Zeitschrift: Bulletin technique de la Suisse romande

Band: 104 (1978)

Heft: 12: 1853-1978 Ecole polytechnique fédérale de Lausanne

Artikel: Participation des usagers à la planification des transports

Autor: Maget, Bernard

DOI: https://doi.org/10.5169/seals-73533

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 25.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

- [7] PETER R. STOPHER et ARNIM H. MEYBURG: Urban Transportation modelling and planning. Lexington Books, Lexington, Mass., 1975.
- [8] ANTTI TALVITIE et TOM LEUNG: Parametric access network model. Transportation Research Board, Record No. 592, Washington D.C., 1976.
- [9] H. THEIL: Economic forecasts and policy. North-Holland Publ. Co., Amsterdam, 1965.
- [10] EDWARD WEINER: Modal split revisited. Traffic Quarterly, janvier 1969.
- [11] M. FRYBOURG: *Panel discussion*. World Conference on transport research, Rotterdam, 1977.
- [12] MATTHIAS RAPP et Ph. MATTENBERGER: Planification opérationnelle des transports urbains en commun; approches et applications. Conférence mondiale sur la recherche dans les transports, Rotterdam, 1977.

Adresses des auteurs :

Panos Tzieropoulos, ing. civil EPF Institut de technique des transports de l'EPFL Chemin des Délices 9, 1006 Lausanne Hans Jakob Bernath, Dr ing. Projet d'école STUC de l'EPFL Chemin des Délices 9, 1006 Lausanne

Participation des usagers à la planification des transports

par BERNARD MAGET, Lausanne

1. Problématique

Quelles sont les influences réciproques de la morphologie du parcellaire, de l'architecture ou des activités urbaines, et d'un réseau de transports collectifs? En tant qu'architectes, nous sommes particulièrement préoccupés par l'impact de l'implantation d'un réseau de communication sur son environnement.

Entreprendre une telle recherche, c'est tenter de démontrer les mécanismes qui entraînent le développement ou la modification des villes. Par là même, l'étude pose le problème du traitement d'un très grand nombre d'informations qui se rapportent les unes à la logique des formes urbaines, les autres à des activités et des composantes sociales et économiques. Avec les premières sont classées des considérations de qualité architecturale, de morphologie de parcelles ou de géométrie des zones, alors que les secondes concernent des activités telles que le logement, le commerce ou les stations et arrêts des différents systèmes de transport [1].

Un bon nombre d'informations peut être détecté en étudiant les rapports entre ce monde de formes, que nous appelons les contenants, et les activités urbaines, le contenu précisément. Ces relations sont largement le résultat d'une succession complexe de pressions sur le territoire (de « demandes »), lui-même « offre » en constante évolution. Cerner ces relations, c'est certainement contribuer à la connaissance des réseaux d'influences qu'exercent les communications et leurs points particuliers (arrêt, gare, etc.) sur les activités urbaines et péri-urbaines [2].

Fig. 1. — La géométrie des villes. Le Corbusier : « Plan Voisin », 1922, extrait de l'article « Die Neue Stadt », revue « DU », janvier 1972.

La complexité de la recherche a justifié la création d'un modèle [3]. Pour mieux comprendre le champ de l'étude projetée, rappelons ici les différentes étapes de l'élaboration d'un modèle : avant de l'utiliser, il doit être *construit*. Une structure, basée sur une certaine découpe de la réalité et sur un certain nombre d'hypothèses, lui est attribuée. Puis le modèle est *testé*, afin de détecter les incohérences de sa construction, et enfin *validé* par la confrontation de ses résultats et de la réalité.

L'étude a donc un double aspect. D'une part, il s'agit de la recherche d'une structuration des activités urbaines et des relations entre ces activités, par exemple : le logement peut-il être rapproché du commerce, dans quelles conditions et comment cela se traduit-il économiquement et architecturalement ?

D'autre part, il s'agit de valider le modèle, c'est-à-dire opérer un contrôle qui est en fait l'image même des confrontations des différentes offres du territoire et pressions des utilisateurs et habitants. Cette vérification ne pourrait-elle pas être abordée en associant directement les habitants à la recherche?

