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CALCUL PROBABILISTE DES STRUCTURES MÉTALLIQUES Ingénieurs et architectes suisses 13 septembre 1979

Application du calcul probabiliste
à Pétude des structures,
conclusions provisoires

par Bertrand Rouvé, Vevey

Depuis quelques années, grâce aux études de risques liés à la construction
des centrales nucléaires, la notion de sécurité des structures s'est
considérablement modifiée, l'homme de la pratique ayant compris que la sécurité
n'est jamais absolue, mais toujours relative.
L'ingénieur civil doit, c'est l'un des buts de son activité, réaliser des structures

porteuses présentant une sécurité à la ruine optimale et uniforme, tout
en étant limité par des conditions techniques et économiques.
Le développement des méthodes probabilistes et leur application à la sécurité

des structures permet justement de se rapprocher de ce but. Nous allons
montrer comment dans les pages qui suivent.
On distingue trois niveaux auxquels on peut traiter les problèmes de sécurité
des structures :

— niveau 3 : méthode générale fondée sur la théorie des probabilités,
utilisée pour des structures exceptionnelles ou pour vérifier les
simplifications des niveaux inférieurs ;

— niveau 2 : méthode probabiliste du premier ordre présentée ci-après ;

— niveau 1 : la sécurité requise est garantie par l'utilisation de coefficients
partiels de sécurité, indiqués par les normes de matériaux et de charges.

1. Principe du niveau 2 du calcul
probabiliste

1.1 Définitions
Le résultat d'une mesure répétitive
quelconque prend chaque fois une certaine
valeur comprise entre des limites plus ou
moins larges : c'est une variable aléatoire.
La fréquence de l'occurrence de certaines
valeurs obéit à une loi de distribution de

probabilité.
Selon l'usage, on peut décrire cette loi
par une fonction de distribution Fz (z).
D est intéressant de comprendre l'analogie

entre les caractéristiques d'une
section en résistance des matériaux et les

paramètres de la loi de distribution
normale :

nombre des mesures N
—v aire de la section A

moyennes des mesures m

—> coordonnés au centre de gravité x„

écart-type a
—>¦ rayon de giration ix ou iu

produit a2 • N
—> moment d'inertie l% ou Iv

L'analogie entre a et ix (/„) n'est bonne
que si le nombre des valeurs est élevé,
puisque l'écart-type se calcule fréquemment

au moyen de la formule

240

— sji^ï1.Hxi-m?

1 au lieu de N au
rendant l'analogie

la présence de N-
dénominateur ne
qu'approximative.
Opérant cette correction simple, on pourrait

ainsi calculer les caractéristiques
selon les 2 axes d'une section décomposée
en petits éléments de surface égale, au
moyen des fonctions statistiques d'une
simple calculatrice de poche.
Dans la suite des calculs, nous admettons
que:
— la loi de distribution de chaque va¬

riable est normale (courbe en cloche
de Gauss) ; elle peut aussi être log-
normale, c'est-à-dire que les
logarithmes des valeurs obéissent à une
loi de distribution normale ; cette
hypothèse n'est cependant pas imperative

puisqu'il est possible, en
suivant certaines règles, de transformer
la loi de distribution.

— les différentes variables sont statisti¬
quement indépendantes les unes des
autres ; si elles ne le sont pas, il faut
les rendre telles.

1.2 Méthode du premier ordre améliorée

Cette méthode de calcul probabiliste est
dite du premier ordre (et du moment
second), parce que les paramètres en sont
les valeurs moyennes et les écarts-types
des variables aléatoires, à l'exclusion de
moments supérieurs (biais, etc.).

Liste des notations principales

Xi :

xt

m(

<n

i'-ème variable aléatoire
une valeur de cette variable
aléatoire

valeur de conception de cette
variable aléatoire

moyenne des valeurs de la i-ème
variable aléatoire

écart-type de la i-ème variable
aléatoire
coefficient de variation de la i-ème
variable aléatoire (vj ailmî)
fonction qui exprime l'état-limite
de ruine
dérivée de cette fonction selon la
i-ème variable
écart-type de cette fonction :

une valeur de l'indice de fiabilité
valeur de l'indice de fiabilité à la
frontière de ruine
charge permanente
charge variable
moment plastique d'une section
moment fléchissant dû à une
charge permanente
moment fléchissant dû à une
charge variable

Les autres notations utilisées sont
conformes à la liste de la norme SIA 161,
chap. 1.01.

vt

gi

OfS

g •'

?••

Mp
Mg

Ma

H semble que cette méthode, présentée
par Hasofer et Lind [1]1, soit la première
qui reste indépendante du point de
référence et de la formulation de la fonction
qui exprime l'état-limite de ruine. En
outre, les cas-limites (écart-type très faible
ou nul) sont aussi traités d'une manière
rigoureuse.
Le détail de la méthode se trouve dans la
littérature spécialisée, aussi ne revenons-
nous ici que sur l'essentiel. On peut dire
en bref qu'elle est une extension de la
loi de propagation des erreurs. Le principe

en est le suivant : on écrit la
fonction-limite de ruine G G X() à l'aide
des n variables aléatoires Xt ; celle-ci
représente une surface dans un système
d'axes à n dimensions, dont l'origine se
trouve au point où toutes les variables
sont à leur valeur moyenne rrtf et dont
l'échelle est la même pour tous les axes,
l'imité étant ««écart-type, at. Il convient
de calculer la distance la plus courte
entre l'origine et la surface-limite. Cette
distance, qui est aussi le rayon de la
sphère (à n dimensions) d'égale probabilité,

est l'indice de fiabilité ßa.
La méthode est applicable à des variables
obéissant à une loi de distribution aussi
bien normale que log-normale. U est
d'usage d'utiliser la première loi pour les
sollicitations et la seconde (log-normale)
pour les variables exprimant la résistance,
puisque celles-ci sont en général
essentiellement positives.
Pour le calcul de la fonction G (x*) au
point de repère dont les coordonnés sont

