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BULLETIN TECHNIQUE DE LA SUISSE ROMANDE 102' année 22 janvier 1976 N° 2

Communication de la chaire de statique et de résistance des matériaux de l'EPFL,
professeur M.-H. Derron

Etude d'une famille d'éléments spatiaux de barre courbe
de section rectangulaire variable
par MAURICE-H. DERRON et JAROSLAV JIROUSEK, Lausanne (suite et fin) '

II. Considérations statiques

II. 1 Généralités

Considérons l'élément courbe de la figure 5a repéré dans

un système global de coordonnées cartésiennes x, y et z.
En un nœud quelconque L de l'élément, on admettra six
degrés de liberté :

les déplacements u, v, w selon les axes x, y, z,
les rotations a, ß, y autour des axes x, y, z.

Pour simplifier l'écriture, on définira le sous-vecteur
des déplacements nodaux généralisés (ou simplement
déplacements nodaux)

'
«L

Vl

wL

a-L

ßt
11

et on attribuera le symbole sL au sous-vecteur des forces
nodales équivalentes associé à 8L. Par ailleurs, on désignera
respectivement par {A) et {S} le vecteur des déplacements

a)

(20)

CJ5

z.w

fr* m G

b)

a. --j_'
i

« i «•>:L x>~<
i -

z.w

CJ>

3''
Fig. 5. — Elément spatial de barre courbe et ses forces nodales.

a) Cas fondamental : tous les nœuds sont considérés comme
nœuds de liaison et se situent sur l'axe de l'élément.

b) Exemple d'un cas dérivé du cas fondamental : les nœuds A
et B sont seuls considérés comme nœuds de liaison. (Ils
peuvent être excentrés par rapport à l'axe.) Les degrés de
liberté des nœuds internes (en traitillé) sont éliminés de la
relation forces-déplacements.

1 Voir Bulletin technique de la Suisse romande n° 21 du
9 octobre 1975.

nodaux et le vecteur des forces nodales constitués
respectivement par tous les sous-vecteurs 6^ et par tous les sous-
vecteurs sL de l'élément. Afin de pouvoir convenablement
tenir compte des effets du poids propre, de la variation de
température et des déformations initiales, la relation forces-
déplacements de l'élément sera exprimée sous la forme

{S} {S)+[K]{A} (21)

où {£} est le vecteur des forces nodales primaires équivalentes

de l'élément. On remarquera que la matrice [K] est
d'ordre 6M, où M est le nombre de nœuds.

La situation représentée sur la figure 5a sera considérée

comme cas fondamental. Lorsque le vecteur {S} et la
matrice [K] sont connus, d'autres cas peuvent en être
dérivés par des transformations appropriées. Dans les

applications concernant les structures constituées uniquement

de barres, seuls les nœuds des extrémités interviendront

dans le processus d'assemblage. Par ailleurs, si à la
suite d'une forte différence entre les dimensions des
sections les axes des barres ne se coupent pas aux croisements
des barres, on peut être amené à considérer des éléments
présentant des nœuds de liaison excentrés vis-à-vis de leur
axe. L'élément type représenté sur la figure 5b satisfait à
toutes ces exigences.

On peut éliminer les déplacements nodaux 62 à 6M_X
des nœuds intermédiaires en égalant les sous-vecteurs des
forces nodales équivalentes sL en ces nœuds aux sous-
vecteurs pL de charges nodales connues. En posant, pour
simplifier,

alors à la relation forces-déplacements sui-on aboutit
vante :

s} {s}+[k]{ô},
avec

{s} St + KuKïl(Pt-SÙ

(22)

(22b)

(22c)

Dans ces relations, le vecteur Pt est formé de sous-
vecteurs des charges nodales données en L 2,3 M—1

Pi

Ps
I

l

I

Pm-

(23a)

tandis que la signification des autres termes découle de la
partition suivante de la relation matricielle (21) :
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(23b)

Pour passer à l'élément avec nœuds de liaison excentrés,
on admettra que ces nœuds sont liés aux extrémités de

l'axe par des barres rigides (fig. 5b). Les déplacements 61;

8M et les déplacements 5^, 8B seront alors liés par des

relations linéaires du type

5i 7"i §a, §m TM 5B

où les matrices de transformation 7\ et TM découlent de

simples considérations géométriques. La matrice 7"i, par
exemple, a pour expression :

(24a)?"!

