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Un modèle mathématique de la formation de deltas
due au dépôt de sédiments dans les réservoirs

par ÖNER YÜCEL et WALTER H. GRAF

Introduction

Les sédiments transportés par un cours d'eau sont amenés

à se déposer lorsqu'ils se trouvent dans un endroit
plus profond, tel qu'un réservoir derrière un barrage, un
lac ou un océan. Cela est dû au fait que la vitesse, et par
conséquent la capacité de transport des sédiments, diminue
alors que la profondeur du réservoir augmente. La
présente étude porte sur le dépôt des sédiments au moment
où une rivière débouche dans un réservoir. A cette fin, un
modèle mathématique simple a été mis au point et sera
décrit par la suite. Cet article fait suite à une recherche
entreprise par Yücel et Graf [3]l en 1973.

Modèle mathématique

Remarques préliminaires
Le modèle mathématique décrit dans cette étude cherche

à estimer la distribution et le taux de dépôt du charriage
dans un système de rivière-réservoir. Comme ce matériel
charrié est composé de particules relativement grossières
et non cohésives, le dépôt prend la forme d'un delta. Le
modèle envisagé décrit un système arbitraire de rivière-
réservoir auquel peut s'appliquer une analyse unidimen-
sionnelle (unité de largeur) (fig. 1). Les caractéristiques
du modèle et les hypothèses qui en découlent sont exposées
plus loin.

Modèle unidiniensionnel pour un système rivière-réservoir
Comme on le voit à la figure 1, le modèle décrit un réservoir

formé d'une digue placée sur une rivière où les phénomènes

d'écoulement unidimensionnel prédominent. Le
ralentissement de l'écoulement à l'entrée du réservoir
provoque obligatoirement le dépôt des sédiments dans la
rivière. Si le charriage seul est pris en considération, on
observe que le dépôt des sédiments s'effectue de deux
façons différentes.

a) Les sédiments de plus grande dimension se déposent
en premier pour créer un delta qui s'érige à l'embouchure

du réservoir et progresse vers l'aval.

b) Les sédiments de plus petite dimension sont transportés
plus loin dans le réservoir pour se déposer en couches
relativement planes et sont appelés souvent sédiments
de fond.

Le but de ce modèle est de décrire les types de dépôts
de sédiments au cours de la formation du delta. L'analyse
est composée de deux parties : a) la courbe de remous et
b) le transport et le dépôt des sédiments. Ces deux parties
de l'analyse sont faites indépendamment. Ainsi, en calculant

la courbe de remous, on admet que la géométrie du
système rivière-réservoir est constante et qu'il n'existe pas
de transport de sédiments. De même, on admet que la
courbe de remous reste inchangée au cours de chaque série
de calculs faits pour le dépôt des sédiments. On s'attend
à ce que tout dépôt dans le réservoir qui modifie la
configuration du fond modifie aussi la courbe de remous.

1 Les chiffres entre crochets renvoient à la bibliographie
en fin d'article.
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Fig. 1. — Système rivière-réservoir.

Cependant, si les dépôts se font en quantité suffisamment
petite, la courbe de remous ne sera pas changée de manière
significative. C'est pourquoi, pour éviter des répétitions
inutiles, le modèle calcule une nouvelle courbe de remous
seulement en présence d'une quantité de dépôt suffisante.
Un schéma simplifié du modèle est présenté dans l'organigramme

donné à la figure 2. Les méthodes appliquées
pour le calcul de la courbe de remous et des dépôts du
charriage sont décrites dans les chapitres suivants. Une
description plus détaillée du modèle est donnée par Yiicel
et Graf [4].

La courbe de remous

Dans un système rivière-réservoir avec un débit
unitaire q et une configuration du lit donnée (pas de transport
de sédiments), la courbe de remous peut être calculée au
moyen de n'importe quelle méthode connue (voir Chow [1],
ch. 10). Le modèle étudié ici utilise la méthode pas à pas
directe. Comme on peut le voir à la figure 3, les calculs
sont commencés dans la section à la digue où la profondeur
de l'eau est maximale, c'est-à-dire D Z>max, et continués
pas à pas vers l'amont en choisissant les changements de
profondeur, AD(, et en calculant les longueurs de tronçon
correspondantes, ALU selon la formule suivante :

>EP '

