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Un modeéle mathématique de la formation de deltas
due au dépot de sédiments dans les réservoirs

par ONER YUCEL et WALTER H. GRAF

Introduction

Les sédiments transportés par un cours d’eau sont ame-
nés a se déposer lorsqu’ils se trouvent dans un endroit
plus profond, tel qu’un réservoir derriére un barrage, un
lac ou un océan. Cela est dii au fait que la vitesse, et par
conséquent la capacité de transport des sédiments, diminue
alors que la profondeur du réservoir augmente. La pré-
sente étude porte sur le dépot des sédiments au moment
ou une riviére débouche dans un réservoir. A cette fin, un
modele mathématique simple a été mis au point et sera
décrit par la suite. Cet article fait suite 4 une recherche
entreprise par Yiicel et Graf [3]! en 1973.

Modeéle mathématique

Remarques préliminaires

Le modele mathématique décrit dans cette étude cherche
a estimer la distribution et le taux de dépot du charriage
dans un systéme de riviére-réservoir. Comme ce matériel
charrié¢ est composé de particules relativement grossiéres
et non cohésives, le dépodt prend la forme d’un delta. Le
modele envisagé décrit un systéme arbitraire de riviere-
réservoir auquel peut s’appliquer une analyse unidimen-
sionnelle (unité de largeur) (fig. 1). Les caractéristiques
du modeéle et les hypothéses qui en découlent sont exposées
plus loin.

Modeéle unidimensionnel pour un systéme riviere-réservoir

Comme on le voit a la figure 1, le modéle décrit un réser-
voir formé d’une digue placée sur une riviére ou les phéno-
menes d’écoulement unidimensionnel prédominent. Le
ralentissement de ’écoulement & I’entrée du réservoir pro-
voque obligatoirement le dépot des sédiments dans la
riviere. Si le charriage seul est pris en considération, on
observe que le dépdt des sédiments s’effectue de deux
fagons différentes.

a) Les sédiments de plus grande dimension se déposent
en premier pour créer un delta qui s’érige 4 I’embou-
chure du réservoir et progresse vers 1’aval.

b) Les sédiments de plus petite dimension sont transportés
plus loin dans le réservoir pour se déposer en couches
relativement planes et sont appelés souvent sédiments
de fond.

Le but de ce modéle est de décrire les types de dépots
de sédiments au cours de la formation du delta. L’analyse
est composée de deux parties : a) la courbe de remous et
b) le transport et le dépot des sédiments. Ces deux parties
de I’analyse sont faites indépendamment. Ainsi, en calcu-
lant la courbe de remous, on admet que la géométrie du
systéme riviere-réservoir est constante et qu’il n’existe pas
de transport de sédiments. De méme, on admet que la
courbe de remous reste inchangée au cours de chaque série
de calculs faits pour le dépot des sédiments. On s’attend
a ce que tout dépdt dans le réservoir qui modifie la confi-
guration du fond modifie aussi la courbe de remous.

1 Les chiffres entre crochets renvoient a la bibliographie
en fin d’article.
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Fig. 1. — Systéme riviére-réservoir.

Cependant, si les dépots se font en quantité suffisamment
petite, la courbe de remous ne sera pas changée de maniére
significative. C’est pourquoi, pour éviter des répétitions
inutiles, le modeéle calcule une nouvelle courbe de remous
seulement en présence d’une quantité de dépot suffisante.
Un schéma simplifié du modele est présenté dans I’organi-
gramme donné a la figure 2. Les méthodes appliquées
pour le calcul de la courbe de remous et des dépots du
charriage sont décrites dans les chapitres suivants. Une
description plus détaillée du modéle est donnée par Yiicel
et Graf [4].