- 1

0

0

0

1

0

0

0
1

1

1

1

0

-3
4vi -

Azx -Ây,
0 Axx

-Axx 0

0 0 0
1

1

î 0 0

0 0 0 1 0 1 0

L o 0 0 1 0 0 1

avec

zfxi *1- xA » A) 1 JV-ya A."l zi— ?A ¦ (24b)

Pour obtenir la matrice TM, il suffit de remplacer les

indices 1 et A par M et B. En définissant maintenant les

vecteurs

uexc / (s '

Sß
(25a)

et en appliquant le théorème des travaux virtuels,
<5 {ôext}T {sex.t} — S {ô)T [s], on transformera la relation

(22) en la relation matricielle forces-déplacements
suivante :

avec

et

\ °exc | i °exc / i lAexeJ \ ^exc f » (25)

3xc3 mT{s}, (25b)

[fcexc] [T]T [k] [T] (25c)

[21
Tx0 "

0 Tu
(25d)

II. 2 Définition du champ des déplacements

Afin d'exprimer la réalité physique aussi correctement

que possible, le champ des déplacements de l'élément doit
être choisi de manière conforme aux hypothèses de
déformation généralement admises, lesquelles se résument
principalement à ce qui suit :

a) les sections, rigides dans leur plan, peuvent gauchir
sous l'effet du cisaillement ou de la torsion,

b) les allongements des fibres parallèles à l'axe varient
linéairement entre les plans perpendiculaires à l'axe,

c) on ne tient pas compte de l'effet du coefficient de
Poisson.

Il est évident qu'en vertu de b), le gauchissement ne
modifie pas la loi linéaire de l'allongement des fibres. Un
modèle de calcul permettant de tenir compte de l'effet du
cisaillement consiste à admettre qu'une section plane avant

?y, v, 15 x\u" ce

x.u.«
I(o.o.o)

r.v./s
(0.y*z>)

z ,w",j™

Fig. 6. — Coordonnées, déplacements et rotations globaux et
locaux.

déformation restera plane après déformation, mais que son
plan ne sera plus nécessairement perpendiculaire à l'axe
déformé de la barre. Bien que ce modèle ne tienne pas
compte du gauchissement des sections, il donne déjà une
image correcte des déplacements et des rotations suivant
lesquels travaillent les composantes de la résultante des
efforts internes associés à l'axe de la barre ; il permet, par
conséquent, d'obtenir une expression correcte de l'énergie
de déformation de l'élément.

Compte tenu du modèle de déformation choisi, la
déformation sera donnée de manière univoque par trois
composantes de déplacement u0, v0, w0 du centre de la
section selon les axes globaux x, y, z et par trois composantes

de rotation a, ß, y de la section autour de ces axes.
En choisissant en tout point nodal L six degrés de liberté

"l, vl, wL, aL, ßL, yL, on peut définir les déplacements
tt0, v0, w0 en tout point de l'axe et les rotations a, ß, y de

toute section de manière analogue à celle que l'on a utilisée
pour les coordonnées globales (équation (2)) :

v„ \
M Ul at

JV/3 Vl etß

/.= WL. r

M «l\
Y.Nr.iO ßL

L=\ Al.
(26a, b)

On remarquera que, conformément au modèle de
déformation adopté, les rotations des sections sont indépendantes

de la déformée de l'axe.
Bien que ce ne soit pas nécessaire pour la suite des

opérations conduisant aux relations forces-déplacements de
l'élément, il est utile de développer les expressions des

déplacements en un point quelconque P(F, ri, O —
P(0, y*, z*) de l'élément pour mieux illustrer le présent
modèle.

Affectons d'un astérisque (fig. 6) les déplacements et les
rotations repérés dans le système d'axes local. Dans le
mode de déformation adopté, les déplacements locaux du
point P auront pour expression :

K* 3*
V* v0* ¦ +

W* k
a) \ \

a,»

\ o,.
¦

0 -¦:¦¦ -y* 1 a

z* 0 0

y* 0 0 1 y

b)
AA A

V**-

<

M*.
Mv*

K s^3k à„X*
1

Fig. 7. — Composantes de la résultante des efforts internes
agissant sur la face positive de la section.
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d'où l'on tire, en tenant compte de (26a, b) et en utilisant
les transformations (18) :

4=|]a3)|
Ul

wL)

+ [0]
0

ayr[6]

Tandis que les coordonnées x, y, z, définies par (3)
dépendent de 9M paramètres (xL, yL, zL, x'L, y'L, z'L,
x"L, y'I, z'l pour L 1, 2 M), les déplacements u, v, w
s'expriment en fonction de 6M paramètres seulement
("z,, vL, wL, aL, ßL, yL pour L 1, 2 M). L'élément
est du type superparamétrique, c'est-à-dire que la variation

de la géométrie est plus générale que celle du champ
des déplacements.