En termes concrets, cela se traduit par le développement de techniques de planification expérimentales associant les habitants (ou les usagers) à la recherche. Ces méthodes apparaîtraient comme complémentaires aux techniques analytiques conventionnelles ou aux techniques de simulation, dont on connaît d'ailleurs aujourd'hui les limites, surtout dans le domaine des sciences sociales. En outre, ce type d'approche permet vraisemblablement de diminuer le degré d'arbitraire du modèle.

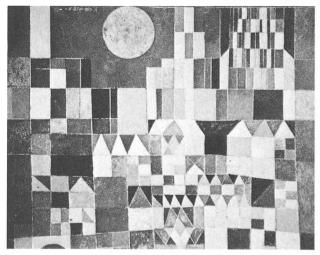


Fig. 2. — Le modèle, une structure projetée sur la ville. Paul Klee: « Château et soleil », tiré de F. Deuchler, « Histoire de la peinture », Kunstkreis, Lucerne.

Pourquoi associer l'habitant, et de quel habitant s'agitil?

Un peu poétiquement, la démarche de modélisation du chercheur a été parfois comparée à celle de l'analyste ou du traducteur d'un « texte ». Ce « texte », c'est l'histoire de la ville, un drame social sans cesse écrit et réécrit [4]. Le chercheur déchiffre ce « texte », donne une structure à sa traduction (une définition qui est une des conditions de la création du modèle), et lui trouve, par approches successives, une signification.

Si dans certains cas les positions socio-économiques et politiques sont suffisamment marquées pour que cette analyse soit le reflet exact de la situation, il existe de nombreux exemples dont le moins qu'on puisse dire est qu'ils sont peu clairs! Par exemple, des regroupements éphémères d'intérêts divers, association d'immeubles, de rues, de quartiers, etc. Le « texte » en question fait alors un peu penser à ce jeu d'écolier, une technique de rédaction reprise d'ailleurs par les écrivains surréalistes [5]: une personne écrit une phrase, puis replie soigneusement le papier afin d'en cacher le sens et passe la feuille à l'auteur suivant, qui en fait de même et ainsi de suite. A la fin du jeu, le texte est « déroulé » et lu d'une traite. Certes, le résultat a un sens : il est le reflet de la culture et de la société où vivent ses auteurs. Mais il assure toutes les contradictions sans même les démontrer, alors que ces contradictions sont l'essence même d'une analyse des phénomènes urbains.

Pour nous, il s'agit de retrouver la « base », entre guillemets, parce que ce mot a un double sens, en politique particulièrement. C'est en fait la logique de chacun des auteurs qu'il est souhaitable de connaître, afin de la prendre en charge, de l'associer ou la dissocier d'autres logiques en dégageant les opinions convergentes et divergentes, et en utilisant alors au besoin les techniques d'analyse de système, par exemple.

Ces nouveaux rapports entre chercheurs (architectes, ingénieurs, urbanistes) et habitants peuvent-ils contribuer à une meilleure gestion des ressources du territoire au regard d'une planification des transports collectifs? Notre récente étude d'aménagement d'une petite commune de Suisse nous permet de proposer un champ théorique et méthodologique qui se pose en termes d'une analyse des interrelations de l'offre constituée par le territoire et de la demande formulée par des habitants.

2. Participation des habitants à la recherche

Exemple d'une étude de cas [6].

La commune de Plan-les-Ouates se trouve au sud-ouest de la ville de Genève. Ses autorités ont souhaité connaître les désirs de la population en faisant une brève étude d'aménagement basée sur la consultation des habitants, et réunir ainsi des critères facilitant les choix concernant la gestion du territoire communal. C'est pourquoi le « Laboratoire de consultation des usagers » du département d'architecture de l'Ecole polytechnique fédérale de Lausanne s'est installé en mai 1977 dans des locaux mis à disposition par la commune, à proximité de son centre. L'enquête a duré six mois. Elle était basée sur des méthodes d'interviews de type actif (interview clinique), qui se déroulaient comme des jeux, sur des maquettes du territoire communal.