La courbe de remous

Dans un systéme riviére-réservoir avec un débit uni-
taire ¢ et une configuration du lit donnée (pas de transport
de sédiments), la courbe de remous peut étre calculée au
moyen de n’importe quelle méthode connue (voir Chow [1],
ch. 10). Le mode¢le étudié ici utilise la méthode pas a pas
directe. Comme on peut le voir a la figure 3, les calculs
sont commencés dans la section a la digue ot la profondeur
de I’eau est maximale, c’est-a-dire D = D, et continués
pas a pas vers 'amont en choisissant les changements de
profondeur, 4D;, et en calculant les longueurs de trongon
correspondantes, AL;, selon la formule suivante :

INPUT
INFORMATION
\V4

CALCULATE
NEW
BACKWATER
PROFILE

PRINT AND

PLOT NEW
BACKWATER
PROFILE

[ CALCULATE
BED LOAD
| DEPOSITION

PRINT AND PLOT
BED PROFILE
AFTER
DEPOSITION

Fig. 2. — Organigramme du programme de calcul par ordi-
nateur.
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out Dy, ¥y, Sy, €t S, sont la profondeur moyenne de I’eau,
la vitesse, la pente du lit et la pente de la ligne d’énergie
respectivement, chacune étant calculée a la section
moyenne de chaque trongon. Dans cette étude, 1’équa-
tion (1) est considérée satisfaisante si les pentes des sections
moyennes, Sy, et S,,, ne s’écartent pas de plus de 5 %
de celles des sections limites du trongon. Si cette condition
n’est pas satisfaite, une nouvelle approximation (plus
faible) de la profondeur, 4D;, est faite et les calculs sont

répétés.

AL; = — 4D, 1

A RESERVOIR ——@—— RIVER

DAM
SECTION

—{aL b—

Dmax

X

Fig. 3. — Calculs de la courbe de remous.

On trouve des problémes particuliers dans deux régions
du réservoir pour les calculs de la courbe de remous :
dans les trongons ou le changement de la pente du lit du
canal est considérable, comme dans les régions de transi-
tion, vers et depuis la face aval des deltas, AD; doit étre
choisi trés petit, cela implique que plusieurs trongons de
faible longueur, AL;, doivent étre calculés. Ceci est évi-
demment un désavantage si ’on considere le temps pris
par le travail de I’ordinateur. Une maniére de remédier a
une telle situation serait d’augmenter I’écart admissible
mentionné de 5 % a 10 %. Il semblerait aussi plus pra-
tique de faire usage de la méthode « pas a pas standard »
au voisinage de telles régions plutdét que de choisir la
méthode « pas a pas directe » (voir Chow [1], ch. 10);
en effet, on sélectionne un trongon de longueur L;, et on
calcule le changement de la profondeur correspondant.
Des problémes semblables surgissent dans les régions ou
les conditions normales d’écoulement de la riviére sont
presque satisfaites. Puisque la courbe de remous tend
asymptotiquement vers un écoulement normal, des change-
ments de la profondeur, méme extrémement petits, donne-
raient des trongons de longueur excessive. Une maniére de
remédier a une telle situation serait de supposer que les
conditions normales d’écoulement sont approximativement
satisfaites quand les pentes du lit et de la ligne d’énergie
d’une section calculée ne dépassent pas les 5 % de ceux
de I’écoulement normal de la riviére.

Le dépot du charriage

Une fois le calcul de la courbe de remous et la déter-
mination des conditions d’écoulement pour le systeme
riviere-réservoir établis, on calcule le dépot du charriage.
Comme on le voit 4 la figure 4, on commence ces calculs
a la section ou se trouvent réalisées approximativement
les conditions d’écoulement normal de la riviére et on les
continue en aval en direction du réservoir. Les mémes
sections que celles déterminées pour les calculs de la courbe
de remous sont utilisées pour les calculs du dépot du char-
riage. Un cycle typique de calculs pour le dépot du char-
riage est décrit comme suit :
a) Sur une section a I'intérieur du systéme riviére-réservoir,

ou la profondeur de I’eau est Dy, la capacité du char-
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Fig. 4. — Calculs du dépét du charriage.

