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ANALYSE DES SYSTEMES

Ingénieurs et architectes suisses 26 avril 1979

Méthode d’identification de la
fonction de transfert

d’un systeme linéaire basée sur la
mesure de sa covariance

par Michel Cuénod, Cointrin (GE)

Cet article décrit une nouvelle méthode d’identification d’un systéme linéaire,
utilisant des relations obtenues pour le calcul de sa variance et de sa co-
variance dans ’hypothése que le signal d’entrée est constitué de la facon

suivante :

— variation déterminée dans le temps, constituée par une somme de fonc-

tions exponentielles,

— variation aléatoire dont la fonction d’autocorrélation est constituée par
une suite de fonctions exponentielles.

L’application de cette méthode est illustrée par un certain nombre d’exemples.

1. Introduction

Nous considérons le cas d’un systéme
linéaire avec une seule grandeur d’entrée
et de sortie et dont la fonction de trans-
fert G (p) est donnée par le quotient de
deux polynomes en p

*N(p);ao'i‘fhp‘*' coo T app™

G (p) = —
)= 5 ) " bothpt ... b0

avec I’hypothése que m << n et que le
systéeme est stable en lui-méme.

Pour alléger I’écriture, nous admettons
que b, = 1 (ce qui peut toujours s’obte-
nir en divisant le numérateur et le déno-
minateur par b,).

Cette fonction de transfert peut étre mise
sous la forme d’une somme de fractions

simples :
h o
Gp=) -~
=l P—Di
avec:
T N (py) ~ N(p)
) = —
d IT (pi—pr)
=T D(p) r=lan
dp ‘p =P Tgas

p; = racines du dénominateur D (p) = 0
avec Re (p;) < 0 (systéme stable)

Ces racines peuvent étre simples ou com-
plexes. Dans la suite de cet exposé, nous
ne tiendrons pas compte du cas des
racines multiples.

De nombreux travaux ont été consacrés
a I’étude des propriétés de filtrage d’un
systéme linéaire soumis a des fluctuations
aléatoires [1 a 15]'. Ces travaux pren-
nent en général comme hypothése que

L Les chiffres entre crochets renvoient a la
bibliographie en fin d’article.

les fluctuations de sa grandeur d’entrée
ont les caractéristiques d’un bruit blanc
dont la fonction d’autocorrélation ¢,,(6)
est une fonction de Dirac:

Pz (9) =9 (9)
Une fonction aléatoire ayant cette pro-
priété est toutefois une fiction mathéma-
tique.
Les fonctions aléatoires que I'on ren-
contre en pratique sont caractérisées par
une fonction d’autocorrélation caracté-
risée par une fonction exponentielle
(bruit « exponentiel ») ou par une somme
de ces fonctions :

Qzz = Cz.€

avec k >0

(pour simplifier I’écriture nous admet-
tons dans la suite de ce texte que la
variance 6.5, = 1)

S
ou 0z (8) = Z as e"k5|e|

§=1

S
avec Z ag; =1

s=1

Le but de cet article est d’établir une
comparaison entre les relations de filtrage
obtenues pour un bruit « blanc» et un
bruit « exponentiel », puis de mettre en
évidence le parti que I'on peut en tirer
pour [I’identification de la fonction de
transfert d’un systéme.

2. Rappel de quelques relations de
base

Le tableau 12 récapitule un certain nombre
de relations de base de la statistique

2 Voir en p. 89.

dynamique et indique les définitions et
notations qui sont utilisées ci-dessous.
Le tableau 23 compare les fonctions d’au-
tocorrélation ¢,, (6) de la grandeur de
sortie, de corrélation mutuelle o,, (6)
entrée-sortie, de variance c;y et de
covariance O‘UZI pour différents types de
fonctions aléatoires caractérisant le com-
portement de la grandeur d’entrée, a
savoir :

— bruit blanc, avec ¢, (8) = 8 (0)
— bruit exponentiel, avec

—k |0

Prz (9) =e€ | |

— bruit dont la fonction d’autocorréla-

tion est constituée par une somme de
fonctions exponentielles :

S
—ks|0
Pzz (0) = Z ase | |

s=1

Ce tableau fait apparaitre certaines
similitudes. On voit en particulier que
les expressions

G (k) = o,

et Y a6 = o,

s=1

@

dans le cas de « bruit exponentiel » cons-
tituent le pendant de I’expression

&g (6) = Oyx (6)
dans le cas d’un bruit « blanc ».

