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Etude probabiliste des structures par programmation

paramétrique’

par F. CASCIATI, L. FARAVELLI et G. SACCHI

L’évaluation générale de la sécurité d'une structure se fonde
sur celle de son risque de rupture par rapport au coiit. On pourrait
dire que le probléme de la sécurité d'une structure réside donc
dans ['optimisation du rapport entre le risque et le cout de la
structure elle-méme, tout en sachant que ces deux facteurs doivent
étre compris dans un sens trés général [1], [2] 2. On est en effet
forcé de consideérer des phénoménes complexes, présentant des
aspects directement mesurables (par exemple la probabilité de
ruine au sens restreint, le coiit des dommages matériels...),
difficilement mesurables (par exemple coits sociaux) et non
mesurables (par exemple la valeur de la vie humaine). Jusqu'a
maintenant le probléme de la sécurité des structures a été étudié
d’'une fagon assez vaste et rigoureuse en ce qui concerne le calcul
de la probabilité de ruine d'une structure a résistance aléatoire et
soumise a des sollicitations, aléatoires elles aussi [2], [3], [4], [5].

Des études ont été conduites également par différents auteurs
sur I'évaluation du niveau de risque acceptable. Puisque dans ce
cas on doit considérer les aspects les plus délicats du probléme
général, on a formulé jusqu’a maintenant des propositions trés
intéressantes, mais la discussion reste trés ouverte [6], [7], [8].

Au stade actuel, on sait calculer la probabilité de ruine, sans
pouvoir faire correspondre d’une fagon rigoureuse la notion
exacte de sécurité a la probabilité calculée.

Dans ce qui suit, on nommera briévement par le terme de
«ruine» I'état — a définir — dans lequel la structure est hors de
service. En ce qui concerne la probabilité de ruine des structures,
on pourrait envisager les cas suivants :

1. Phénomeénes indépendant du facteur temps.

a) Probabilité de ruine élastoplastique. Structure a résistance
aléatoire. Sollicitations aléatoires.

b) Probabilité qu’en un point donné de la structure s’exerce
un état d'effort donné. Lois constitutives a caractére aléatoire du
matériau employé. Sollicitations déterministes [9].

2. Phénoménes dépendant du facteur temps.

a) Probabilité que la ruine intervienne dans un temps donné.
Structures a résistance aléatoire. Sollicitations aléatoires dépen-
dant du temps en régime soit stationnaire, soit transitoire.

b) Probabilité que la ruine advienne dans un temps donné.
Structure a résistance déterministe. Sollicitations dépendant du
temps en régime transitoire.

c) Probabilité de ruine dans un temps donné. Structure dont la
loi aléatoire de résistance dépend de I'histoire de charge. Sollici-
tations dépendant du temps.

Dans cet exposé, on se bornera a présenter des méthodes de
calcul de la probabilité de ruine de structures parfaitement
élastoplastiques dans les conditions prévues sous I a).

1. Le probléme

On considére une structure (fig. 1) soumise aux charges
Py, Py, Py, P;, dont les caractéristiques aléatoires sont
indiquées a I’aide des histogrammes dessinés et dont on
suppose qu’ils ont été dessinés sur la base de relevés expé-
rimentaux.

La structure est congue comme un ensemble d’un
nombre fini d’¢léments finis parfaitement rigides, séparés
par des sections critiques ou I’on considére concentrées les
caractéristiques de déformabilité de la poutre. Dans
I'exemple de la figure 1 on a considéré 52 sections cri-
tiques. La loi de comportement en chaque section cri-
tique est rigide-parfaitement plastique, et la courbe

L Conférence prononcée le 27 février 1974 a I’Ecole poly-
technique fédérale de Lausanne, dans le cadre d’un cycle de
conférences organisé par I'Institut de la construction métal-
lique (ICOM) sous le patronage du professeur J.-C. Badoux.
La recherche a été supportée par le C.N.R.

2 Les chiffres entre crochets renvoient & la bibliographie en
fin d’article.
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Fig. 1. — Structure de référence.

d’interaction entre moment fléchissant M et effort axial N
est linéarisée. La contrainte limite & est, elle aussi, aléa-
toire, et sa loi de variabilité est représentée par la figure 1.
On suppose que les valeurs moyennes des charges P;, Ps,
P,, Py n’entrainent pas la ruine de la structure.

