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ANALYSE DES SYSTEMES Ingénieurs et architectes suisses 26 avril 1979

Méthode d'identification de la
fonction de transfert
d'un système linéaire basée sur la
mesure de sa covariance

par Michel Cuénod, Cointrin (GE)

Cet article décrit une nouvelle méthode d'identification d'un système linéaire,
utilisant des relations obtenues pour le calcul de sa variance et de sa
covariance dans l'hypothèse que le signal d'entrée est constitué de la façon
suivante :

— variation déterminée dans le temps, constituée par une somme de fonc¬
tions exponentielles,

— variation aléatoire dont la fonction d'autocorrélation est constituée par
une suite de fonctions exponentielles.

L'application de cette méthode est illustrée par un certain nombre d'exemples.

1. Introduction

Nous considérons le cas d'un système
linéaire avec une seule grandeur d'entrée
et de sortie et dont la fonction de transfert

G (p) est donnée par le quotient de
deux polynômes en p

G(p)
N(p) a0 + axp + + amp"

D (p) b0 + blP + brPU

avec l'hypothèse que m < n et que le

système est stable en lui-même.
Pour alléger l'écriture, nous admettons

que b„ 1 (ce qui peut toujours s'obtenir

en divisant le numérateur et le
dénominateur par bn).
Cette fonction de transfert peut être mise
sous la forme d'une somme de fractions
simples :

les fluctuations de sa grandeur d'entrée
ont les caractéristiques d'un bruit blanc
dont la fonction d'autocorrélation <t>xx(&)

est une fonction de Dirac :

«P« (6) 5 (6)

Une fonction aléatoire ayant cette
propriété est toutefois une fiction mathématique.

Les fonctions aléatoires que l'on
rencontre en pratique sont caractérisées par
une fonction d'autocorrélation caractérisée

par une fonction exponentielle
(bruit « exponentiel ») ou par une somme
de ces fonctions :

*iei
<?xx Gxxe avec k > 0

(pour simplifier l'écriture nous admettons

dans la suite de ce texte que la
variance er,2,. 1)

avec :

«*

G(p)

N(p()

il

p-Pi ou <9xx (6) V °s e

8=1

d I

-rD{p)\
dp 'p pt

N(Pf)
Il (Pi-Pr)
r-1 à n
(r»*i)

pt racines du dénominateur D (p) 0
avec Re (pt) < 0 (système stable)

Ces racines peuvent être simples ou
complexes. Dans la suite de cet exposé, nous
ne tiendrons pas compte du cas des
racines multiples.
De nombreux travaux ont été consacrés
à l'étude des propriétés de filtrage d'un
système linéaire soumis à des fluctuations
aléatoires [1 à 15]1. Ces travaux prennent

en général comme hypothèse que

1 Les chiffres entre crochets renvoient à la
bibliographie en fin d'article.

Le but de cet article est d'établir une
comparaison entre les relations de filtrage
obtenues pour un bruit « blanc » et un
bruit « exponentiel », puis de mettre en
évidence le parti que l'on peut en tirer
pour l'identification de la fonction de
transfert d'un système.

2. Rappel de quelques relations de
base

Le tableau l2 récapitule un certain nombre
de relations de base de la statistique

2 Voir en p. 89.

dynamique et indique les définitions et
notations qui sont utilisées ci-dessous.
Le tableau 23 compare les fonctions
d'autocorrélation tyyy (0) de la grandeur de
sortie, de corrélation mutuelle (t>yx (6)
entrée-sortie, de variance <3yV et de

covariance avx pour différents types de
fonctions aléatoires caractérisant le
comportement de la grandeur d'entrée, à

savoir :

— bruit blanc, avec <s>xx (6) ô (8)

— bruit exponentiel, avec

fxx (6) e
-k

bruit dont la fonction d'autocorrélation

est constituée par une somme de
fonctions exponentielles :

<9xx (9) 2>
Ce tableau fait apparaître certaines
similitudes. On voit en particulier que
les expressions

G'k) csL

et N as G (ks)

dans le cas de « bruit exponentiel »
constituent le pendant de l'expression

£(6) a„x(9)

dans le cas d'un bruit « blanc ».