CALCULATE
NEW

BACKWATER

PROFILE

t>

k}

Fig. 2. — Organigramme du programme de calcul par
ordinateur.
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AL{ -ADt i-iyygD0) (D

où D0, V0, Sb0 et Seo sont la profondeur moyenne de l'eau,
la vitesse, la pente du lit et la pente de la ligne d'énergie
respectivement, chacune étant calculée à la section

moyenne de chaque tronçon. Dans cette étude, l'équation

(1) est considérée satisfaisante si les pentes des sections

moyennes, Sb0 et Seo, ne s'écartent pas de plus de 5 %
de celles des sections limites du tronçon. Si cette condition
n'est pas satisfaite, une nouvelle approximation (plus
faible) de la profondeur, ADU est faite et les calculs sont
répétés.

ù, L

DAM

-1 CPSECTION

]vf/
EGL

n-l

l-l

Fig. 3. Calculs de la courbe de remous.

On trouve des problèmes particuliers dans deux régions
du réservoir pour les calculs de la courbe de remous :

dans les tronçons où le changement de la pente du lit du
canal est considérable, comme dans les régions de transition,

vers et depuis la face aval des deltas, ADt doit être
choisi très petit, cela implique que plusieurs tronçons de

faible longueur, ALt, doivent être calculés. Ceci est
évidemment un désavantage si l'on considère le temps pris
par le travail de l'ordinateur. Une manière de remédier à

une telle situation serait d'augmenter l'écart admissible
mentionné de 5 % à 10 %. Il semblerait aussi plus
pratique de faire usage de la méthode « pas à pas standard »

au voisinage de telles régions plutôt que de choisir la
méthode «pas à pas directe» (voir Chow [1], ch. 10);
en effet, on sélectionne un tronçon de longueur Lt, et on
calcule le changement de la profondeur correspondant.
Des problèmes semblables surgissent dans les régions où
les conditions normales d'écoulement de la rivière sont
presque satisfaites. Puisque la courbe de remous tend
asymptotiquement vers un écoulement normal, des changements

de la profondeur, même extrêmement petits, donneraient

des tronçons de longueur excessive. Une manière de

remédier à une telle situation serait de supposer que les

conditions normales d'écoulement sont approximativement
satisfaites quand les pentes du lit et de la ligne d'énergie
d'une section calculée ne dépassent pas les 5 % de ceux
de l'écoulement normal de la rivière.

Le dépôt du charriage

Une fois le calcul de la courbe de remous et la
détermination des conditions d'écoulement pour le système
rivière-réservoir établis, on calcule le dépôt du charriage.
Comme on le voit à la figure 4, on commence ces calculs
à la section où se trouvent réalisées approximativement
les conditions d'écoulement normal de la rivière et on les

continue en aval en direction du réservoir. Les mêmes
sections que celles déterminées pour les calculs de la courbe
de remous sont utilisées pour les calculs du dépôt du
charriage. Un cycle typique de calculs pour le dépôt du charriage

est décrit comme suit :

a) Sur une section à l'intérieur du système rivière-réservoir,
où la profondeur de l'eau est Dt, la capacité du char-

^P3

_Lh^~l
_L| ^n-l

min)
Aq

-Q
s(l-0

Fig. 4. — Calculs du dépôt du charriage.

riage est désignée par qsi ; elle peut être déterminée en
utilisant une équation de charriage.

b) Sur la section aval suivante, à une distance ALU la
profondeur de l'eau est A-x- Puisque Dj_x > Dt,
la vitesse moyenne de l'écoulement diminue, soit
Vt-i > V{, car le débit unitaire est considéré comme
une constante, soit q const. De la réduction de la
vitesse, il résulte que la capacité de transport du charriage

vers la section aval diminue aussi, soit qsy-i) <

c) La différence entre les capacités de débit solide à la
section amont et à la section aval est donnée par :

Ms Isi — QsW-l) (2)

Cette quantité de charriage devrait être déposée entre
ces deux sections. Si la longueur du tronçon, Lt, est
suffisamment petite (de telle sorte que le changement
des conditions d'écoulement entre les deux sections soit
graduel), alors on peut supposer que le dépôt dans le

tronçon sera distribué uniformément. La couche

moyenne uniforme du dépôt, tsi, par unité de temps
(période) au cours du dépôt, Td, est alors

t$i Td Aqsi I ALt (3)

d) Le dépôt calculé ci-dessus augmente l'élévation du lit
du canal dans chaque tronçon, ce qui donne :