II. 3 Vecteur des efforts internes de l'élément
Les composantes de la résultante des efforts internes

(que nous appellerons simplement « efforts internes ») dans

3

î ~*

My.

3.

EF

-GF

-GF

GJ

Ely*

une section de l'élément sont définies dans la figure 7.
Ces efforts seront exprimés ci-après en fonction des
déformations de l'élément.

Puisque la longueur initiale des fibres comprises entre
deux sections consécutives de l'élément est inégale, l'hypothèse

que les allongements des fibres varient linéairement
entre deux sections consécutives n'implique pas une variation

linéaire des allongements relatifs e, et partant des
contraintes a. En général, la petite déviation de la linéarité
est toutefois négligée ; en effet, elle devient insignifiante si
le rayon de courbure de l'axe non déformé de la barre est
suffisamment grand vis-à-vis des dimensions transversales
(b et h) de la section. Cette condition étant en règle générale

très bien remplie en pratique, nous admettrons que
les contraintes normales varient linéairement sur la section.
En partant des hypothèses énoncées au paragraphe précédent,

on peut écrire les relations suivantes :

EL..

r

3

du0

dx*
dv0

dx*
dw0

dx*
dot*

dx*
dß*
~dx*

dy*
dx*

On 3
3*

- 3
°3

3
°KZ. J

(27)

où F, I et J désignent respectivement l'aire de la section,
son moment d'inertie et son moment d'inertie à la
torsion. Par ailleurs %.*, °(>y*, °ôz*, °9X*, °k,,*, °kz* sont
les déformations initiales. Dans le cas d'une variation
uniforme AT de la température, par exemple, ces
déformations prennent les valeurs suivantes : °sx, aTAT,
°ôyt °ôz* °9xt °k,j* °Kzt 0. Pour simplifier
l'écriture, nous écrirons symboliquement la relation (27)
sous la forme

{M}= [D]({k}-{°k}), (27)'

où {M} désigne le vecteur des efforts internes, [D] la
matrice de transformation déformations-efforts internes,
{ k } le vecteur des déformations totales et { °/c} le vecteur
des déformations initiales.

La relation (27) appelle quelques commentaires. On

remarquera que les déformations ô„* —- — y* et
dw* dx*

ôz, —— + ß* représentent les composantes de la

déviation de la normale n à la section par rapport à la

/ i

3ï
Oy»

L
y.V-

tangente t à l'axe (fig. 8). Par ailleurs, le coefficient 5/6
qui multiplie le produit GF sur la diagonale principale de
la matrice [D] caractérise la correction de l'énergie de
déformation due à la variation parabolique des contraintes
tangentielles sur la section de la barre. Enfin dans les deux
dernières relations (27), la dérivée seconde coutumière
de la flèche v* ou w* est remplacée par la dérivée première
des rotations ß* ou y*, ce qui montre que la rotation d'une
section n'a plus aucun rapport direct avec la dérivée
première de la ligne élastique de l'élément.

II.4 Expression de la relation forces-déplacements de
l'élément

Le vecteur {/c} défini au paragraphe précédent peut être
exprimé en fonction des déplacements nodaux, au moyen
des relations (26a, b) et de la transformations (19). En
remplaçant dans cette dernière les dérivées partielles
ôj§x* par djcix*, on obtient :

Fig. 8. — Positions relatives d'une section et de l'axe d'un
élément déformé, compte tenu de l'effet du cisaillement.

du*

dx*

dv*

dx*

dw%

dx*

da*
dY*

dß*
dA*

dy*
dx*

c[0Y

c [G?

du0

dv0

dt
dw„

W
da

di
dß

d^

dy

-c[o]*£jv£(0

c[G]TYiNi(ö
L=l

Ul

wL

a-L

7l

Bulletin technique de la Suisse romande • 102e année • No 2 - 22 janvier 1976 17



o) "0 0 0" fa*'
-y*\

ß*\
0 0 -1 Iß*
0 1 0_ 1 7*

avec

' 0 0 0 "

