Zeitschrift: Ingénieurs et architectes suisses

Band: 105 (1979)

Heft: 14

Artikel: Dimensionnement plastique d'un portique métallique multiple

Autor: Rutschi, Hans

DOI: https://doi.org/10.5169/seals-73840

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Dimensionnement plastique d'un portique métallique multiple

par Hans Rutschi, Genève

Cet article a pour but de montrer l'application pratique d'une méthode rapide et claire, la méthode du mécanisme, au moyen des centres instantanés de rotation, à un cas particulier, celui d'un portique multiple. Uniquement la flexion est considérée, c'est-à-dire les conditions suivantes sont remplies :

- pas d'instabilités avant d'atteindre le moment plastique M_p ;
- efforts normaux et tranchants sont négligés ;
- les déformations avant la rupture restent petites ;
- les charges augmentent proportionnellement ;
- l'acier garantit une capacité de rotation suffisante.

1. Notions de base

1.1 Rotule plastique

C'est une zone plastifiée, dans laquelle la courbure croît très fortement par rapport aux parties adjacentes. Lorsque les charges augmentent jusqu'à leurs valeurs ultimes, apparaît un mécanisme de ruine qui est composé de tronçons rigides reliés entre eux par des rotules plastiques.

1.2 Solution plastique exacte

La solution plastique exacte doit remplir les trois conditions suivantes :

- l'équilibre;
- $-M \leq M_p$;
- un mécanisme se forme.

Cette solution est statiquement et cinématiquement admissible. Pour y parvenir, nous connaissons deux méthodes essentielles, la méthode statique et la méthode du mécanisme ou méthode cinématique.

1.3 Méthode statique (borne inférieure)

Cette méthode consiste à trouver un équilibre possible sans dépasser nulle part la capacité plastique, et de vérifier ensuite si un mécanisme se forme.

1.4 Méthode du mécanisme (borne supérieure)

Cette méthode consiste à introduire un certain nombre de rotules plastiques de façon à transformer la structure ou une de ses parties en un mécanisme, en respectant l'équilibre entre forces extérieures et efforts intérieurs. On peut donc appliquer le principe des travaux virtuels au mécanisme, c'est-à-dire le travail extérieur des charges est égal au travail intérieur des moments plastiques dans les rotules plastiques. Ensuite on vérifie si la condition $M \leq M_p$ est remplie partout. On définit des mécanismes

indépendants (mécanisme de poutre, de panneau et de joint; certains auteurs ajoutent encore le mécanisme de portique) et des mécanismes combinés, qui peuvent être trouvés par combinaison systématique des mécanismes indépendants.

En pratique on n'étudie souvent que quelques mécanismes plausibles et vérifie la condition plastique $M \leq M_p$.

Ce procédé demande une certaine habileté qui s'acquiert rapidement dans la pratique. Pour faciliter l'application de la méthode du mécanisme à un cas particulier et souvent rencontré en pratique, celui du portique multiple, il est intéressant de connaître les:

2. Centres instantanés de rotation

Un petit déplacement d'un élément rigide à un degré de liberté dans son plan

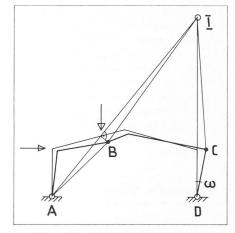


Fig. 1. - Mécanisme d'un portique.

peut toujours être assimilé à une rotation autour d'un centre instantané de rotation. En remplaçant les arcs de cercle par les tangentes aux points qui se déplacent, on trouve le centre instantané de rotation. C'est le point d'intersection des droites perpendiculaires aux tangentes, passant par les points se déplaçant.

Considérons maintenant le portique ABCD. Il est une fois hyperstatique; il faut donc deux rotules plastiques pour former un mécanisme, par exemple en B et C (fig. 1).