^bi (nouveau) ^bi (original) ~T 'ss (4)

Ainsi, en appliquant l'équation (4) à chaque section,
une nouvelle configuration du lit du réservoir est
obtenue.

e) Chaque cycle de calculs du dépôt est terminé lorsque
les deux conditions suivantes sont approximativement
remplies : i) si le charriage transporté par le cours d'eau
est terminé ou ii) si la section du barrage est atteinte.

f) Tout changement dans le lit du réservoir demande la
détermination d'une nouvelle courbe de remous. Cependant,

pour éviter des calculs trop longs, on calcule
une nouvelle courbe de remous seulement si un dépôt
apporte des changements significatifs dans le profil du
lit du canal. Au cours de cette étude, on admet l'hypothèse

qu'un dépôt significatif apparaît seulement si
l'épaisseur locale du dépôt dépasse 2 % de la profondeur

locale de l'eau. (Nombre arbitraire, assez petit
pour que les capacités du charriage ne soient pas modifiées

de manière significative.) Ainsi, une nouvelle
courbe de remous est calculée seulement si

£)*__> 2% (5)

Si le dépôt obtenu comme résultat d'un cycle de calculs
n'est pas significatif, ou si (/S(/A)max < 2 %, on
suppose alors qu'un deuxième cycle a eu lieu, identique
au premier, et la position du fond du réservoir est
ajustée en conséquence.
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Les équations du charriage
Le dépôt du charriage a été calculé en utilisant trois

équations différentes : 1) la relation de Schoklitsch (modifiée

pour le dépôt à l'aide de la vitesse limite de dépôt de

Hjülström, 2) la relation de Meyer-Peter et al., et 3) l'équation

de charriage d'Einstein, 1942. Une discussion de ces
relations ainsi que d'autres est donnée dans Graf ([2], ch. 7).
En utilisant ces équations pour le dépôt du charriage dans
les réservoirs, deux hypothèses sont inévitables : a) toutes
les équations du charriage disponibles sont développées
pour des conditions d'écoulement uniforme, pour lesquelles
les pentes du lit du canal, de la surface de l'eau et de
l'énergie sont identiques. Cependant, pour l'écoulement
dans les réservoirs, les pentes sont clairement différentes,
même si l'on considère de courts tronçons. On peut choisir
la pente de l'énergie pour l'utiliser avec les équations du
charriage, comme c'est le cas dans cette étude. (Dans ce

cas pourtant, l'effet de la pente du lit du canal serait
négligé, ce qui mènerait évidemment à des imprécisions.)
Cependant, on peut aussi choisir une pente équivalente,
égale à la moyenne des pentes du lit et de l'énergie, par
exemple. Les auteurs pensent qu'un tel choix est trop
arbitraire. Evidemment, on doit attendre, pour une application
plus correcte, le développement d'équations du charriage
valables pour un écoulement non uniforme, b) Toutes les
relations du charriage disponibles sont basées sur des
critères d'« érosion » ou de « force d'affouillement » et non
de « dépôt ». C'est pourquoi la seule possibilité consiste à
utiliser les équations de l'érosion pour les problèmes de

dépôt.
Les trois relations du dépôt utilisées sont brièvement

décrites par la suite :

L'équation de Schoklitsch modifiée

La forme générale des relations de Schoklitsch est
donnée par (voir Graf [2], p. 130-131) :

1s Xs"- (Q -1er) (6)

où qs est le débit solide du charriage en volume par unité
de largeur et par unité de temps ; S est la pente du canal ;

q est le débit de l'eau par unité de largeur et de temps ;

qcr est le débit critique de l'eau pour lequel les matériaux
du lit commencent à se mouvoir ; et % et k sont des coefficients

empiriques fonction des sédiments. Les équations
du charriage de Schoklitsch conviennent pour modifier le
dépôt parce qu'elles comprennent un terme comme qcr,
le débit de l'érosion limite. Dans cette étude, on propose
d'utiliser dans l'équation 6 la vitesse limite du dépôt V„
pour évaluer le débit limite q„ (voir Graf [2], p. 88).
De plus, sans une meilleure information, on estime que
les coefficients empiriques % et k restent identiques pour
1'« érosion » et pour le « dépôt ». Ainsi, l'équation (6) est
modifiée pour s'appliquer au dépôt et prend la forme
suivante :

q. XSh(.q~DVer) (7)

où D est la profondeur locale de l'écoulement et V„ est
la vitesse limite de dépôt donnée par Hjülström.