1 Les chiffres entre crochets renvoient à la
bibliographie en fin d'article.
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x*, on utilise les valeurs x* des variables

Xi où :

x* mt • exp (—a{ • ß0 ¦ v()

(type résistance) (la)

x* nu ¦ (1 + act ¦ ß0 • v{)

(type sollicitation) (lb)
ß0 est l'indice de fiabilité admis ou cherché,

alors que les a.% sont les facteurs
d'influence ou les poids des variables Xt :

Tableau 1 : Moyennes et coefficients de variation selon [4]

g'i (x*) • Ot
27a? 1 (le)

Si l'avantage de la méthode est son
invariance par rapport au choix de la formulation,

son inconvénient est la nécessité

d'opérer par approximations successives,

puisque les x* dépendent des a{, qui
eux-mêmes se calculent à partir des

g'M).
1.3 Le chapitre « calcul » de la

directive 260

Le quatrième chapitre du projet de directive

SIA 260 (mars 1979) prévoit dans la
partie consacrée au contrôle de la sécurité

l'application de la méthode d'Has-
ofer-Lind. On peut se demander s'il est

opportun d'imposer une méthode de

calcul dans une directive SIA, ou s'il ne
serait pas préférable de l'y recommander
seulement et de l'exposer dans une
annexe. L'état actuel du projet présente
en tous cas l'avantage de mettre sur pied
d'égalité les différents matériaux et les

différentes normes de construction.

2. Application au moment
plastique d'un profilé laminé

2.1 Données statistiques

Le moment plastique d'une section en
double té se calcule à l'aide des 5 variables

aléatoires indépendantes suivantes
(voir figure 1): la limite élastique oy, la
largeur du profilé 2c, sa hauteur h, 2

l'épaisseur des semelles t, et celle de
l'âme d.
Selon [4], qui fournit des histogrammes
de distribution de ces 5 variables pour
des mesures sur environ 5000 profilés, on
peut calculer les moyennes et les coefficients

de variation reproduits dans le
tableau 1.

Par ailleurs [5] indique d'une manière
plus détaillée les mêmes grandeurs pour
différents profilés à larges ailes, voir
tableau 2.

2.2 Fonction-limite

Implicitement la nouvelle norme SIA 161

(1979) fixe le facteur de résistance
1,60

y» —— 1,14, 1,60 étant le facteur' 1,40
de sécurité et 1,40 le facteur de charge.
La fonction qui exprime l'état-limite de

la condition de résistance des sections
s'écrit donc :

2 A la place de h, on peut aussi utiliser
pour la variable X%, la hauteur de l'âme hs ;

les résultats n'en sont que peu modifiés.

Valeur moyenne
Valeur nominale

Coefficient de variation

af Xx 2c Xz h X3 t A"4 d X$

— 1,002 1,005 0,967 1,020

0,08 0,007 0,007 0,023 0,036

Tableau 2 : Moyennes et coefficients de variation selon [5] ; pour les données

géométriques des profilés, on admet que la moyenne est égale à la valeur nominale

HEB 100 HEB 300 HEB 600 HEB 1000

Limite élastique :

Moyenne N/mm2 289 279 264 262

Coefficient de variation 0,0621 0,0622 0,0624 0,0624

Coefficient de variation :

Largeur de semelle 2c 0,0100 0,0033 0,0033 0,0033

Hauteur h 0,0100 0,0033 0,0020 0,0010

Epaisseur des semelles t 0,0500 0,0300 0,0200 0,0200

Epaisseur de l'âme s 0,0500 0,0500 0,0320 0,0300

2C
r-t-S — l

Nj

a< : Xi
2c : X2

£ £.
d h :

t
d :

Xs

Xi
Xs

^~,

Fig. 1. — Section d'un profilé laminé avec
l'indication des 5 variables aléatoires utilisées.

M„
1,14

Mp (*?) 0 (2)

OÙ Mr, est le moment plastique,
calculé avec oy nominal (par exemple
235 ou 355 N/mm2) et les dimensions
nominales du profilé

et Mp (x*) est le moment plastique cal¬

culé avec des valeurs réduites selon
la formule (la) pour les différentes
variables aléatoires.

Pour la section selon fig. 1, on peut écrire:

Mp [2ct(h-t) + - d(h-2tf] ¦ a,
4 (3a)

Mp(Xi)=[X2X4(X3-Xi) +

+ \x5 {XZ-2XÙ2} ¦ Xx (3b)

2.3 Calcul de l'indice de fiabilité
Il faut donc calculer la fonction-limite
pour un point x* sur la frontière de

ruine, point de plus grande probabilité
que G Xt) 0. Cela permet de
déterminer la valeur de l'indice de fiabilité ß0,

ou si l'on veut, la distance (exprimée en
écarts-types) entre l'origine du système

(valeurs moyennes) et le point le plus
proche de la surface-limite.
Le calcul de Mp (x*) s'effectue selon

l'algorithme suivant :

1. Choix d'un ß (pour commencer

0=0).
2. Calcul des x( mt • exp(—tXfß-Vt)

pour Xx à X5.

3. Calcul des dérivées

pour Xj Xj.
dXi

4. Calcul des facteurs d'influence a<

(formule le).
5. Calcul des nouveaux xt (formule la).
6. Répéter 3 à 5 jusqu'à ce que les x(

restent stables.

7. Calcul du moment Mv (x{) (formule
3b) avec les xt obtenus.

8. Avec un autre ß, répétition à partir
del.

Le résultat de cet algorithme donne les

xt pour les différents ß exigés, à partir
de quoi par interpolation, on peut
déterminer ßQ et les x* correspondants.
Le tableau 3 donne les résultats
intermédiaires et finals de ce calcul.
La représentation graphique de la fonction

M„
1,14

Mp (x*) devrait

être faite dans un espace à 5 dimensions.
Cependant, les calculs montrent que les
deux variables oy et t ont une influence
prépondérante (af 4- <x\ 0,98), de sorte
qu'une représentation dans le plan de

ces deux grandeurs donne une image
fidèle de cette application numérique.
Il ressort clairement de la formule (le)
et de la figure 2 que les facteurs
d'influence des différentes variables dépendent

de l'importance de chaque variable
(la dérivée gÇ) et de son écart-type.