La structure est soumise aussi a une charge horizontale
S1, Py, ou Py est la valeur de base de la charge et S, est
le multiplicateur de Py. S;, est congu comme une variable
aléatoire. Le probléme est de calculer la probabilité p, de
ruine plastique de la structure par rapport a la charge
aléatoire S;, Pp. On peut donc envisager deux aspects fon-
damentaux du probléeme : la résistance R de la structure
et la sollicitation s sur la structure. Il est évident que la
ruine surviendra lorsque R = s. R est une variable aléa-
toire, parce que ¢ est aléatoire et la structure est « affai-
blie » par les charges aléatoires P,, Py, Ps, P,. Comme on
a 52 sections critiques et 4 charges verticales et que I'on
considére que ces variables aléatoires sont indépendantes,
on pourra dire que le probléme est probabiliste a 56 para-
métres indépendants.

Sur la base du théoréme de la probabilité totale, on
peut, a partir des histogrammes de la figure 1, tracer la
loi de fréquence de R. R sera défini dans un intervalle
délimité par les valeurs R, et Rn.c, dépendant des
valeurs extrémes des variables aléatoires P;, &.

Il est d’ailleurs adéquat de considérer R comme limitée
vers le bas puisqu'on suppose que & est limitée par des
controles industriels et P; par les normes.

On peut tracer la fonction @y(s) cumulée de R, comme
indiqué sur la figure 2 : en abscisse, les valeurs s qu’on
appellera sollicitations généralisées, et, en ordonnée, la
probabilité d’existence d’une valeur donnée de s. L’or-
donnée lue sur @y(s) d’une valeur de s nous donne la
probabilité que s ne soit pas dépassée. La figure 2 montre
également la fonction f(s) indiquant la probabilité asso-
ciée a chaque valeur de la sollicitation extérieure.

Il est bien connu que la probabilit¢ de ruine p; =
= P(R = s) sera donnée par l'intégrale de convolution :
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Fig. 2. — Description probabiliste des variables R et s.
Py = [ f(s)- Pg(s) ds (1
o

Les limites de I'intégrale de convolution sont 0 et oo,
puisqu’on considére les sollicitations extérieures non
limitées. On ne peut pas exclure, en effet, quil y a
une probabilité trés faible que la sollicitation extérieure
ait une valeur trés grande. Dans ce qui suit, la résistance R
a été représentée a I'aide d’un histogramme, tandis que la
sollicitation s est congue comme une fonction gaussienne
limitée vers le bas. Cette hypothése a été adoptée pour des
raisons de calcul, la méthode ne dépendant pas du choix
de la fonction f(s).

Jusqu’a maintenant, on s’est référé au cas de la figure 1
pour fixer les idées, mais il reste entendu que la méthode
de calcul est d’application générale, au moins dans les
problémes a un seul parameétre de charge.

2. La méthode de calcul

L’intégrale de convolution (1) montre que, pour cal-
culer py, le calcul intermédiaire le plus délicat réside dans
la détermination de @g(s).

A cet effet, on peut adopter une technique de simula-
tion statistique [10], [11]. On verra qu’il s’agit d’une
technique numérique permettant d’obtenir des résultats
assez précis en un temps d’ordinateur acceptable.

Puisqu’on considére I’état de ruine comme étant I’écrou-
lement plastique de la structure par formation de méca-
nismes, on sait que, dans un quelconque des cas possibles,
la recherche du multiplicateur de ruine peut se faire par
l'aide de la programmation linéaire (L.P.) [12]. La déter-
mination de @y(s) sera donc obtenue, comme on le verra
en détail, a I'aide d’une suite de programmations linéaires,
la technique de simulation étant portée sur un choix au
hasard du vecteur des termes connus.

Les résultats obtenus seront d’autant plus précis que
I'ampleur de I’échantillon statistique augmente, ce qui
comporte I'augmentation du nombre v de programmations
linéaires a résoudre.

