction G (x}) au
point de repére dont les coordonnés sont

1 Les chiffres entre crochets renvoient a la
bibliographie en fin d’article.
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x}, on utilise les valeurs x; des variables
X;ou:

x; = my - exp (—; - fo - v)

(type résistance) (la)
xp=m - (1 + o Bo- v)

(type sollicitation) (1b)

Bo est lindice de fiabilité admis ou cher-
ché, alors que les «a; sont les facteurs
d’influence ou les poids des variables X; :

g,f (x; ) - oy

o = 22— —— avec

2o? =1
O

(1o
Si ’avantage de la méthode est son inva-
riance par rapport au choix de la formu-
lation, son inconvénient est la nécessité
d’opérer par approximations successives,
puisque les x; dépendent des «;, qui
eux-mémes se calculent a partir des
& (x7).

1.3 Le chapitre « calcul » de la

directive 260

Le quatriéme chapitre du projet de direc-
tive SIA 260 (mars 1979) prévoit dans la
partie consacrée au controle de la sécu-
rité lapplication de la méthode d’Has-
ofer-Lind. On peut se demander s’il est
opportun d’imposer une méthode de
calcul dans une directive SIA, ou s’il ne
serait pas préférable de I'y recommander
seulement et de l’exposer dans une
annexe. L’état actuel du projet présente
en tous cas I’avantage de mettre sur pied
d’égalité les différents matériaux et les
différentes normes de construction.

2. Application au moment
plastique d’un profilé laminé
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Le moment plastique d’une section en
double té se calcule a 1’aide des 5 varia-
bles aléatoires indépendantes suivantes
(voir figure 1): la limite élastique oy, la
largeur du profilé 2c¢, sa hauteur 4,2
I’épaisseur des semelles 7, et celle de
I’ame d.

Selon [4], qui fournit des histogrammes
de distribution de ces 5 variables pour
des mesures sur environ 5000 profilés, on
peut calculer les moyennes et les coeffi-
cients de variation reproduits dans le
tableau 1.

Par ailleurs [5] indique d’une maniere
plus détaillée les mémes grandeurs pour
différents profilés a larges ailes, voir
tableau 2.

Données statistiques

2.2 Fonction-limite
Implicitement la nouvelle norme SIA 161

(1979) fixe le facteur de résistance
1,60
Yr = ﬁﬁ = 1,14, 1,60 étant le facteur

de sécurité et 1,40 le facteur de charge.
La fonction qui exprime I'état-limite de
la condition de résistance des sections
s’écrit donc :

2 A la place de h, on peut aussi utiliser

pour la variable X3, la hauteur de I'ame A; ;
les résultats n’en sont que peu modifiés.

TABLEAU 1 : Moyennes et coefficients de variation selon [4]
O’f=X1 2e=Xp h=X3 t=2Xa d=X5
Valour mopsone - 1,002 1,005 0,967 1,020
Valeur nominale
Coefficient de variation 0,08 0,007 0,007 0,023 0,036

TABLEAU 2 : Moyennes et coefficients de variation selon [5] ; pour les données
géométriques des profilés, on admet que la moyenne est égale a la valeur nominale

X1
X2
X3
X4
Xs

Fig. 1. — Section d'un profilé laminé avec
Imdtcatton des 5 variables aléaroires utilisées.

Mp,nom *
114 M,(x))=0 (2

ou My nom est le moment plastique,
calculé avec gy nominal (par exemple
235 ou 355 N/mm?) et les dimensions
nominales du profilé

et M, (x;) est le moment plastique cal-
culé avec des valeurs réduites selon
la formule (la) pour les différentes
variables aléatoires.

G_.

Pour la section selon ﬁg. 1, on peut écrire:

= [2¢ct (h—1) + - d(h 21)%] -

(3a)
M, (X)) = [Xo X3 (Xz—Xy) +
+ ixs Xa—2X0% - Xy (3b)

2.3 Calcul de l'indice de fiabilité

Il faut donc calculer la fonction-limite
pour un point x; sur la frontiére de
ruine, point de plus grande probabilité
que G ( X;) = 0. Cela permet de déter-
miner la valeur de I'indice de fiabilité f3y,
ou si I’on veut, la distance (exprimée en
écarts-types) entre lorigine du systéme
(valeurs moyennes) et le point le plus
proche de la surface-limite.

Le calcul de M, (xj) s'effectue selon
l’algorithme suivant :

1. Choix dun f (pour commencer
B =0).

2. Calcul des x; =
pour X; a Xj.

my - exp (—og-f-vy)

HEB 100 HEB 300 HEB 600 HEB 1000

Limite élastique :

Moyenne N/mm?2 289 279 264 262

Coefficient de variation 0,0621 0,0622 0,0624 0,0624
Coefficient de variation :

Largeur de semelle 2¢ 0,0100 0,0033 0,0033 0,0033

Hauteur h 0,0100 0,0033 0,0020 0,0010

Epaisseur des semelles ¢ 0,0500 0,0300 0,0200 0,0200

Epaisseur de I’ame s 0,0500 0,0500 0,0320 0,0300

og (xj)

3. Calcul des dérivées 5
pour X; = x;. P
4. Calcul des facteurs d’influence o

(formule 1c).
5. Calcul des nouveaux x; (formule 1a).
6. Répéter 3 a 5 jusqu’a ce que les x;
restent stables.

