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BULLETIN TECHNIQUE DE LA SUISSE ROMANDE

102° année 22 janvier 1976 N° 2

Communication de la chaire de statique et de résistance des matériaux de I'EPFL,

professeur M.-H. Derron

Etude d’'une famille d’'éléments spatiaux de barre courbe

de section rectangulaire variable

par MAURICE-H. DERRON et JAROSLAV JIROUSEK, Lausanne (suite et fin) '

Il. Considérations statiques

I1.1 Généralités

Considérons 1’élément courbe de la figure 5a repéré dans
un systéme global de coordonnées cartésiennes x, y et z.
En un nceud quelconque L de I’élément, on admettra six
degrés de liberté :

les déplacements u, v, w selon les axes x, y, z,

les rotations o, [, y autour des axes x, y, z.

Pour simplifier 1’écriture, on définira le sous-vecteur
des déplacements nodaux généralisés (ou simplement dépla-
cements nodaux)

Uy,
YL
S.=1 "1, (20)
252

Br
447

et on attribuera le symbole s;, au sous-vecteur des forces
nodales équivalentes associé a &;,. Par ailleurs, on désignera
respectivement par {4} et {S} le vecteur des déplacements

a)

X,u

Fig. 5. — Elément spatial de barre courbe et ses forces nodales.

a) Cas fondamental : tous les nceuds sont considérés comme
nceuds de liaison et se situent sur ’axe de 1’élément.

b) Exemple d’un cas dérivé du cas fondamental : les neeuds A
et B sont seuls considérés comme nceuds de liaison. (Ils
peuvent étre excentrés par rapport a I'axe.) Les degrés de
liberté des nceuds internes (en traitillé) sont éliminés de la
relation forces-déplacements.

1 Voir Bulletin technique de la Suisse romande n° 21 du
9 octobre 1975.
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nodaux et le vecteur des forces nodales constitués respec-
tivement par tous les sous-vecteurs 8, et par tous les sous-
vecteurs sz, de 1’élément. Afin de pouvoir convenablement
tenir compte des effets du poids propre, de la variation de
température et des déformations initiales, la relation forces-
déplacements de I’élément sera exprimée sous la forme

{S}={S}+[K1{4}, 1)

ou {5’} est le vecteur des forces nodales primaires équiva-
lentes de 1’élément. On remarquera que la matrice [K] est
d’ordre 6M, ou M est le nombre de nceuds.

La situation représentée sur la figure 5a sera considérée

comme cas fondamental. Lorsque le vecteur {S‘} et la
matrice [K] sont connus, d’autres cas peuvent en étre
dérivés par des transformations appropriées. Dans les
applications concernant les structures constituées unique-
ment de barres, seuls les nceuds des extrémités intervien-
dront dans le processus d’assemblage. Par ailleurs, si a la
suite d’une forte différence entre les dimensions des sec-
tions les axes des barres ne se coupent pas aux croisements
des barres, on peut étre amené a considérer des éléments
présentant des nceuds de liaison excentrés vis-a-vis de leur
axe. L’élément type représenté sur la figure 5b satisfait a
toutes ces exigences.

On peut éliminer les déplacements nodaux 8y & 8,3
des nceuds intermédiaires en €galant les sous-vecteurs des
forces nodales équivalentes s;, en ces nceuds aux sous-
vecteurs py, de charges nodales connues. En posant, pour
simplifier,

Sn

{5}:{81} et {s}:{sl}, (22a)
Sy

on aboutit alors a la relation forces-déplacements sui-
vante :

(s} ={s}+ k1{J}, @2)

avec
{5} =S¢+ Kee Kit (Pi—S) , (22b)
(k] = Kee—Kes K3l KG; - (220)

Dans ces relations, le vecteur P; est formé de sous-
vecteurs des charges nodales données en L = 2,3 ... M—1

ke

Pi=1 1 : (23a)
I
I Pyr—1 ’

tandis que la signification des autres termes découle de la
partition suivante de la relation matricielle (21) :
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S1 =

l
Se S Kee! Kei | | AL
Sar |
SRS o =t — =l =
{S¥=1sy (= = + ! . (23b)
Il ’ ‘ Si S; Kie : K | [A:
Sy-1 I

Pour passer a 1’élément avec nceuds de liaison excentrés,
on admettra que ces nceuds sont liés aux extrémités de
I’axe par des barres rigides (fig. 5b). Les déplacements 81,
8,r et les déplacements 8,4, Sy seront alors liés par des
relations linéaires du type