riage est désignée par gy ; elle peut étre déterminée en
utilisant une équation de charriage.

b) Sur la section aval suivante, a une distance AL;, la
profondeur de I’eau est D;_;. Puisque D;; > D,
Ja vitesse moyenne de 1’écoulement diminue, soit
Vi1 > V;, car le débit unitaire est considéré comme
une constante, soit ¢ = const. De la réduction de la
vitesse, il résulte que la capacité de transport du char-
riage vers la section aval diminue aussi, soit g, -1y <
si-

¢) La différence entre les capacités de débit solide a la
section amont et a la section aval est donnée par :

A9y = qsi—q;s (-1) (@)

Cette quantité de charriage devrait étre déposée entre
ces deux sections. Si la longueur du trongon, L;, est
suffisamment petite (de telle sorte que le changement
des conditions d’écoulement entre les deux sections soit
graduel), alors on peut supposer que le dépdt dans le
trongon sera distribué uniformément. La couche
moyenne uniforme du dépot, 7y, par unité de temps
(période) au cours du dépot, Ty, est alors

ty = Ty Aqs | AL ©)

d) Le dépot calculé ci-dessus augmente I’élévation du lit
du canal dans chaque trongon, ce qui donne :

Zpi (nouvean) = Zoi (original) T Zsi 4

Ainsi, en appliquant ’équation (4) a chaque section,
une nouvelle configuration du lit du réservoir est
obtenue.

e) Chaque cycle de calculs du dépot est terminé lorsque
les deux conditions suivantes sont approximativement
remplies : i) si le charriage transporté par le cours d’eau
est terminé ou ii) si la section du barrage est atteinte.

f) Tout changement dans le lit du réservoir demande la
détermination d’une nouvelle courbe de remous. Cepen-
dant, pour éviter des calculs trop longs, on calcule
une nouvelle courbe de remous seulement si un dépot
apporte des changements significatifs dans le profil du
lit du canal. Au cours de cette étude, on admet I’hypo-
thése qu’un dépdt significatif apparait seulement si
I’épaisseur locale du dépot dépasse 2 % de la profon-
deur locale de I'’eau. (Nombre arbitraire, assez petit
pour que les capacités du charriage ne soient pas modi-
fies de maniére significative.) Ainsi, une nouvelle
courbe de remous est calculée seulement si

{7
<5“> ey > 2% )
Si le dépot obtenu comme résultat d’un cycle de calculs
n’est pas significatif, ou si (#5;/Di)max << 2 %, on sup-
pose alors qu’un deuxiéme cycle a eu lieu, identique
au premier, et la position du fond du réservoir est
ajustée en conséquence.
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Les équations du charriage

Le dépot du charriage a été calculé en utilisant trois
équations différentes : 1) la relation de Schoklitsch (modi-
fiée pour le dépot a I'aide de la vitesse limite de dépot de
Hjtilstrom, 2) la relation de Meyer-Peter et al., et 3) I’équa-
tion de charriage d’Einstein, 1942. Une discussion de ces
relations ainsi que d’autres est donnée dans Graf ([2], ch. 7).
En utilisant ces équations pour le dépot du charriage dans
les réservoirs, deux hypothéses sont inévitables : a) toutes
les équations du charriage disponibles sont développées
pour des conditions d’écoulement uniforme, pour lesquelles
les pentes du lit du canal, de la surface de I’eau et de
I’énergie sont identiques. Cependant, pour 1’écoulement
dans les réservoirs, les pentes sont clairement différentes,
méme si I’on considére de courts trongons. On peut choisir
la pente de I’énergie pour I'utiliser avec les équations du
charriage, comme c’est le cas dans cette étude. (Dans ce
cas pourtant, l’effet de la pente du lit du canal serait
négligé, ce qui ménerait évidemment & des imprécisions.)
Cependant, on peut aussi choisir une pente équivalente,
égale a la moyenne des pentes du lit et de I’énergie, par
exemple. Les auteurs pensent qu’un tel choix est trop arbi-
traire. Evidemment, on doit attendre, pour une application
plus correcte, le développement d’équations du charriage
valables pour un écoulement non uniforme. 5) Toutes les
relations du charriage disponibles sont basées sur des cri-
téres d’« érosion » ou de « force d’affouillement » et non
de « dépot ». C’est pourquoi la seule possibilité consiste a
utiliser les équations de I’érosion pour les problémes de
dépot.