Outre les résultats pratiques de cette étude (des plans et des directives), cette recherche a jeté les bases d'un processus de planification associant une population. Sa nature particulière a justifié une *méthode* et le développement d'un

certain nombre d'instruments de communication. Parmi ceux-ci, une cartographie qui permet de localiser les activités (à l'aide de pastilles de couleur) et de caractériser leurs architectures particulières (en utilisant des maquettes symboliques).

2.1 Méthode

La participation effective d'une population à une recherche expérimentale ne peut s'appuyer que sur une méthode à la fois déductive et inductive : déductive, parce que passant du territoire en général (les caractéristiques du territoire dans sa totalité) au particulier (les affectations que celui-ci peut accueillir) ; inductive, parce que s'appuyant sur des lignes de désirs concernant des secteurs particuliers (les « demandes ») et leurs interactions, pour aboutir à une vision plus générale. Il s'agit donc d'un rapport entre l'offre potentielle et actuelle du territoire, et les diverses familles de « demandes » des habitants.

Notre recherche a permis, en simplifiant et en unifiant les différentes conventions techniques et graphiques de la cartographie opérationnelle [7] généralement réservée à l'étude des potentialités du territoire, d'impliquer directement les personnes concernées et d'enregistrer leurs souhaits.

2.2 Technique de consultation [8]

La méthode d'entretien est choisie pour ses trois caractéristiques fondamentales :

- au travers d'un « jeu » créatif, elle est un mode d'interaction entre l'usager (interviewé individuellement) et les chercheurs;
- elle est d'ordre qualitatif (dans le sens qu'elle essaie de saisir comment et en fonction de quoi les usagers agissent sur leur environnement);
- par son matériel expérimental, elle s'apparente au jeu et favorise la création en permettant à l'usager de construire et d'exprimer, à partir de son vécu (donc en référence à une réalité reconnue), l'image d'un devenir désiré.

Le déroulement de l'enquête est double. D'une part l'analyse des potentialités du territoire (sites, zone légalisée, équipements, etc.) est effectuée. D'autre part, un échantillon d'habitants réputé représentatif est constitué sur la base d'une étude démographique. Les personnes sont alors conviées à des entretiens individuels. Pendant la discussion, la personne interrogée se prononce sur un certain nombre de problèmes d'aménagement. Ce type d'interview implique que les deux interlocuteurs, l'habitant et le chercheur, ne soient pas seulement les spectateurs, mais aussi les acteurs d'un travail de création sur une maquette. Pour ce faire, l'enquêteur possède une formation qui lui permet de cerner les souhaits de la personne interrogée. L'entretien est enregistré, et filmé.

Les résultats sont ensuite relevés et transférés sous une forme adéquate sur un fichier informatique. Il est alors aisé d'analyser des résultats globaux, partiaux et partiels, en procédant interactivement, c'est-à-dire en « conversation » avec l'ordinateur. Il s'agit par exemple de l'ensemble des réponses des hommes ou des femmes, ou encore des habitants voisins des voies de circulation, etc. Les résultats sont visualisés sous forme cartographique sur un écran cathodique, et mis en relation avec d'autres types de réponses. Enfin, cette analyse de la « demande » est comparée aux possibilités (lègales, foncières, géologiques, etc.) qu'offre le territoire. Le résultat final est à nouveau soumis à la critique de l'habitant.

Fig. 3. — L'entretien.

Au niveau théorique, la cartographie des résultats et le traitement informatique, en facilitant les réponses et leur confrontation avec la réalité observable, permet d'analyser les relations entre les réseaux de communication, les activités et les « formes ». Ces informations sont alors confrontées au modèle théorique de mise en relation des activités en cherchant à déterminer leurs centres de gravité et leurs significations globales.