81 = Tl 8Aa 8M == TAVI 8B )

ou les matrices de transformation T; et T,; découlent de
simples considérations géométriques. La matrice Ty, par
exemple, a pour expression :

1 0 0 : 0 AZl —Ayl
0 1 0 : —Azl 0 AXI
0 0 1 | Ay1 *AX]_ 0
| DR , (24a)
o o0 o0 | 1 0 0
0 0 0 0 1 0
o 0 0 , 0 0 1
avec
Axy = x1—Xx4, Adyy = y1—ya, dz1 = z1—24 . (24b)

Pour obtenir la matrice Ty, il suffit de remplacer les
indices 1 et A par M et B. En définissant maintenant les

vecteurs
) s
Y4 4 B |
{5excj {83}’ {Sexc} {SBJ’

et en appliquant le théoréme des travaux virtuels,
é {Oext}T {Sext}) = 0 {5}T {s}, on transforme'ra la rela-
tion (22) en la relation matricielle forces-déplacements
suivante :

(25a)

{Sexc} = {Eexc} + [Kexel { (Sexc} > (25)
avec
{Sexe} = [TIT {5}, (25b)
[kexe]l = [T17 [K11T1, (25¢)
et
- T, 0
(Fl= [0 TM] : (25d)

11.2  Définition du champ des déplacements

Afin d’exprimer la réalité physique aussi correctement
que possible, le champ des déplacements de I’élément doit
étre choisi de maniére conforme aux hypothéses de défor-
mation généralement admises, lesquelles se résument prin-
cipalement a ce qui suit :

a) les sections, rigides dans leur plan, peuvent gauchir
sous ’effet du cisaillement ou de la torsion,

b) les allongements des fibres paralleles a I’axe varient
linéairement entre les plans perpendiculaires a I’axe,

¢) on ne tient pas compte de I'effet du coefficient de
Poisson.

Il est évident qu’en vertu de b), le gauchissement ne
modifie pas la loi linéaire de 'allongement des fibres. Un
modéle de calcul permettant de tenir compte de I'effet du
cisaillement consiste & admettre qu’une section plane avant
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ZW, ¢

Fig. 6. — Coordonnées, déplacements et rotations globaux et
locaux.

déformation restera plane aprés déformation, mais que son
plan ne sera plus nécessairement perpendiculaire a 1’axe
déformé de la barre. Bien que ce modéle ne tienne pas
compte du gauchissement des sections, il donne déja une
image correcte des déplacements et des rotations suivant
lesquels travaillent les composantes de la résultante des
efforts internes associés a ’axe de la barre ; il permet, par
conséquent, d’obtenir une expression correcte de I’énergie
de déformation de I’élément.

Compte tenu du modéle de déformation choisi, la
déformation sera donnée de maniére univoque par trois
composantes de déplacement u,, v,, w, du centre de la
section selon les axes globaux x, y, z et par trois compo-
santes de rotation o, f3, y de la section autour de ces axes.
En choisissant en tout point nodal L six degrés de liberté
ur, vr, wr, %5, Pr, 7L, on peut définir les déplacements
Uy, Vos W, €N tout point de ’axe et les rotations «, f, y de
toute section de maniere analogue a celle que 1’on a utilisée
pour les coordonnées globales (équation (2)) :

]”al M ur, Ofl M oy,
Vol = Y Nz peti Br =) Np(@{Bu . @6a,b)
lwo, S wr, Vl L= YL

On remarquera que, conformément au modele de défor-
mation adopté, les rotations des sections sont indépen-
dantes de la déformée de I’axe.

Bien que ce ne soit pas nécessaire pour la suite des opé-
rations conduisant aux relations forces-déplacements de
I’élément, il est utile de développer les expressions des
déplacements en un point quelconque P (&, 7, () =
P (0, y*, z*) de I’élément pour mieux illustrer le présent
modéele.