Le tronçon \overline{AB} tourne autour de A et le tronçon \overline{CD} autour de D. Imposons à la lame \overline{CD} une rotation ω et cherchons le déplacement de la lame \overline{BC} . C faisant partie de \overline{CD} tourne autour de D sur une trajectoire horizontale (petit déplacement), le centre instantané de \overline{BC} doit donc se trouver sur une droite passant par \overline{DC} .

En faisant de même avec B on trouve la droite passant par \overline{AB} , d'où le centre instantané de rotation I de l'élément \overline{BC} ,

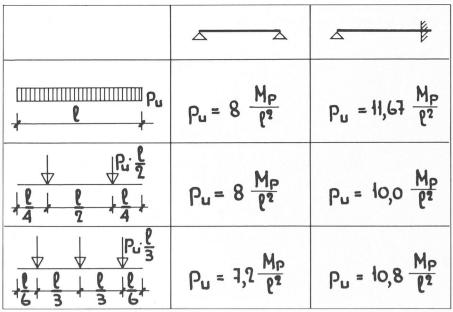


Fig. 2. — Charges statiquement équivalentes.

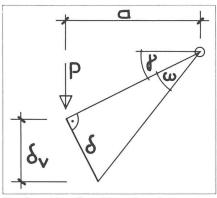


Fig. 3. — Travail extérieur d'une force.

qui se trouve à l'intersection des deux droites.

Théorème: Lorsqu'on a un mécanisme d'ensemble avec plusieurs centres instantanés de rotation, toutes les rotations sont interdépendantes.

3. Charges réparties — charges concentrées

En calcul plastique les charges réparties sont souvent remplacées par un système de charges concentrées et statiquement équivalent. Ainsi l'on sait exactement où les rotules plastiques peuvent se former, à savoir sous les charges et dans les angles, en sous-estimant quelque peu la charge ultime (fig. 2).

Le déplacement d'une force P vaut $\delta = \frac{a}{\cos\gamma} \cdot \omega$ (fig. 3).

Le déplacement vertical vaut $\delta v = \frac{a}{\cos \gamma} \cdot \omega \cdot \cos \gamma = a \cdot \omega$ d'où le travail extérieur de P qui est égal à $A_e = P \cdot a \cdot \omega$.

4. Exemples

4.1 Exemple no 1

Nous cherchons le moment plastique M_p d'un portique multiple, qui correspond aux charges ultimes P_u (vertical) et H_u (horizontal). Ce procédé est plus aisé, en pratique, que de chercher les charges ultimes pour un M_p donné. La géométrie et les charges sont les suivantes (fig. 4).

 P_u , H_u , charges ultimes;

 M_v , moment plastique;

 k_1 , k_2 , facteurs de proportionalité.

4.1.1 *Mécanisme local* (seulement la partie droite est chargée)

I est ici le centre instantané de rotation pour le tronçon \overline{FG} et ω est l'angle initial de rotation autour de I (fig. 5).

Travail extérieur:

$$A_e = P_u \cdot \omega \left(\frac{l}{6} + \frac{l}{2} + \frac{l}{6} \right) + H_u \cdot h \cdot \omega \cdot 2k_1.$$

Travail intérieur:

$$-A_i = M_p \left(\omega + 2\omega + k_2 \cdot \omega \left(1 + 2k_1\right)\right).$$

 $A_a = -A_i$ d'où

$$M_p = rac{P_u \cdot rac{5}{6} \, l + H_u \cdot h \cdot 2k_1}{3 + k_2 \, (1 + 2k_1)} \; \cdot$$

4.1.2 Charges symétriques — mécanisme asymétrique ou symétrique

Ce cadre multiple est hyperstatique d'ordre 3; il nous faut donc quatre rotules pour former un mécanisme (fig. 6).

I, II, centres instantanés de rotation; $\omega = \text{angle initial de rotation en } I$.