Ces relations sont valables aussi bien
lorsque la grandeur d’entrée x (z) est une
fonction déterminée dans le temps, ou
bien une fonction aléatoire.

Le tableau 3® récapitule 'usage que I'on
peut en faire comme méthode d’identi-
fication en considérant les deux cas sui-
vants :

— entrée déterministe,
— entrée aléatoire.

Le chapitre suivant va considérer suc-
cessivement ces deux cas et illustre a
I'aide d’exemples cette nouvelle approche
utilisable pour [I'identification de sys-
temes.

3. Identification a partir de signaux
d’entrée déterministes

3.1 Signal d’entrée constitué par une
fonction exponentielle

Pour déterminer expérimentalement la
fonction de transfert G .p) d’un systéme
linéaire S une des méthodes est de faire
varier sa grandeur d’entrée selon un
échelon rectangulaire unitaire de fagon a
obtenir sa réponse indicielle, d’en déter-
miner I'expression analytique, puis d’ap-
pliquer la transformation de Laplace a
cette expression.

3 Voir en p. 90.
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dt
E—— X y
= o %R S
u(t) | g(t) e-pt
Xy
P!
c R
t
JEO /;Ydt
G(k)
G(p)
Fig. 1 — Principe de la détermination de la fonction de transfert G (p) Fig. 2. — Principe de la détermination de la fonction de transfert G (k)

du systéme S par l'application analogique de la transformation de Laplace.

u (t) = échelon rectangulaire unitaire.

Certaines méthodes développées en par-
ticulier par Zypkin, Strejc [16], Broi-
da [2], Lannoy [12, 13] peuvent étre
utilisées pour certains types de fonction
de transfert.

Une fagon de d’éviter cette détermina-
tion de I’expression analytique en fonc-
tion du temps est de dériver la réponse
indicielle pour obtenir la réponse impul-
sionnelle, g (), d’en faire le produit avec
la fonction exponentielle e ?¢ puis d’'in-
tégrer ce produit ainsi que le montre en
principe la figure 1. Toutefois, la néces-
sité¢ de dériver la réponse indicielle intro-
duit une source d’erreurs et une autre
fagon de procéder est « d’ausculter » le
systéme a identifier par une courbe expo-
nentielle x (1) =] 2k e7** obtenue par la
sortie d’un filtre passe-haut, et de cal-
culer la covariance

o0

gl = / X.ydt

0

en effectuant l'intégrale du produit de
cette grandeur d’entrée par la grandeur
de sortie y ainsi que le montre en principe
la figure 2, et cela pour autant que

x =y = 0pourt < 0et que

y # oo lorsque x — 0 pour t — co

En faisant varier la constante de temps 4
du filtre passe-haut, on obtient ainsi
point par point, la courbe G (k) qui
caractérise la fonction de transfert, ce

qui mathématiquement s’exprime par la
relation suivante :

si x (1) = \/Z_ke —5

et g (1) = réponse impulsionnelle du sys-
téme, il en résulte :
ll

y () = \/2k /

0

—kle= l)g (1) du

86

par ['auscultation du systéme S au moyen d’une fonction exponentielle et

[o.¢]
" 2 N
par le calcul de sa covariance Txy = ()nydl.

G (k) = fx () y (¢)dt = 2k /’e =kt

0 0

¢
< /e K (t%u)g(u) du) dt

Cette intégrale peut étre effectuée gra-
phiquement ou numériquement ; une fois
la fonction de transfert déterminée point
par point, on peut utiliser une des nom-
breuses méthodes permettant de calculer
I’expression analytique de la courbe pas-
sant au mieux par les points ainsi obte-
nus.

Exemple :

Nous considérons le cas d’une fonction
de transfert du premier ordre

G(p) =

pT + 1
I est possible dans ce cas de calculer
I’expression analytique de G2, 0., (),
x(p), ¥ (p), y () et oy,

2 ¢t 1
x(t)= \/ﬂe“k% —e T,avecT,=-
T k
2 » 2 2 » Zt
Ope = /.X dt~;/e T dt = 1
'y Lo
0
2T, _lol IR
(pz:c(e)*i ?ze == i€ 191
(p) 2 _T
x =\/= —
P Ty pTs + 1
2T,
y(p) = b

(pT, + 1) (pT + 1)

En appliquant la transformation inverse
de Laplace, on obtient :

V2T,

/ [t ot
i ol (e T —e T
T—T:\

y (1)

oo

= [x(t)y(r)dt=

oe

[le=tGom) o F)a

2 2 I T’E\)
G = —— —_—
¥ T T \TL T, 2

C’est bien le résultat que 'on obtient si

T+T

1 .

on remplace p par o dans I'expression de
x

la fonction de transfert, ce qui confirme

dans ce cas particulier la validité de la
relation ainsi obtenue.

