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Etude d’'une famille généralisée d’éléments spatiaux

de barre courbe

par MAURICE-H. DERRON et JAROSLAV JIROUSEK, Lausanne

Dans leur étude précédente, les auteurs ont proposé
une famille superparamétrique d’éléments spatiaux de barre
courbe de section rectangulaire variable. Moyennant
quelques modifications, la théorie développée dans cette
étude peut étre généralisée en vue de définir une
nouvelle famille d’éléments spatiaux de barre courbe de
section quelconque.

I. Définition de la nouvelle famille d’éléments

La figure 1 montre deux membres typiques de la famille
généralisée. La section, supposée varier lentement le long
de I’axe, peut étre quelconque, pourvu que son centre de
torsion se confonde (au moins approximativement) avec
le centre de gravité. Outre les sections pleines, on peut
admettre également des sections a parois minces de contour
fermé, a condition que la torsion fléchie soit négligeable
vis-a-vis de la torsion de Saint-Venant.

Comme dans le cas de 1’élément de section rectangulaire,
I’axe de I’élément (coordonnées x,, ¥, Zo) est représenté
par ’équation

l Xo XL
M
Yo =Y M@ it (1)
L=1
Zy Zy,

ou X, yr, zr, (L= 1,2... M) sont les coordonnées des
nceuds fixés sur cet axe, et N, (&) sont les fonctions de
base qui prennent une valeur unité en L et nulle pour tous
les autres nceuds ; elles s’expriment par les polyndmes de
Lagrange de la coordonnée curviligne &.

Les axes principaux des sections nodales sont définis
par les triplets de points L, L’ et L". Contrairement a la
famille d’éléments de section rectangulaire, ou par défini-
tion les points L’ et L” étaient fixés sur le contour de la
section, les points L’ et L” des éléments de la figure 1
peuvent étre en principe situés a une distance quelconque
de I’axe de I’élément. Pour les calculs pratiques, il sera
commode de fixer une fois pour toutes une distance cons-
tante par exemple unitaire, égale pour tous les L’ et tous
les L".

A)

Fig. 1. — Deux membres de la famille d’éléments spatiaux de
barres courbes de section quelconque : élément quadratique (A),
¢élément cubique (B).
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Fig. 2. — Coordonnées, déplacements et rotations globaux et
locaux.

En partant des coordonnées cartésiennes des nceuds L,
L'etL"(L=1,2... M), les axes locaux x*, y*, z* (fig. 2)
d’une section quelconque de I’élément peuvent déja étre
définis directement par I’application des relations géo-
métriques développées pour la premiére famille d’élé-
ments (€tude précédente).

Puisque maintenant les nceuds auxiliaires L’ et L” ne
permettent pas de déterminer la forme et les dimensions
de la section nodale, il faut définir de fagon indépendante
les constantes géométriques qui la caractérisent du point
de vue statique. Il s’agira des six grandeurs suivantes :

F......... aire de la section,

F,+, F,«.... aire réduite pour le calcul des déformations
dues au cisaillement selon les axes princi-
paux p* et z* de la section,

N moment d’inertie a la torsion,

Ly Lpw. . ... moments d’inertie par rapport aux axes
principaux y* et z* de la section.

La méthode la plus simple consiste a définir ces gran-
deurs au droit des nceuds et a adopter pour les sections
intermédiaires les valeurs définies par I'interpolation sui-
vante :

F Fy,

Fy* M Fy#L
Fi=Ym®iF - @
Ly bt %

Ls Tz

Fig. 3. — Efforts internes agissant sur la face positive de la
section.

La matrice d’élasticité liant les efforts intérieurs (fig. 3)
d’un élément de section quelconque a ses déformations
généralisées, aura alors pour expression :
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Si 'on utilise 'expression (3) de la matrice [D] au lieu
de celle qui a été définie pour la premiére famille d’élé-
ments, il devient déja possible d’appliquer sans restriction
pour la nouvelle famille toutes les relations développées
dans I’étude précédente.