Les trois relations du dépdt utilisées sont briévement
décrites par la suite :

L’équation de Schoklitsch modifiée

La forme générale des relations de Schoklitsch est
donnée par (voir Graf [2], p. 130-131):

s = xS*+ (@—4er) ©)

ou g, est le débit solide du charriage en volume par unité
de largeur et par unité de temps ; .S est la pente du canal ;
q est le débit de I’eau par unité de largeur et de temps ;
q.r est le débit critique de 1’eau pour lequel les matériaux
du lit commencent a se mouvoir ; et y et k sont des coeffi-
cients empiriques fonction des sédiments. Les équations
du charriage de Schoklitsch conviennent pour modifier le
dépot parce qu’elles comprennent un terme comme g,
le débit de I’érosion limite. Dans cette étude, on propose
d’utiliser dans ’équation 6 la vitesse limite du dépdt V,,
pour évaluer le débit limite g, (voir Graf [2], p. 88).
De plus, sans une meilleure information, on estime que
les coefficients empiriques y et k restent identiques pour
I’« érosion » et pour le « dépot ». Ainsi, ’équation (6) est
modifiée pour s’appliquer au dépot et prend la forme
suivante :

qs = 1S* (q—DV,,) @)

ou D est la profondeur locale de I’écoulement et V,, est
la vitesse limite de dépdt donnée par Hjiilstrom.

L’équation de Meyer-Peter et al.

La deuxiéme équation utilisée dans cette étude pour
calculer le dépot du charriage est ’équation de Meyer-
Peter et al., qui peut s’écrire (voir Graf [2], p. 136-139):

v ([yDS 4d |32
= — —0,047 (ys—p) | =—= 8
4 (ys—) {[ dso @ 7)] 3\/,01 ®
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ou g, est le débit solide du charriage en volume par unité
de largeur et unité de temps ; y; est le poids spécifique du
sédiment ; y est le poids spécifique de I’eau ; D est la pro-
fondeur de I’'eau; S est la pente de la ligne d’énergie ;
d est le diamétre caractéristique (dsg0) ; et p est la densité
de I’eau. Une simple modification de I’équation (8) pour
I’appliquer au calcul du dépot sédimentaire n’est pas pos-
sible dans ce cas, puisqu’elle ne dépend pas explicitement
d’une vitesse limite. Il est vrai que 1’équation (8) contient
un terme décrivant la force de traction limite, c’est-a-dire :
0,047 (ys/y) ; celle-ci n’étant pourtant pas utilisable, une
modification ne peut étre faite dans ce sens. Ainsi, il doit
nous rester a l’esprit que le calcul du dépdt du charriage
est basé dans ce cas sur le principe de '« érosion » et non
du « dépot ».

L’équation du charriage d’Einstein, 1942

La troisiéme équation employée dans cette étude est
I’équation du charriage d’Einstein, sous la forme établie
en 1942 (voir Graf [2], p. 139-150), qui peut s’écrire ainsi :

- 371/2 —
fors [(ys/yo Dgd®l= [0,391 (ys/y l)d} ©
465 DS

ou g est ’accélération de la pesanteur ; les autres variables
ont été définies précédemment. Ici a nouveau, une modi-
fication pour appliquer ’équation au calcul du dépot n’est
pas possible, car il n’existe aucune expression explicite de
la vitesse limite. Toutefois, il faut garder a I’esprit que
I’équation (9) a été établie selon le principe de I’équilibre
entre I’érosion et le dépot. Ceci rend cette équation rela-
tivement plus commode que les précédentes pour le but
que nous poursuivons.