Ces relations sont valables aussi bien
lorsque la grandeur d'entrée x (r) est une
fonction déterminée dans le temps, ou
bien une fonction aléatoire.
Le tableau 33 récapitule l'usage que l'on
peut en faire comme méthode d'identification

en considérant les deux cas
suivants :

— entrée déterministe,

— entrée aléatoire.

Le chapitre suivant va considérer
successivement ces deux cas et illustre à

l'aide d'exemples cette nouvelle approche
utilisable pour l'identification de
systèmes.

3. Identification à partir de signaux
d'entrée déterministes

3.1 Signal d'entrée constitué par une
fonction exponentielle

Pour déterminer expérimentalement la
fonction de transfert G .p) d'un système
linéaire S une des méthodes est de faire
varier sa grandeur d'entrée selon un
échelon rectangulaire unitaire de façon à
obtenir sa réponse indicielle, d'en
déterminer l'expression analytique, puis
d'appliquer la transformation de Laplace à
cette expression.

Voir en p. 90.

85



Identification de la fonction de transfert Ingénieurs et architectes suisses 26 avril 1979

y.
5

y(t) "
d

dt
g(t)

u(t)
S yAfs X

— C \R
1 »¦ g(t)e-pt

xy^

C fR

" e-pl

1

/gft>*1! jKYdt

"

'

G(k)

G(p)

.F/g. 7 — Principe de la détermination de la fonction de transfert G (p)
du système S par l'application analogique de la transformation de Laplace.

u (t) échelon rectangulaire unitaire.

Fig. 2. — Principe de la détermination de la fonction de transfert G (k)
par l'auscultation du système S au moyen d'une fonction exponentielle et

par le calcul de sa covariance Txy fxydt.

Certaines méthodes développées en
particulier par Zypkin, Strejc [16], Broï-
da [2], Lannoy [12, 13] peuvent être
utilisées pour certains types de fonction
de transfert.
Une façon de d'éviter cette détermination

de l'expression analytique en fonction

du temps est de dériver la réponse
indicielle pour obtenir la réponse
impulsionnelle, g (t), d'en faire le produit avec
la fonction exponentielle ë"pt puis
d'intégrer ce produit ainsi que le montre en
principe la figure 1. Toutefois, la nécessité

de dériver la réponse indicielle introduit

une source d'erreurs et une autre
façon de procéder est « d'ausculter » le
système à identifier par une courbe
exponentielle x(t) 2k e'"' obtenue par la
sortie d'un filtre passe-haut, et de
calculer la covariance

Vxy / x.ydt
o

en effectuant l'intégrale du produit de
cette grandeur d'entrée par la grandeur
de sortie y ainsi que le montre en principe
la figure 2, et cela pour autant que

x y 0 pour / < 0 et que

y ^ oo lorsque .v —v 0 pour t °°

En faisant varier la constante de temps k
du filtre passe-haut, on obtient ainsi
point par point, la courbe G (k) qui
caractérise la fonction de transfert, ce
qui mathématiquement s'exprime par la
relation suivante :

x (t) \J2ke -kt

et g (t) réponse impulsionnelle du
système, il en résulte :

y(t)= sJ2k / e
-k (r-«)

g («0 du

f x(t)y(t)dt 2k LG(k)= / x(t)y(t)
-kt

C -k (/-H)
e g (u) du) dt

Cette intégrale peut être effectuée
graphiquement ou numériquement ; une fois
la fonction de transfert déterminée point
par point, on peut utiliser une des
nombreuses méthodes permettant de calculer
l'expression analytique de la courbe
passant au mieux par les points ainsi obtenus.