Il est intéressant de remarquer que la famille d’éléments
définie au moyen de la relation (3) est plus générale que
celle de I’étude précédente, mais, appliquée au cas parti-
culier d’un élément de section rectangulaire, elle peut
toutefois donner des résultats légérement moins précis.
Ceci tient essentiellement au fait que la géométrie de 1°61é-
ment est représentée de maniére moins exacte, les dimen-
sions b (largeur) et 4 (hauteur) des sections intermédiaires
ne pouvant étre déterminées de maniére univoque. Ainsi,
par exemple, les valeurs de b et 4 calculées a partir de F,
Iyet Lu (b=2 \/ L+|F et h = 2 \/ I,«/F) ne donnent pas
exactement la valeur de J que ’on obtient directement par
la relation (2). En pratique toutefois (voir paragraphe II.2),
les écarts sont presque toujours insignifiants.

Il. Résultats des études numériques et exemples
d’application

11.1. Programme de calcul sur ordinateur

Afin de pouvoir tester la nouvelle famille d’éléments, le
sous-programme ELEMO3 ! développé initialement pour
les éléments de section rectangulaire uniquement (étude
précédente), a €té récrit pour permettre de traiter les deux
familles d’éléments. Comme c’était déja le cas dans sa
version initiale, le sous-programme a été congu de maniére
a libérer I'utilisateur de I’obligation de définir les coordon-
nées des nceuds auxiliaires L’ et L”, ces coordonnées étant
générées automatiquement par le sous-programme (a I’aide
des relations géométriques résumées dans I’Appendice
de Particle précédent, de maniére a rendre les sections
nodales perpendiculaires a I’axe de I’élément. Dans le cas
d’un élément de section quelconque, I'utilisateur indique
les données suivantes :

a) les coordonnées xy, y., z;, des points nodaux L = 1,
2... M situés sur ’axe de I’élément ;

b) le « dévers » représenté par I’angle ¢, entre le plan xy
et I’axe local y« des sections nodales ;

c) les valeurs des grandeurs Fy, Fyer,, Fyup, Jiy Lysr, Lsg,
des sections nodales.

11.2. Etude de la convergence

Pour étudier I’efficacité de la nouvelle famille d’¢léments,
nous avons repris I’'exemple de la poutre hélicoidale (fig. 4)
étudiée précédemment et qui avait mis en évidence I’excel-
lente précision de la premiére famille d’éléments. Rappe-
lons notamment que, pour les deux cas de charge envisagés
(poids propre et force isolée au milieu de la barre), deux
¢léments quintiques (M = 6) donnaient déja une solution
ot les trois premiers chiffres de tous les résultats (déplace-

1 Ce sous-programme fait partie de la bibliothéque des élé-
ments, associée au programme général ELFIN développé a la
chaire de statique et de résistance des matériaux de ’EPFL
pour le calcul des structures par la méthode des éléments finis.
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Fig. 4. — Poutre hélicoidale. Exemple considéré dans 1’étude
de la convergence.

ments, efforts internes) sont exacts. Tous les calculs ont
maintenant été répétés avec la deuxiéme famille, successi-
vement pour des éléments quadratiques (M = 3), cubi-
ques (M = 4), quartiques (M = 5) et quintiques (M = 6)
et pour un nombre N d’éléments variant entre 2 et 32.
Une différence par rapport a la premiére famille d’élé-
ments apparaissant rarement avant le cinquiéme chiffre,
nous avons renoncé a publier ces résultats. Le lecteur
intéressé par cette étude peut consulter les tableaux 1 a 4
de l’article précédent.

En complément, pour démontrer I'utilité des éléments
curvilignes proposés, les tableaux 1 et 2 donnent la com-
paraison entre la solution basée sur 1’élément quintique et
les résultats obtenus en remplagant la poutre hélicoidale
par une succession de segments rectilignes. Il apparait
clairement que méme avec 32 éléments rectilignes, on
n’atteint pas la qualité des résultats obtenus avec deux
¢léments courbes seulement.

TABLEAU 1
Elément droit Elément courbe
Variables N=4 8 16 32 N=2 4 Unités

w (B=120°") -0,282 | -0,341| -0,360 ( -0,365| -0,367 | -0,367 mm
Nmax (B=240°) 2,17 2,18 2,17 2,17 2,16 2,16 t

=0 °
Dz'max (B=0 %) 1,50 1,57 1,68 1,60 1,61 1,61 t
T (B=240°) | -0,26 -0,07 0,08 0,16 0,25 0,25 tm
M. (B=120°) 0,58 0,75 0,80 0,81 0,82 0,82 tm
y*max

=1 0 - o - - - -
Ny‘min (B=0°) 2,13 2,18 2,15 2,11 2,08 2,06 tm

Comparaison de I’élément courbe (quintique)
avec élément droit
Poutre hélicoidale (fig.4), effet du poids propre y = 2,5 t/m?®
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TABLEAU 2