Caractéristiques du modele pour le systéme riviére-réservoir

On a choisi les caractéristiques arbitraires suivantes pour
le systéme riviére-réservoir : débit d’eau constant par unité
de largeur du canal, ¢ = 1,81 m3/sec/m ; pente du lit de
la riviere, Sy, = 0,000175 ; profondeur maximale de ’eau
(sur la méme section), Dj.. = 23,5 m; coefficient de
rugosité selon Manning, n = 0,0234 ; densité des parti-
cules sédimentaires, s; = y;/y = 2,65 (sable de quartz);
diametre caractéristique des grains: dso = 0,5, 1,0,
2,0 mm.

Résultats

Remarques générales

Les calculs comportant les trois relations sur le char-
riage ont été faits pour des périodes de sédimentation d’un
jour ou d'un mois. Une période de sédimentation est
considérée comme une période pendant laquelle la moyenne
du débit est égale, ou supérieure a une valeur choisie dans
notre modeéle : ¢ = 1,81 m3/sec/m). Le choix de la période
de sédimentation d’un jour ou d’un mois dépend en fait
de I'importance du débit solide. Ainsi, lorsque le dépot
grandit rapidement, on choisit de préférence des périodes
de sédimentation relativement plus bréves.

Le phénomene de dépdt prévu par le présent modéle
mathématique peut étre discuté a la fois au plan qualitatif
et quantitatif. Toutefois, par le fait de plusieurs hypo-
théses limitatives, on considére les résultats qualitatifs
comme plus importants.

La formation de delta

Le résultat le plus intéressant a été la formation d’un
delta avec des caractéristiques communes a toutes les trois
relations de charriage utilisées. Cette formation typique
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Fig. 5. — Création et avancement d’un delta typique résultant
du dépot du charriage.

de delta est illustrée a la figure 5, tracée par ’ordinateur
et résultant des calculs faits en utilisant I’'une des relations
de charriage. Les remarques suivantes relatives a la for-
mation du delta peuvent étre faites :

a) Le dépot commence par la formation de couches plutot
planes dans les régions amont du réservoir. L’épaisseur
de ces couches augmente graduellement jusqu’a ce
qu’une section soit atteinte, ou le taux du dépot arrive
au maximum. En aval de cette section, 1’épaisseur des
couches tend 4 diminuer de nouveau. La répétition de
ce processus de dépot crée une forme triangulaire
typique de dépot, c’est-a-dire un delta.

b) Ensuite, la téte de ce delta se met & progresser en
direction de I’aval et la face aval du delta devient plus
courte et plus raide, tandis que la face amont devient
plus longue et plane. De cette fagon, le delta commence
a avancer dans le réservoir, tout en conservant sa forme
triangulaire typique.

Avec ce modéle mathématique relativement simple, il
est remarquable de constater que les particularités de la
formation d’un delta typique discutées plus haut corres-
pondent bien aux formations de delta dans des réservoirs
naturels. Un bon exemple est le « Lake Mead », derriére
le « Hoover Dam », sur la riviere du Colorado ; la répar-
tition du dépot des sédiments peut y étre considérée comme
tout a fait semblable a celle décrite par le présent modéle
en figure 6. Il faut pourtant noter de suite que cette obser-
vation est entiérement qualitative et absolument pas quan-
titative.

Le dépot du débit solide de charriage

Les taux du débit solide de charriage pour le systéme
donné de riviere-réservoir différent selon les trois équa-
tions de charriage utilisées pour le calcul du modele. Ceci
a été prévu, car ces équations sont basées essentiellement
sur différentes méthodes aussi bien que sur des conditions
d’écoulement et de sédimentation trés différentes. Cepen-
dant, certaines tendances générales sont apparentes, comme
décrit ci-dessous.