Chaque programmation linéaire nous donne une valeur
de S;,. Nous aurons donc v valeurs de S;. Une fois déter-
minées les valeurs, la plus grande et la plus petite de S,
nous serons en mesure de construire un histogramme
des .S, a partir duquel on pourra déterminer aisément
Dp(s).

Pour fixer les idées, nous pouvons considérer un cas a
deux parameétres ¢, et ¢,. La figure 3 indique dans un plan
le domaine rectangulaire des échantillons qui conduisent
aux solutions possibles. Chaque point de ce domaine
représente en effet un échantillon et pour chaque point
nous devons calculer une valeur de S,. La technique de
simulation consiste dans le choix aléatoire de v points du
domaine.

Il est bien connu que le domaine des solutions possibles
peut étre divisé en «régions décisionnelles » [13], [14],
dont chacune contient les points représentatifs des vec-
teurs des termes connus admettant le méme mécanisme de
ruine que la structure.
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La méthode est donc basée sur les étapes suivan-
tes [15], [16]:

1. On considére la structure moyenne, c’est-a-dire celle
qui présente en chaque section critique la résistance
moyenne. Par une programmation linéaire, on obtient la

valeur du multiplicateur moyen S,. La solution du pro-
bléme de L.P. nous donne aussi le mécanisme de ruine.

2. On choisit au hasard un deuxiéme vecteur de termes
connus. Si le point représentatif de ce vecteur appartient
a la méme région décisionnelle du vecteur de la structure
moyenne, il suffit, pour obtenir S;; (nouvelle valeur
de S.), de recourir au principe des travaux virtuels en
adoptant le mécanisme de la structure moyenne.

Si au contraire le point n’appartient pas a la région
décisionnelle de la structure moyenne, on est obligé de
calculer Sy, a l'aide d’une nouvelle programmation
linéaire.

On voit quen appliquant cette méthode le nombre
d’optimisations nécessaires est inférieur ou égal a v.

La méthode de calcul est indiquée schématiquement sur
la figure 3 et est basée sur I’emploi de la programmation
linéaire paramétrique (P.L.P.).

READ {a] [A] TET ] ASUBROUTINE SIHPL_|
/ [Sotvet. » rrom THE
< 7/ |oRiGIN FERSIBLE SocuTio
/
/ RETURN

08 (1/=2
-
CALL PARA |&

SUBROUTINE S1xuL

S0 =

= (324

GIVE RAND ON

RETURN |
LCALL PARY | E—
pEaT 775 ]
98 (1)=m % s0LY

570P

END

L‘fﬁueﬂourwf 748
ORDER SAHPLE 0B (1)

(SOLVE C.P FROM 7 Given
FEASIBLE SOLUTION

RETURN RETURN
74[ 9z
’ </t %
e bl LI
1
TR |
‘///'/ : :
B P M
o I . : ;
[ 1 : i Fig. 3. — Représentation
: schématique de la méthode
. de calcul.

3. Le modéle de P.L.P.

On sait que la charge limite d’une structure élasto-
plastique peut étre calculée statiquement en maximisant
le multiplicateur  des charges, en imposant que 1’équi-
libre soit satisfait et que la condition de plasticité soit
respectée.

Sur la figure 4, on a représenté le modéle P.L.P. employé
en recourant a la méthode hyperstatique.

Les formules (4") donnent la définition du vecteur {X}
des réactions hyperstatiques libres en signe, a 1’aide des
deux variables positives X" et X .

Les inéquations (4) représentent les conditions de plas-
ticit¢ du probléme, I’équilibre étant satisfait a I’aide des
vecteurs { a,, |, { a, } et des matrices [D,,], [D,], [Ep], [E,].

L’indice m se rapporte au moment fléchissant, tandis
que lindice n se rapporte a I'effort axial. {ry ) et { Po }
indiquent les vecteurs de résistance moyenne du matérian
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Fig. 4. — Le modele de P.L.P.

et le vecteur des charges moyennes « affaiblissant » la
structure. { 4r } et { Ap} sont les vecteurs de variations
de résistance et de charge caractérisant chaque structure
possible, choisie au hasard.