3.2 Signal d’entrée constitué par une
somme de fonctions exponentielles

Lorsque la variation de la grandeur d’en-
trée a la forme d’une impulsion partant
d’un certain état stationnaire et retour-
nant au méme état, une telle variation
peut étre mise sous la forme d’une
somme de fonctions exponentielles (a
exposants réels ou imaginaires) :

& — ik, t

%)= Z cse

s=1
La fonction d’autocorrélation d’une telle
fonction peut étre également mise sous
la forme d’une somme de fonctions expo-

nentielles :
S

8 —ks |0] S Ci Cy
(p.r.v( )* Z <€ s L /‘%i T /“S‘)

s=1

Il en résulte :
§

S
Ci Cs
G (ky) - — >
Z< s L ki + ks, Oy

S’il est possible de faire une hypothése
sur la structure de la fonction de trans-
fert, et s’il n’y a dans cette structure qu’un
seul paramétre inconnu, cette relation
peut étre utilisée pour calculer la valeur
numérique de ce parametre.
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Exemple :

Nous admettons & nouveau que les fonc-
tions de transfert a identifier est du pre-
mier ordre :

1
G(p)= ———avec T = parametre

pT+ 1
inconnu a identifier et que :

t t
®y=e¢" Tz —€ 7, (avec Ty > T,,)
Dans ce cas:

T,

T P P
) e e Ty~ e S
P2(6) ATy, Tey) £ et Ta,
et
, (T Tw)’
Oz = 2 (T-'”l 1 sz)
— Ky ]8] — k2 10]
P22 _ aye tage avec :
Ozz
Ty, Ty,
ay = , g = —
LT Ty, Toy—Tay
t k : k :
€ 1= o s K=
T T,

En utilisant la relation indiquée ci-dessus
nous obtenons :

2

cry
—5 = a1 G (ky) + a2 G (ko)
GCzz

T, 1 Tz, 1

g
Ty~ Tay — +1

T
= T+1
+ .

T
z T;rl

T,

)=

_ TIlz(TJr Tap) — Tzz2 (T + Txy)
(Tey=Tp) (T + Ty) (T + Ts,)

Les valeurs numériques des variances 0121
et covariance cfy ainsi que les constantes
de temps T, et T,, étant connues on
obtient une équation qu’il est facile de
résoudre par rapport au paramétre a
identifier 7.

S’il y a plusieurs parametres inconnus,
il suffit d’enregistrer plusieurs variations
de formes différentes des grandeurs
d’entrée et de sortie du systéme et on
obtient ainsi un systéme d’équations
permettant de calculer la valeur numé-
rique de ces parameétres.

4. Identification a partir de signaux
d’entrée aléatoires

4.1 Signal d’entrée constitué par un
bruit exponentiel

Un bruit exponentiel peut étre obtenu
comme la grandeur de sortie d’'un filtre
passe-bas auquel on applique un bruit
blanc comme grandeur d’entrée.

La figure 3 représente le principe d’un
identificateur réalisé selon le principe :
en faisant varier la constante de temps de
ce filtre et en enregistrant les grandeurs
d’entrée et de sortie de ce systéme, et en

X
Ye 1 1 Yy
- pTr pla+a
fig[.’4. — Schéma fonctionnel trés simplifié du réglage de vitesse d'une centrale électrique en marche
isolée.

intégrant le produit de ces grandeurs, on
obtient a4 nouveau point par point, la
fonction de transfert recherchée. Cette
méthode a toutefois I'inconvénient de
nécessiter la disposition d’une source de
bruit blanc. En fait, de nombreux phéno-
ménes aléatoires tels qu’ils se présentent
dans le monde physique ont le caractere
d’un bruit exponentiel. Si on dispose de
I’enregistrement sur une bande magné-
tique d’une telle fonction, on peut I'uti-
liser comme fonction d’entrée du sys-
téme a identifier. Pour changer sa cons-
tante de temps, il suffit de changer la
vitesse de déroulement de la bande
magnétique.

Cette meéthode d’auscultation présente
une certaine analogie avec I'analyse har-
monique pour laquelle le systéeme a
identifier est ausculté par une fonction
harmonique dont on change I'échelle de
temps.