Exemple :
Nous considérons le cas d'une fonction
de transfert du premier ordre

G(p)
1

pT+ 1

Il est possible dans ce cas de calculer
l'expression analytique de axx, <pxx (6),
x (p), y (p), y (t) et c„x :

i— t~2 -1 1

x(t) \2ke~kt i / — e txavec Tx -
V Tx k

oo

2 rr 2 r _a*
axx / x2 dt — / e t, dt= 1

|9|w«-i~5.-8!-«-

*(/>)

y(p)

2

2 Tx

TxpTx+ 1

\f2Tx

(pTx+ l)(,pT+ 1)

En appliquant la transformation inverse
de Laplace, on obtient :

y(t)
V/2T,

T-Tx
e t —e t*

x (t) y (t) dt
T-Tr

/(e \t + tJ —e tJ dt

TTX
_ 7i\ Tx

¦ yx T-TX\T+ Tx 2} T+Tx
C'est bien le résultat que l'on obtient si

on remplace/; par — dans l'expression de
' x

la fonction de transfert, ce qui confirme
dans ce cas particulier la validité de la
relation ainsi obtenue.

3.2 Signal d'entrée constitué par une

somme de fonctions exponentielles

Lorsque la variation de la grandeur d'entrée

a la forme d'une impulsion partant
d'un certain état stationnaire et retournant

au même état, une telle variation
peut être mise sous la forme d'une
somme de fonctions exponentielles (à
exposants réels ou imaginaires) :

x (0 2_jc*e
s=l

La fonction d'autocorrélation d'une telle
fonction peut être également mise sous
la forme d'une somme de fonctions
exponentielles :

<Pi* (6)
*.|e|

S • -s c«c,
ki

11 en résulte

E LG(ks)
!-I

CT
'

S'il est possible de faire une hypothèse
sur la structure de la fonction de transfert,

et s'il n'y a dans cette structure qu'un
seul paramètre inconnu, cette relation
peut être utilisée pour calculer la valeur
numérique de ce paramètre.
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Exemple :

Nous admettons à nouveau que les fonctions

de transfert à identifier est du
premier ordre :

G (p) ¦— avec T paramètre
pT + 1

inconnu à identifier et que :

x (/) e r7, — e TXj(avec TXy > TH)

Dans ce cas :

<Pxz(6)
T —T1 Ij ' x2

2(TXl-TX2)

l«l
TX]e T*rTx2e tx

et

(^i-^2)2
2(TXl+ TX2)

•*i|9| -*.|9|
Ö! e a2e

I Xi 1x2

avec :

T — Ty*i lx2

et *i
r-i

Ar2

'*2

En utilisant la relation indiquée ci-dessus

nous obtenons :

^ =Û1G (Arj) + a2 G (*g)

r, 'x2
T T

TXl-TH — T+ j Tx-Tx — + 1

Xl T*2

TXlz(T+TX2)-TX2>(T+TX2)

(TXl-TX2)'T+TXl)(T+TXî)
Les valeurs numériques des variances a*x
et covariance ct2 ainsi que les constantes
de temps Txl et Tx2 étant connues on
obtient une équation qu'il est facile de

résoudre par rapport au paramètre à

identifier T.
S'il y a plusieurs paramètres inconnus,
il suffit d'enregistrer plusieurs variations
de formes différentes des grandeurs
d'entrée et de sortie du système et on
obtient ainsi un système d'équations
permettant de calculer la valeur numérique

de ces paramètres.