7. Calcul du moment M, (x;) (formule
3b) avec les x; obtenus.

8. Avec un autre f, répétition a
de 1.

partir

Le résultat de cet algorithme donne les
x; pour les différents f exigés, a partir
de quoi par interpolation, on peut
déterminer f3, et les x; correspondants.
Le tableau 3 donne les résultats inter-
médiaires et finals de ce calcul.

La représentation graphique de la fonc-
M p, nom *
ST A 14 M, (x7)
étre faite dans un espace a 5 dimensions.
Cependant, les calculs montrent que les
deux variables o, et ¢ ont une influence
prépondérante (¢ + a% = 0,98), desorte
qu’une représentation dans le plan de
ces deux grandeurs donne une image
fidele de cette application numérique.
11 ressort clairement de la formule (1c)
et de la figure 2 que les facteurs d’in-
fluence des différentes variables dépen-
dent de I'importance de chaque variable
(la dérivée g;) et de son écart-type.

tion G = devrait

2.4 Facteur de résistance et probabilité
d’insuffisance
L’indice de fiabilité S, ou la distance
relative entre la valeur moyenne du
moment plastique M, (m;) et la valeur
nom
1,14
HEB 1000 et 4,55 pour HEB 100.
Ces valeurs correspondent & une proba-
bilit¢ de 1/6800 (HEB 1000) et de
1/400 000 (HEB 100) que M, << Mpom/
1,14. Ceci n’est bien sir pas la probabi-
lité de ruine, celle-ci étant encore beau-
coup plus faible, puisque, a ce stade, la
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TABLEAU 3 : Données et résultats partiels du calcul du profilé HEB 100

X1 =05  Xpg=2c X3 =h Xa=1t Xs=d My (x2) A’Z” Cx) A (x3)
P, nom
[N/mm?2] [mm] [mm] [mm] [mm] [kNm] — [mm?2]
Valeurs nominales 235 100 100 10 6 23,41 1,00 2480
o Valeurs moyennes m; 289 100 100 10 6 28,78 1,230 2480
I Ecarts-types og; 18 1 1 0,5 0,3 2,148 — —
«  Coeff. de variation v;  0,0623 0,01 0,01 0,05 0,05 0,0746 — —
Dérivées gi (m;) 99 600 260 100 358 360 2173 280 462 400 — — —
Poids a; 0,8350 0,1211 0,1669 0,5060 0,0646 1,00 — —
N x; = my - e—%Bv. 2599 99,78 99,69 9,52 5,96 24,80 1,059 2382
I g = 95 388 223 249 309 537 1 966 684 422 639 0,960 Anom
Q o = 0,8504 0,1105 0,1533 0,4869 0,0628 1,00
[=]
<+ x; = my . e—xbBv 232,9 99,60 99,44 9,11 5,93 21,37 0,913 2297
I e = 0,8664 0,1005 0,1403 0,4646 0,0604 1,00 0,926 Anom
@
v
:— x¥ = m; . e—ubov 225,8 99,56 99,38 9,01 5,92 20,52 0,876 2276
| = 0,8709 0,0979 0,1368 0,4578 0,0597 1,00 = 1/1,14 0,918 Anom
<
On remarque que les facteurs d’influence a; sont légeérement modifiés en fonction de B, ce qui caractérise justement la non-linéarité du
probléme. La valeur 8, = 4,55 correspond a la condition M, (x}) = Aii'”%ml-
sécurité vaut encore yr = 1,40 prove-
nant des charges appliquées. o tlmm] EPAISS SEMELLES
Ainsi on a montré qu'un facteur de 2 | ™
résistance yr = 1,14 est suffisant pour = FeARIETIPE SECURITE >0
la flexion des profilés laminés. En outre E Monom o oy50
. . . = = 8
il faut ajouter que pour l’acier de cons- ‘g S e
truction (profilés et toéles), la valeur - \\ N
nominale de la limite élastique et les sl:":fm'cw . < \ \\
dimensions des profilés (diminuées des e~ Malaleo = i \\lzcmr-wpsoscs,
tolérances combinées) sont des valeurs \:fz *\m' ‘\"\"f fo ] T 7’
e 2 . \ P nom
minimales garanties qui ne tolérent pas \ \ &0 M"(m')// / /[N/mm§]
d’écart vers le bas, contrairement a la \ N o 7 /
résistance du béton et a la limite élas- \ \ rd /

tique des barres d’armatures, qui sont
souvent des valeurs a fractile de 2 %.

4
# 7
S0 EPAISSEUR-LIMITE ENCORE

DANS TOLERANCES A=094 Anom

POINT DE REPERE =
Pogn DE PLEug GRAGNDOE i
PROBABILIT UE G=
3. Effet des charges Mjiom o 7 ¢
—— -Mp(xi*)=0
14
//

Si ’on veut étudier les problémes de sé- -
curité a la ruine des structures porteuses
selon les concepts probabilistes, il est

indispensable de tenir compte aussi du l};ig. 2. — Représentation dans lj plan 9;—t du calcul d?\lproﬁlé HEB 100. Ibeoxioint de rezf?ére (pour