Les rotations dans les rotules plastiques sont les suivantes :

en
$$C: \frac{2\omega}{1+2k_1}$$
; en $D: \omega + \frac{\omega}{1+2k_1}$;
en $F: 2\omega$; en $G: \omega + \omega (1+2k_1)$.

Travail extérieur :

$$A_e = P_u \cdot \omega \left(\frac{l}{6} + \frac{l}{2} + \frac{l}{6} \right) +$$

$$+ P_u \cdot \frac{\omega}{1 + 2k_1} \left(\frac{l}{6} + \frac{l}{2} + \frac{l}{6} \right).$$

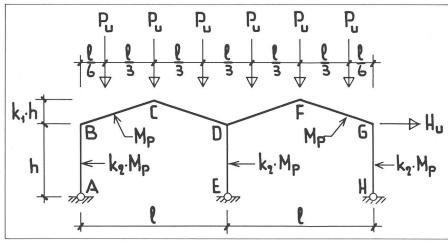


Fig. 4. — Exemple nº 1.

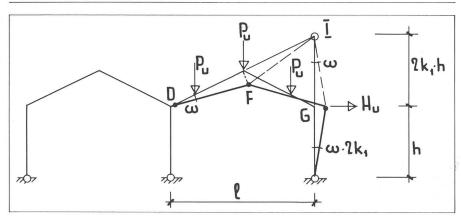


Fig. 5. — Mécanisme local.

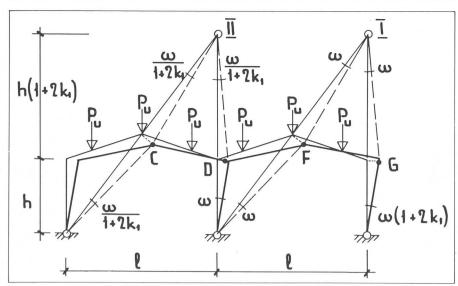


Fig. 6. — Charges symétriques.

Travail intérieur:

$$-A_i = M_p \left(\frac{2\omega}{1 + 2k_1} + \omega + \frac{\omega}{1 + 2k_1} + 2\omega + k_2 \cdot \omega (1 + 1 + 2k_1) \right)$$
$$+ 2\omega + k_2 \cdot \omega (1 + 1 + 2k_1)$$
$$A_e = -A_i \text{ d'où } M_p = \frac{P_u \cdot \frac{5}{3} I}{6 + 2k_2 (1 + 2k_1)}.$$

En contrôlant maintenant les moments dans tous les nœuds, l'on trouve également M_p au point B, ce qui n'est pas étonnant pour des charges symétriques. En réalité il se formerait plutôt un mécanisme asymétrique, car la symétrie parfaite est rare.

4.1.3 Mécanisme d'ensemble

Comme dans le cas précédent, il nous faut quatre rotules plastiques pour for-

$$A_e = P_u \cdot \omega \cdot \frac{5l}{6} + P_u \cdot \frac{\omega}{1 + 2k_1} \cdot \frac{5l}{6} + H_u \cdot h \cdot \omega (1 + 2k_1).$$

Travail intérieur:

$$\begin{aligned} -A_i &= M_p \left(\frac{2\omega}{1+2k_1} + \omega + \frac{\omega}{1+2k_1} + \frac{\omega}{1+2k_2} + 2\omega + 2k_2 \cdot \omega \left(1 + k_1 \right) \right) \end{aligned}$$

$$A_e = -A_i$$
 d'où

$$M_p = \frac{P_u \cdot \frac{5}{3} l(1+k_1) + H_u \cdot h(1+2k_1)^2}{6(1+k_1) + 2k_2(1+k_1)(1+2k_1)}$$

ou bien

$$M_p = \frac{P_u \cdot \frac{5}{3} \, l + H_u \cdot h \left(\frac{(1 + 2k_1)^2}{1 + k_1} \right)}{6 + 2k_2 \, (1 + 2k_1)} \, .$$

Si la force horizontale H_u agit de l'autre côté, c'est-à-dire en B, l'on trouve pour le même mécanisme:

Travail extérieur de H_u :

$$A_e = H_u \cdot h \cdot \frac{\omega}{1 + 2k_1}$$
; les travaux des P_u et des moments restent les mêmes,

$$M_p = rac{P_u \cdot rac{5}{3} \, l + H_u \cdot h \left(rac{1}{1 + k_1}
ight)}{6 + 2 k_2 \left(1 + 2 k_1
ight)} \, \cdot$$

Cet exemple montre que le principe de superposition n'est pas valable en calcul plastique.