2.4 Facteur de résistance et probabilité
d'insuffisance

L'indice de fiabilité ß0 ou la distance
relative entre la valeur moyenne du
moment plastique Mp {mt) et la valeur
M„om

vaut, suivant le profil, 3,6 pour
1,14

HEB 1000 et 4,55 pour HEB 100.
Ces valeurs correspondent à une probabilité

de 1/6800 (HEB 1000) etË$ÏK
1/400 000 (HEB 100) que Mp < Mnom/
1,14. Ceci n'est bien sûr pas la probabilité

de ruine, celle-ci étant encore beaucoup

plus faible, puisque, à ce stade, la
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Tableau 3 : Données et résultats partiels du calcul du profilé HEB 100

Xi Of

[N/mm2]

X2 2c

[mm]

X3 A

[mm]

Xi t

[mm]

X5 d

[mm]

Mp (xt)

[kNm]

Mp (xt)
Mp, nom

A(xt)
[mm2]

Valeurs nominales

0 Valeurs moyennes mt
Ecarts-types at

a^ Coeff. de variation Vj
Dérivées gi (.mt)
Poids at

235
289
18

0,0623
99 600
0,8350

100
100
1

0,01
260 100
0,1211

100
100
1

0,01
358 360
0,1669

10
10
0,5
0,05
2 173 280
0,5060

6

6

0,3
0,05
462 400
0,0646

23,41
28,78
2,148
0,0746

1,00

1,00
1,230

2480
2480

•n xt mt • e—*tßv>
Il gi

«a. <H

259,9
95 388
0,8504

99,78
223 249
0,1105

99,69
309 537
0,1533

9,52
1 966 684
0,4869

5,96
422 639
0,0628

24,80

1,00

1,059 2382
0,960 Anom

¦"*¦ xt mt e—"iPvi
Il Oj

«a.

232,9
0,8664

99,60
0,1005

99,44
0,1403

9,11
0,4646

5,93
0,0604

21,37
1,00

0,913 2297
0,926 Anom

- x* mt e—atß°v<

Il *
225,8
0,8709

99,56
0,0979

99,38
0,1368

9,01
0,4578

5,92
0,0597

20,52
1,00

0,876
1/1,14

2276
0,918 Anom

°a.

On remarque que les facteurs d'influence a,- sont légèrement modifiés en fonction de ß, ce qui caractérise justement la non -linéarité du

problème. La valeur ß0 4,55 correspond à la condition Mv (x\,\ Mp, nom
1,14

sécurité vaut encore yF 1,40 provenant

des charges appliquées.
Ainsi on a montré qu'un facteur de
résistance yF 1,14 est suffisant pour
la flexion des profilés laminés. En outre
il faut ajouter que pour l'acier de
construction (profilés et tôles), la valeur
nominale de la limite élastique et les
dimensions des profilés (diminuées des
tolérances combinées) sont des valeurs
minimales garanties qui ne tolèrent pas
d'écart vers le bas, contrairement à la
résistance du béton et à la limite
élastique des barres d'armatures, qui sont
souvent des valeurs à fractile de 2 %.

3. Effet des charges

Si l'on veut étudier les problèmes de
sécurité à la ruine des structures porteuses
selon les concepts probabilistes, il est
indispensable de tenir compte aussi du
caractère aléatoire des charges. Dans ce
domaine, la difficulté principale réside
justement dans le fait que les charges
utiles présentent souvent un coefficient
de variation élevé.

3.1 Statistiques de charges observées

Les calculs de ce chapitre sont basés sur
les observations et les enquêtes
statistiques parues dans divers documents [8],
[9]. Le premier donne et interprête les
résultats de mesures sur environ 35 000
locaux divers, classés par catégories.
TJ en ressort notamment que pour les
habitations privées, les locaux de vente
et les bureaux, la charge nominale
ANSI8 n'est dépassée que dans 0,01 %
des cas, alors que pour les locaux
destinés à l'industrie ou au stockage, la
proportion est beaucoup plus grande (là
5 %). Nous avons repris des tableaux
de [8] les valeurs moyennes, et les écarts-
types pour les introduire dans nos calculs.

3 American National Standards Institute,
norme A 58.1.

mm] EPAISS SEMELLES

SECURITE G>0

-Mp(x,')>0

fr'
W CX, COS V)

j o<4= sin tp

I ECART-TYPE
DE t

RUINE

il ECART-TYPE DE 6,

Hp(m,( / I

N/mm2]

T VEPAISSEUR-LIMITE ENCORE
DANS TOLERANCES A= 0.94 A

D„ 4

POINT DE REPERE -

POINT DE PLUS GRANDE
PROBABILITE QUE G= 0

Mp(x")
M.(»i 0

.4

Fig. 2. — Représentation dans le plan "t— t du calcul du profilé HEB 100. Le point de repère (pour
ßo 4,55) se trouve aux coordonnées xi ¦= ", 226 N/mm' et xX t 9,01 mm, conformément
aux valeurs obtenues pour ßo 4,55 dans le tableau 3. On remarque que les valeurs minimales garanties

sont supérieures à ces valeurs xi et x* : tmin 9,1 mm provient de la tolérance de 6 % sur le
poids. Qui est, pour ce profilé, plus sévère que la tolérance sur l'épaisseur de semelle 17].

ßo 4.55 (HEB 100)

HEB 100

HEB 300

1.14

l*p|

HEB 600

HEB 1000

0.877 M

Mptx,)

Mp(m,) >Mp.„om
puisquetf,m > dinoi»

Mp(0
"pno

Ftg. 3. — Index de fiabilité ßo des moments
plastiques. La courbe de Mv (xt) est obtenue à
partir des valeurs du tableau 3 pour le HEB 100.