Affectons d’un astérisque (fig. 6) les déplacements et les
rotations repérés dans le systeme d’axes local. Dans le
mode de déformation adopté, les déplacements locaux du
point P auront pour expression :

u* l u¥ -0 z*¥  —y¥ J or* l
v¥ =1 p¥i 4 | —z* 0 0 B*
*

wk W, y* 0 0 l y* l
a) b)
_ Myx
y* Qy* v M \
L N LI T
Qe \X" »
X
2 z
Fig. 7. — Composantes de la résultante des efforts internes

agissant sur la face positive de la section.
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d’ou I’on tire, en tenant compte de (26a, b) et en utilisant
les transformations (18) :

lul M JIIL] 0 z* —y* otL|
=Y M@ 1| =2+ 0 o [e17lp,
W &\l L e o] [

Tandis que les coordonnées x, y, z, définies par (3)
dépendent de 9M paramétres (xr, v, z, X1, V5, Zp,
X7, ¥i,zrpour L = 1,2 ... M), les déplacements u, v, w
s’expriment en fonction de 6AM paramétres seulement
(ur, ve, wr, 0, Pr, yp pour L = 1,2 ... M). L*élément
est du type superparamétrique, c’est-a-dire que la varia-
tion de la géométrie est plus générale que celle du champ
des déplacements.

I1.3  Vecteur des efforts internes de [’élément

Les composantes de la résultante des efforts internes
(que nous appellerons simplement « efforts internes ») dans

N,.
Qy*

Qz*

EF

5
-GF
6

5
“GF
6

T ; 7 GJ

0/ El,.

Yy

ou F, I et J désignent respectivement I’aire de la section,
son moment d’inertic et son moment d’inertie a la
torsion. Par ailleurs ° ., °J,4, °0,x, °Fpx, %%y, %k,« sont
les déformations initiales. Dans le cas d’une variation
uniforme A7 de la température, par exemple, ces défor-
mations prennent les valeurs suivantes: °,. = opAT,
°0ys = %0, = °844 = %,x = %k, = 0. Pour simplifier
I’écriture, nous écrirons symboliquement la relation (27)
sous la forme

(M)} = D] ({r}—{x)), Q7Y

ou {M} désigne le vecteur des efforts internes, [D] la
matrice de transformation déformations-efforts internes,
{1} le vecteur des déformations totales et {oxc} le vecteur
des déformations initiales.

La relation (27) appelle quelques commentaires. On
dv’
dx*
-+ f* représentent les composantes de la

remarquera que les déformations J,. = —p* et
s dw*
2 dx*

o
déviation de la normale » a la section par rapport a la

Fig. 8. — Positions relatives d’une section et de I'axe d’un
¢élément déformé, compte tenu de Peffet du cisaillement.
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EL.

une section de I’élément sont définies dans la figure 7.
Ces efforts seront exprimés ci-aprés en fonction des défor-
mations de 1’élément.

Puisque la longueur initiale des fibres comprises entre
deux sections consécutives de 1’élément est inégale, I’hypo-
thése que les allongements des fibres varient linéairement
entre deux sections consécutives n’implique pas une varia-
tion linéaire des allongements relatifs g, et partant des
contraintes ¢. En général, la petite déviation de la linéarité
est toutefois négligée ; en effet, elle devient insignifiante si
le rayon de courbure de I’axe non déformé de la barre est
suffisamment grand vis-a-vis des dimensions transversales
(b et h) de la section. Cette condition étant en régle géné-
rale trés bien remplie en pratique, nous admettrons que
les contraintes normales varient linéairement sur la section.
En partant des hypothéses énoncées au paragraphe précé-
dent, on peut écrire les relations suivantes :

1 du N
F ng*
dv
dxi" - Oy
dw
el A
P : @7)
W 091*
dp*
dx* He
dy* o
N\ L il

tangente ¢ a I'axe (fig. 8). Par ailleurs, le coefficient 5/6
qui multiplie le produit GF sur la diagonale principale de
la matrice [D] caractérise la correction de 1’énergie de
déformation due a la variation parabolique des contraintes
tangentielles sur la section de la barre. Enfin dans les deux
dernieres relations (27), la dérivée seconde coutumiére
de la fleche v% ou w?* est remplacée par la dérivée premiére
des rotations /* ou y*, ce qui montre que la rotation d’une
section n’a plus aucun rapport direct avec la dérivée
premiere de la ligne élastique de I’é1ément.

I1.4 Expression de la relation forces-déplacements de
l’élément
Le vecteur {x} défini au paragraphe précédent peut étre
exprimé en fonction des déplacements nodaux, au moyen
des relations (26a, b) et de la transformations (19). En
remplagant dans cette derniére les dérivées partielles
0/§x* par df gy*, on obtient :

du’®; du,

dx* dé i .