3. Conclusions

L'étude de cas de Plan-les-Ouates a permis de définir les champs d'application et les limites de la méthode pour des études d'aménagement globales. On ne peut généraliser les résultats d'une seule étude. Dans ce sens, la recherche doit être considérée comme une étape dans l'élabotation du modèle de relation entre système de transports collectifs et activités urbaines. Ceci dit, nous constatons

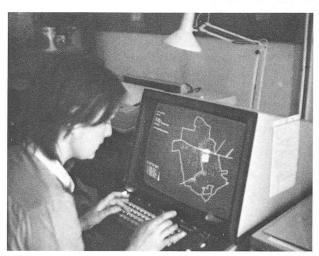


Fig. 4. — Analyse des résultats.

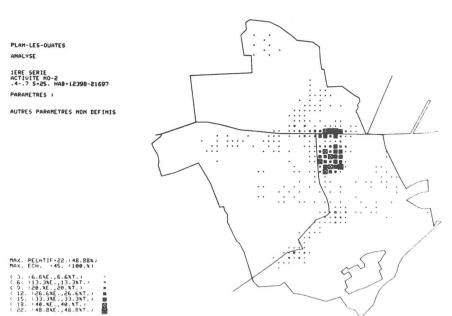


Fig. 5. — Exemple de résultat.

que la méthode proposée intervient en complément aux techniques de planification traditionnelles. En définissant de nouveaux rapports entre la « base » et le pouvoir politique, elle fait apparaître la possibilité d'une certaine démocratisation de la planification sans pour autant avoir la prétention de supplanter les instances politiques et techniques. Enfin, par les techniques de « jeu » et de visualisation qu'elle nécessite, cette méthode revêt un aspect didactique et informatif, tant pour les habitants que pour les spécialistes et les pouvoirs responsables.

NOTES

- [1] « On peut dire de l'urbain qu'il est forme et réceptacle, vide et plénitude. Il se relie d'un côté à la logique de la forme et de l'autre à la dialectique des contenus. » HENRI LEFÈBVRE: La révolution urbaine. Idées, Gallimard, 1970, p. 160.
- [2] En fait, les interactions entre activités s'effectuent au travers d'une structure d'échange qui peut recouvrir différents aspects : informatique, technique, économique ou celui des transports. L'échangeur, non pas seulement routier, mais plutôt ce que nous appelons « interface », est une de ces structures d'échange. Il s'agit, par exemple, de gares, de stations de bus et de trams, de parking, etc. Emprunté aux physiciens et aux informaticiens, le mot interface, d'origine anglaise, correspond à un dispositif qui permet d'associer deux sous-systèmes informatiques; ce rôle de convertisseur est largement analogue aux phénomènes internes de l'échangeur. Trop peu de planificateurs ne considèrent les réseaux de communications et les interfaces que comme une solution technique au seul problème des transports, sans leur reconnaître l'influence capitale qu'ils exercent sur l'affectation générale de l'environnement qu'ils finissent par déterminer.
- [3] JEAN-MARC LAMUNIÈRE, MARIE-ANNE PRÉNAT, BERNARD MAGET: Le « mixage » des activités, un modèle de contrôle et d'aide à la décision. EPFL, STUC et Groupe IV CU/ DTP Genève, 1977. Il s'agit de l'analyse systématique des relations entre activités et de leurs conséquences formelles au niveau de l'ar-
- une approche dynamique des phénomènes urbains.

 [4] « La fonction fondamentale de la ville consiste à donner une forme collective, à permettre et même à favoriser le