[A] 0 0 -1 el

0 1 0

[Auer^NLiO
y-L

ßL

et ^(S ^. (28a)
dç

Si l'on utilise ces expressions pour définir {k}, on
aboutit à

Ä \cN'L [0}T | 7VL [A] [<9F] «

L=ll 0 j cTVa©]2 J l=i
Ecrivons encore cette dernière relation en introduisant
le vecteur {A } des déplacements nodaux de l'élément :

{k} =[B]{A}, (29)

avec

et

{A)

Si

8m

8m-i

[B] [t>i bM\bz---Am-i] •

(29a)

(29b)

Pour calculer l'effet du poids propre du matériau, de

poids spécifique y, introduisons maintenant les vecteurs

{y}
3 «

7v et {3 1

v

7z w

Les éléments du premier vecteur sont les composantes du
poids spécifique y selon les axes globaux x, y et z. Le
second vecteur peut encore s'écrire à partir de (26a), en
fonction de { A } :

{3= lciCM\c2---cM.1]{A}= [C]{A], (30)

Cl Nr.
10 0 0 0 0

0 10 0 0 0

0 0 10 0 0

(30a)

Si l'on fait appel aux expressions (21) et (27) à (30), le

vecteur des forces nodales primaires équivalentes {S} et la
matrice de rigidité [K] de l'élément s'obtiennent aisément

par l'un des procédés bien connus, par exemple, en choisissant

le théorème de stationnarité de l'énergie potentielle
totale FI :

sn ôv+ su o.

Dans ce cas, la variation du potentiel des forces
extérieures et la variation de l'énergie de déformation s'écrivent
sous la forme

SV= -S{A}T{S}-fs{d0)Tbh{y}ds,
o

l

SU=jS{îc}r{M)ds.

Par substitution des expressions (21), (27)', (29) et (30)
dans ces relations, on obtient finalement :

i t

{S} -J[B}T[D]{°K}ds-fbh[C]T{y}ds,
0 o

l

[K]=J[B]T[D][B]ds.
0

Au moyen de la relation (17), il est aisé de remplacer
les intégrales suivant l'axe de l'élément par des intégrales
selon la coordonnée curviligne S, entre les bornes — 1 et
+1, de sorte que l'on obtient finalement :

{S}=-ft[B)T[D]{°K}dÇ-ftbh[CF{y}dÇ,
-i -i

+i

[K)=ft[Bf[D][B]dÇ.

(31a)

(31b)

On calcule numériquement les intégrales en appliquant
par exemple la quadrature de Gauss. Notons que les

quantités F, Iy*, Iz» et J de la matrice [D] s'obtiennent à

partir des dimensions b et h des sections, dimensions que
l'on trouve par l'application des relations (7) ou (12).

II. 5 Calcul des efforts internes

Une fois les déplacements nodaux {A} connus, les
efforts internes des éléments peuvent être calculés au
moyen des relations (27) et (28), d'où l'on tire :

{M} -[/>]{ °K m 2 bL5r (32)

Quand la relation {S} {S} + [K] {A} ne sert que de

point de départ pour développer les relations forces-
déplacements telles que (22) ou (25), la résolution de
l'assemblage des éléments ne fournit que les sous-vecteurs
Si. 6M ou S^, 8B. En partant de (23b) et en remarquant
que {S} [T] {Sexc\ (où la matrice [T] est définie par les
relations (24a) et (25d)), on trouve :

Si
{<?} m{jexc} (33a)

-K1iSi-K,lKT{S}=-K^Si-K1lK*[T]{Se
(33b)

Bien que la famille d'éléments présentée dans cette étude
donne généralement avec une très bonne précision les
déplacements et les forces nodales des éléments pour tous
les M ^3, l'expérience montre que les efforts internes
obtenus avec les membres inférieurs de la famille (élément
quadratique M 3 et élément cubique M 4) ne sont
pas suffisamment précis, à moins que les éléments soient
relativement courts. Ceci est dû au fait que les fonctions
de base de ces éléments ne sont pas suffisamment riches

pour représenter convenablement certaines variations des

efforts internes. Il est intéressant de remarquer que, dans
ces cas-là, on obtient toutefois d'excellents résultats en
partant des forces nodales équivalentes et en appliquant
les conditions d'équivalence statique. Pour les efforts
internes aux extrémités d'un élément, on obtient par
exemple les formules suivantes :

18 Bulletin technique de la Suisse romande - 102e année - No 2 • 22 janvier 1976



{M1)= -[0i] Sl -[T,] [0i] sA (34a)

{Mu [0M] sM [TM] [0M] sB (34b)

La bonne qualité des résultats obtenus de cette manière
s'explique par le fait que les forces nodales intervenant
dans ces relations sont plus directement optimisées par
l'application du théorème variationnel (SIT 0) sur
lequel se fondent les calculs.