Dans I’hypothése que le probléme de P.L.P. présente
plus de contraintes que d’inconnues (ce qui est en général
vrai, lorsqu’on procéde par voie statique), le tableau final
du probleme de L.P. relatif a la structure moyenne sera
composé par les deux matrices [4*] et [A4'].

[A*] est une matrice carrée a variables slacks nulles,
tandis que [A4'] sera, en général, une matrice rectangulaire
a variables slacks différentes de zéro.

¢ étant un coefficient libre a I'aide duquel on a affecté la
valeur de { 4 }, on peut, en agissant sur [4*], calculer les
valeurs y* et X* des variables y et X.

L’équation (7) est déduite de la j-éme ligne de la ma-
trice [4'], avec les valeurs w* et X* au lieu des variables.
Il s’agit donc d’une équation a une seule inconnue ¢;. On
peut calculer pour chaque équation possible la valeur de
p; annulant S;’.

On définit p selon la relation (8) comme le plus petit
des ¢; qui annule les variables S;'.

Sur la base de la théorie de la dualité, on peut affirmer
que si @ << 1 la structure choisie au hasard céde selon un
mécanisme différent du mécanisme de la structure moyenne.
On doit donc optimiser selon les régles de la L.P. pour
calculer . Si, au contraire, @ =1, alors la structure
choisie au hasard s’écroule selon le méme mécanisme que
celui de la structure moyenne et on peut calculer directe-
ment y a l'aide de la méthode des travaux virtuels.

4. Exemples numériques

Les exemples numériques se rapportent aux structures
dessinées des figures 1 et 8.

Les données relatives a ces deux structures sont indi-
quées dans le tableau de la figure 5. Les lettres en téte des
colonnes ont les significations suivantes :

X valeur moyenne,

v variance,

\'v écart quadratique moyen (ou déviation standard),
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Data x v Vv c2 c

olkg/cm?] 2400 1872 43,27 | 3,2510-4| 0,0180

Pilkg/cm] 1,2 | 0,0467 | 0,2161 | 0,0324 0,1801

Pslkg/cm] 2,0 | 0,0640 | 0,2530 | 0,0160 0,1265

Pslkg/cm] 2,0 | 0,1088 | 0,3298 | 0,0272 0,1649

Pylkg/cm] 2,8 | 0,0447 | 0,2114 | 0,0057 0,0755

Fig. 5. — Tableau des données.
5 v ; "
¢~ = — variance spécifique,
=
v 5 N s
c= — coefficient de dispersion.

Comme on peut le remarquer a la derniére colonne,
les coefficients de dispersion des charges ont des valeurs
assez grandes (environ 15 %), par rapport au ¢ de la résis-
tance ¢ du matériau. Il s’agit d’ailleurs des valeurs le
plus souvent mentionnées par la littérature technique [2].

Sur la figure 6 on a indiqué les résultats relatifs au
cadre a deux colonnes et quatre étages.

Ry=44.67 R3=44.311
l v M- N
R | R/A; 14306 | 099967
., “,,‘,Vﬂ"'?: 500 ; T&,az.’.‘/ ?’57};‘“
vz | W/R oz 0007 |03 | 00078
467 | 10 | 4305 |os9s0
250 00025 |580 40°| 0024 |604 10~°
= |owr7 00076 | 0.2 | 0.0078
‘3 V/‘Iq 68 4.00f 14,317 | 4.00058
‘s 100 00129 |597 40°| 00032 |642 4
B o135 | 00077 | 0123 | 000s0
J_ Ll 7/ | 4.003 | 45343 1400226
50 00030 |39 46° | 0033 |64 107
m jaaon’ 01155 | 0.008f
cPu* 348" 654" M
e || 024 177 035 (a" 025 15%| 035 10°| 046 07
-0z | 500 |ou '/;'w 49 45° 031 0¥ 050 107 | 029 40°
< =03 036 40 ] 25 40| 0.36 46" |025 10" [0z0 407
& 01 043 46% (020 46* |04 15”| 029 16° 036 107
__&=02 | s 027 4 ‘0.6 46° 027 40° | 047 16%|027 4072
c,-03 033 10°|024 46" [034 10”629 40" |0s9 407
5 S« s = B S-
R/2 |R/45 | /2 Rj1s5 | Rfe5
¥ HoHeywELL H 6030
Fig. 6. — Résultats du premier exemple.