4. Identification à partir de signaux
d'entrée aléatoires

4.1 Signal d'entrée constitué par un
bruit exponentiel

Un bruit exponentiel peut être obtenu
comme la grandeur de sortie d'un filtre
passe-bas auquel on applique un bruit
blanc comme grandeur d'entrée.
La figure 3 représente le principe d'un
identificateur réalisé selon le principe :

en faisant varier la constante de temps de

ce filtre et en enregistrant les grandeurs
d'entrée et de sortie de ce système, et en

x

^r~ pTr
—i—\ 1

pTa«a

y

Fig. 4. — Schéma fonctionnel très simplifié du réglage de vitesse d'une centrale électrique en marche
isolée.

intégrant le produit de ces grandeurs, on
obtient à nouveau point par point, la
fonction de transfert recherchée. Cette
méthode a toutefois l'inconvénient de
nécessiter la disposition d'une source de

bruit blanc. En fait, de nombreux phénomènes

aléatoires tels qu'ils se présentent
dans le monde physique ont le caractère
d'un bruit exponentiel. Si on dispose de

l'enregistrement sur une bande magnétique

d'une telle fonction, on peut l'utiliser

comme fonction d'entrée du
système à identifier. Pour changer sa constante

de temps, il suffit de changer la
vitesse de déroulement de la bande
magnétique.
Cette méthode d'auscultation présente
une certaine analogie avec l'analyse
harmonique pour laquelle le système à

identifier est ausculté par une fonction
harmonique dont on change l'échelle de

temps.

Exemple 1 :

Cette méthode d'analyse peut être
utilisée pour identifier le comportement
dynamique d'un réseau électrique en
marche isolée, à savoir la relation
dynamique qu'il établit entre les fluctuations
de sa charge et celles de sa fréquence.
Il est en effet connu par des considérations

théoriques et par l'expérience [10]

que la fonction d'autocorrélation des

fluctuations de la puissance consommée
dans un réseau électrique a le caractère
d'un bruit exponentiel.
Dans de nombreux cas, la valeur numérique

de la plupart des paramètres de

réglage sont connus sauf par exemple
la constante d'accélération du réseau

qui dépend de l'ensemble des masses

tournantes entraînées par ce réseau. Il
suffit d'enregistrer simultanément un

bruit blanc ^ X
S

y

m «—xy

"

^îydt

G(k)

Ftg. 3. — Principe de la détermination de la
fonction de transfert G (k) à l'aide d'un bruit
blanc filtré au moyen d'un filtre passe bas.

échantillon des fluctuations de la charge
et de la fréquence du réseau pour obtenir
une équation qui permet de calculer le

paramètre inconnu.
ha figure 4 représente, à titre d'exemple,
le diagramme fonctionnel très simplifié
du réglage de fréquence de cette centrale
avec:

Tr constante de temps du système de

réglage à action intégrale (supposée
connue)

Ta constante d'accélération du réseau

(paramètre à identifier)

a coefficient d'autoréglage (supposé
connu)

x grandeur d'entrée : perturbation de

la charge du réseau

y grandeur de sortie : fluctuation de
la fréquence du réseau

yc valeur de la fréquence.
Nous admettons que la valeur de consigne

yc est maintenue constante et
considérons de faibles écarts de x et de y par
rapport à leur valeur initiale prise
comme valeur de référence. La fonction
de transfert G (p) de ce système se laisse

facilement déduire. On obtient :

pTa + a

G(p)-
pTr

1 p*TaTr+paT,+ l

pTr pTa + a

Ainsi que des études théoriques et
expérimentales l'ont démontré [10], les
fluctuations de la charge du réseau sont un
processus aléatoire dont la fonction
d'autocorrélation peut être caractérisée

par une courbe exponentielle avec la
1

constante de temps 7* — r •

Nous admettons que, en laissant le

réseau fonctionner normalement, on a

enregistré un échantillon des fluctuations
de sa charge x et de sa fréquence y.
Il est facile d'en déduire la variance a*,
la covariance <jjL

et le rapport A a^/a^.
ainsi que la valeur numérique de la constante

de temps caractérisant la variabilité

l/k des fluctuations de la charge du
réseau.
Pour déterminer la valeur du paramètre
à identifier Ta, on introduit la valeur
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numérique de k dans l'expression de la
fonction de transfert et on obtient ainsi
une équation que l'on peut résoudre par
rapport à Ta :