dv* dv £
L=1

s el W

dx* g "

do* do

dx* dg¢ . -
N

dp* df ho

o |~ SOV 1 = lOF Y N Bt
L=1

dy* dy

ax & .
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0 00 0] (a* M 'ocL
—y*i=[0 0 —1| Ig*i= 1411017 Y M@\
x| o 1 of |y =1 l)’L

avec
0 0 0 .
M=o o —1| et NL({):‘IN;;‘;). (28a)
0o 1 0

Si P'on utilise ces expressions pour définir {K}, on
aboutit a

M [cNy [O1F | Ny, [4] [O1F =
______ e 8L= ZbL'SL- (28)
0 Ieng [O]F -1

Ecrivons encore cette derniére relation en introduisant
le vecteur { A } des déplacements nodaux de 1’élément :

{x} = [BI{4), (29)
S
Sm
avec {4} = ‘_6;“ (292)
B
et
[B] = [by by | b+ - - byra] . (29b)

Pour calculer Ieffet du poids propre du matériau, de
poids spécifique p, introduisons maintenant les vecteurs

Yz )
{y}=31vg¢ e {do}=1voy.
Yz Wo]

Les éléments du premier vecteur sont les composantes du
poids spécifique y selon les axes globaux x, y et z. Le
second vecteur peut encore s’écrire a partir de (26a), en
fonction de { 4 } :

{dy} = [crcar)Ca- el {4} = [C1{4}, (30)
avec
1 0 0 0 0 0
c,=N,| O 1 0 0 0 0o 1. (30a)
0 0 1 0 0 0

Si ’on fait appel aux expressions (21) et (27) a (30), le

vecteur des forces nodales primaires équivalentes {3‘} et la
matrice de rigidité [K] de I’élément s’obtiennent aisément
par I’'un des procédés bien connus, par exemple, en choisis-
sant le théoréme de stationnarité de 1’énergie potentielle
totale I7 :

oIl = 6V + 6U=0.

Dans ce cas, la variation du potentiel des forces exté-
rieures et la variation de 1’énergie de déformation s’écrivent
sous la forme

l
SV = —8{4y{s)—[o{d,)"bh{y}ds,
o

18

Par substitution des expressions (21), (27)", (29) et (30)
dans ces relations, on obtient finalement :

‘l l
{8} = — [ (D) {oxc} ds — [ [CI” {7} s,

14
(K] = [ (B D] [B) ds .

Au moyen de la relation (17), il est aisé de remplacer
les intégrales suivant I’axe de 1’élément par des intégrales
selon la coordonnée curviligne & entre les bornes —1 et
+1, de sorte que I’on obtient finalement :

+1 +

1
(5} = —fz[B]T [D]{oK) d¢ —fxbh [CI7{y}d¢,| (31a)
-1

-1

+1
[K] = f t [B]? [D] [B] dé . (31b)
-1

On calcule numériquement les intégrales en appliquant
par exemple la quadrature de Gauss. Notons que les
quantités F, I,., L. et J de la matrice [D] s’obtiennent a
partir des dimensions b et & des sections, dimensions que
I’on trouve par 'application des relations (7) ou (12).

I1.5 Calcul des efforts internes

Une fois les déplacements nodaux {A} connus, les
efforts internes des éléments peuvent étre calculés au
moyen des relations (27) et (28), d’ou I’on tire :

M
{M}:—[D]{OK}+[D]ZbL8L' 32
L=1

Quand la relation {S} = {S} 4 [K]{4} ne sert que de
point de départ pour développer les relations forces-
déplacements telles que (22) ou (25), la résolution de
I’assemblage des éléments ne fournit que les sous-vecteurs
81, 8y ou 8, 8z. En partant de (23b) et en remarquant
que {0} = [T]{0exc} (oU la matrice [7] est définie par les
relations (24a) et (25d)), on trouve :

8
x }:{5;=[T1{5exc}, (332)
M
™
| (= K S KE{8) =K} Sim Kt KEIT){Sexc)-
lsM_l (33b)

Bien que la famille d’éléments présentée dans cette étude
donne généralement avec une trés bonne précision les
déplacements et les forces nodales des éléments pour tous
les M =3, I’expérience montre que les efforts internes
obtenus avec les membres inférieurs de la famille (élément
quadratique M = 3 et élément cubique M = 4) ne sont
pas suffisamment précis, & moins que les éléments soient
relativement courts. Ceci est dii au fait que les fonctions
de base de ces éléments ne sont pas suffisamment riches
pour représenter convenablement certaines variations des
efforts internes. Il est intéressant de remarquer que, dans
ces cas-la, on obtient toutefois d’excellents résultats en
partant des forces nodales équivalentes et en appliquant
les conditions d’équivalence statique. Pour les efforts
internes aux extrémités d’un élément, on obtient par
exemple les formules suivantes :
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{My} = —[01]1s, = —[T1][O1] 54, (34a)
{MM} = [Oul sy = [Tul [On] S5 . (34b)

La bonne qualité des résultats obtenus de cette maniére
s’explique par le fait que les forces nodales intervenant
dans ces relations sont plus directement optimisées par
I’application du théoréme variationnel (017 = 0) sur
lequel se fondent les calculs.