III. Applications

III. 1 Programme pour l'ordinateur

En partant de la théorie développée aux chapitres I et
II, nous avons écrit un sous-programme standard inclus
sous le nom ELEM03 dans la bibliothèque des éléments
du programme ELFIN *.

Le sous-programme ELEM03 permet de choisir le
nombre de nœuds M entre 3 et 6 ; il permet par la suite
de traiter les éléments quadratique, cubique, quartique et
quintique. Le sous-programme élimine automatiquement
les degrés de liberté associés aux nœuds intermédiaires de
l'élément et, au besoin, effectue les transformations
relatives à l'excentricité des nœuds de liaison de l'élément
(fig. 5b). Le calcul des efforts internes s'effectue de deux
manières différentes (relations (32) et (34)). Le nombre de
points de Gauss pour l'intégration numérique peut être
spécifié par l'utilisateur, à défaut de quoi un nombre
standard est adopté en fonction de M. Le sous-programme
permet d'éviter un calcul répété des éléments dans le cas
où la structure comprend plusieurs éléments identiques
dont l'emplacement dans la structure diffère par un mode
de déplacement rigide.

Pour éviter à l'utilisateur de devoir spécifier un nombre
relativement élevé de nœuds géométriques L' et L", le sous-
programme permet de définir l'élément de manière plus
simple et mieux adaptée à la pratique. Il suffit d'indiquer
les données suivantes (fig. 9) :

a) les coordonnées des points nodaux L 1,2 M
situés sur l'axe de l'élément ;

b) les largeurs b et les hauteurs h des sections nodales ;

c) le « dévers » représenté par l'angle <p entre le plan xy et
l'axe local y* des sections nodales.

Le sous-programme ELEM03 génère alors automatiquement
les nœuds géométriques L' et L" de manière à rendre

les sections nodales perpendiculaires à l'axe de l'élément.

V
yL «\

Plan f 1 ou plan x.y

Fig. 9. — Définition géométrique d'une section nodale pour
le sous-programme ELEM03. L'utilisateur spécifie les valeurs x^,
yL, zL et bL, hL, <p^. Les nœuds géométriques L' et L" sont
générés automatiquement par le sous-programme.

* ELFIN est un programme général pour la méthode des
éléments finis. II a été développé dans les années 1973-1974 à
la chaire de statique et de résistance des matériaux pour les
besoins de la recherche [8].

Les relations mathématiques relatives à cette phase de
calcul sont données dans l'Appendice.

III.2 Etude de la convergence

Pour examiner l'efficacité de la famille d'éléments proposée,

nous avons étudié la poutre hélicoïdale de section
constante représentée à la figure 10, sous deux cas de
charge :

a) le poids propre de la poutre y 2,5 t/m3,

b) une force isolée verticale P 10 t au milieu de la
longueur de la poutre.

Les figures 11 et 12 montrent les diagrammes typiques
des efforts internes obtenus pour chacun de deux cas de

charge.
L'étude de la convergence a été effectuée par comparaison

des résultats obtenus avec des éléments quadratiques
(M 3), cubiques (M 4), quartiques (M 5) et
quintiques (M 6) et pour un nombre N d'éléments
également variable. Les tableaux 1 et 3 montrent quelques
résultats caractéristiques de cette étude. Leur analyse
montre clairement qu'avec les éléments quartiques et
quintiques, des résultats pratiquement exacts s'obtiennent
déjà avec un nombre très restreint d'éléments. Par contre,
des éléments quadratiques ou cubiques doivent être
pris en plus grand nombre pour donner des résultats
de la même qualité. La raison tient non seulement à la
relative pauvreté des fonctions de déplacements de ces
éléments, mais également à leur impossibilité de représenter
géométriquement avec une précision suffisante les éléments
obtenus par une forte distorsion de l'élément parallélépipède

de base. L'expérience montre que les éléments quadratique

et cubique sont aussi notablement moins économiques
sur la plan de la préparation des données et du temps de
calcul.