Les symboles utilisés également pour les exemples qui
suivent ont les significations suivantes :
v ampleur de I’échantillon des structures choisies au
hasard,

M moment fléchissant,
N effort axial,

R résistance de la structure moyenne,

R valeur moyenne des résistances des structures choi-
sies au hasard, ou valeur moyenne de la distribu-

tion R,
vi et vp/R? variance et variance spécifique de la distri-
bution R.

\ Vg et \v”/l_% déviation standard et coeflicient de dis-
persion de R,
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C.P.U. temps d’exécution de I’ordinateur,

¢, coefficient de dispersion des sollicitations extérieures,

5 valeur moyenne de la sollicitation extérieure s.

Comme on peut le relever sur la figure 6, 'ampleur des
échantillons passe de 500 individus a 50 individus. Les
temps d’ordinateur pour calculer @,(s) dans les quatre
échantillons passent de 348", en considérant seulement M,
a 7'54" dans le cas ou I’on considére M et N, ce qui est
assez satisfaisant étant donné que chacun des 500 pro-
blémes étudiés est, comme nous l’avons dit, a 56 para-
metres indépendants.

10 M
07{
|
(239
orl
ﬂé‘.
.
a)
1
n}‘
oz|
ot
o0 2 | = >
T 140 0t 4z 73 la4 "5 6 %7 7.6 “a /50 454
500/250 244
i
- 30
Fig. 7. — Fonctions cumulées de R pour le premier exemple.

On remarquera, sur la figure 7, que la distribution
cumulée @, présente une moyenne plus élevée (14,67)
dans le cas ou l’on considére comme variable statique

seulement M, par rapport a la valeur (R = 14,306) rela-
tive au cas ou l’on considére comme variables statiques
M et N. Cela est bien raisonnable, puisque le premier cas
peut étre considéré comme cinématiquement admissible
par rapport au deuxiéme.

Sur la figure 7, on peut aussi remarquer qu’au fur et a
mesure que ’on augmente v, la distribution @5 devient
plus réguliére en s’appuyant a gauche.

Dans la deuxiéme partie du tableau de la figure 6, on
peut lire les probabilités de ruine de la structure pour
différents coefficients de dispersion et valeurs moyennes
des sollicitations extérieures. On remarquera que 1’on
arrive a apprécier des probabilités de ruine de 1'ordre
de 1076, ce qui correspond au niveau de risque actuelle-
ment accepté par les normes [2], [17].

L’estimation de la probabilité de ruine n’est pas trop
sensible a I'ampleur de I’échantillon, au moins dans le cas

S O o o o e g o 0 o &
f i a as
| O O A s

L L LTI T ECE LI T T T I G

R RRRRSAREIRY ARATR) () QR

ﬁﬂn

P 23

Fig. 8. — Deuxi¢me exemple.
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de la structure considérée, tandis qu’elle est trés sensible

a la variation du rapport R/s.

Par ailleurs, la probabilité de ruine peut apparaitre trés
faible (0,46-1077) si I'on considére Ry /s = 1,5 et la dis-
tribution cumulée de @p . Ce résultat nous donne une
idée de I’erreur d’estimation de la probabilité de ruine si
I’on calcule la structure sur la base de la seule variable M
dans le cas ou I’on devrait considérer I'interaction des
variables M et N.

Sur la figure 8 est représenté un exemple de structure a
trois colonnes et a quatre étages. La méthode de calcul
adoptée est identique a celle du cas précédent. Dans le cas
de cette structure, on a 92 paramétres indépendants.