L'équation 2 est satisfaite au moment où cette
courbe croise la ligne verticale de —."'"J"" •

1.14
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Tableau 4 Résultats des observations de charges de Corotis, ASCE [8]

Valeurs nominales Charges Distribution normale Extrême 99,9 % observé
Genre de bâtiment norme SIA 160 moyennes écart-type coefficient écart-type coefficient

A 58.1
[kN/m2]

?nom
[kN/m2]

qm
[kN/m2]

O-q

[kN/m2]
variation

v9
Oq

[kN/m2]
variation

À -

Hôpitaux 2,9 — 0,44 0,23 0,51 0,31 0,71
Habitation 1,9 2,0 0,54 0,19 0,36 0,20 0,38
Bureaux 3,8 2,0 0,61 0,41 0,68 0,69 1,13
Locaux
Industrie légère 6,0 — 0,85 0,93 1,09 1,52 1,78

Entrepôts 6,0 — 1,31 0,99 0,76 — —
Locaux commerciaux 3,6 4,0 1,84 0,51 0,28 0,37 0,20

Tableau 5 : Caractéristiques des charges idéalisées selon JCSS [9]

Echantillonnage1 simple Maximum 50 ans
Genre de bâtiment mi

kN/m
aq

ä kN/m2
Vq qik1

kN/m2
"150

kN/m2
°8

kN/m2
v8 ?*2

kN/m2

Habitations — — — — 1 0,4 0,4 1,75
Bureaux (20 m2) 0,50 0,51 1,02 1,46 1,42 0,51 0,36 2,38
Locaux de vente 0,70 0,54 0,77 1,70 1,70 0,54 0,32 2,70
Neige

Xr valeur de référence Xr 0,5 XR 0,50 1,93 XR 2,53 XR 0,5 Xr 0,20 3,46 J?R

1 que est la valeur caractéristique correspondant au fractile 95 % de nu.
2 qjc est la valeur caractéristique correspondant au fractile 95 % de mso ou 99,5 % de m\.

Pour les écarts-types, nous avons deux
valeurs à disposition : celle calculée à
partir des paramètres de la loi de
distribution normale (valeur « moyenne »

pour décrire au mieux l'ensemble de la
distribution) et celle estimée à partir des

fonctions cumulatives pour satisfaire
l'extrême supérieur de la distribution
(« tail approximation »).
Par ailleurs, dans cet article [8], les
auteurs montrent que la meilleure loi de
distribution pour décrire la plupart des

genres de bâtiments est la loi de
distribution Gamma.
D'autre part, nous avons utilisé les
formules d'idéalisation des charges données

dans [9], formules basées sur des
observations. Partant des valeurs observées

sur un échantillonnage simple, les

auteurs donnent des lois de distributions
(du type I, Gumbel), pour une extrapolation

sur une durée de vie du bâtiment
de 50 ans. Dans ce chapitre, nous avons
utilisé ces moyennes extrapolées et les

écarts-type en les comparant d'une part
aux valeurs nominales données par les

« valeurs caractéristiques » de cette
publication ou d'autre part aux valeurs
nominales données par la norme SIA 160.

3.2 Fonctions de l'état-limite de ruine

Afin de réduire le nombre des variables
aléatoires du calcul, nous concentrons
les 4 variables géométriques des profilés
selon 2.1 en une seule grandeur, le
module plastique de la section, Z, dont
l'écart-type est calculé à l'aide des 4
variables de base ; vu le peu d'influence de

ces variables, ceci ne change pratiquement

rien au résultat final : elles sont
toutes considérées, mais linéarisées entre
elles. A cause des caractéristiques très
différentes du poids propre et des sur¬

charges, il est bon de garder ces deux
variables distinctes.
Ainsi la fonction-limite peut s'écrire :

soit

Mp — Mg M„ 0 (4)

ce qui donne pour une poutre simple
fléchie :

arZ--bl2g
1

bl2q 0 (5a)

ou

bVaf • Z

Xi • x%

-g-9 0 (5b)

X3 Xt 0 (6)

Dans notre cas nous n'avons pas considéré

les variations du système statique :

largeur de la charge b et portée de la
poutre /, admises constantes. Il ne serait
pas compliqué d'en tenir aussi compte,
ce qui pourrait éventuellement être fait
ici dans notre variable X2 qui contiendrait

ainsi toutes les données géométriques

aléatoires.
La méthode de calcul peut être en outre
étendue aux problèmes de résistance des

cadres hyperstatiques avec le calcul dit
plastique-plastique de la norme SIA 161,
art. 3.043.
Elle peut aussi être appliquée aux
problèmes de flambage des barres comprimées,

sans trop de complication si l'on
utilise les courbes de flambage européennes

; dans ce cas, la fonction-limite peut
avoir la forme :

G Ntâl)-arA-Ng-Nq 0 (7)

où Nk fonction de Ak est le rapport —

ordonné par les courbes de flambage
de l'art. 3.063 (norme SIA 161) et

ï (i.)'|\mj E

Nu nxj E_

X$—X§

¦Xi-Xz-

0 (8)

Il n'est pas question de calculer lesssîlsi
pressions algébriques de dérivées g\ de
cette fonction ; le calcul numérique est
de loin préférable.

3.3 Calcul de quelques exemples

Ces exemples ont tous été calculés à
l'aide d'une calculatrice de poche
programmable, ce qui montre que le
problème n'est pas si compliqué qu'il en
a l'air.