Elément droit Elément courbe
Variables N=4 8 16 32 N=2 4 Unités
w (g=120°) -1,307 | -1,418 -1,461 | -1,473 | -1,474 | -1,477 mm
N (B=240") 4,89 4,74 4,67 4,63 4,58 4,59 t
0, emax (B* 0% | 2,12 2,32 2,40 2,44 2,48 2,48 t
T (B=240°) | -0,87 -0,14 0,30 0,52 0,74 0,75 tm
My'max (B=120°) 4,55 5,68 5,98 6,06 6,08 6,08 tm
_— = = = < = =
My‘min (8= 0%) 5,47 5,42 5,22 5,06 4,86 4,86 tm

Comparaison de I’élément courbe (quintique)
avec élément droit
Poutre hélicoidale (fig. 4); effet d’une force isolée P = 10t,
appliquée au milieu de la poutre

11.3. Exemples d’application pratique

1. Calcul d’une coupole sphérique constituée de barres
z

a)

b) =

<

’X
Fig. 5. — Coupole sphérique constituée par un grillage de
barres courbes de I’espace.

La coupole représentée sur la figure 5, qui rappelle par
sa conception la halle de la Foire d’échantillons de Hano-
vre, est constituée par des tubes d’acier (E =
2,1-10% kg/cm?, v = 0,3) de section circulaire (F = 2 F« =
= 2 Fu = 46 cm?, J = 21« = 2L« = 5020 cm?) liés rigi-
dement entre eux a leurs intersections. Projetés verticale-
ment, les axes des barres apparaissent comme des para-
boles quadratiques régulierement espacées sur le plan xy
de I'ouvrage (fig. 5b). Le calcul a été effectué pour plu-
sieurs cas de charge (poids propre, variation de tempé-

Fig. 6. — Déplacements globaux v (selon y) et w (selon z)
engendrés par une force verticale P = 10 t, appliquée au som-
met de la coupole sphérique de la figure 5.
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Fig. 7. — Effort normal et efforts tranchants engendrés dans
les barres de la coupole sphérique de la figure 5 par une force
isolée P = 10t, appliquée au sommet. L’axe principal y* des
sections est horizontal (¢ = 0).
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Fig. 8. — Moment de torsion et moments fléchissants engen-

drés dans les barres de la coupole sphérique de la figure 5 par
une force isolée P = 10 t, appliquée au sommet. L’axe principal
y* des sections est horizontal (p = 0).

rature, etc.), en remplagant les segments de barres par les
éléments quintiques (M = 6). Les figures 6 a 8 montrent
quelques résultats obtenus pour une charge isolée P = 10 t
au sommet de la coupole.
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2. Calcul d’un pont courbe a trois travées continues

Le pont courbe représenté sur la figure 9 est un ouvrage
en acier (E = 2,1-10%kg/cm?, v = 0,3) constitué par
5 poutres maitresses (F= 660 cm?, Fy,. = 250 cm?,
F» =300cm?, J=996923 cm*, I, = 1512720 cm?,
L« = 414236 cm?) et 13 entretoises (F = 300 cm?,
Fy = 1333 cm?, F=116,7cm?, J = 174222 cm?,
I+ = 253336 cm?, L+ = 77385 cm?). Les figures 10 & 12
montrent les diagrammes des moments fléchissants M«
et des moments de torsion 7 engendrés dans le pont par la
force P = 1t appliquée au milieu de la premiére poutre
maitresse. Le calcul a été fait au moyen d’éléments quin-
tiques (M = 6) pour les segments courbes des poutres
maitresses et d’éléments quartiques (M = 5) pour les
entretoises rectilignes.

Fig. 9. — Pont courbe a trois travées continues: a) Axono-
métrie du pont, b) Schéma de la mobilité directionnelle des
appareils d’appui.
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Fig. 10. — Diagrammes des moments fléchissants dans les
poutres maitresses du pont courbe de la figure 9.
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Fig. 11. — Diagrammes des moments de torsion dans les
poutres maitresses du pont courbe de la figure 9.
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Fig. 12. — Diagrammes des moments fléchissants et des
moments de torsion dans les entretoises situées au milieu de la
travée centrale (A) et au-dessus du premier appui intermédiaire
(B) du pont courbe de la figure 9.
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