chitecture urbaine. L'utilisation de ce modèle doit permettre

- plus grand nombre de réunions (...) de façon que le drame de la vie sociale puisse être joué, acteurs et spectateurs échangeant tour à tour leur rôle.»
- LEWIS MUMFORD: Landscape and Townscape (article paru dans la revue « L'urbanisme, utopie et réalité », Seuil, 1965).
- [5] ... jeu qu'André Breton appelait « le cadavre exquis » !
- [6] Sur le plan universitaire, cette étude n'aurait pu se dérouler sans l'appui du président de l'Ecole polytechnique fédérale de Lausanne, M. le professeur Maurice Cosandey, qui a bien voulu autoriser l'application à un cas pratique d'une méthode réservée jusque-là à la recherche pure. Ont participé à cette recherche: le professeur Jean-Marc Lamunière, Christine Zinng, Jean-Marie Duret, Bernard Maget, Patrick Mestelan, Jean-Luc Thibaud.
- [7] La cartographie opérationnelle se caractérise par les combinaisons qu'elle permet d'opérer entre différentes données, ce que des représentations élémentaires ou traditionnelles ne peuvent effectuer directement (c'est-à-dire visuellement). Cependant, la cartographie ne peut, à moins de choisir des modèles de représentation extrêmement compliqués, donc peu lisibles, traiter l'ensemble potentiel de toutes les données. Elle a donc tendance à réduire l'ordre de complexité de l'étude et à mettre en évidence certaines composantes, qui peuvent, à elles seules et par leurs combinaisons, fournir un champ d'analyse permettant des observations rigoureuses et des opérations que l'on peut simuler et dont on peut aisément contrôler les mécanismes.
- [8] Le laboratoire de consultation utilise des instruments de stockage d'informations (dont un matériel à but informatique) et peut, grâce à sa petite infrastructure technique et sa grande maniabilité, se monter rapidement en exigeant un minimum d'espace et de frais de transport. Il se compose essentiellement du matériel de prise de données (caméra, enregistreur, table de digitalisation) et du support nécessaire à l'étude du problème posé, en l'occurrence le plan « cartographié » de la commune. Voir à ce sujet :

 JEAN-MARC LAMUNIÈRE, MM. AUBARET, BULLINGER, DURET, HUSER, MESTELAN. Rapport final de la recherche FNRS Nº 4.61.72E41500.73. Recherche d'un langage commun à l'architecte et à l'habitant. Extraits parus dans les Cahiers Vilfredo Pareto, tome XIV, 1976, nº 36.

Adresse de l'auteur :

Bernard Maget, architecte EPF Département d'architecture de l'EPFL Av. de l'Eglise-Anglaise 12, 1006 Lausanne

Simulation d'une ligne de transport urbain collectif

par JÜRG SIMONETT et HANS JAKOB BERNATH, Lausanne

1. Introduction

Méthode de la simulation

La simulation est aujourd'hui une méthode répandue qui permet d'obtenir des résultats quantitatifs dans les cas où la complexité du problème interdit une approche analytique. Un exemple d'application de cette méthode est la simulation d'une ligne de transport urbain collectif.

Les mouvements des véhicules des transports collectifs sont déterminés par un grand nombre de facteurs divers. En principe, le véhicule se déplace sur un trajet bien défini, selon des consignes indiquées par l'horaire. Ces déplacements sont en réalité souvent perturbés par des événements prévisibles et imprévisibles. Ainsi, une forte densité de circulation aux heures de pointe diminue la fluidité du trafic, ce qui se répercute immédiatement sur la vitesse des véhicules du transport collectif; ou un accident de la circulation empêche tout déplacement pendant un certain temps. Tous ces phénomènes font de la description des trajectoires des véhicules un problème complexe.

Une approche analytique qui donnerait une relation exacte de la position et de la vitesse de chaque véhicule

en fonction du temps est impraticable, à cause de ces nombreuses perturbations. Seule la simulation peut tenir compte de tous ces facteurs, sans que l'effort investi dans les calculs devienne exorbitant. Elle demande cependant une manière de résolution du problème bien définie.

La première étape consiste à établir un *modèle mathé-matique* du phénomène à simuler. Le modèle mathématique définit tous les éléments dont la simulation doit tenir compte ainsi que leurs interactions mutuelles. Ces éléments et interactions forment le système.

Ces relations étant déterminées, le modèle mathématique est programmé sur un ordinateur : les relations sont traduites en *programme de calcul*.

Le programme de calcul permet la *simulation* de la situation réelle. L'ordinateur calcule alors certaines grandeurs caractérisant le système.

Dans une dernière étape, il faut comparer les résultats obtenus par la simulation avec des mesures effectuées sur le système réel. Cette comparaison permet de déceler des erreurs ou d'améliorer le modèle mathématique et de confirmer sa validité.