5 5 . o = 4.,55) se trouve aux coordonnées xi = 05 = mm?® et xi =t = 9,01 mm, conformément
caractere aléatoire des charges. Dans ce aux valeurs obtenues pour Po = 4,55 dans le tableau 3. On remarque que les valeurs minimales garan-
domaine, la difficulté principale réside ties sont supérieures a ces valeurs xi et xi tmn = 9,1 mm provient de la tolérance de 6 % sur le
. ? i poids, qui est, pour ce profilé, plus sévére que la tolérance sur l'épaisseur de semelle [7].
justement dans le fait que les charges

utiles présentent souvent un coefficient 5 e
de variation élevé. A

5 4+
3.1 Statistiques de charges observées \\
Les calculs de ce chapitre sont basés sur fo = 4,55 (HEB100)
les observations et les enquétes statis- « 4
tiques parues dans divers documents [8],
[9]. Le premier donne et interpréte les |
résultats de mesures sur environ 35 000 3 LI
I
I
|
|

HEB 100
300
/HEB

locaux divers, classés par catégories. din % Bl
Il en ressort notamment que pour les
habitations privées, les locaux de vente 7 4
et les bureaux, la charge nominale
ANSI 2 n’est dépassée que dans 0,01 %
des cas, alors que pour les locaux des- !
tinés a 'industrie ou au stockage, la pro-

Mp(m.) > Mp.nom
puisque Gym > G nom

: 5 Monom _0877M J
portion est beaucoup plus grande (1 a IR p.oom Ml M. (x%)
p + p \Xi

5 %). Nous avons repris des tableaux 0 + + * +—

X 0,6 07 0.8 | o9 10 10 12 13 Mg nom
de [8] les valeurs moyennes, et les écarts-
types pour les introduire dans nos calculs. S ) ) L ER 3 ) PR

F]ig. 3 —lelex r[ie 7(1[)/(’//1[10( ﬂ; des Ib)loﬂlt’ﬂ’.? L’équation 2 est satisfaite au momslnt ou cette
3 H H 3 p (IS’I'(IHES‘ a courbe de » (xt) est obtenue a 5 3 4 M p, nom <
American National Standards Institute, partir des valeurs du tableau 3 pour le HEB 100. courbe croise la ligne verticale de 1.4

norme A 58.1.
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TABLEAU 4 : Résultats des observations de charges de Corotis, ASCE [8]

Valeurs nominales Charges Distribution normale Extréme 99,9 % observé
Genre de batiment norme SIA 160 moyennes écart-type coefficient écart-type coefficient
A 58.1 gnom qm oq variation oq variation
[kN/m2] [kN/m2] [kN/m2] [kN/m2] Vg [kN/m2] Vg
Hopitaux 2,9 — 0,44 0,23 0,51 0,31 0,71
Habitation 1,9 2,0 0,54 0,19 0,36 0,20 0,38
Bureaux 3,8 2,0 0,61 0,41 0,68 0,69 1,13
Locaux
Industrie légere 6,0 — 0,85 0,93 1,09 1,52 1,78
Entrepots 6,0 — 1,31 0,99 0,76 — —
Locaux commerciaux 3,6 4,0 1,84 0,51 0,28 0,37 0,20
TABLEAU 5 : Caractéristiques des charges idéalisées selon JCSS [9]
Echantillonnage simple Maximum 50 ans
Genre de batiment my oq Vg qixt ms0 oq Vg qr 2
kN/m?2 kN/m?2 kN/m2 kN/m2 kN/m2 kN/m2
Habitations — — —_ — 1 0,4 0,4 1,75
Bureaux (20 m2) 0,50 0,51 1,02 1,46 1,42 0,51 0,36 2,38
Locaux de vente 0,70 0,54 0,77 1,70 1,70 0,54 0,32 2,70
Neige
Xg valeur de référence Xr 0,5 Xp 0,50 1,93 Xr 2,53 Xp 0,5 Xr 0,20 3,46 Xr
1 g1 est la valeur caractéristique correspondant au fractile 95 % de m;.
2 gy est la valeur caractéristique correspondant au fractile 95 % de msg ou 99,5 % de my.
Pour les écarts-types, nous avons deux charges, il est bon de garder ces deux  soit
valeurs a disposition : celle calculée a variables distinctes. X\ X,
partir des parametres de la loi de dis- Ainsi la fonction-limite peut s’écrire : G = N; [<7X3> _E] X1 X,
tribution normale (valeur « moyenne »
( y G=M,—M,— M;=0 (4 |7 P ®)

pour décrire au mieux I’ensemble de la
distribution) et celle estimée a partir des
fonctions cumulatives pour satisfaire
I’extréme supérieur de la distribution
(« tail approximation »).

Par ailleurs, dans cet article [8], les au-
teurs montrent que la meilleure loi de
distribution pour décrire la plupart des
genres de batiments est la loi de distri-
bution Gamma.

Dr’autre part, nous avons utilisé les for-
mules d’idéalisation des charges don-
nées dans [9], formules basées sur des
observations. Partant des valeurs obser-
vées sur un échantillonnage simple, les
auteurs donnent des lois de distributions
(du type I, Gumbel), pour une extrapola-
tion sur une durée de vie du batiment
de 50 ans. Dans ce chapitre, nous avons
utilisé ces moyennes extrapolées et les
écarts-type en les comparant d’une part
aux valeurs nominales données par les
«valeurs caractéristiques » de cette pu-
blication ou d’autre part aux valeurs
nominales données par la norme SIA 160.