kTr
k2TaTr + kaTr

A

d'où Ta
Ak2Tr

(k Tr-A (ka Tr +

Cette méthode a l'inconvénient de nécessiter

la connaissance de la structure de la
fonction de transfert. Elle n'est applicable

que si un seul paramètre est
inconnu. Elle a l'avantage de pouvoir
être utilisée sans que l'on ait besoin
d'intervenir dans le système à identifier
mais en enregistrant un échantillon des
fluctuations des grandeurs d'entrée et de
sortie de ce système, en régime de
fonctionnement normal.

Exemple 2 :

S'il y a deux paramètres à identifier, les
formules générales données par le
tableau 2 pour le calcul de la variance a2
et de la covariance c2 permettent de

X

1 1 a ry
UpÎ3 — UpTi UpTi

Fig. 5. — Schéma fonctionnel d'un système de réglage de 3' ordre.

les déterminer en fonction des deux
paramètres à identifier. On peut ainsi établir
des abaques donnant directement les
valeurs numériques de ces paramètres en
fonction des valeurs des variances et
covariances [8].

La figure 5 donne à titre d'exemple le
schéma fonctionnel d'un système de
réglage du troisième ordre. Il est facile
d'en déduire la fonction de transfert
suivante :

G(p) a(l + pT3)

Ps T{T2TZ + p2 (7*!Ta +
TtT3 + T2T3)+p(T1+ T2

T3) + a + 1

Nous admettons que ce système est soumis

à l'action d'un bruit exponentiel

9xx (6) -*|6|

Nous admettons que k 1, ce qui signifie

que la valeur - est choisie comme
k

Fig. 6. — Abaque permettant l'identification paramétrique d'un système de réglage de 3e ordre à partir de la variance et de la covariance de sagrandeur de sortie.

[i,]) (2,9) (J,9) (5,1) tes u.*) (i.t) 1.5

\ \ 0,B]\ S\\ ^ \\ \\ \ N\ 0.«]\\\ \\ \\ N\ N M]\ \ \\ \ X\ \ X mfc \ X\ X
[0.T5]

es \XX X
[0,79]

Q
[0.M]

"X

X
[o,irl

[».«]

e.«j

B.21J [l.lfl p.'fl [!.«•] D,*lP.nl

S'h/G1«
G2yy/5!«

(Â) • état instable

0.03]
2>°
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unité de temps pour la mesure des
constantes de temps à identifier. Nous admettons

également que les valeurs a et T3

sont connues :

a 10

r3= 0,5

et que 7i et T2 sont les deux paramètres
à identifier.
En utilisant les relations données par le
tableau 2, il est facile de calculer la
variance et de la covariance pour
différentes valeurs de 7i et de T2. On obtient
ainsi l'abaque donnée par la figure 6.
Les lignes en pointillé correspondent au

nous avons vu que :

üö* G(ks)

La même procédure d'identification
paramétrique que celle indiquée dans le

paragraphe précédent peut être utilisée,
avec la seule différence qu'il faut remplacer

dans l'expression admise pour la
fonction de transfert l'opérateur p par
les 5 différentes valeurs de k, et de faire
la somme de ces fonctions de transfert.

rapport a2yja2x et celles en traits pleins Conclusion'xyi xx
au rapport a2v/a2x.
La surface A correspond à un domaine
où le système est instable. Pour toute
paire de valeurs mesurées a 2 et <j2 il
est possible de déterminer immédiatement

la valeur numérique des paramètres
inconnus 7\ et 7*2.

De tels abaques peuvent être déterminés
dans de nombreux cas et constituent une
méthode très pratique d'identification.