Exemple 1 :

Cette méthode d’analyse peut étre uti-
lisée pour identifier le comportement
dynamique d'un réseau électrique en
marche isolée, a savoir la relation dyna-
mique qu’il établit entre les fluctuations
de sa charge et celles de sa fréquence.
1l est en effet connu par des considéra-
tions théoriques et par I'expérience [10]
que la fonction d’autocorrélation des
fluctuations de la puissance consommeée
dans un réseau électrique a le caracteére
d’un bruit exponentiel.

Dans de nombreux cas, la valeur numé-
rique de la plupart des paramétres de
réglage sont connus sauf par exemple
la constante d’accélération du réseau
qui dépend de I'ensemble des masses
tournantes entrainées par ce réseau. Il

suffit d’enregistrer simultanément un
bruit blanc R ic
—

Fig. 3. — Principe de la détermination de la

fonction de transfert G (k) a l'aide d'un bruit
blanc filtré au moyen d’un filtre passe bas.

échantillon des fluctuations de la charge

et de la fréquence du réseau pour obtenir

une équation qui permet de calculer le

parametre inconnu.

La figure 4 représente, a titre d’exemple,

le diagramme fonctionnel trés simplifié

du réglage de fréquence de cette centrale

avec :

T, = constante de temps du systeme de
réglage a action intégrale (supposée
connue)

T, = constante d’accélération du réseau
(parametre a identifier)

a = coefficient d’autoréglage (supposé
connu)
x = grandeur d’entrée : perturbation de

la charge du réseau

y = grandeur de sortie : fluctuation de
la fréquence du réseau

y, = valeur de la fréquence.

Nous admettons que la valeur de consi-
gne y, est maintenue constante et consi-
dérons de faibles écarts de x et de y par
rapport a leur valeur initiale prise
comme valeur de référence. La fonction
de transfert G (p) de ce systeme se laisse
facilement déduire. On obtient :

pT, + a
1 nT;
G(p)m ————— =
1+ 1 71__ p“T,,T,. +paT;+1
pT, pTy+a

Ainsi que des études théoriques et expé-
rimentales I'ont démontré [10], les fluc-
tuations de la charge du réseau sont un
processus aléatoire dont la fonction
d’autocorrélation peut étre caractérisée
par une courbe exponentielle avec la

1
constante de temps 7 = o

Nous admettons que, en laissant le
réseau fonctionner normalement, on a
enregistré un échantillon des fluctuations
de sa charge x et de sa fréquence y.

11 est facile d’en déduire la variance c_fl_,
la covariance c_l'r’”

2

rTr

et le rapport A = c_fy/c

ainsi que la valeur numérique de la cons-
tante de temps caractérisant la variabi-
lité¢ 1/k des fluctuations de la charge du
réseau.

Pour déterminer la valeur du parameétre
a identifier 7,, on introduit la valeur

87
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numérique de & dans I'expression de la
fonction de transfert et on obtient ainsi
une équation que I'on peut résoudre par
rapport a T, :

kT, B
kK*T,T, + kaT, + 1

dou T, = ;1-/;2—Tr(k T,—A(kaT, + 1))
Cette méthode a I'inconvénient de néces-
siter la connaissance de la structure de la
fonction de transfert. Elle n’est appli-
cable que si un seul paramétre est
inconnu. Elle a ['avantage de pouvoir
étre utilisée sans que ’on ait besoin d’in-
tervenir dans le systéme a identifier
mais en enregistrant un échantillon des
fluctuations des grandeurs d’entrée et de
sortie de ce systeme, en régime de fonc-
tionnement normal.

Exemple 2 :

S’il y a deux parameétres a identifier, les
formules générales données par le ra-
bleau 2 pour le calcul de la variance 6,
et de la covariance ny permettent de

X
1 1 a
1.pTs = 1epT2 1«pTh
Fig. 5. — Schéma fonctionnel d’'un systéme de réglage de 3¢ ordre.
les déterminer en fonction des deux para- G(p) = a(l + pTy)

metres a identifier. On peut ainsi établir
des abaques donnant directement les
valeurs numériques de ces paramétres en
fonction des valeurs des variances et
covariances [8].