3.31 Sommier d'un plancher dans un
immeuble de bureaux

En partant des charges observées dans
des immeubles de bureaux par Corotis
[8], nous prenons le cas d'un sommier
principal de plancher de 6 m de portée,
chargé sur une largeur A de 6 m aussi.
Pour les valeurs relatives à la surcharge,
nous prenons la moyenne et le coefficient
de variation donnés dans le tableau 4,
soit qm 0,6 kN/m2 et v2|= 0,667 ; la
valeur nominale est tirée de la norme
SIA 160, soit qnom 2,0 |p/m2.
Le poids propre (sommier, dalle, revêtement,

le tout équivalent à 12 cm de
béton) est fixé à gn0m 3 kN/ma.
Selon [9] et [11], pour cette épaisseur
de béton, la moyenne excède de 5 à
7 % la valeur nominale et le coefficient
de variation vaut 7 % ; nous prenons
donc gm 3,15 kN/m2 et v„ 0,07.
Les moments de flexion au centre du
sommier valent

Ma
1

g • b • I2, etc. (9)
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soit Ma 81,0 kNm, Tableau 6 : Données et résultats de l'exemple 1 (bureaux)

Mqt nom 54,0 kNm
Mg.

M„.
85,05 kNm,
16,2 kNm

Admettant un dimensionnement
plastique en Fe 360, nous avons besoin d'un
module plastique de

^nec Y"
Ma.

1,6
135-106

o> 235

919 • 103 mm3 (10)

qui correspond environ à un HEB 240
(nous gardons cependant cette valeur
nominale). Selon [6], nous pouvons
introduire pour ce profilé un coefficient de
variation vz égal à 0,025.
Pour la limite élastique, nous reprenons
les valeurs du tableau 2 soit aJt m

279 N/mm2 et v 0,0622.
Avec ces données, nous appliquons
l'algorithme décrit sous 2.3 et nous calculons

les valeurs xt pour différents
ß (0, 2, 4 selon les formules la
et lb. En reportant dans un graphique
(figure 4) les valeurs de Mp et de Mg+q,
nous obtenons les deux courbes Mp(xf)
et Mg+q(xt). Le point où les deux courbes
se croisent nous donne l'indice de fiabilité

ß0 ; ce point est justement le point
de repère de coordonnées x* (fig. 4).
Ce processus peut aussi être automatisé
pour trouver en un seul niveau d'itérations

(ici au nombre de 5) la valeur ß0.
Les x* obtenus dans le tableau 6 sont les
valeurs d'égale probabilité d'occurrence
des variables données ; elles sont situées
sur la surface de la sphère mentionnée
en 1.2. Toute autre combinaison de
valeurs x* conduisant au même résultat
G (x*) 0 est liée à une distorsion de la
probabilité. On voit que dans cet
exemple la variable qui a le plus de
poids est la limite élastique ; ce fait, que
nous jugeons anormal, provient de ce

que la surcharge nominale est trop
élevée par rapport à la surcharge moyenne

et à son écart-type. En effet, 3,5 écarts-
types séparent la moyenne de la valeur
nominale, ce qui correspond à un fractile

de 99,97 %.
D'ailleurs, la valeur obtenue pour l'indice

de fiabilité ß0 8,40 montre aussi

que le système donné est « trop sûr ».
Il est en outre intéressant de calculer
les coefficients de sécurité partiels entre
les valeurs nominales et les moyennes
des variables :

Mv nom 216,0^=^) Ï6479
1'310

99,9

Mg+q{x*t) 99,9 + 65,0
7F — TT— t,, ——;—— — 1 ,ZZ1

AWnom 81,0+54,0

Valeurs : af [N/mm2] Z [103 mm'] Mg [kNm] Mg [kNm]

nominale 235 919 81 54

moyenne 279 919 85,05 16,2
coefficient de variation 0,0622 0,025 0,07 0,667

ß 8,398 x% 187,6 879 99,9 65,0
<H 0,759 0,215 0,297 0,538

La ruine la plus probable de ce sommier se produira pour les valeurs : aj 188 N/mm2,
Z 879 • 103 mm3, Mg 99,9 kNm (g 3,70 kN/m2) et Mq 65,0 kNm (q 2,41 kN/m2).

.f)o 8.40 MplV^Mg.«^,*)

MpUi)

Mg.q(mi)

Ix,

MARGE MARGE rR

g.q

1.40 IW

vMp(m,)

Mg.q

Fig. 4. — Graphique de Mi+i et Mv en fonction charge
de ß pour l'exempte de 3.31 (plancher de section,
bureaux). Mç + q est le moment sollicitant la (Mp+i ¦

section dû à la charge permanente et à la sur-

Mv est le moment plastique de la
L'intersection des deux courbes

Mv) donne l'indice de fiabilité ßo.

Ces coefficients partiels donnent aussi,
contrairement à l'usage établi (yR =1,14
et yF 1,40), trop peu d'importance
aux surcharges.
A la suite d'un calcul semblable exécuté

pour les charges très faibles des locaux
d'habitation (tableau 4), nous avons
trouvé des résultats encore plus accentués

dans le même sens

ai 0,866, yR= 1,569.

3.32 Sommier d'un plancher pour
industrie légère

Nous traitons cet exemple d'une manière
semblable au cas précédent, et nous ne
reproduisons que l'essentiel des données.
Ici, nous prenons une poutre de 10 m
de portée, avec aussi 10 m de largeur
de charge.

Ainsi nous obtenons :

Mg+q,aom - (4,0 + 6,0) 10 • 102

1250 kNm

Z„ 1,6
1250 • 106

235
8,511- 106mm3

(env. HEB 800)

Pour ne pas nous embarrasser de la portée

et de la largeur, nous utilisons
conformément à la formule (5b) directement
les charges g et q au lieu des moments Mg
et Mq, en prenant les premières grandeurs

dans Z, qui devient ainsi Z :

module de résistance relatif :

Z—, 0,06809-10-3
biù

Surcharge :

nominale ANSI A 58.1

moyenne (tableau 4)
coeff. variât, (tableau 4)

6,0 kN/m2
0,85 kN/m2
1,78

Poids propre : sommier + dalle +
revêtement (équiv. à 16 cm de béton) :

nominal 4,0 kN/m2
moyen (excès 5 %) 4,2 kN/m2
coeff. variation 0,050

Limite élastique :

nominale SIA 161 235 N/mm2
moyenne (tableau 2) 263 N/mm2
coeff. variât, (tableau 2) 0,0624

Notons cependant que cette simplification

numérique ne change rien aux
résultats donnés dans le tableau 7.
Ici, les facteurs d'influence ai et a^ de la
limite élastique et de la surcharge sont
pratiquement inversés par rapport à
l'exemple 1.