4.2 Signal d'entrée constitué par un
bruit dont la fonction d'autocorrélation

est donnée par une somme de

fonctions exponentielles

Si

Tableau 1.

o

-*.|6|

Les méthodes d'identification décrites
ci-dessus viennent s'inscrire dans
l'ensemble des approches déjà connues pour
identifier la caractéristique de transfert
d'un système à partir de l'observation de

ses grandeurs d'entrée et de sortie.

Elles se distinguent des autres méthodes

par les deux caractéristiques suivantes :

— elles utilisent des fonctions et des

« bruits » exponentiels qui sont plus
faciles à réaliser physiquement que
les impulsions de Dirac ou les bruits
blancs que font intervenir d'autres
méthodes d'identification ;

— elles permettent de déterminer direc¬
tement la fonction de transfert sans

avoir à passer par l'intermédiaire de
la connaissance de l'expression
analytique de la réponse indicielle ou
impulsionnelle ;

— elles ont une portée plus générale que
d'autres méthodes d'identification de
le fonction de tranfert qui ont déjà
été décrites, car dans le cas d'une
variation de la grandeur d'entrée
selon une fonction ou un bruit
exponentiel, elles ne nécessitent aucune
hypothèse concernant la structure de
la fonction de transfert à identifier.

Plusieurs aspects de ces nouvelles
méthodes d'identification mériteraient de
faire l'objet d'étude, à savoir leur
précision et leur sensibilité à l'influence de
non-Jinéarité ou de bruits parasites se

superposant à l'action de la grandeur
d'entrée principale, ainsi que leur extension

à des systèmes multivariables. Si cet
article pouvait susciter de telles études,
il aurait atteint son but.

Adresse de l'auteur :

Michel Cuénod, ing. SIA
Dr es se. techn.
PEG SA
71, av. Louis-Casaï
1216 Cointrin

Quelques relations de base de la statistique dynamique

Analyse impulsionnelle

r°(e)= t-* —Llx(t)x(t.ô)dit
xx t-~o° ^Ty

-T

f(ô) l;~ fx (t) i(é*ô) dt
x u T— °~J

(f(e) (p fu*e)f Cu)c/u * I cp (u-ejf Co)c/u
uu J xx A J XX Vy.y

avec f (9) .J<fCt)f(t -r e)Jt
o o

o

avec é'(t) réponse impulsionnelle

/ ZT
-T

c-/?/^/^;^ x^-^A^*y

Analyse spectrale

xx y *x 2 7"

o
T T

avec Xt(j'«,) fx(t)casu,tdc 4j fx (t)sin iotdt
° O

tf> (w) s f(p cos(ü» 9)dô + j ff s.'n (<j> 9) dô

(XT (~j»>) ¦ ÏT fj"))
Xy

ZT

0^) [GQ")]l0fx")

avec G (j u,) réponse harmonique

fiCu,) 0Coj) GQu,)

K* 4-ffGrJ'"iï%rtMe/uM TT
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Tableau 2. — Récapitulation des fonctions de corrélation des variances et covariances pour différentes catégories de bruits d'entrée

Bruit b lanc Bruit exponentiel Bruit dont la fonction d'autocorrélation
est constituée par une somme de fonctions
exponentielles
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Tableau 3. Récapitulation de quelques méthodes d'identification pour différents types d'entrée

Entrée déterminée

Impulsion de Dirac
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Fonction exponentielle
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x CO \ßT e

6 (A). fx fa) y fi) eft

Impulsion limitée dans le temps et
décomposée en une somme de fonctions

exponentielles
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Entrée aléatoire

Bruit blanc
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Bruit exponentiel
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Xx

Bruit dont la fonction d'autocorrélation
est constitué par une somme de fonctions
exponentielles
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Entrée harmonique

Fonction sinusoïdale

xfi) =sin CD à

GC/w) - f(jf)
Spectre de sortie d'un filtre passe-bas
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Grandeur d'entrée x et de sortie/ constituées
par des impulsions de durées 7"x et 7~y
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