4.1.4 Exemple numérique et comparaison élastique

Les charges et moments plastiques sont donnés dans la figure 8. C'est le mécanisme d'ensemble de la figure 7 qui est déterminant. Le facteur de charge est de 1,5, c'est-à-dire $P_u = 1,5$ P et $H_u = 1.5 H.$

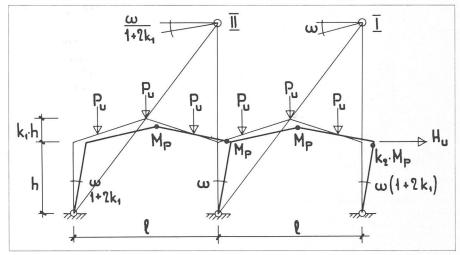


Fig. 7. — Mécanisme d'ensemble.

La comparaison élastique est représentée dans la figure 9. Les moments sont calculés pour le rapport des moments

d'inertie qui correspond aux profilés issus du calcul plastique.

$$\delta_{\rm max}$$
él. = $\frac{3480}{1500}$ = 2,32 t/cm².

L'exemple montre clairement l'intérêt d'un dimensionnement plastique. C'est l'extrait d'une note de calcul effectué pour le compte du bureau d'ingénieurs Steiner + Buschor AG, à Burgdorf. Il s'agit d'une halle réalisée à Etzelkofen (BE).

Ce calcul ne tient par compte des combinaisons de charges des normes SIA 161, édition 1979.

Fig. 8. — Charges ultimes et moments plastiques.

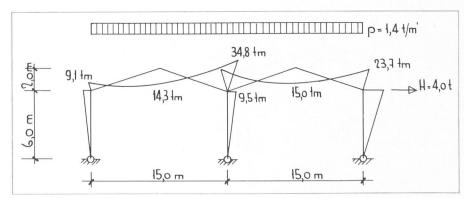


Fig. 9. — Charges et moments élastiques.

4.2 Exemple nº 2

Comme dans l'exemple précédent, il nous faut quatre rotules pour former un mécanisme d'ensemble (fig. 10).

Travail extérieur:

$$A_e = P_u \cdot \frac{5}{6} l \cdot \omega (1 + k_1) + P_u \cdot \frac{5}{6} l \cdot \omega + H_u \cdot h \cdot \omega (1 + k_1).$$

Travail intérieur:

$$-A_i = M_p \cdot \omega (2 (1 + k_1) + (1 + k_1) + 1 + 2 + k_2 (1 + 1 + k_1))$$

$$A_e = -A_i$$
 d'où

$$M_p = \frac{P_u \cdot \frac{5}{6} l + H_u \cdot h \left(\frac{1+k_1}{2+k_1}\right)}{3+k_2}.$$

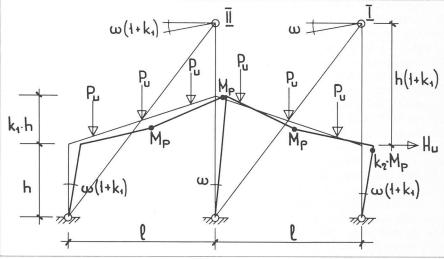


Fig. 10. — Exemple nº 2.