Les coefficients de sécurité partiels
calculés comme pour le premier exemple
valent :

yR 1,173, y„= 1,091, yv 1,546,

yF= 1,364.

Grâce au coefficient de variation de la
surcharge qui est ici assez élevé, cet
exemple présente les coefficients partiels
auxquels nous sommes habitués (fig. 5).
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Tableau 7 : Données et résultats de l exemple 2 (industrie légère)

Valeurs : a/ [N/mm2] y [kN/m2]
[N/mm2] g [kN/m2] q [kN/m2]

nominale 235 0,06809 4,0 6,0

moyenne 263 0,06809 4,2 0,85

coefficient de variation 0,0624 0,020 0,05 1,78

ß0 6,995 x? 204,5 0,06670 4,36 9,28

a( 0,576 0,147 0,111 0,796

Les x\ sont les valeurs de la ruine la plus probable.

Mp(x,*)=Mg.q(x,")
Ro=7.00

6

Ma.a(Xi)g,q
Md(xî)

MARGE yF MARGE

r«
Mg+q(mj) Mpjxjn\/Mp(mij3+q, nom

2 U

jt 1.40 yR=1«u

F/g. 5. — Graphique de Mg+q et Mp en fonction courbe Mç+q provient de la grande valeur du
de ß pour l'exemple de 3.32 (plancher pour coefficient de variation de la surcharge.
industrie légère). La faible inclinaison de la

Tableau 8 : Données et résultats de l exemple 3 (local de vente)

Valeurs : oj [N/mm2] g [kN/m2]
[N/mm2] g [kN/m2] q [kN/m2]

nominale 235 0,04562 4,00 2,70

moyenne 264 0,04562 4,2 1,70

coefficient de variation 0,0624 0,02 0,05 0,32

ß0 7,007 xj 189,2 0,04447 4,526 3,886

«i 0,767 0,182 0,221 0,574

Les x* sont les valeurs de la ruine la plus probable.

Tableau 9 : Données et résultats de l'exemple 4 (toit chargé de neige)

Valeurs : oy [N/mm2] 2 [kN/m2]
[N/mm2] g [kN/m2] q [kN/m2]

nominale 235 0,02383 0,50 3,0

moyenne 280 0,02383 0,525 2,2

coefficient de variation 0,0622 0,025 0,05 0,2

ßo 6,766 xf 212,3 0,02301 0,533 4,351

«i 0,658 0,208 0,043 0,723

Les x* sont les valeurs de la ruine la plus probable.

3.33 Sommier d'un plancher (local de

vente) avec les charges spécifiées

par [9]

Les données qui suivent sont obtenues à

partir des charges moyennes observées

(9m 0,1 kN/m2), dont on a calculé les

moyennes extrêmes pendant 50 ans
(,m$0 1,7 kN/m2) ; la valeur nominale y
est indiquée avec 9k 2,70 kN/m2
(SIA 160 4,0 kN/m2).
Pour un sommier principal (portée 10 m,
largeur de charge 10 m), nous admettons
le même poids propre que pour l'exemple
précédent : 4 kN/m2.

Les résultats obtenus figurent dans le
tableau 8 ; ils ressemblent à ce que nous
avions en 3.31 en ce qui concerne
x* oy et les ait malgré le fait que la
surcharge y est très différente (valeur
moyenne plus grande, compensée par
un écart-type plus petit).
Les coefficients de sécurité partiels
s'élèvent à: yR= 1,274, y, 1,132,

y4= 1,439, yP= 1,256.

3.34 Sommier d'une toiture supportant
de la neige

La toiture envisagée se trouve à l'altitude
de 890 m, de sorte que la charge nomi¬

nale SIA 160 s'élève à 3 kN/m2. A quelle
probabilité cette valeur correspond-elle,
quels en sont l'écart-type et la moyenne
Nous trouvons une réponse dans le
chapitre A-06 de [9] et dans l'annexe III
de [10] où, à partir de qlt le maximum
annuel de la charge de la neige, on peut
calculer :

—m5Q 2,53 • <7i la moyenne des maxi¬

mums annuels extrapolée pour
50 ans,

—qk 3,46 • #i la valeur caractéristi¬

que correspondant au fractile
5 % en loi de distribution des

extrêmes,

—aq 0,5 • (ft l'écart-type.

Nous considérons ainsi que la charge
nominale de la norme correspond à qk,
donc que mso — 2,2 kN/m2 et que o~q

0,44 kN/m2.
Pour le poids propre de la toiture, nous
admettons 0,5 kN/m2, valeur choisie
consciemment très faible, correspondant
à une tôle profilée. La largeur de charge
vaut 6 m, la portée 10 m, de sorte que

Ma.
1

(0,5 + 3,0) 6 • 102

262,5 kNm

1,6-262,5-106
_

235
1,787 106mm3

HEB 300)

1,787-106-8
6-lOMO9

0,02383 10~3

Même dans cet exemple où il est donné
à une charge naturelle une influence
relativement grande, on voit que les résultats

sont encore tout à fait raisonnables.
On obtient pour les coefficients de
sécurité partiels: yR 1,147, yg 1,065,

yg= 1,450, yF= 1,395.