IIl. Applications
III.1  Programme pour ’ordinateur

En partant de la théorie développée aux chapitres I et
II, nous avons écrit un sous-programme standard inclus
sous le nom ELEMO3 dans la bibliothéque des éléments
du programme ELFIN *,

Le sous-programme ELEMO3 permet de choisir le
nombre de nceuds M entre 3 et 6; il permet par la suite
de traiter les éléments quadratique, cubique, quartique et
quintique. Le sous-programme ¢limine automatiquement
les degrés de liberté associés aux nceuds intermédiaires de
I’élément et, au besoin, effectue les transformations rela-
tives a I’excentricité des nceuds de liaison de 1’élément
(fig. 5b). Le calcul des efforts internes s’effectue de deux
maniéres différentes (relations (32) et (34)). Le nombre de
points de Gauss pour l'intégration numérique peut étre
spécifié par lutilisateur, a défaut de quoi un nombre
standard est adopté en fonction de M. Le sous-programme
permet d’éviter un calcul répété des éléments dans le cas
ou la structure comprend plusieurs éléments identiques
dont ’emplacement dans la structure différe par un mode
de déplacement rigide.

Pour éviter a l'utilisateur de devoir spécifier un nombre
relativement élevé de nceuds géométriques L et L”, le sous-
programme permet de définir I’¢lément de maniére plus
simple et mieux adaptée a la pratique. Il suffit d’indiquer
les données suivantes (fig. 9) :

a) les coordonnées des points nodaux L = 1,2 ... M
situés sur I’axe de I’élément ;

b) les largeurs b et les hauteurs / des sections nodales ;

c¢) le «dévers » représenté par I’angle ¢ entre le plan xy et
I’axe local y* des sections nodales.

Le sous-programme ELEMO3 génére alors automatique-
ment les nceuds géométriques L’ et L” de maniére a rendre
les sections nodales perpendiculaires a 1’axe de I’élément.

Plan @ 1 au plan x,y

Fig. 9. — Définition géométrique d’une section nodale pour
le sous-programme ELEMO3. L’utilisateur spécifie les valeurs xy,,
YL, zr, et by, hr, or. Les nceuds géométriques L’ et L” sont
générés automatiquement par le sous-programme.

* ELFIN est un programme général pour la méthode des
¢léments finis. Il a été développé dans les années 1973-1974 a
la chaire de statique et de résistance des matériaux pour les
besoins de la recherche [8].
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Les relations mathématiques relatives & cette phase de
calcul sont données dans I’Appendice.

1I1.2  Etude de la convergence

Pour examiner ’efficacité de la famille d’éléments propo-
sée, nous avons étudié la poutre hélicoidale de section
constante représentée a la figure 10, sous deux cas de
charge :

a) le poids propre de la poutre y = 2,5 t/m?,

b) une force isolée verticale P = 10 t au milieu de la
longueur de la poutre.

Les figures 11 et 12 montrent les diagrammes typiques
des efforts internes obtenus pour chacun de deux cas de
charge.

L’étude de la convergence a été effectuée par compa-
raison des résultats obtenus avec des éléments quadratiques
(M = 3), cubiques (M = 4), quartiques (M = 5) et
quintiques (M = 6) et pour un nombre N d’éléments
également variable. Les tableaux 1 et 3 montrent quelques
résultats caractéristiques de cette étude. Leur analyse
montre clairement qu’avec les éléments quartiques et
quintiques, des résultats pratiquement exacts s’obtiennent
déja avec un nombre tres restreint d’éléments. Par contre,
des éléments quadratiques ou cubiques doivent étre
pris en plus grand nombre pour donner des résultats
de la méme qualité. La raison tient non seulement a la
relative pauvreté des fonctions de déplacements de ces
¢léments, mais également a leur impossibilité de représenter
géométriquement avec une précision suffisante les éléments
obtenus par une forte distorsion de I’élément parallélépi-
pede de base. L’expérience montre que les éléments quadra-
tique et cubique sont aussi notablement moins économiques
sur la plan de la préparation des données et du temps de
calcul.