Rg - 22.005 Ry = 24444
v M M= N
R |R/Re 22.000 |0.99978 |21 137 |099967
Ve | w/R 500 0,0163 |337 46°| 00157 |3.5¢ 16°
Vv |Va/R 01278 | 00058 | 0253 | 0.0057
22001 |097982 |21,738 |0.99972
250 0017 |360 46°| 0or70 | 381 407
P 4 04320 [ 00060 |01304 | 00062
i e 20997 099964 | 20432 | 099944
3 |a 100|002 |348 45°|00t66 |372 46

04278 |0.0059 |07/288 | gooel
21983 | 0.99923 | 24425 |0.9994

S0 0orrs |367 46°| 00163 |345 46°
07335 | 0.0061 | 07277 | 0.0060
cPu* 136" 28’ 47"
a0l 076 40 0.32 46° | 0.47 45 0.33 46
.02 500 029 #5° |047 10" | 030 45%|04s 157
- -03 | 034 467|023 167|035 45 |024 167
_s=oi | 0745 |0.34 46%|0r2 15° | 0.34 16°
02 50 030 15" |048 16% |03t 40| 018 457
<03 0.35 40°|024 46" |035 46° |¢ 24 407

5a 5= S= Sa
R/2 |R/45 |R/2 Rfis

* HONEYWELL H 6030

Fig. 9. — Résultats du deuxiéme exemple.
#(8)
1.0
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=%
Fig. 10. — Fonction cumulée de R pour le deuxieme exemple

(avec la seule variable M).

400 34
o— " ]
—
— b0

Fig. 11. — Fonction cumulée de R pour le deuxi¢éme exemple
(avec Iinteraction M—N).
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Sur la figure 9 sont représentés les résultats avec les
mémes symboles que ceux de la figure 6. Les figures 10
et 11 indiquent les distributions cumulées @ correspon-
dant a la structure en question pour les deux cas ou 1’on
considére comme variables statiques soit M seul ou M et N.

5. Le coefficient de dispersion de R

On peut aisément démontrer [18], avec des hypothéses
trés peu restrictives, qu’on a en général :

Cr = Cg,

c’est-a-dire que le coefficient de dispersion de R est infé-
rieur ou égal au coefficient de dispersion de la résistance o
du matériau. On est par ailleurs conduit a penser que la
réduction de cp par rapport a ¢, est d’autant plus mar-
quée que se réduit le degré d’hyperstaticité de la structure.
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Fig. 12. — Structures a degré d’hyperstaticité réduit.

Sur la figure 12, on a représenté trois structures dérivées
de celle donnée en figure 1, en réduisant le degré d’hyper-
staticité a 1’aide de I’introduction de rotules, soit 3 en a),
6 en b), 9 en c).

Rz 431 14169 6.161 3436

v M-H ~-3x |-6% -9x

R/R: 099967 |0.99075 |0.98972 | 098269

v /R? 500 505 17° |28 15 |6.00 167|125 45°

Via/R 0.0078 |0.0148 |0.0895 |0/125
0.9%960 | 0.98976 | 098693 |098354
250 6oy 16°|234 46 |p.02 15°|r25 16°
73 0.0078 |0.0153 |0.0895 |0.1116
2 4.00058| 0.98820 | 0.98654 | 0.9804
P 100 |64210°|269 46713 46> [027 10
0.0080 |0.0164 |0.08L5 |0.4126
1.00226 |0.98863 | 099052 |0.9926
50 649 15° |32 5% |875 16° [100 46°
|0.008 |0.0081 |0.0703 |0.1002
cPu* 6'54" | 10'27" |5 44" | 437"

% HOWEYWELL H 6030

Fig. 13. — Résultats pour les structures des figures 1 et 12.

La figure 13 donne les résultats ; nous pouvons remar-

quer que, comme prévu, le coefficient de dispersion %
croit de 0,0078 a 0,1125 lorsqu’on passe de la structure
initiale 12 fois hyperstatique a la structure finale obtenue
par réduction de 9 degrés d’hyperstaticité. Cela nous
amene a estimer nécessaire I’analyse probabiliste des struc-
tures isostatiques ou a faible degré d’hyperstaticité. Au
contraire, dans le cas des structures a degré élevé d’hyper-
staticité, une telle analyse devient moins indispensable,
surtout en ce qui concerne les aspects globaux du compor-
tement a la ruine.
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Fig. 14. — Fonction cumulée de R (—3X)
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Fig. 15. — Fonction cumulée de R (—6X).
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Fig. 17. — ¢, c® et R/Ry en fonction du degré d’hyperstaticité.