3.4 Discussion des résultats

Pour tous les exemples traités dans le
paragraphe précédent, qui se veulent
représentatifs de cas pratiques de la
construction métallique, les deux
influences importantes sont celles de la
limite élastique et de la surcharge.
Comme la limite élastique est caractérisée

par des paramètres (moyenne et
écart-type) qui varient assez peu, c'est
bien la surcharge (utile ou naturelle) qui
pose les problèmes les plus aigus, de

sorte que c'est cette variable qui doit
être étudiée le plus soigneusement.
Dans les exemples 1 et 3, la surcharge
nominale de la norme SIA 160 serait
nettement trop élevée, si l'on jugeait h»*-'
quement par la méthode de calcul
proposée. Faut-il en conclure que ces charges

doivent être diminuées de 30 ou
50 % Nous ne le pensons pas, car il est
nécessaire de tenir compte d'accidents
d'utilisation toujours possibles, qui ne
doivent cependant pas conduire à
l'effondrement de la structure : fuite d'eau dans

une pièce, rassemblement imprévu de
nombreuses personnes dans un local, etc.
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Pour obtenir encore plus rapidement la
valeur de l'indice de fiabilité ß0 d'un
système donné, ainsi que les facteurs de
sécurité partiels, il est commode d'utiliser
le graphique (fig. 6) calculé à partir de
nombreux exemples. Les paramètres de
la résistance (oy et Z ont des valeurs
fixées Mv 1,1 Mn

0,065), alors que le poids propre et
la surcharge sont considérés ensemble,
g + q. Leur rapport : moyenne sur
valeur nominale est l'ordonnée du
diagramme, alors qu'en paramètre, on a

vg + g, leur coefficient de variation,
calculé aisément comme suit :

ag+a \j(vg -gmf+ (vq • qm)2

ëm i 9m Sm ' 9m

On peut lire sur le diagramme ß0
(paramètre), le facteur de charge yF (abscisse
inférieure) et le facteur de résistance yR
en abscisse supérieure.
Comme illustration, nous reprenons
l'exemple du paragraphe 3.32 :

val. moy _
4,2 + 0,85

val. nom. 4,0 + 6,0
0,505

V/(0,05-4,2)2 + (1,78-0,85)2

4,20 + 0,85

1,53

5,05
0,302

Dans ce diagramme, nous avons placé un
certain nombre de points correspondant
aux calculs pour les différentes surcharges
reproduites dans les tableaux 4 et 5. On
voit alors que les points donnés par les
charges observées selon [8] livrent des
indices ß0 beaucoup trop élevés (jusqu'à
8), de sorte que l'on s'approche
dangereusement des limites d'application de la
méthode, qui est sensible aux erreurs sur
les « queues » extrêmes des lois de
distribution.

On peut partiellement remédier à cet
état en introduisant dans les fonctions
limite de ruine des variables de modèle
(Modellvariable), comme cela est prescrit

dans le chapitre 4 du projet de directive

SIA 260, pour tenir compte du
caractère approximatif du modèle de la
résistance et de celui des charges. Le
procédé est judicieux pour que les données

des cas limites (surcharge avec v très
grand ou très petit) apportent encore des
résultats raisonnables. Il fait un peu
figure de recette de cuisine, quand il
s'agit de donner des chiffres précis (par
exemple v 0,05 pour la résistance,
a 0,5 kN/m2 pour les sollicitations).

4. Conclusions

Les conclusions qui suivent se veulent
la modeste contribution d'un ingénieur
de la pratique qui a essayé d'appliquer
la méthode de calcul probabiliste
proposée par Hasofer-Lind [1] et par le

246

16 15

"* •-
Mg.q(m
Mg.q nom

resistance
déterminante

RO ?>0 ftO

SJ.O

^o

Q>°

0>*
O?

4L-oP

0.3°

0.50

10
2 0

pour ce graphique

Mp(m,)=1,1MP-nom

Vp =0.065 charges
déterminantes

Fig. 6. Graphique livrant directement ßo, -ya et ys en fonction de Mç+t (nu)
et de DansMi+a. nomle cas des exemples I et 4, la lecture est approximative, le rapport at. m/aj. nom étant plus pessimiste

pour le diagramme que pour ces exemples.

1. Bureaux (tabl. 4) v, 0,68 (Ex. 1)
2. Industrie légère (tabl. 4) v, =1,78 (Ex. 2)3. Local de vente (tabl. 5) v, 0,32 (Ex. 3)4. Charge de neige (tabl. 5) v„ 0,20 (Ex. 4)
5. Habitation (tabl. 4) v„ 0,36

6. Bureaux (tabl. 4) Va 1,13
7. Industrie légère (tabl. 4) v» 1,09
8. Local de vente (tabl. 4) Vq 0J8
9. Habitation (tabl. 5) v« 0.40

10. Bureaux 20 m" (tabl. 5) v, 0,36

projet de directive 260 [3] à des exemples
proches de la réalité.

4.1 Discussion de la méthode

Même si les résultats obtenus ne sont
pas toujours concluants pour des cas
extrêmes surtout, il ne faut pas pour
autant condamner cette méthode, qui
offre l'avantage de mettre sur pied d'égalité

(égale sécurité) les différents matériaux

de construction, ainsi que les diverses

charges sollicitant les structures
porteuses.
Dans les calculs qui précèdent, on a vu
que l'application de la méthode aux
structures des bâtiments pouvait donner
des résultats très différents suivant le
type d'affectation. Pour les bureaux, par
exemple, la variation de la limite
élastique a plus d'importance que la variation

de la surcharge, alors que c'est
évidemment l'inverse qui se produit pour
des constructions où la surchage réelle et
son écart-type sont élevés.
Cette grande sensibilité à la valeur de
l'écart-type de la surcharge peut être
diminuée, comme nous l'avons vu à la
fin du paragraphe 3.4, par l'introduction
des deux variables de modèle.
Malgré les inconvénients mentionnés, la
démarche nous paraît juste : d'abord se
décider pour la méthode, puis choisir
le niveau de charge qui sera indiquée dans
la norme (moyenne, caractéristique,
nominale, maximale, etc.) et les valeurs.
Pour atteindre le but recherché, à savoir
une sécurité optimale et uniforme, il
convient de baser nos calculs ainsi
que les hypothèses de départ sur la
réalité des structures (résistance et

sollicitations) décrite au moyen de la
statistique. Actuellement, le contrôle
consiste en une comparaison entre une
résistance nominale, souvent inférieure
à la valeur réelle et encore divisée par
un coefficient et une sollicitation nominale

rarement atteinte, multipliée par un
facteur de charge ; ainsi la sécurité
effective de la structure reste inconnue de
l'ingénieur qui l'a conçue.
Quant au problème des combinaisons de
charges, il se posera d'une manière
inverse à la manière actuelle : avec les
charges que j'ai plus ou moins arbitrairement

fixées avec les paramètres
statistiques, quelle est la sécurité effective?