Les efforts internes indiqués dans les tableaux 1 et 3 ont
été calculés a partir des relations (34). La supériorité de
ce mode de calcul vis-a-vis du calcul direct des efforts a
partir des déformations (relations (32)), est mise en évi-

20097 (cm)

Fig. 10. — Poutre hélicoidale. Exemple considéré dans I'étude
de la convergence.
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TABLEAU 1 TABLEAU 3
Etude de la convergence. Poutre hélicoidole (fig. 10) Etude de la convergence. Poutre hélicoidale (fig. 10)
Effet du poids propre y = 2,5 t|m® Effet d’une force isolée P = 10t au milieu de la poutre.
Variables A & 2 4 8 12 16 32 Unités Variables " N 2 4 8 12 16 32 Unités
3 -0,2328 -0,3507 -0,3634 -0,3658 -0, 3669 3 -0,2808 -0,8454 -1,4136 -1,4628 -1,4721 -1,4764
w 4 -0,3644 -0,3670 -0,3670 -0,3670 -0,3670 W 4 -1,1184 -1,4674 -1,4767 -1,4767 -1,4767 -1,4767
(8 = 120°) 5 -0,3670 | -D,3670 | -0,3670 | -0,3670 Ll (B = 120°) 5 | -1,4550 |-1,4764 |-1,4767 |-1,4767 i
5] -0,3670 -0,3670 6 -1,4737 -1,4766 -1,4767
3 2,060 2,158 2,147 2,152 2,153 2,156 3 5,054 4,748 4,586 4,580 4,582 4,584
Nrax 4 2,138 2,152 2,157 2,157 2,157 2,158 t b 4 4,638 4,578 4,586 4,586 4,586 4,587
(B = 240°) s 2,188 2,158 2,158 2,158 2,158 (B = 240°%) 5 4,609 4,588 4,587 4,587 4,587 t
6 2,160 2,158 2,158 6 4,591 4,587 4,587
3 1,688 1,827 1,628 1,621 1,617 1,613 3 2,376 2,422 2,509 2,502 2,495 2,488
CZ.P,{ 4 1,625 1,616 1,613 1,612 1,612 1,612 /A Qz'rr\ax 4 2,500 2,498 2,486 2,485 2,484 . 2,484
(8=00 | 5 1,611 | 1,612 | 1,612 | 1,612 (8 = 0% 5 | 2,452 | 2,482 | 2,480 | 2,484 | 2,484 t
6 1,612 1,612 6 2,478 2,484 2,484
3 0,172 0,251 0,256 0,255 3 0,115 0,530 0,745 0,755 0,754 0,749
.V_rﬂ, 4 0,270 0,257 0,255 0,255 Tmax 4 0,809 0,789 0,752 0,749 0,748 0,747
(8 = 240°) 5 0,255 0,255 0,255 tm (B = 240°) 5 0,711 0,746 0,747 0,747 0,747 tm
6 0,255 0,255 6 0,736 0,747 0,747
3 0,633 0,7%8 0,813 0,815 0,816 3 4,706 5,351 6,008 6,066 6,077 6,082
4 0,814 0,816 0,816 0,816 0,816 My'nﬂx 4 5,803 6,074 6,082 6,082 6,082
( S 0,818 0,816 0,816 0,816 tm (g = 120%) 5 6,070 6,081 6,082 6,082 6,082 tm
6 0,816 0,816 6 6,079 6,082 6,082
3 -1,515 -1,704 -2,025 -2,054 -2,058 -2,060 3 -2,344 -3,565 -4,739 -4,840 -4,857 -4,865
it 4 |-1,815 |-2,088 | -2,059 [-2,080 | -2,061 | -2,060 LY 4 |-a,017 |-a,826 |-4,861 |-4,864 [-a,865 | -4.865
(8 =0°) 5 | -2,027 -2,060 -2,0860 -2,060 -2,060 tm (g = 0%) 5 | -4,743 -4,863 -4,865 -4,865 -4,865 tm
6 -2,060 -2,060 6 -4,862 -4,865 -4,865
TABLEAU 2 TABLEAU 4
Comparaison de deux modes de calcul des efforts internes. Comparaison de deux modes de calcul des efforts internes.
Moment M.y de la poutre hélicoidale (fig. 10) Moment M umox de la poutre hélicoidale (fig. 10)
chargée par son poids propre (y = 2,5 t/m®) soumise a une force isolée P = 10t au centre.
Equation Hr\' 2 4 8 12 16 32 Equation | N 2 4 8 12 16 32
3 -0,078 0,403 0,771 0,811 0,817 0,817 3 -1,456 2,652 5,349 5,822 5,957 6,059
) 4 | o584 | 0,875 | 0,825 | 0,818 | 0,817 | 0,816 (32) 4 ?'DBD B'PDS E'Dﬂ? 6080 E'UBF’ 6,082
5 1,009 0,827 0,816 0,816 0,816 5 6,657 6,118 6,082 6,082 6,082
6 | 0,8% [ 0,616 | 0,816 = £ 200 S L e
3 0,514 0,633 0,798 0,613 0,815 0,815 = o 5,351 Syl 6,068 5.7 6,082
. 0,763 | 0,814 | 0,816 | 0,816 | 0,816 | 0.816 I ?'303 e T = | - EC |
5 | 0,813 [ 0,816 | 0,816 | 0.816 | 0,816 5 B.070. Il 16,08); |l 6082 | 16,082 | 6,002
& [ o816 | 0,818 | 0,816 8 6,078 || &.082 | e.082
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Fig. 11. — Efforts internes de la poutre hélicoidale de la
figure 10. Effet du poids propre y = 2,5 t/m3.