L'équation de Meyer-Peter et al.
La deuxième équation utilisée dans cette étude pour

calculer le dépôt du charriage est l'équation de Meyer-
Peter et al., qui peut s'écrire (voir Graf [2], p. 136-139) :

{y.-y)
yDS
d50

-0,047 (y,-y) ^r c«)

où qs est le débit solide du charriage en volume par unité
de largeur et unité de temps ; ys est le poids spécifique du
sédiment ; y est le poids spécifique de l'eau ; D est la
profondeur de l'eau ; S est la pente de la ligne d'énergie ;

d est le diamètre caractéristique (dsoyo) ; et p est la densité
de l'eau. Une simple modification de l'équation (8) pour
l'appliquer au calcul du dépôt sédimentaire n'est pas
possible dans ce cas, puisqu'elle ne dépend pas explicitement
d'une vitesse limite. Il est vrai que l'équation (8) contient
un terme décrivant la force de traction limite, c'est-à-dire :

0,047 (ys/y) ; celle-ci n'étant pourtant pas utilisable, une
modification ne peut être faite dans ce sens. Ainsi, il doit
nous rester à l'esprit que le calcul du dépôt du charriage
est basé dans ce cas sur le principe de 1'« érosion » et non
du « dépôt ».

L'équation du charriage d'Einstein, 1942

La troisième équation employée dans cette étude est
l'équation du charriage d'Einstein, sous la forme établie
en 1942 (voir Graf [2], p. 139-150), qui peut s'écrire ainsi :

Qs
[(ysly-i)gd3]1^

0,465

•Q,391(y,/y-l)rf-
DS

(9)

V0

où g est l'accélération de la pesanteur ; les autres variables
ont été définies précédemment. Ici à nouveau, une
modification pour appliquer l'équation au calcul du dépôt n'est
pas possible, car il n'existe aucune expression explicite de
la vitesse limite. Toutefois, il faut garder à l'esprit que
l'équation (9) a été établie selon le principe de l'équilibre
entre l'érosion et le dépôt. Ceci rend cette équation
relativement plus commode que les précédentes pour le but
que nous poursuivons.

Caractéristiques du modèle pour le système rivière-réservoir
On a choisi les caractéristiques arbitraires suivantes pour

le système rivière-réservoir : débit d'eau constant par unité
de largeur du canal, q 1,81 m3/sec/m ; pente du lit de
la rivière, >S6r 0,000175 ; profondeur maximale de l'eau
(sur la même section), Dm!lx 23,5 m ; coefficient de

rugosité selon Manning, n 0,0234 ; densité des particules

sédimentaires, ss yjy 2,65 (sable de quartz) ;

diamètre caractéristique des grains: d50 0,5, 1,0,
2,0 mm.

Résultats

Remarques générales

Les calculs comportant les trois relations sur le charriage

ont été faits pour des périodes de sédimentation d'un
jour ou d'un mois. Une période de sédimentation est
considérée comme une période pendant laquelle la moyenne
du débit est égale, ou supérieure à une valeur choisie dans
notre modèle : q 1,81 m3/sec/m). Le choix de la période
de sédimentation d'un jour ou d'un mois dépend en fait
de l'importance du débit solide. Ainsi, lorsque le dépôt
grandit rapidement, on choisit de préférence des périodes
de sédimentation relativement plus brèves.

Le phénomène de dépôt prévu par le présent modèle
mathématique peut être discuté à la fois au plan qualitatif
et quantitatif. Toutefois, par le fait de plusieurs
hypothèses limitatives, on considère les résultats qualitatifs
comme plus importants.

La formation de delta

Le résultat le plus intéressant a été la formation d'un
delta avec des caractéristiques communes à toutes les trois
relations de charriage utilisées. Cette formation typique
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Fig. 5. — Création et avancement d'un delta typique résultant
du dépôt du charriage.

de delta est illustrée à la figure 5, tracée par l'ordinateur
et résultant des calculs faits en utilisant l'une des relations
de charriage. Les remarques suivantes relatives à la
formation du delta peuvent être faites :

a) Le dépôt commence par la formation de couches plutôt
planes dans les régions amont du réservoir. L'épaisseur
de ces couches augmente graduellement jusqu'à ce

qu'une section soit atteinte, où le taux du dépôt arrive
au maximum. En aval de cette section, l'épaisseur des

couches tend à diminuer de nouveau. La répétition de

ce processus de dépôt crée une forme triangulaire
typique de dépôt, c'est-à-dire un delta.

b) Ensuite, la tête de ce delta se met à progresser en
direction de l'aval et la face aval du delta devient plus
courte et plus raide, tandis que la face amont devient
plus longue et plane. De cette façon, le delta commence
à avancer dans le réservoir, tout en conservant sa forme
triangulaire typique.