Les répartitions de dépot du charriage prévues par les
trois équations de charriage pour des intervalles de temps
variés sont décrites a la figure 6. Il est évident que le
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Fig. 6. — Taux de dépot du charriage, obtenu par trois équa-
tions différentes.

dépdt le plus élevé est décrit dans 1’équation de Meyer-
Peter et al. Celle d’Einstein, 1942, prévoit un dépot du
charriage 1égérement plus faible. Celui décrit dans I’équa-
tion modifiée de Schoklitsch est encore plus bas que les
deux autres. En fait, la méme quantité de dépot est obtenue
approximativement au cours de cent années de sédimen-
tation avec I’équation de Schoklitsch modifiée qu’au cours
de cinq années selon les équations de charriage de Meyer-
Peter et al. et d’Einstein, 1942. On pouvait le prévoir, car
la relation de charriage de Schoklitsch est connue pour
donner des résultats plutdét minimes concernant les quan-
tités charriées (voir Graf [2], p. 156-159).

Les calculs ont aussi été faits pour des dimensions diffé-
rentes de sédiments en utilisant les équations de Schok-
litsch modifiée et d’Einstein, 1942. Tout d’abord une
période de dépdt sédimentaire de cent ans a été choisie
pour trois dimensions de sédiments, c’est-a-dire: d =
0,5 mm, 1,0 mm et 2,0 mm, en utilisant la relation modi-
fiée de Schoklitsch. Il est intéressant de noter que la quan-
tité totale du charriage déposée ne semble pas étre modi-
fiée beaucoup par la dimension des sédiments. Seule
apparait une légére diminution de dépot lorsque la dimen-
sion du sédiment passe de d = 0,5 & d = 2,0 mm. Par
contraste avec la relation modifiée de Schoklitsch, 1’équa-
tion de charriage d’Einstein, 1942, dépend trés étroitement
de la dimension des sédiments. On peut observer a la
figure 8 que la quantité totale des sédiments déposés
décroit considérablement lorsque leur dimension augmente
de d = 1,0 mm a 2,0 mm, pour la méme période de dix
années.

Travail futur

Dans cette étude, un modeéle mathématique pour estimer
la sédimentation dans les réservoirs a été appliqué a des
systémes unidimensionnels de riviére-réservoir, dont les
caractéristiques ont été choisies arbitrairement. Les résul-
tats obtenus sur les formations de delta sont trés encou-
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B SCHOKLITSCH

dsp=2.0mm.

Fig. 7. — Taux du dépdt pour différentes dimensions du
sédiment (équation de Schoklitsch).

rageants, mais il est évident qu’une étude plus poussée
doit étre envisagée. On considére le programme de 1’ordi-
nateur développé pour ce modéle comme assez flexible
pour étre amélioré et appliqué a des systémes de riviere-
réservoir plus compliqués et plus proches de la réalité.

Les points suivants sont intéressants pour des recherches
a venir.

a) D’autres relations décrivant le charriage pourraient
étre aussi étudiées, aprés avoir été modifiées si possible
pour le cas du dépot du charriage.

b) Le modele, dans son état actuel, devrait étre testé avec
différentes valeurs pour: la dimension des sédi-
ments, le débit d’eau, la rugosité de la riviére, la pente
du lit de la riviére et la période de sédimentation.
Ces valeurs devraient étre choisies de maniére a cor-
respondre a des systémes réels de riviére-réservoir dans
le but de comparer les phénoménes prévus et réels de
dépot sédimentaire.