3.2 Fonctions de ['état-limite de ruine

Afin de réduire le nombre des variables
aléatoires du calcul, nous concentrons
les 4 variables géométriques des profilés
selon 2.1 en une seule grandeur, le mo-
dule plastique de la section, Z, dont
I’écart-type est calculé a I'aide des 4 va-
riables de base ; vu le peu d’influence de
ces variables, ceci ne change pratique-
ment rien au résultat final : elles sont
toutes considérées, mais linéarisées entre
elles. A cause des caractéristiques tres
différentes du poids propre et des sur-

ce qui donne pour une poutre simple
fléchie :

1 1
G=af~Z—§b/2 —éblzq:O (5a)

ou

8
GZO-f.Z'—b_[E*g_

G=X,-X;—Xa— Xs=0 (6

Dans notre cas nous n’avons pas consi-
déré les variations du systéme statique :
largeur de la charge b et portée de la
poutre /, admises constantes. Il ne serait
pas compliqué d’en tenir aussi compte,
ce qui pourrait éventuellement étre fait
ici dans notre variable X, qui contien-
drait ainsi toutes les données géomé-
triques aléatoires.

La méthode de calcul peut étre en outre
étendue aux problémes de résistance des
cadres hyperstatiques avec le calcu] dit
plastique-plastique de la norme SIA 161,
art. 3.043.

Elle peut aussi étre appliquée aux pro-
blémes de flambage des barres compri-
mées, sans trop de complication si I'on
utilise les courbes de flambage européen-
nes ; dans ce cas, la fonction-limite peut
avoir la forme :

g=0 (5b)

G = Ny(AD)-0p-A—N,—N, =0 (7)

¢ w +2 Ok
ou N, fonction de A est le rapport —
Oy

donné par les courbes de flambage

de l'art. 3.063 (norme SIA 161) et

i (z) 2
i) E

/

Il n’est pas question de calculer les ex-
pressions algébriques de dérivées g; de
cette fonction ; le calcul numérique est
de loin préférable.

3.3 Calcul de quelques exemples

Ces exemples ont tous été calculés a
I’aide d’une calculatrice de poche pro-
grammable, ce qui montre que le pro-
bléme n’est pas si compliqué qu’il en
a lair.
3.31 Sommier d’un plancher dans un
immeuble de bureaux

En partant des charges observées dans
des immeubles de bureaux par Corotis
[8], nous prenons le cas d’'un sommier
principal de plancher de 6 m de portée,
chargé sur une largeur b de 6 m aussi.
Pour les valeurs relatives a la surcharge,
nous prenons la moyenne et le coefficient
de variation donnés dans le tableau 4,
soit g,, = 0,6 kN/m? et v, = 0,667 ; la
valeur nominale est tirée de la norme
SIA 160, soit gpom = 2,0 kN/m?.

Le poids propre (sommier, dalle, revéte-
ment, le tout équivalent a 12 cm de
béton) est fixé a guom = 3 kN/m3.
Selon [9] et [11], pour cette épaisseur
de béton, la moyenne excéde de 5 a
7 % la valeur nominale et le coefficient
de variation vaut 7 % ; nous prenons
donc g,, = 3,15 kN/m? et v, = 0,07.
Les moments de flexion au centre du
sommier valent

1 g
M, = 3 g - bl etes &)
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s0it My, nom = 81,0 kNm,
My, nom = 54,0 kNm
M, », = 85,05 kNm,
My, m = 16,2 kNm

Admettant un dimensionnement plas-
tique en Fe 360, nous avons besoin d’un
module plastique de

Moo 135.108
Zneczy$":1,6.2—35:
= 919 . 10® mm?® (10)

qui correspond environ a un HEB 240
(nous gardons cependant cette valeur
nominale). Selon [6], nous pouvons in-
troduire pour ce profilé un coefficient de
variation v, égal a 0,025.

Pour la limite élastique, nous reprenons
les valeurs du tableau 2 soit oy ,, =
= 279 N/mm? et v = 0,0622.

Avec ces données, nous appliquons I’al-
gorithme décrit sous 2.3 et nous calcu-
lons les wvaleurs x; pour différents
£ (0, 2,4 ...) selon les formules la
et 1b. En reportant dans un graphique
(figure 4) les valeurs de M, et de M.,
nous obtenons les deux courbes M, (x;)
et M, (x;). Le point ou les deux courbes
se croisent nous donne I'indice de fiabi-
lit¢ [y ; ce point est justement le point
de repére de coordonnées x; (fig. 4).
Ce processus peut aussi étre automatisé
pour trouver en un seul niveau d’itéra-
tions (ici au nombre de 5) la valeur f3,.
Les x;] obtenus dans le tableau 6 sont les
valeurs d’égale probabilité d’occurrence
des variables données ; elles sont situées
sur la surface de la sphére mentionnée
en 1.2. Toute autre combinaison de va-
leurs x; conduisant au méme résultat
G (x}) = 0 est liée & une distorsion de la
probabilit¢é. On voit que dans cet
exemple la variable qui a le plus de
poids est la limite élastique ; ce fait, que
nous jugeons anormal, provient de ce
que la surcharge nominale est trop
¢levée par rapport a la surcharge moyen-
ne et a son écart-type. En effet, 3,5 écarts-
types séparent la moyenne de la valeur
nominale, ce qui correspond & un frac-
tile de 99,97 %.

Drailleurs, la valeur obtenue pour I’in-
dice de fiabilit¢ i, = 8,40 montre aussi
que le systéme donné est « trop sQr ».