La figure 5 donne a titre d’exemple le
schéma fonctionnel d’'un systéme de
réglage du troisiéme ordre. 1l est facile
d’en déduire la fonction de transfert
suivante :

ps T ToTs + p* (I T +
I'T3 + T5T3) + p(Ty + Ts +
T3) +a—+1

Nous admettons que ce systéme est sou-
mis a I’action d’un bruit exponentiel

02z (0) = 6121 e —¥18
Nous admettons que k = 1, ce qui signi-

! : 3
fie que la valeur X est choisie comme

Fig. 6. — Abaque permettant ['identification paramétrique d'un systéme de réglage de 3° ordre a partir de la variance et de la covariance de sa

grandeur de sortie.
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unité de temps pour la mesure des cons-
tantes de temps a identifier. Nous admet-
tons également que les valeurs a et Ty
sont connues :

a =10
T3: 0,5

et que 7; et T, sont les deux paramétres
a identifier.

En utilisant les relations données par le
tableau 2, il est facile de calculer la
variance et de la covariance pour diffé-
rentes valeurs de 7; et de 7. On obtient
ainsi I’abaque donnée par la figure 6.
Les lignes en pointillé correspondent au
rapport cfy/ci et celles en traits pleins

au rapport O'yZy/O'fI-

La surface 4 correspond a un domaine
ou le systéme est instable. Pour toute
paire de valeurs mesurées o-yzy et o-fy il
est possible de déterminer immédiate-
ment la valeur numérique des paramétres
inconnus 7T; et Ts.

De tels abaques peuvent étre déterminés
dans de nombreux cas et constituent une
méthode trés pratique d’identification.

4.2 Signal d’entrée constitué par un
bruit dont la fonction d’autocorré-
lation est donnée par une somme de
fonctions exponentielles

nous avons vu que :

S
Urzy = Z as G (k)

§=1

La méme procédure d’identification pa-
ramétrique que celle indiquée dans le
paragraphe précédent peut étre utilisée,
avec la seule différence qu’il faut rempla-
cer dans I’expression admise pour la
fonction de transfert I'opérateur p par
les .S différentes valeurs de k; et-de faire
la somme de ces fonctions de transfert.

Conclusion

Les méthodes d’identification décrites
ci-dessus viennent s’inscrire dans I’en-
semble des approches déja connues pour
identifier la caractéristique de transfert
d’un systéme a partir de I’observation de
ses grandeurs d’entrée et de sortie.

Elles se distinguent des autres méthodes
par les deux caractéristiques suivantes :

— elles utilisent des fonctions et des
« bruits » exponentiels qui sont plus
faciles a réaliser physiquement que
les impulsions de Dirac ou les bruits
blancs que font intervenir d’autres
méthodes d’identification ;

S
Si Ory = Z ase 19| — elles permettent de déterminer direc-

=i tement la fonction de transfert sans
TABLEAU 1. — Quelques relations de base de la statistique dynamique

avoir a passer par l'intermédiaire de
la connaissance de I’expression ana-
lytique de la réponse indicielle ou
impulsionnelle ;

— elles ont une portée plus générale que
d’autres méthodes d’identification de
le fonction de tranfert qui ont déja
été décrites, car dans le cas d’une
variation de la grandeur d’entrée
selon une fonction ou un bruit expo-
nentiel, elles ne nécessitent aucune
hypothése concernant la structure de
la fonction de transfert 4 identifier.

Plusieurs aspects de ces nouvelles mé-
thodes d’identification mériteraient de
faire I'objet d’étude, a savoir leur pré-
cision et leur sensibilité a I’influence de
nonilinéarit¢ ou de bruits parasites se
superposant a l’action de la grandeur
d’entrée principale, ainsi que leur exten-
sion a des systémes multivariables. Si cet
article pouvait susciter de telles études,
il aurait atteint son but.

Adresse de l'auteur :
Michel Cuénod, ing. SIA
Dr és sc. techn.

PEG SA

71, av. Louis-Casai

1216 Cointrin

Analyse impulsionnelle

*T
= {im __Z. +8)dt
2 = Lo k=0 x(-8)
-7
+ T

ffge/ - T/_;‘r:./x(t)j/t.«éja/(‘

-7

Analyse spectrale

2 2
Bl =/ e 8t 52 (i)
o

avec X-;(/'w)_- x(¢)cos wtdt +J/x[é);,‘n w it
e o

6) =] P (vsB) P (v)do + («-6)@ (v)de
0 Rt geon fuseoy
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TABLEAU 2. — Récapitulation des fonctions de corrélation des variances et covariances pour différentes catégories de bruits d’entrée
Bruit blanc Bruit exponentiel Bruit dont la foncticn d’autocorrélation
est constituée par une somme de fonctions
exponentielles
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TABLEAU 3. — Récapitulation de quelques méthodes d'identification pour différents types d'entrée
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Entrée harmonique
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