¢) La granulométrie du sédiment transporté par la riviere
est peu uniforme. C’est plutdot un mélange de sédiments
aux dimensions différentes, ce qui n’est pas pris en
considération par notre modéle actuel. La maniére la
plus simple de tenir compte des effets du mélange serait
de superposer les résultats obtenus avec les différentes
fractions des sédiments qui forment la granulométrie.
Le modele pourrait étre amélioré par la suite en choi-
sissant une période de sédimentation plutdt bréve et
en admettant qu’au cours de cette période les sédiments
de plus grande dimension peuvent se déposer avant
ceux de plus petite dimension.

d) Le présent modele suppose un débit d’eau constant a
travers le systtme. Dans un systéme réel de riviere-
réservoir, cela est rarement le cas et le débit de I'eau
est généralement dépendant du temps. Un hydro-
gramme des débits de la riviére pourrait étre utilisé
pour améliorer le modele a cet effet. Dans ce cas, le
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dsop=1.0mm.

Fig. 8. — Taux de dépo6t pour différentes dimensions du
sédiment (équation d’Einstein, 1942).

modele serait simplement exécuté pour un nombre de
périodes de sédimentation ou le débit d’eau reste une
constante.

e) Les sédiments déposés sont susceptibles d’un certain
degré de consolidation. Le modéle pourrait étre amé-
lioré pour rendre compte d’un tel phénomeéne. Un
moyen serait de supposer et de calculer un seul coeffi-
cient de consolidation pour chaque fraction de sédi-
ment.

f) Le présent modele mathématique est congu pour un
écoulement unidirectionnel. Les étapes suivantes pour-
raient étre envisagées pour I’'amélioration du modéle :
1) la largeur du systéme riviére-réservoir peut étre
fonction de la distance a une section de contrdle, par
exemple la section du barrage ; 2) I’écoulement secon-
daire et les phénomeénes de sédimentation y relatifs
peuvent €tre pris en considération pour une géométrie
du canal donnée. Il devrait étre tenu compte ultérieure-
ment des distributions de la vitesse dans les plans ver-
ticaux et horizontaux, des répartitions d’écoulements
telles que dans les méandres et des mouvements de
sédimentation qui en résultent.

g) Une fois les points ci-dessus pris en considération, le
modele devrait ensuite étre agrandi, afin de couvrir le
transport de sédiments en suspension aussi bien que
de sédiments cohésifs et le dépdt résultant de ces
différents modes de transport.

h) 11 est clair que les hypothéses faites pour le modéle
mathématique deviendraient moins rigides a4 chaque
¢tape d’amélioration apportée au modéle selon ce qui
précéde.

Ainsi, les résultats estimés par le modele peuvent étre
considérés comme plus réalistes et comparables aux don-
nées recueillies in situ. Celles-ci, d’autre part, sont mainte-
nant tout a fait rares. Par conséquent, on devrait aussi
concentrer les efforts concernant la récolte de données
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in situ liées a des informations correctes sur les caracté-
ristiques des sédiments et du systéme riviére-réservoir.
Alors seulement, le modéle mathématique deviendrait
réellement valable, par I’estimation des phénomeénes de
sédimentation dans les réservoirs.

Conclusions

Un modéle mathématique a été développé pour estimer
les caractéristiques de dépot du charriage dans un systéme
riviére-réservoir a une dimension (unité de largeur). Trois
équations de charriage différentes ont été utilisées: 1) la
relation modifiée de Schoklitsch, 2) la relation de Meyer-
Peter et al., et 3) I’équation de charriage d’Einstein, 1942.
Des données arbitraires ont été choisies pour caractériser
le systéme riviére-réservoir et le sédiment.