Il est en outre intéressant de calculer
les coefficients de sécurité partiels entre
les valeurs nominales et les moyennes
des variables :

M, 216,0
yp= 200 — = 1,310
M, (x})  164,9
99,9
= = 1,238
LA T
= 63,0 = 1,204
Yo = 5@ =1,
M, ¥ 99,9 0
e 41 (x7) 99,9 + 65, — 1221

M4, nom - 787]7;07:}—754,6
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TABLEAU 6 : Données et résultats de I’exemple 1 (bureaux)

Valeurs : o [N/mm2] Z[103 mm3] M, [kNm] M, [kNm]
nominale 235 919 81 54
moyenne 279 919 85,05 16,2
coefficient de variation 0,0622 0,025 0,07 0,667
B = 8,398 x¥ 187,6 879 99,9 65,0

o 0,759 0,215 0,297 0,538

La ruine la plus probable de ce sommier se produira pour les valeurs : gy = 188 N/mm?2,
Z = 879 - 103 mm3, M, = 99,9 kNm (g = 3,70 kN/m2) et M, = 65,0 kNm (¢ = 2,41 kN/m2).

B4
e Bo=8,40 \/Mp(xi')=Mg.q(x;’)
6
4 Mgaq(x;).
2 MARGE | MARGE ¥r
IF ‘
0 Mg*q(mxl Mg.qL,nom 1 Mp ,nom Mp(m'L M
0,2 04 06 08 1,0 1,2 14 1.6 18 20 Mg+q,nom
|
Togp=140 Tygelia
Fig. 4. — Graphique de Mgy+q et Mp en fonction charge ; Mp est le moment plastique de la

de B pour l’exemple de 3.31 (plancher de
bureaux). Mq+q est le moment sollicitant la
section dii a la charge permanente et a la sur-

section.  L'intersection —des deux _ courbes
(Mo+q = M»p) donne lindice de fiabilité Bo.

Ces coefficients partiels donnent aussi,
contrairement a I'usage établi (y, = 1,14
et yr = 1,40), trop peu d’importance
aux surcharges.

A la suite d’un calcul semblable exécuté
pour les charges trés faibles des locaux
d’habitation (tableau 4), nous avons

. trouvé des résultats encore plus accen-

tués dans le méme sens
o, = 0,866, yr = 1,569.

3.32  Sommier d’un plancher pour
industrie légére

Nous traitons cet exemple d’une maniére
semblable au cas précédent, et nous ne
reproduisons que I’essentiel des données.
Ici, nous prenons une poutre de 10 m
de portée, avec aussi 10 m de largeur
de charge.

Surcharge :

nominale ANSI A 58.1 6,0 kN/m?
moyenne (tableau 4) 0,85 kN/m?
coeff. variat. (tableau 4) 1,78

Poids propre : sommier + dalle + revé-
tement (équiv. a 16 cm de béton) :

nominal 4,0 kN/m?
moyen (excés 5 %) 4,2 kN/m?
coeff. variation 0,050

Limite élastique :

nominale SIA 161
moyenne (tableau 2)
coeff. variat. (tableau 2)

235 N/mm?
263 N/mm?
0,0624

Ainsi nous obtenons :

1
My g, nom = 8 4,0 + 6,0)10 - 102 =
= 1250 kNm
1250 - 108
Znec = 1’6 T = 8,511 . 108 mm3

(env. HEB 800)

Pour ne pas nous embarrasser de la por-
tée et de la largeur, nous utilisons confor-
mément a la formule (5b) directement
les charges g et ¢ au lieu des moments M,
et M,, en prenant les premiéres gran-

deurs dans Z, qui devient ainsi Z:
module de résistance relatif :

Z=z

8 mm?
= 0.0 .10-3 fro
bl? el [mma]

Notons cependant que cette simplifica-
tion numérique ne change rien aux ré-
sultats donnés dans le tableau 7.

Ici, les facteurs d’influence o, et ay de la
limite élastique et de la surcharge sont
pratiquement inversés par rapport a
I’exemple 1.

Les coefficients de sécurité partiels cal-
culés comme pour le premier exemple
valent :

Y=
YFP =

1,173, y, = 1,091, y, = 1,546,
1,364.

Grace au coefficient de variation de la
surcharge qui est ici assez élevé, cet
exemple présente les coefficients partiels
auxquels nous sommes habitués (fig. 5).
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TABLEAU 7 : Données et résultats de I’exemple 2 (industrie légére)

i N 2 2 2
Valeurs of [N/mm?] Z [N /mmnif] g [kN/m2] q [kN/m2]
nominale 235 0,06809 4,0 6,0
moyenne 263 0,06809 4,2 0,85
coefficient de variation 0,0624 0,020 0,05 1,78
Bo = 6,995 x5 204,5 0,06670 4,36 9,28

a; 0,576 0,147 0,111 0,796

— [kN/m2]

Les x* sont les valeurs de la ruine la plus probable.

BA
8

Mp(xi*)=Mg.q (xi*)

527,00 P T
6
Mgaq(xi),

4 ’Mp(XI)
2 MARGE ¥r |MARGE

¥R
g Mg.q(mi) Mg+q, nom Mp,nom Mp(mi) . M

02 04 06 08 110 12 14 16 18 " Mgeq.nom
FF=140  Tyr=lia

Fig. 5. — Graphique de Mg+q et Mp en fonction
de B pour l’exemple de 3.32 (plancher pour
industrie légére). La faible inclinaison de la

courbe Mg+q provient de la grande valeur du
coefficient de variation de la surcharge.

TABLEAU 8 : Données et résultats de I'exemple 3 (local de vente)

= [kN/m?]