dence dans les tableaux 2 et 4. Conformément au raison-
nement tenu au paragraphe II.3, le gain de préci-
sion est appréciable surtout dans les cas ou la structure
considérée est remplacée par un petit nombre d’éléments
du type quadratique ou cubique.

I11.3  Calcul d’une rampe hélicoidale

La figure 13 montre une autre application pratique de la
famille d’éléments proposée. Le systéme porteur est formé
d’une poutre hélicoidale encastrée aux extrémités et d’un
systtme d’entretoises radiales disposées de maniére a
donner un dévers radial de 6 % et surélevées a chaque
intersection de 20 cm par rapport & 'axe de la poutre
hélicoidale ; ’angle ¢ des axes locaux y* des sections des
entretoises est égal a la pente longitudinale de la rampe,
et angle ¢ des axes locaux y* des sections de la poutre
correspond au dévers radial de la rampe.

Pour le calcul, la structure a été décomposée en 15 élé-
ments. Pour les 8 trongons de la poutre hélicoidale, nous
avons appliqué les éléments quintiques (M = 6), tandis
que pour les 7 entretoises nous nous sommes contentés
d’¢léments quartiques (M = 5). Le calcul a été effectué
pour plusieurs cas de charge. La figure 14 montre par
exemple les diagrammes des efforts internes engendrés par
une force verticale 2 = 1 t appliquée au nceud 6.

Pour étudier I’effet de I’excentricité des poutres aux
intersections, nous avons également calculé la méme struc-
ture en admettant que les axes des entretoises coupent I’axe
de la poutre hélicoidale. Les résultats obtenus sont repré-
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Fig. 12. — Efforts internes de la poutre hélicoidale de la
figure 10. Effet d’une force isolée P = 10 t au milieu de la poutre.

sentés en traitillé dans la figure 14. On constate notamment
une trés forte diminution des efforts normaux dans toutes
les barres. Remarquons qu’en renversant le sens de I’ex-
centricit€¢ (entretoises surbaissées par rapport a la poutre
hélicoidale) et en la choisissant suffisamment grande, on
parviendrait a provoquer des efforts de compression dans
les barres.

IV. Remarques finales

Bien que, pour ne pas allonger cet exposé, nous ayons
renoncé a montrer d’autres applications pratiques, 1'in-
térét de la famille d’éléments proposée parait évident. On
objectera peut-étre que nous nous sommes bornés aux

Fig. 13. — Rampe hélicoidale. La numérotation des nceuds
correspond a la subdivision de la structure en éléments finis.
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Fig. 14. — Efforts internes engendrés dans la rampe hélicoidale de la figure 13 par une force P = 1 t appliquée au nceud 6.

entretoises surélevées de 20 cm par rapport a ’axe de la poutre hélicoidale

—.—— les axes des entretoises coupent I’axe de la poutre hélicoidale
— — —— entretoises surabaissées de 20 cm par rapport & I'axe de la poutre hélicoidale

¢léments de section rectangulaire, tandis que dans la pra-
tique on sera certainement amené a considérer également
d’autres formes de section. Il est facile, toutefois, de lever
cette restriction si, au lieu des nceuds géométriques L’ et
L”, on spécifie directement les valeurs nodales de I’angle ¢
et des constantes F, Fy, F,., I,., I« et J, que I'on fait
ensuite varier en fonction de la coordonnée curviligne ¢ le
long de I'axe de I’élément. Les résultats de I’étude de
cette famille généralisée d’élements de section quelconque
seront publics dans notre prochain article.