Avec ce modèle mathématique relativement simple, il
est remarquable de constater que les particularités de la
formation d'un delta typique discutées plus haut
correspondent bien aux formations de delta dans des réservoirs
naturels. Un bon exemple est le « Lake Mead », derrière
le « Hoover Dam », sur la rivière du Colorado ; la répartition

du dépôt des sédiments peut y être considérée comme
tout à fait semblable à celle décrite par le présent modèle
en figure 6. Il faut pourtant noter de suite que cette
observation est entièrement qualitative et absolument pas
quantitative.

Le dépôt du débit solide de charriage

Les taux du débit solide de charriage pour le système
donné de rivière-réservoir diffèrent selon les trois équations

de charriage utilisées pour le calcul du modèle. Ceci
a été prévu, car ces équations sont basées essentiellement
sur différentes méthodes aussi bien que sur des conditions
d'écoulement et de sédimentation très différentes. Cependant,

certaines tendances générales sont apparentes, comme
décrit ci-dessous.

Les répartitions de dépôt du charriage prévues par les

trois équations de charriage pour des intervalles de temps
variés sont décrites à la figure 6. Il est évident que le

moobtco ichoxutkm ce

«TE8VALS ' O KS Y—K3

TOT«. '»O SCO TU«

B___5IH

HTCRWU rCAfi

:.-r ¦¦:TOTAL

attTtm-av »co _ko ia

I tCS YCM
10 KO TUM

Fig. 6. — Taux de dépôt du charriage, obtenu par trois équations

différentes.

dépôt le plus élevé est décrit dans l'équation de Meyer-
Peter et al. Celle d'Einstein, 1942, prévoit un dépôt du
charriage légèrement plus faible. Celui décrit dans l'équation

modifiée de Schoklitsch est encore plus bas que les

deux autres. En fait, la même quantité de dépôt est obtenue
approximativement au cours de cent années de sédimentation

avec l'équation de Schoklitsch modifiée qu'au cours
de cinq années selon les équations de charriage de Meyer-
Peter et al. et d'Einstein, 1942. On pouvait le prévoir, car
la relation de charriage de Schoklitsch est connue pour
donner des résultats plutôt minimes concernant les quantités

charriées (voir Graf [2], p. 156-159).
Les calculs ont aussi été faits pour des dimensions

différentes de sédiments en utilisant les équations de Schoklitsch

modifiée et d'Einstein, 1942. Tout d'abord une
période de dépôt sédimentaire de cent ans a été choisie

pour trois dimensions de sédiments, c'est-à-dire : d
0,5 mm, 1,0 mm et 2,0 mm, en utilisant la relation modifiée

de Schoklitsch. Il est intéressant de noter que la quantité

totale du charriage déposée ne semble pas être modifiée

beaucoup par la dimension des sédiments. Seule

apparaît une légère diminution de dépôt lorsque la dimension

du sédiment passe de d 0,5 à d 2,0 mm. Par
contraste avec la relation modifiée de Schoklitsch, l'équation

de charriage d'Einstein, 1942, dépend très étroitement
de la dimension des sédiments. On peut observer à la
figure 8 que la quantité totale des sédiments déposés
décroît considérablement lorsque leur dimension augmente
de d 1,0 mm à 2,0 mm, pour la même période de dix
années.

Travail futur

Dans cette étude, un modèle mathématique pour estimer
la sédimentation dans les réservoirs a été appliqué à des

systèmes unidimensionnels de rivière-réservoir, dont les

caractéristiques ont été choisies arbitrairement. Les résultats

obtenus sur les formations de delta sont très encou-
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SCHOKLITSCH

^50 0.5 mm.

EINSTEIN -'42

d50 ¦ 0 5 mm.

d50 1.0mm.

*r*'

d50 I Omm.