Les efforts internes indiqués dans les tableaux 1 et 3 ont
été calculés à partir des relations (34). La supériorité de

ce mode de calcul vis-à-vis du calcul direct des efforts à

partir des déformations (relations (32)), est mise en évi-

101

Es 2,1 -10 kg/cm
V 0.15

Wlcm

10 cm

10 t
240

t 150 cm pi 150cm

200JT (cm)

Fig. 10. — Poutre hélicoïdale. Exemple considéré dans l'étude
de la convergence.
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Tableau 1

Etude de la convergence. Poutre hélicoîdole (fig. 10)
Effet du poids propre y 2,5 tjm3

Variables Y" 2 4 S 12 16 32 Unités

[B - 120°)

¦'-

5

6

-a.0548

-0,2861

-0.3615

-0.3665

-0.2328

-0,3644

-0,3507 -0,3634 -0,3658 -0,3669

mm

-0,3670

-0,3670

-0.3670

-0.3670

-0,3670

-0,3670

-0,3670

-0,3670

-0.3570

-0,3670

max
(B - 240°)

3

4

5

6

2,138

2.169

2,160

2,158

2,152 2,157

2,152

2.157

2,153 2,156

t2,158

2.155

2,156

2,158

2,153

2,158 2,158

0
z max

(6 0°)

J

4

5

6

1,686

1,525

1,599

1,610

1,627

1,616

1,611

1.628

1.613

1,621 1.617 1,613

t1,612

1,612

1.612

1,612

1,612

1.612

1,6121,612

T
max

(B - 240°)

J

4

5

6

0,103

0,249

: : :•

0.251

0.172

0.27C

0,251

0.257

0,256

0,256

0,255

0,255

tm

0,255

0,255

0,255

0,255

0,255

0,255

(6 : 120°)

4

5

6

0.514

0.763

0.813

0,633

G,814

0,798 0.815 0,816

0,816

tm

0.816

0,816

0,816

0,816 Ü.616

0,816:, -

0,8160,816

M

y min
(8 » 0°)

J

4

:

6

-1,515

-1,815

-2.027

-1.704

-2,048

-2,025

-2,059

54 -2.058 -2,060

-2,060

tm

-2,060

-2,060

-2.061

-2.060-2,060

-2,060

-2,060

-2,060-2.050

Tableau 2

Comparaison de deux modes de calcul des efforts Internes.
Moment My*max de la poutre hélicoïdale (fig. 10)

chargée par son poids propre (y 2,5 t/m3)

Equation X 2 4 8 12 32

(32)

3

5

6

-0,078

0.584

1.009

0.636

0,403

0,375

0.827

0,771

0,825

0,611

0,618

0,817

0,817

0,817

0,616

0.816

0.8160,816

(34)

3

4

5

6

0,514

0,763

0,813

0.633

0,814

0,738 0,813 U.815 0,815

0.6160.816

0,316

0,81b

0,816

0,816

0,616

0,8160,616

0,8160.816

Tableau 3

Etude de la convergence. Poutre hélicoïdale (fig. 10)
Effet d'une force isolée P 10 t au milieu de la poutre.

Variables \ N
2 4 8 12 16 32 Unités

w

(B ¦ 120°)

3

4

5

6

0.7B0H

-1,1184

-1.4550

-1,4737

-0,9454

-1,4674

-1.4764

-1,4766

-1,4136 -1,4628 -1,4721 -1,4764

rrm

-1,4767

-1,4767

-1,4 767

-1,4767

-1,4767

-1,4767 -1,4767

N
max

(6 - 240°)

3

4

5

6

5,054

4,638

4,609

4,591

4,748

4,578

4,588

4,586

4,586

4.560

4.586

4,562

4,586

4,584

t
4,567

4, 87

4,587

4,587 4,567

4,587

0
z max

(B ¦ 0°)

3

4

5

6

2,376

2,500

2,452

2.478

2,422

2,498

2,482

2,509

2,486

2,502

2.485

2,495 2.468

t
2,484

2,464

2,484

2.484

2.464

2.484

2,484

T
max

(B " 240°)

3

4

5

6

0,115

0,809

0.711

0,736

0,530

0,789

0,746

0,745

0,752

0,755

0,749

0,754

0,748

•:,.r

tm

0,747

0,747

0.747

0,747 0,747

0,747

ri
y max

(6 ¦ 120°)

3

4

5

6

4,706

5,803

6,070

6,079

5,351

6,074

6,081

6.006 6,066 6.U/7 6,082

tm

6,082

6,082

6,062

6,082

6,082

6,082

6,062

6,002

y min
(B - 0°)

3

4

6

6

-2,344

-4,017

-4.743

-4,862

-3,565

-4,826

-4,863

-4,739

-4,861

4,640

4,864

4,85, -4,865

-4.865

tm

-4,666

-4,865-4,863

-4,865

-4,665

-4,865

Tableau 4

Comparaison de deux modes de calcul des efforts internes.
Moment My*mox de la poutre hélicoïdale (fig. 10)

soumise à une force isolée P 10 t au centre.