. 2 2 kN /m2
Valeurs of IN/mm?] Z [N/mm2] & [kN/m?] g [kN/m?]
nominale 235 0,04562 4,00 2,70
moyenne 264 0,04562 4,2 1,70
Acoeﬂicient de variation 0,0624 0,02 0,05 0,32
Bo = 7,007 x¥ 189,2 0,04447 4,526 3,886

o 0,767 0,182 0,221 0,574

Les x¥ sont les valeurs de la ruine la plus probable.

TABLEAU 9 : Données et résultats de Iexemple 4 (toit chargé de neige)

> [kN/m?]

H 2 kN/m?2 kN/m2
Valeurs oy [N/mm?] Z [N/mm?] g [kN/m?] ¢ [kN/m?]
nominale 235 0,02383 0,50 3,0
moyenne 280 0,02383 0,525 2,2
coefficient de variation 0,0622 0,025 0,05 0,2
Bo = 6,766 x7 212,3 0,02301 0,533 4,351

o 0,658 0,208 0,043 0,723

Les x¥ sont les valeurs de la ruine la plus probable.

3.33 Sommier d’un plancher (local de
vente) avec les charges spécifiées
par [9]

Les données qui suivent sont obtenues a
partir des charges moyennes observées
(@ = 0,7 kN/m?), dont on a calculé les
moyennes extrémes pendant 50 ans
(mso = 1,7kN/m?) ; la valeur nominale y
est indiquée avec g = 2,70 kN/m?
(SIA 160 4,0 kN/m?).

Pour un sommier principal (portée 10 m,
largeur de charge 10 m), nous admettons
le méme poids propre que pour ’exemple
précédent : 4 kN/m?2.

Les résultats obtenus figurent dans le
tableau 8 ; ils ressemblent & ce que nous
avions en 3.31 en ce qui concerne
x; = oy et les a;, malgré le fait que la
surcharge y est trés différente (valeur
moyenne plus grande, compensée par
un écart-type plus petit).

Les coefficients de sécurité partiels
séléevent a: yp= 1,274, y, = 1,132,
vq = 1,439, yp = 1,256.

3.34 Sommier d’une toiture supportant

de la neige

La toiture envisagée se trouve a l'altitude
de 890 m, de sorte que la charge nomi-

nale STA 160 s*¢leve a 3 kN/m?. A quelle
probabilité cette valeur correspond-elle,
quels en sont I’écart-type et la moyenne ?
Nous trouvons une réponse dans le
chapitre A-06 de [9] et dans I’annexe III
de [10] ou, a partir de ¢;, le maximum
annuel de la charge de la neige, on peut
calculer :

—mso = 2,53 - g; la moyenne des maxi-
mums annuels extrapolée pour
50 ans,

3,46 - g; la valeur caractéristi-
que correspondant au fractile
5 % en loi de distribution des
extrémes,

—dqk =

—0a,= 0,5 g Pécart-type.

Nous considérons ainsi que la charge
nominale de la norme correspond a gy,
donc que msy = 2,2 kN/m? et que g,
= 0,44 kN/m?.

Pour le poids propre de la toiture, nous
admettons 0,5 kN/m?, valeur choisie
consciemment trés faible, correspondant
a une tole profilée. La largeur de charge
vaut 6 m, la portée 10 m, de sorte que

1
Mysq =505+ 3,006 - 10° =

= 262,5 kNm

1,6-262,5-108
=2 > 1,787 10° mm3

nec 235
(= HEB 300)

5 R8T 10%:8 mm?
Z=_2___  _— =0,02383 1073 ——
6-102-10° m

me
Meéme dans cet exemple ou il est donné
a une charge naturelle une influence rela-
tivement grande, on voit que les résul-
tats sont encore tout a fait raisonnables.
On obtient pour les coefficients de
sécurité partiels: yp = 1,147, y, = 1,065,
yq = 1,450, yr = 1,395.

3.4 Discussion des résultats

Pour tous les exemples traités dans le
paragraphe précédent, qui se veulent
représentatifs de cas pratiques de la
construction métallique, les deux in-
fluences importantes sont celles de la
limite ¢élastique et de la surcharge.
Comme la limite élastique est caracté-
risée par des parametres (moyenne et
écart-type) qui varient assez peu, c’est
bien la surcharge (utile ou naturelle) qui
pose les problémes les plus aigus, de
sorte que c’est cette variable qui doit
étre étudiée le plus soigneusement.

Dans les exemples 1 et 3, la surcharge
nominale de la norme SIA 160 serait
nettement trop élevée, si I’on jugeait uni-
quement par la méthode de calcul pro-
posée. Faut-il en conclure que ces char-
ges doivent étre diminuées de 30 ou
50 % ? Nous ne le pensons pas, car il est
nécessaire de tenir compte d’accidents
d’utilisation toujours possibles, qui ne
doivent cependant pas conduire a I'effon-
drement de la structure : fuite d’eau dans
une piéce, rassemblement imprévu de
nombreuses personnes dans un local, etc.
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Pour obtenir encore plus rapidement la
valeur de T'indice de fiabilit¢ f, d’un
systeme donné, ainsi que les facteurs de
sécurité partiels, il est commode d’utiliser
le graphique (fig. 6) calculé a partir de
nombreux exemples. Les paramétres de
la résistance (o; et Z) ont des valeurs
fixces (M, = 1,1 M. siomiis =
= 0,065), alors que le poids propre et
la surcharge sont considérés ensemble,
g +q. Leur rapport: moyenne sur
valeur nominale est ’ordonnée du dia-
gramme, alors qu’en paramétre, on a
Vg +¢» leur coefficient de variation,
calculé aisément comme suit :

Og+q = \/(vg'gnz)2+ (Vq'Qm)2
&m + dm &mn T qnm

Vg+q =

On peut lire sur le diagramme f3, (para-
metre), le facteur de charge yx (abscisse
inférieure) et le facteur de résistance yg
en abscisse supérieure.