- s
~

r-s-"

d so - 2.Omm
dso =2.0 mm.

Fig. 7. — Taux du dépôt pour différentes dimensions du
sédiment (équation de Schoklitsch).

Fig. 8. — Taux de dépôt pour différentes dimensions du
sédiment (équation d'Einstein, 1942).

rageants, mais il est évident qu'une étude plus poussée
doit être envisagée. On considère le programme de
l'ordinateur développé pour ce modèle comme assez flexible
pour être amélioré et appliqué à des systèmes de rivière-
réservoir plus compliqués et plus proches de la réalité.

Les points suivants sont intéressants pour des recherches
à venir.

a) D'autres relations décrivant le charriage pourraient
être aussi étudiées, après avoir été modifiées si possible
pour le cas du dépôt du charriage.

b) Le modèle, dans son état actuel, devrait être testé avec
différentes valeurs pour : la dimension des
sédiments, le débit d'eau, la rugosité de la rivière, la pente
du lit de la rivière et la période de sédimentation.
Ces valeurs devraient être choisies de manière à
correspondre à des systèmes réels de rivière-réservoir dans
le but de comparer les phénomènes prévus et réels de
dépôt sédimentaire.

c) La granulométrie du sédiment transporté par la rivière
est peu uniforme. C'est plutôt un mélange de sédiments
aux dimensions différentes, ce qui n'est pas pris en
considération par notre modèle actuel. La manière la
plus simple de tenir compte des effets du mélange serait
de superposer les résultats obtenus avec les différentes
fractions des sédiments qui forment la granulométrie.
Le modèle pourrait être amélioré par la suite en
choisissant une période de sédimentation plutôt brève et
en admettant qu'au cours de cette période les sédiments
de plus grande dimension peuvent se déposer avant
ceux de plus petite dimension.

d) Le présent modèle suppose un débit d'eau constant à

travers le système. Dans un système réel de rivière-
réservoir, cela est rarement le cas et le débit de l'eau
est généralement dépendant du temps. Un
hydrogramme des débits de la rivière pourrait être utilisé
pour améliorer le modèle à cet effet. Dans ce cas, le

modèle serait simplement exécuté pour un nombre de
périodes de sédimentation où le débit d'eau reste une
constante.

e) Les sédiments déposés sont susceptibles d'un certain
degré de consolidation. Le modèle pourrait être amélioré

pour rendre compte d'un tel phénomène. Un
moyen serait de supposer et de calculer un seul coefficient

de consolidation pour chaque fraction de
sédiment.

f) Le présent modèle mathématique est conçu pour un
écoulement unidirectionnel. Les étapes suivantes
pourraient être envisagées pour l'amélioration du modèle :

1) la largeur du système rivière-réservoir peut être
fonction de la distance à une section de contrôle, par
exemple la section du barrage ; 2) l'écoulement secondaire

et les phénomènes de sédimentation y relatifs
peuvent être pris en considération pour une géométrie
du canal donnée. Il devrait être tenu compte ultérieurement

des distributions de la vitesse dans les plans
verticaux et horizontaux, des répartitions d'écoulements
telles que dans les méandres et des mouvements de
sédimentation qui en résultent.

g) Une fois les points ci-dessus pris en considération, le
modèle devrait ensuite être agrandi, afin de couvrir le
transport de sédiments en suspension aussi bien que
de sédiments cohésifs et le dépôt résultant de ces
différents modes de transport.

h) Il est clair que les hypothèses faites pour le modèle
mathématique deviendraient moins rigides à chaque
étape d'amélioration apportée au modèle selon ce qui
précède.

Ainsi, les résultats estimés par le modèle peuvent être
considérés comme plus réalistes et comparables aux données

recueillies in situ. Celles-ci, d'autre part, sont maintenant

tout à fait rares. Par conséquent, on devrait aussi
concentrer les efforts concernant la récolte de données
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in situ liées à des informations correctes sur les
caractéristiques des sédiments et du système rivière-réservoir.
Alors seulement, le modèle mathématique deviendrait
réellement valable, par l'estimation des phénomènes de

sédimentation dans les réservoirs.

Conclusions

Un modèle mathématique a été développé pour estimer
les caractéristiques de dépôt du charriage dans un système
rivière-réservoir à une dimension (unité de largeur). Trois
équations de charriage différentes ont été utilisées : 1) la
relation modifiée de Schoklitsch, 2) la relation de Meyer-
Peter et al., et 3) l'équation de charriage d'Einstein, 1942.