Sur les figures 14, 15 et 16 on trouve les distributions @
pour les trois structures @), b) et ¢). On remarquera que
le rapport R/R; diminue avec le degré d’hyperstaticité.
Cet aspect du phénoméne nous suggere que la tendance,
parfois acceptée par les techniciens d’étudier la structure
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P v M—N —3X —6X —9X
¢ =0,1 0,26-10-22| 0,35-10-6 | 0,25-10-20| 0,70-10-¢ | 0,32-10-7 | 0,23-10~2 | 0,50-10-7 | 0,61-10-2
ey =10,2 500 0,31-10-6 | 0,50-10-2 | 0,42:10-6 | 0,63-10-2 | 0,15-10-3 | 0,22-10-! | 0,38:10-3 | 0,33-10-1
¢s = 0,3 0,36-10-3 | 0,25-10- | 0,45-10-3 | 0,37-101 | 0,26-102 | 0,68-10~1 | 0,45-10-3 | 0,78-10-1
¢s = 0;1 0,14-10-22| 0,29:10-6 | 0,34:10-20| 0,10-10-5 | 0,64-10-10| 0,13-10-2 | 0,43-10-10| 0,16-10—2
& =102 50 0,27-10-6¢ | 0,47-10-2 | 0,53-10-¢ | 0,67-10-2 | 0,82:10-4 | 0,22-10-1 | 0,10-10-3 | 0,23-10-1
¢s =0,3 0,34-10-3 | 0,29-10- | 0,49-10-3 | 0,38-101 | 0,25-10-2 | 0,68-10-1 | 0,27-10-2 | 0,66-10-1
s=R/2 | 5=R/1.5| s=R[2 | 5=R/1.5| s=R/2 s=R/1.5| s=RJ2 s = R/1.5
Fig. 18. — Valeurs de la probabilité de ruine pour les structures des figures 1 et 12.
[3] Levi, F.: Le facteur de sécurité dans les problémes structu-
v M—N —3X —6X —9X rels non linéaires, Ann. Inst. Techn. du Bat. et des Tr.
Publics, n° 292, avril 1972.
500 0,046 0,084 0,080 0,268 [4] ANG, A. H. S. and M. AMIN: Probabilistic Structural
Mechanics and Engineering, Urbana, Illinois, June 1970.
250 0.016 0.096 0.104 0.232 [5] CorneLL, C. A.: Bounds on the reliability of structural
@ i i . ’ systems, J. Struct. Div. Proc. ASCE 93 (STI) 1967.
10 b
[6] EsTEVA, L.: Structural safety and probabilistic methods,
100 0,020 0,090 0,050 0,180 Technical Committee 10, ASCE-IABSE International
Conference on Planning and Design of Tall Building,
50 0,000 0,160 0,020 0,020 Lehigh Univ., Bethlehem, Penns., Aug. 1972.
[7] BensamiN, J. R. and C. A. CORNELL : Probability, Statistics
Fig. 19. — Valeurs @;q correspondant a la dixiéme classe de and Decision for Civil Engineers, Mc Graw-Hill, New

I’histogramme de R.

sur la base des caractéristiques de la structure moyenne,
peut conduire a des solutions d’autant plus inexactes et
dangereuses que la structure a un faible degré d’hypersta-
ticité.

Sur la figure 17, on a représenté en diagramme c, ¢ et
R/R; en fonction du degré d’hyperstaticité X.

On considére dans ce cas la structure de la figure 8
comme comparable a celle de la figure 1. En effet, on peut
accepter que la structure a trois colonnes soit congue
comme « plus hyperstatique » que la structure a deux
colonnes, étant donné que les sollicitations extérieures, par
rapport auxquelles on considére la sécurité, sont des forces
horizontales agissant sur la colonne de gauche. ¢, ¢ et

R/R; relatifs a une telle structure sont représentés avec
les points sur la droite du diagramme de la figure 17. Sur
la figure 18 on a finalement indiqué les valeurs de la proba-
bilit¢ de ruine pour les différentes structures et les diffé-
rents coefficients de dispersion des sollicitations exté-
rieures.

On a indiqué aussi, sur le deuxiéme tableau (fig. 19),
les valeurs @,, de @, correspondant a la dixiéme classe
de I’histogramme de la résistance R.
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