Comme illustration, nous reprenons
I’exemple du paragraphe 3.32:

val. moy _ 42+085

= = 0,505
val. nom. 4,0 + 6,0

_ V(0,05-4,2)® + (1,780,852

Yora = 420 + 0,85
1,53
= 2> _ 0,302
5.05

Dans ce diagramme, nous avons placé un
certain nombre de points correspondant
aux calculs pour les différentes surcharges
reproduites dans les tableaux 4 et 5. On
voit alors que les points donnés par les
charges observées selon [8] livrent des
indices f§; beaucoup trop élevés (jusqu’a
8), de sorte que 'on s’approche dange-
reusement des limites d’application de la
méthode, qui est sensible aux erreurs sur
les « queues » extrémes des lois de dis-
tribution.

On peut partiellement remédier a cet
état en introduisant dans les fonctions
limite de ruine des variables de modéle
(Modellvariable), comme cela est pres-
crit dans le chapitre 4 du projet de direc-
tive SIA 260, pour tenir compte du
caractére approximatif du modele de la
résistance et de celui des charges. Le
procédé est judicieux pour que les don-
nées des cas limites (surcharge avec v trés
grand ou trés petit) apportent encore des
résultats raisonnables. Il fait un peu
figure de recette de cuisine, quand il
s’agit de donner des chiffres précis (par
exemple v = 0,05 pour la résistance,
o= 0,5 kN/m? (?) pour les sollicita-
tions).

4. Conclusions

Les conclusions qui suivent se veulent
la modeste contribution d’un ingénieur
de la pratique qui a essayé d’appliquer
la méthode de calcul probabiliste pro-
posée par Hasofer-Lind [1] et par le
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pour ce graphique
L
0 Mp(m|)=1,1 Mp.nom
résistance vp =0,065 charges
déterminante déterminantes
0 1 + t + + L
1,0 11 1,2 1,3 1,4 1,5 16 ¥
3 3 N . 2 Mg+q (mf)
Fig. 6. — Graphique livrant directement Bo, yr et ys en fonction de Moo oo €l de vg+q. Dans
g+q, nom
le cas des exemples 1 et 4, la lecture est approximative, le rapport oy, m/9f, nom étant plus pessi-
miste pour le diagramme que pour ces exemples.
1. Bureaux (tabl. 4) v¢ = 0,68 (Ex. 1) 6. Bureaux (tabl. 4) vq = 1,13
2. Industrie légére (tabl. 4) vq = 1,78 (Ex. 2) 7. Industrie légére (tabl. 4) vq = 1,09
3. Local de vente (tabl. 5) vq = 0,32 (Ex. 3) 8. Local de vente (tabl. 4) vq = 0,28
4. Charge de neige (tabl. 5) vq = 0,20 (Ex. 4) 9. Habitation (tabl. 5) vq = 0,40
5. Habitation (tabl. 4) v = 0,36 10. Bureaux 20 m¢ (tabl. 5) vq = 0,36

projet de directive 260 [3] & des exemples
proches de la réalité.

4.1

Méme si les résultats obtenus ne sont
pas toujours concluants pour des cas
extrémes surtout, il ne faut pas pour
autant condamner cette méthode, qui
offre I'avantage de mettre sur pied d’éga-
lit¢ (égale sécurité) les différents maté-
riaux de construction, ainsi que les diver-
ses charges sollicitant les structures
porteuses.

Dans les calculs qui précédent, on a vu
que l'application de la méthode aux
structures des batiments pouvait donner
des résultats trés différents suivant le
type d’affectation. Pour les bureaux, par
exemple, la variation de la limite élas-
tique a plus d’importance que la varia-
tion de la surcharge, alors que c’est évi-
demment I'inverse qui se produit pour
des constructions ou la surchage réelle et
son écart-type sont élevés.

Cette grande sensibilité a la valeur de
Iécart-type de la surcharge peut étre
diminuée, comme nous I'avons vu a la
fin du paragraphe 3.4, par I'introduction
des deux variables de modéle.

Malgré les inconvénients mentionnés, la
démarche nous parait juste : d’abord se
décider pour la méthode, puis choisir
le niveau de charge qui sera indiquée dans
la. norme (moyenne, caractéristique,
nominale, maximale, etc.) et les valeurs.
Pour atteindre le but recherché, a savoir
une sécurité optimale et uniforme, il
convient de baser nos calculs ainsi
que les hypothéses de départ sur la
réalit¢ des structures (résistance et

Discussion de la méthode

sollicitations) décrite au moyen de la
statistique. Actuellement, le contrdle
consiste en une comparaison entre une
résistance nominale, souvent inférieure
a la valeur réelle et encore divisée par
un coefficient et une sollicitation nomi-
nale rarement atteinte, multipliée par un
facteur de charge; ainsi la sécurité
effective de la structure reste inconnue de
I’ingénieur qui I’a congue.

Quant au probléme des combinaisons de
charges, il se posera d’une maniére in-
verse a la maniére actuelle: avec les
charges que j’ai plus ou moins arbitraire-
ment fixées avec les paramétres statis-
tiques, quelle est la sécurité effective ?