Des données arbitraires ont été choisies pour caractériser
le système rivière-réservoir et le sédiment.

On peut en tirer les conclusions suivantes :

a) Les résultats qualitatifs indiquent qu'un delta se forme
dans la région amont du réservoir à la suite d'un
processus de surélévation des couches horizontales du
dépôt. Ensuite, ce delta avance vers l'aval en conservant

sa forme triangulaire typique qui ressemble aux
formations de delta actuelles dans les réservoirs
existants.

b) Les résultats quantitatifs concernant les taux de for¬

mation du delta tels qu'estimés par les trois équations
de charriage indiquent des différences. Ces différences

peuvent être attribuées largement aux capacités inégales
de charriage estimées à partir des équations de l'écoulement

uniforme.
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Notations

Les symboles suivants sont utilisés dans cette étude :

D profondeur d'eau en toute section
Z)max profondeur d'eau dans la section du barrage
Dn profondeur d'eau normale dans la rivière (écoule¬

ment uniforme)
d diamètre caractéristique du sédiment (rf50)

n coefficient de rugosité selon Manning
q débit d'eau par unité de largeur
qs débit solide par unité de largeur
Sb0 pente du lit du canal
Se pente de la ligne d'énergie
ts épaisseur du dépôt
V vitesse de l'écoulement en toute section
Zb hauteur du lit du canal par rapport au fond du

barrage
y, ys poids spécifique de l'eau et du sédiment respective¬

ment
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Planification des travaux de construction et d'entretien

— La méthode matricielle, par Thierry Bolliet. Editions
Eyrolles, Paris 1975. — Un volume de 72 pages, 15,4x22.
Prix : 39 F fr.

Tout travail mérite d'être préparé et planifié. Dans le
cadre des travaux de construction ou d'entretien, la
planification fait généralement appel à la méthode Pert. Cette
méthode est effectivement valable dans deux domaines
limités

— soit aux projets de moins de 100 activités : l'application

est alors manuelle,
— soit aux projets de plus de 600 activités par mise sur

ordinateur.
Entre ces deux limites, la méthode Pert est très complexe

à appliquer manuellement ou peu rentable à exploiter sur
ordinateur.

Compte tenu de ces difficultés rencontrées dans bon
nombre d'applications, une méthode originale a été mise
au point permettant de traiter manuellement des projets
complexes comprenant entre 100 et 600 activités. C'est le

contenu d'une telle méthode dite « matricielle » qui est
exposé dans le présent ouvrage.

Le processus de mise en œuvre de la méthode matricielle
est très simple et de ce fait peut être appliqué directement
sur chantier par un personnel non spécialisé.

Appliquée en construction, cette méthode apporte une
souplesse impossible à obtenir avec le Pert : elle donne la

possibilité de faire la mise à jour continue, au fur et à

mesure de l'avancement.
Appliquée en entretien pour la planification des arrêts

d'installation, des travaux d'améliorations, des dépannages
complexes, des révisions d'équipement, elle s'avère un
outil précieux et efficace, largement utilisé par un nombre
croissant d'entreprises soucieuses de réduire leur budget
d'entretien.

La méthode matricielle, déjà appliquée à une grande
échelle et exposée dans le présent ouvrage, est donc l'outil
moderne de planification destiné à remplacer le Pert dans
toutes les applications nécessitant à la fois souplesse,
précision et économie.

La pagination réduite et la présentation aérée des
nombreux exemples en font un ouvrage de lecture facile, aisé
à comprendre, à l'usage de l'ensemble des professions
relatives à l'industrie (planification des travaux) et au
commerce (planification de lancements de produits), ainsi
que des cabinets d'organisation.

Extrait de la table des matières
I. Principes : Représentation matricielle des enchaînements. —

Vérification de concordance des enchaînements à l'aide de la
matrice. — Le graphe matriciel. — Détermination du jalonnement

intrinsèque à l'aide du graphe matriciel. — Graphe matriciel

diagonal. — Graphe matriciel et méthode Pert sur ordinateur.

IL Pratique (exemples d'application) : Extension d'un centre
de stockage de gaz. — Montage de bac avec ripage définitif. —
Réparation de vanne automatique. — Visite d'une colonne. —
Réalisation d'un ouvrage d'art. — Exécution de second œuvre.
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