Que l'ingénieur de la pratique ne
s'effraie cependant pas ; un calcul probabiliste

de niveaux 2 et 3 ne lui sera que
très rarement demandé ; il est en effet
prévu que, pour les constructions
courantes, seuls les résultats de la méthode
probabiliste lui soient nécessaires,
l'application en étant faite par les commissions

des différentes normes de matériaux

et de charges.

4.2 Etudes encore nécessaires
Nous possédons actuellement un certain
nombre d'enquêtes et d'observations
statistiques sur les surcharges utiles réelles

pour certains pays étrangers, surtout les
Etats-Unis. Des données semblables
manquent encore, en ce qui concerne
notre pays ; il en faudra même un nombre
considérable, si l'on veut que les lois de
distribution admises soient correctement
fondées (valeurs extrêmes des « queues »);
il n'est certes pas facile de déduire des
charges observées à un moment donné,
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les valeurs moyennes maximales sur
disons 50 ans, comme il l'a été fait pour
la neige dans le paragraphe 3.34.
Une fois que ces données, valeurs
moyennes et écarts-types, seront acquises,
il faudra encore fixer des valeurs convenables

pour les coefficients de variation
des incertitudes du modèle statique
choisi (résistance et sollicitations).
Certaines actions continueront certainement

encore longtemps à soulever des

problèmes difficiles :

— le vent avec son effet extrêmement
variable, non seulement dans le temps
et dans son intensité, mais aussi dans
la direction d'application et l'interaction

éventuelle avec le bâtiment
(oscillations) ;

— les séismes, dont la probabilité d'oc¬

currence est très faible au niveau
catastrophique, mais les conséquences

très lourdes, et dont les effets
dynamiques ne seront pas simples à
traiter dans le cadre de ce concept
probabiliste.

En outre, les exemples calculés ci-dessus
se rapportent uniquement à la flexion
d'une poutre simple. Il reste à traiter les

problèmes d'interaction (moment, effort
tranchant), ceux de stabilité (flambage,
déversement, voilement), des
assemblages, de la fatigue, etc.
Sans vouloir anticiper sur les travaux de
la commission de la nouvelle norme de

charge, nous pouvons déjà relever que
si la directive SIA 260 amène une
modification du niveau de charge indiqué (il
devrait y avoir plusieurs niveaux, de

significations différentes), il sera
indispensable de soigneusement calibrer la
nouvelle méthode de calcul au moyen
de l'expérience acquise dans notre pays.
On évitera ainsi de brusques changements

dans nos habitudes de dimensionnement

des structures, changements à

priori indésirés, qu'ils soient au détriment
de la sécurité, ou de l'économie.
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Le nouveau Grand Casino
de Genève

Le premier Kursaal, appelé plus tard Grand Casino, fut construit en 1885
le long du quai du Mont-Blanc. Il fut fermé en 1969, puis démoli.
C'est à sa place que se construit actuellement le Grand Casino.

L'ensemble, d'un volume de 180 000 m3
et comportant une surface utile de
53 000 m2, se divise en trois parties
principales (fig. 1) :

— Les sous-sols, comprenant trois éta¬

ges de parking offrant 250 places, des
locaux de service pour l'hôtel et le
théâtre, des locaux techniques et des

dépôts.

Le niveau intermédiaire avec une
salle de théâtre de 1500 places, l'entrée

de l'hôtel, le Casino-Dancing,
des restaurants, des salles de congrès
et de conférence, une piscine
couverte et des boutiques, entourées
d'une terrasse.
Les niveaux supérieurs, qui forment
un hôtel de cinq étages disposé en
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Architectes :

Ingénieur :
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projet : René Favre, André Gaillard, Jean Hentsch
conseil : Y. Rechter, A. Gaillard, P. Petrovic
pour l'exécution : I. Galeotto, H. Stämpfli, arch. EPFZ/SIA
d'intérieur : M. Delattre, arch. int. CAIM
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Consortium d'entreprises : A. Fortis, Marti SA, L. Maulini & Fils,
Rampini & C'°, Spycher SA

Geilinger Constructions métalliques SA, Yvonand

Données techniques

— Dimensions en plan du bâtiment
93,65 mx61,81 m

— Trame de l'ossature sous l'hôtel
11,55 m

— Entre-axe des colonnes supportant les
dalles 8,16 m

— Epaisseur des dalles 25 cm

Poids de la construction métallique
— « Chapiteaux » sous l'hôtel,

soit tête pyramidale en fonte,
bras et tirants 219 t

— Têtes de poinçonnement
Geilinger 571

— Colonnes rondes forgées 447 t
— Plaques de base 72 t

Total : 795 t

forme de fer à cheval et offrant
400 chambres et des appartements en
attique.

L'hôtel, une construction en béton
armé, repose sur 24 colonnes en acier
forgé (Ac 52) de 300 mm de diamètre.
La charge verticale de 10001 par colonne
est introduite dans chaque colonne, à

partir de la dalle formant la base de
l'hôtel, par quatre bras en acier rond
forgé de 260 mm de diamètre, disposés
suivant les arêtes d'une pyramide
renversée selon un angle de 25° par rapport
à l'horizontale. Les quatre bras, articulés,

reposent en bas sur une «clé de
voûte » pyramide en fonte d'acier de
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