5. Conclusions

La méthode cinématique des centres instantanés de rotation est un moyen rapide et efficace, qui permet à l'ingénieur civil d'aborder aisément le dimensionnement plastique des portiques multiples. En pratique il est bien plus simple de s'imaginer quelques mécanismes plausibles et de vérifier ensuite la condition $M \leq M_p$, que de passer par une combinaison systématique des mécanismes indépendants. Dans les exemples traités dans cet article, nous n'aurions pas moins de 247 combinaisons. Nous avons traité ici que la flexion, et il est clair que d'autres

phénomènes devront être considérés, comme par exemple l'instabilité, les déformations, etc. Le même raisonnement peut s'appliquer au béton armé. Lorsqu'un portique ou cadre est correctement armé (frettage des nœuds), il n'y a pas lieu de s'inquiéter d'une capacité de rotation insuffisante. D'autre part il est souvent difficile de placer la « forêt d'armature » dans les angles pour reprendre les moments élastiques.

Bibliographie

Badoux J. C.: Dimensionnement plastique des structures métalliques (épuisé). Massonnet C. et Save M.: Calcul plastique des constructions. Volume 1, CBLIA 1967.

NEAL B. G.: Plastic methods of Structural Analysis. Science Paperbacks 1970. THÜRLIMANN B. et ZIEGLER H.: Plastische Berechnungsmethoden, Vorlesung 1963.

Adresse de l'auteur:

Hans Rutschi, ing. civil SIA Bureau Camen + Rutschi ing. civils SIA rue Bautte 7, 1201 Genève

Protection du bois: mieux vaut prévenir que guérir

Le besoin de protéger le bois, matière organique et naturelle, remonte aux premières constatations qu'a faites l'homme du caractère dégradable de ce matériau. Hésiode (environ 800 avant J.-C.) décrit « l'action conservatrice » de la fumée, Théophrate (entre 372 et 287 avant J.-C.) recommandait déjà le séchage du bois comme mesure préventive de protection et Vitrinius Pollio (aux environs de la naissance du Christ) fait rapport d'une coutume qui consistait à carboniser le bois. Dans le domaine de la préservation du bois, l'ère de la technique moderne s'appuyant sur des bases scientifiques a commencé vers 1800. On a pu enregistrer depuis cette époque une évolution constante. Le besoin de protéger le bois contre les altérations biologiques dues aux animaux et aux végétaux s'est accru avec l'augmentation de l'utilisation de ce matériau.

Le bois peut durer des siècles

Des plus anciennes constructions en bois du passé aux charpentes les plus modernes de notre époque, le bois a toujours su s'adapter à son temps grâce au développement de la technique. S'il est soigneusement choisi, correctement employé et travaillé selon les règles de l'art, le bois est un matériau extrêmement durable. Les pratiques les mieux aguerries de la construction en bois, telles que le choix judicieux des matériaux, des

essences et des qualités, ainsi qu'une tradition architecturale éprouvée, ont permis de réaliser des ouvrages dont la durée de vie est absolument étonnante. Toujours valables de nos jours, ces règles d'architecture sont à la base de la protection du bois et ne sont en aucun cas remplacées par les moyens chimiques. Tous les matériaux de construction sont sollicités par les influences climatiques et destinés à subir de plus ou moins importantes modifications. L'architecture et l'exécution, lorsqu'elles sont adaptées au matériau, peuvent cependant éviter les conséquences néfastes de ces influences ou tout au moins en diminuer les effets dans une proportion importante.

Le froid et la corrosion n'ont aucune incidence sur le bois et ses dérivés, la dilatation thermique joue un rôle pratiquement négligeable; par contre, l'humidité et le rayonnement solaire ont une action très importante sur leurs propriétés et leur aspect. Le bois est un matériau organique qui conserve son affinité naturelle envers l'eau même après avoir subi de nombreuses transformations. C'est la raison pour laquelle il serait faux de considérer toute absorption d'humidité comme présentant un danger pour le bois. Ce n'est que lorsque sa teneur en eau atteint ou dépasse un certain seuil,