Equation \ N

ri\ 2 4 8 12 16 32

(32)

3

4

5

6

-1,456

3,080

6.657

6,204

2,652

6,005

6,118

6,081

5

6

349

080

5,822

6,080

5,957

6,060

6,05

6,062

B

6

082

062

6,082 6.082

(34)

3

4

5

6

4,706

5.803

6,070

6,079

5,351

6,074

6,081

6 008 6.066 6.077 6,082

6,082

6

6

082

082

082

6,062

6,062

6,082

6,082

6,082
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Fig. 11. — Efforts internes de la poutre hélicoïdale de lé

figure 10. Effet du poids propre y 2,5 t/m3.
Fig. 12. — Efforts internes de la poutre hélicoïdale de la
figure 10. Effet d'une force isolée P 10 t au milieu de la poutre.

dence dans les tableaux 2 et 4. Conformément au
raisonnement tenu au paragraphe II.3, le gain de précision

est appréciable surtout dans les cas où la structure
considérée est remplacée par un petit nombre d'éléments
du type quadratique ou cubique.

III. 3 Calcul d'une rampe hélicoïdale

La figure 13 montre une autre application pratique de la
famille d'éléments proposée. Le système porteur est formé
d'une poutre hélicoïdale encastrée aux extrémités et d'un
système d'entretoises radiales disposées de manière à
donner un dévers radial de 6 % et surélevées à chaque
intersection de 20 cm par rapport à l'axe de la poutre
hélicoïdale ; l'angle tp des axes locaux y* des sections des
entretoises est égal à la pente longitudinale de la rampe,
et l'angle (p des axes locaux y* des sections de la poutre
correspond au dévers radial de la rampe.

Pour le calcul, la structure a été décomposée en 15
éléments. Pour les 8 tronçons de la poutre hélicoïdale, nous
avons appliqué les éléments quintiques (M 6), tandis
que pour les 7 entretoises nous nous sommes contentés
d'éléments quartiques (M =5). Le calcul a été effectué
pour plusieurs cas de charge. La figure 14 montre par
exemple les diagrammes des efforts internes engendrés par
une force verticale P 1 t appliquée au nœud 6.

Pour étudier l'effet de l'excentricité des poutres aux
intersections, nous avons également calculé la même structure

en admettant que les axes des entretoises coupent l'axe
de la poutre hélicoïdale. Les résultats obtenus sont repré¬

sentés en traitillé dans la figure 14. On constate notamment
une très forte diminution des efforts normaux dans toutes
les barres. Remarquons qu'en renversant le sens de
l'excentricité (entretoises surbaissées par rapport à la poutre
hélicoïdale) et en la choisissant suffisamment grande, on
parviendrait à provoquer des efforts de compression dans
les barres.

IV. Remarques finales

Bien que, pour ne pas allonger cet exposé, nous ayons
renoncé à montrer d'autres applications pratiques,
l'intérêt de la famille d'éléments proposée paraît évident. On
objectera peut-être que nous nous sommes bornés aux

r= 900 cm
b= 500 cm
C= 350 cm
if- 61.

} 120cm 80cm

40 cm

Fig. 13. — Rampe hélicoïdale. La numérotation des nœuds
correspond à la subdivision de la structure en éléments finis.
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3 13

s

3 04

3 00

Fig. 14. — Efforts internes engendrés dans la rampe hélicoïdale de la figure 13 par une force P 1 t appliquée au nœud 6.

entretoises surélevées de 20 cm par rapport à l'axe de la poutre hélicoïdale
les axes des entretoises coupent l'axe de la poutre hélicoïdale
entretoises surabaissées de 20 cm par rapport à l'axe de la poutre hélicoïdale

éléments de section rectangulaire, tandis que dans la
pratique on sera certainement amené à considérer également
d'autres formes de section. Il est facile, toutefois, de lever
cette restriction si, au lieu des nœuds géométriques L' et

L", on spécifie directement les valeurs nodales de l'angle <p

et des constantes F, Fy., Fz„, Iy*, It, et J, que l'on fait
ensuite varier en fonction de la coordonnée curviligne £, le
long de l'axe de l'élément. Les résultats de l'étude de
cette famille généralisée d'éléments de section quelconque
seront publics dans notre prochain article.