Que l'ingénieur de la pratique ne s’ef-
fraie cependant pas ; un calcul probabi-
liste de niveaux 2 et 3 ne lui sera que
trés rarement demandé ; il est en effet
prévu que, pour les constructions cou-
rantes, seuls les résultats de la méthode
probabiliste lui soient nécessaires, 1’ap-
plication en étant faite par les commis-
sions des différentes normes de maté-
riaux et de charges.

4.2  FEtudes encore nécessaires

Nous possédons actuellement un certain
nombre d’enquétes et d’observations
statistiques sur les surcharges utiles réelles
pour certains pays étrangers, surtout les
Etats-Unis. Des données semblables
manquent encore, en ce qui concerne
notre pays ; il en faudra méme un nombre
considérable, si I'on veut que les lois de
distribution admises soient correctement
fondées (valeurs extrémes des « queues »);
il n’est certes pas facile de déduire des
charges observées 3 un moment donné,
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les valeurs moyennes maximales sur
disons 50 ans, comme il I’a été fait pour
la neige dans le paragraphe 3.34.

Une fois que ces données, valeurs
moyennes et écarts-types, seront acquises,
il faudra encore fixer des valeurs conve-
nables pour les coefficients de variation
des incertitudes du modéle statique
choisi (résistance et sollicitations).
Certaines actions continueront certaine-
ment encore longtemps a soulever des
problemes difficiles :

— le vent avec son effet extrémement
variable, non seulement dans le temps
et dans son intensité, mais aussi dans
la direction d’application et I'interac-
tion éventuelle avec le batiment
(oscillations) ;

— les séismes, dont la probabilité d’oc-
currence est treés faible au niveau
catastrophique, mais les conséquen-
ces trés lourdes, et dont les effets
dynamiques ne seront pas simples a
traiter dans le cadre de ce concept
probabiliste.

En outre, les exemples calculés ci-dessus
se rapportent uniquement a la flexion
d’une poutre simple. Il reste a traiter les
problémes d’interaction (moment, effort
tranchant), ceux de stabilité (flambage,
déversement, voilement), des assem-
blages, de la fatigue, etc.

Sans vouloir anticiper sur les travaux de
la commission de la nouvelle norme de

charge, nous pouvons déja relever que
si la directive SIA 260 améne une modi-
fication du niveau de charge indiqué (il
devrait y avoir plusieurs niveaux, de
significations différentes), il sera indis-
pensable de soigneusement calibrer la
nouvelle méthode de calcul au moyen
de I’expérience acquise dans notre pays.
On évitera ainsi de brusques change-
ments dans nos habitudes de dimension-
nement des structures, changements a
priori indésirés, qu’ils soient au détriment
de la sécurité, ou de I’économie.
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Tragwerken,

Le nouveau Grand Casino

de Genéve

Le premier Kursaal, appelé plus tard Grand Casino, fut construit en 1885
le long du quai du Mont-Blanc. Il fut fermé en 1969, puis démoli.
C’est a sa place que se construit actuellement le Grand Casino.

L’ensemble, d’un volume de 180 000 m?

et comportant une surface utile de

53 000 m?, se divise en trois parties prin-

cipales (fig. 1) :

— Les sous-sols, comprenant trois éta-
ges de parking offrant 250 places, des
locaux de service pour I’hotel et le
théatre, des locaux techniques et des
dépots.

— Le niveau intermédiaire avec une
salle de théatre de 1500 places, I’en-
trée de I’hotel, le Casino-Dancing,
des restaurants, des salles de congrés
et de conférence, une piscine cou-
verte et des boutiques, entourées
d’une terrasse.

— Les niveaux supérieurs, qui forment
un hotel de cing étages disposé en

Maitre de I'ouvrage :
Architectes :

Ingénieur :
Travaux d’exécution :

Fournisseur de la
charpente métallique :

Aprofim SA, Geneve

projet : René Favre, André Gaillard, Jean Hentsch

conseil : Y. Rechter, A. Gaillard, P. Petrovic

pour I'exécution : 1. Galeotto, H. Stimpfli, arch. EPFZ/SIA
d’intérieur : M. Delattre, arch. int. CAIM

E. Lygdopoulos, ing. EPFL/SIA/ASIC

Consortium d’entreprises : A. Fortis, Marti SA, L. Maulini & Fils,
Rampini & C!¢, Spycher SA

Geilinger Constructions métalliques SA, Yvonand

Données techniques

— Dimensions en plan du batiment
93,65 mx 61,81 m

— Trame de I’ossature sous I’hotel

11,55 m

— Entre-axe des colonnes supportant les
dalles 8,16 m

— Epaisseur des dalles 25 cm

Poids de la construction métallique

— « Chapiteaux » sous I’hétel,
soit téte pyramidale en fonte,

bras et tirants 219:t

— Tétes de poingonnement
Geilinger STt
— Colonnes rondes forgées 447 t
— Plaques de base 724
Total : 795t

forme de fer a cheval et offrant

400 chambres et des appartements en

attique.
L’hoétel, une construction en béton
armé, repose sur 24 colonnes en acier
forgé (Ac 52) de 300 mm de diamétre.
La charge verticale de 1000 t par colonne
est introduite dans chaque colonne, a
partir de la dalle formant la base de
I’hotel, par quatre bras en acier rond
forgé de 260 mm de diamétre, disposés
suivant les arétes d’une pyramide ren-
versée selon un angle de 25° par rapport
a I’horizontale. Les quatre bras, articu-
Iés, reposent en bas sur une «clé de
volte » pyramide en fonte d’acier de
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