A coté des éléments basés sur la méthode directe des
rigidités, nous avons également essayé, en partant de la
méme représentation géométrique, de développer la rela-
tion force-déplacement par inversion de la relation déplace-
ments-forces. Bien que ce procédé puisse paraitre préfé-
rable pour une barre, puisque la seule approximation
consiste alors dans la représentation de la géométrie de
I’élément, il est plus difficile & mettre en ceuvre et plus

22

coliteux en temps de calcul lorsque les intégrales doivent
étre effectuées numériquement. Ceci provient du fait que
I’expression de I'effet des charges locales implique I’évalua-
tion numérique d’une série d’intégrales entre les bornes
&= —1et ¢ = &g, ou la seconde borne, variable, prend
successivement les valeurs des coordonnées de tous les
points de Gauss lorsqu’on intégre sur la longueur totale
de I’¢lément.

V. Appendice

Dans certains cas pratiques, on trouve avantage a définir
la géométrie de I’élément en spécifiant les angles ¢, et les
dimensions by, &y, des sections nodales au lieu des coordon-
nées des neeuds auxiliaires L” et L”. Pour se ramener au cas
fondamental, il s’agira de déterminer la position des
nceuds L et L” correspondants, ou de calculer directement
les vecteurs
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xL:—xLI Xpr—X,
{BL} = N X" =P { CL} = S V" =YL (»
ZL'—ZLI Zyr—2Zyp,

qui constituent les matrices géométriques [Gp] et [Gc]
(équations (4) et (4a)). Les relations nécessaires pour ce
passage sont données ci-aprés. Remarquons encore qu’en
donnant le « dévers » ¢, on ne peut pas dépasser le com-

# N/
plément a 5 de l'angle de la tangente par rapport au

plan xy (il est facile de s’en convaincre par une simple
analyse géométrique). L’angle ¢ doit alors satisfaire a la
condition suivante :

— arctg L (35)

2 2’
'\/tzL + 1L

ol tyr5, yg, et 7, sont les coordonnées du vecteur-tangent,

brd
=
|(p|=2

ZK

lsz M M JxK

g 7 —> 7

L=ty = NK(foL)”K=ZNK(f=éL) yr¢. (36)
ItzL =1 jra=i l

V.1 Calcul des vecteurs { By, }

Les ¢léments des vecteurs {BL} peuvent étre calculés a
partir des relations suivantes :

1
a) Zy—zp = 3 by sin ¢r, , 37
—b b2—4
b) yy—yL= #S avec + \/pour tx§O , (38)
et ou

a=ti + 12, b=ty -t bysingL,

1 (38a)
=3 b2 (13 sin® o —12;, cos® gr) .

On remarquera que dans la relation (38), la racine carrée
est nulle si 7, = 0.

c) Xy —XL = —?y' yr—ryo) —ti (zy—z1) (39)
L L

ou encore, si 7, = 0,

’ _ b\?
Xp—XL =+ \/<§> —(y _)’L)Z—(ZL'_ZL)Z[ 40)

avec + \/—pour ty 20.

La formule (38) n’est pas applicable si 7,5, = 1,5, = 0,
d’oui la restriction suivante : en aucun des points nodaux L
I’axe de I’élément ne doit étre paralléle a ’axe z.

Notons que la relation (37) découle directement de la
figure 9. Par ailleurs, les relations (38) a (40) s’obtiennent
par la résolution du systéme de deux équations vectorielles :

> > >
l'(r[/ _rL) = 0’

et

R 1
|"L'—’L| = ibl"
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dont la premiére exprime le fait que le nceud auxiliaire L’
se trouve dans un plan normal a ’axe de I’élément et la
seconde donne la longueur du vecteur LL’.

V.2 Calcul des vecteurs { Cy,}

Les coordonnées du vecteur { Cy} s’obtiennent au moyen
— —
du produit vectoriel #;, X By, le vecteur ainsi défini étant

1
ramené a la longueur 3 Ayz. On trouve alors :

l D1,
1 IIL
{CL‘:EFLlDyL 5 (41)
zL
avec
DxL fyL'BzL_ tzL'ByL
DyL (== sz'BxL°'tzL'BzL et DL= ‘\/D:%L—}—D;L-*-DZZL %
D,y tzr Byr— yL'Ba:Ll (41a,b)
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