A côté des éléments basés sur la méthode directe des

rigidités, nous avons également essayé, en partant de la
même représentation géométrique, de développer la relation

force-déplacement par inversion de la relation
déplacements-forces. Bien que ce procédé puisse paraître préférable

pour une barre, puisque la seule approximation
consiste alors dans la représentation de la géométrie de

l'élément, il est plus difficile à mettre en œuvre et plus

coûteux en temps de calcul lorsque les intégrales doivent
être effectuées numériquement. Ceci provient du fait que
l'expression de l'effet des charges locales implique l'évaluation

numérique d'une série d'intégrales entre les bornes
£, — 1 et £ S,q, où la seconde borne, variable, prend
successivement les valeurs des coordonnées de tous les

points de Gauss lorsqu'on intègre sur la longueur totale
de l'élément.

V. Appendice

Dans certains cas pratiques, on trouve avantage à définir
la géométrie de l'élément en spécifiant les angles tpL et les

dimensions bL, hL des sections nodales au lieu des coordonnées

des nœuds auxiliaires L' et L". Pour se ramener au cas
fondamental, il s'agira de déterminer la position des

nœuds L' et L" correspondants, ou de calculer directement
les vecteurs
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W
xL' -xL\
yL- -)'l
ZL' -zL

Cl)
[xL" -xL

yL- -yL
zL" ~ZL

qui constituent les matrices géométriques [GB] et [Gc]
(équations (4) et (4a)). Les relations nécessaires pour ce

passage sont données ci-après. Remarquons encore qu'en
donnant le « dévers » tp, on ne peut pas dépasser le com-

plément à — de l'angle de la tangente par rapport au

plan xy (il est facile de s'en convaincre par une simple
analyse géométrique). L'angle tp doit alors satisfaire à la
condition suivante :

\<P
n

arctg
V'*2

(35)
t-'xL l 'yL

où tXL, tyL et tlL sont les coordonnées du vecteur-tangent,

lxL

t.

tzL

M

vl\= ^3(3^3= ^3(36.) (36)

V. 1 Calcul des vecteurs {BL)
Les éléments des vecteurs {BL\ peuvent être calculés à

partir des relations suivantes :

a) zL'-zL ^bLsm(pL (37)

b) yL-~yL
-b± ¦y/b2—4ac

2a

et où

a t2 4-lxL T *Îl. b

avec ± -y pour tx>0, (38)

tVL-tzLbL sin <ph

c
4

bl (t\L sin2 <PL-t%L cos2 ipL)
(38a)

On remarquera que dans la relation (38), la racine carrée
est nulle si r, 0.

(39)c) xL' -xL - tyL
(yL -yù- tzL,

-17l{Zl- zL)

ou e ncore, si tx

-xL

0,

3y<£ -(yL-32-<*L -zLf

avec ± V" pour fj <o

(40)

La formule (38) n'est pas applicable si txL tyL 0,
d'où la restriction suivante : en aucun des points nodaux L
l'axe de l'élément ne doit être parallèle à l'axe z.

Notons que la relation (37) découle directement de la
figure 9. Par ailleurs, les relations (38) à (40) s'obtiennent
par la résolution du système de deux équations vectorielles :

et
t-(rL' -rL) 0,

3 26l

dont la première exprime le fait que le nœud auxiliaire L'
se trouve dans un plan normal à l'axe de l'élément et la
seconde donne la longueur du vecteur LU.

V. 2 Calcul des vecteurs { CL}

Les coordonnées du vecteur {CL) s'obtiennent au moyen

du produit vectoriel tL x BL le vecteur ainsi défini étant

ramené à la longueur - hL. On trouve alors :

1 / 1DXL1

33 2 IT 3 (4i)
L

\ 3 |

avec

\DxL\ tyL'BzL — tzL-ByjX

3 tZL ¦ BxL - txL ¦ BzL et DL s/dIl-t- DlL+DïL
\DzL tXL-ByL-tyL-BxL) (41 a, b)
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