On peut en tirer les conclusions suivantes :

a) Les résultats qualitatifs indiquent qu’un delta se forme
dans la région amont du réservoir a la suite d’'un pro-
cessus de surélévation des couches horizontales du
dépot. Ensuite, ce delta avance vers I’aval en conser-
vant sa forme triangulaire typique qui ressemble aux
formations de delta actuelles dans les réservoirs exis-
tants.

b) Les résultats quantitatifs concernant les taux de for-
mation du delta tels qu’estimés par les trois équations
de charriage indiquent des différences. Ces différences
peuvent étre attribuées largement aux capacités inégales
de charriage estimées a partir des équations de I’écoule-
ment uniforme.
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Notations

Les symboles suivants sont utilisés dans cette étude :
D profondeur d’eau en toute section
Dh.x profondeur d’eau dans la section du barrage
D, profondeur d’eau normale dans la riviére (écoule-
ment uniforme)
diametre caractéristique du sédiment (dsg)
coefficient de rugosité selon Manning
débit d’eau par unité de largeur
débit solide par unité de largeur
pente du lit du canal
pente de la ligne d’énergie
épaisseur du dépot
vitesse de I’écoulement en toute section
b hauteur du lit du canal par rapport au fond du
barrage
¥, 7s poids spécifique de I’eau et du sédiment respective-
ment
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Planification des travaux de construction et d’entretien
— La méthode matricielle, par Thierry Bolliet. Editions
Eyrolles, Paris 1975. — Un volume de 72 pages, 15,4 X22.
Prix : 39 F fr.

Tout travail mérite d’étre préparé et planifié. Dans le
cadre des travaux de construction ou d’entretien, la plani-
fication fait généralement appel a la méthode Pert. Cette
méthode est effectivement valable dans deux domaines
limités

— soit aux projets de moins de 100 activités : ’applica-
tion est alors manuelle,

— soit aux projets de plus de 600 activités par mise sur
ordinateur.

Entre ces deux limites, la méthode Pert est trés complexe
a appliquer manuellement ou peu rentable a exploiter sur
ordinateur.

Compte tenu de ces difficultés rencontrées dans bon
nombre d’applications, une méthode originale a été mise
au point permettant de traiter manuellement des projets
complexes comprenant entre 100 et 600 activités. C’est le
contenu d’une telle méthode dite « matricielle » qui est
exposé dans le présent ouvrage.

Le processus de mise en ceuvre de la méthode matricielle
est trés simple et de ce fait peut étre appliqué directement
sur chantier par un personnel non spécialisé.

Appliquée en construction, cette méthode apporte une
souplesse impossible & obtenir avec le Pert : elle donne la
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possibilité de faire la mise & jour continue, au fur et a
mesure de I’avancement.

Appliquée en entretien pour la planification des arréts
d’installation, des travaux d’améliorations, des dépannages
complexes, des révisions d’équipement, elle s’aveére un
outil précieux et efficace, largement utilisé par un nombre
croissant d’entreprises soucieuses de réduire leur budget
d’entretien.

La méthode matricielle, déja appliquée a une grande
échelle et exposée dans le présent ouvrage, est donc I’outil
moderne de planification destiné a remplacer le Pert dans
toutes les applications nécessitant a la fois souplesse, pré-
cision et économie.

La pagination réduite et la présentation aérée des nom-
breux exemples en font un ouvrage de lecture facile, aisé
a comprendre, 4 l'usage de I’ensemble des professions
relatives a lindustrie (planification des travaux) et au
commerce (planification de lancements de produits), ainsi
que des cabinets d’organisation.

Extrait de la table des matiéres

1. Principes : Représentation matricielle des enchainements. —
Vérification de concordance des enchainements a I'aide de la
matrice. — Le graphe matriciel. — Détermination du jalonne-
ment intrinséque a I'aide du graphe matriciel. — Graphe matri-
ciel diagonal. — Graphe matriciel et méthode Pert sur ordina-
teur.

I1. Pratique (exemples d’application) : Extension d’un centre
de stockage de gaz. — Montage de bac avec ripage définitif. —
Réparation de vanne automatique. — Visite d’une colonne. —
Réalisation d’un ouvrage d’art. — Exécution de second ceuvre.
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