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BULLETIN TECHNIQUE DE LA SUISSE ROMANDE

101° année 27 février 1975 N° 5

Editorial

Une information diffusée ces jours derniers nous apprend
que la réduction des moyens accordés au Fonds national de la
recherche scientifique aurait pour conséquence la suppression
prochaine de quelque 250 postes de chercheurs. Parmi toutes
les mesures d’austérité suscitées par la grande misére des
finances fédérales, celle-la a peu de chance de connaitre un
grand retentissement. Ce n’est pas le chiffre de 250 chémeurs,
en blouse blanche de surcroit, pour tout le pays qui frappe
l'imagination sur le plan social. L’activité de ces chercheurs
est pratiquement inconnue du grand public, sinon quelques
exceptions citées pour mettre en doute la valeur pratique des
travaux patronnés par le Fonds national. Il est donc a craindre
que cette réduction se fasse sans grande opposition, sinon
sans douleur.

Il serait dommage que la valeur de la recherche scientifique
soit mesurée selon des criteres utilitaires, alors que cette
activité constitue une indispensable étape avant toute
recherche orientée sur des buts précis. Il serait bon de se
rappeler cette relation, au moment ou ['on consacre tant
d’efforts a des études intégrant les différents grands pro-
blémes. Citons I’exemple de I’aménagement du territoire :
son examen doit pouvoir se baser sur les résultats de spécia-
listes de domaines fort divers, dont les travaux ont souvent

été effectués depuis longtemps sans une motivation aussi
précise. De plus, la science pure est l’un des fondements de
notre culture, laquelle conditionne notre fagon d’aborder et
de résoudre les problémes.

Les postes de chercheurs financés par le Fonds national
constituent un appui précieux pour nos hautes écoles en leur
Sfournissant les moyens d’entreprendre a terme certaines
recherches sans surcharger de fagon permanente leurs
effectifs.

Le Fonds national permet par exemple a de jeunes ingé-
nieurs de suivre et de développer leur goiit de la recherche
par des travaux au sein d’équipes expérimentées, disposant
de moyens bien adaptés.

Finalement, les résultats constituent une monnaie d’échange
universelle pour accéder aux travaux effectués dans d’autres
pays et confronter ’acquis respectif dans nombre de domaines.

1l convient donc de tout entreprendre pour que des moyens
importants restent assurés a une recherche scientifique inde-
pendante des contraintes de ['industrie et de certaines limites
de l’enseignement, car de son activité et de ses succés dépen-
dent pour une grande part la qualité et la capacité de concur-
rence de toutes nos industries.

J.-P. WEIBEL.

Communication de la chaire de statique et de résistance des matériaux de I'EPF-L,

Professeur M.-H. Derron

Contribution a I'étude des problémes géométriquement
non linéaires des structures élastiques cuite et fin):

par JAROSLAV JIROUSEK, Lausanne

Théorie du 2¢ ordre des arcs élastiques

1. Introduction

A la différence des poutres droites soumises a des
charges transversales, les déformations des arcs ont d’habi-
tude une influence non négligeable sur les efforts internes.
Ceci est essentiellement dii au fait que la ligne de poussée
se situe le plus souvent tout prés de I’axe de I’arc, de sorte
que méme une légere déformation de celui-ci entraine une
grande variation des moments fléchissants. Les déforma-
tions modifiant de maniére appréciable le mode d’action
des forces, I’hypothése habituellement admise dans le
calcul des structures, selon laquelle les conditions statiques
peuvent étre formulées sur la structure non déformée,
n’est plus justifiée.

Dans le calcul des arcs, selon la théorie du second ordre,
les conditions d’équilibre sont appliquées a la structure
déformée ; on admet en méme temps que les déplacements
restent suffisamment faibles pour justifier certaines simpli-
fications géométriques. Contrairement au cas d’une barre
droite, I'application de ce procédé a un arc conduit a un
calcul non linéaire. En général, on cherche a tourner cette
difficulté en remplacant le calcul direct du probléme non
linéaire par un calcul répété du probléme linéarisé, consti-
tuant une suite d’approximations successives. Une méthode
typique est exposée, par exemple, dans ’ouvrage du pro-
fesseur Ping-Chun Wang [4].
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Dans la théorie des barres courbes, on utilise d’habitude
des relations plus ou moins approchées entre le moment
fléchissant ou I’effort normal et les composantes du dépla-
cement. Dans [4], on prend par exemple, par analogie avec

e -
les barres droites, simplement : M = EI% et N = EF;:—I,
ou w et u sont les composantes du déplacement, respective-
ment normale et tangentielle a ’axe de I’arc, et ds un élé-
ment de I"axe de I’arc. Dans notre étude, nous proposons
des expressions plus rigoureuses de M et N, qui tiennent
également compte de I’effet de la courbure initiale de I’arc
et de sa variation le long de I’axe. En partant de ces expres-
sions, nous développerons ensuite les équations différen-
tielles des déplacements. En les transformant par la
méthode des différences finies et en tenant compte des
conditions aux limites, on obtient un systéme d’équations
ordinaires mais non linéaires que I’on peut résoudre a ’aide
du programme SNOLIN.

La méthode s’adapte a des arcs de forme quelconque
(plats, hauts, symétriques ou non) et quelles que soient
leurs conditions d’appui (arcs a deux articulations, arcs
encastrés a 'une des extrémités, arcs biencastrés, etc.). En
ce qui concerne la charge de I’arc, nous avons supposé que
celle-ci garde sa direction, mais qu’elle se déplace en fonc-
tion de la déformation de I'arc, ce qui nous a paru prati-

L Voir Bulletin technique de la Suisse romande, N° 24 du 21
novembre 1974.

63



quement plus intéressant que de supposer une position fixe
des forces extérieures 2. La solution s’adapte d’ailleurs
facilement a cette seconde possibilité, si I'on en a excep-
tionnellement besoin ; il suffit de supprimer les termes qui
expriment l'effet du déplacement des points d’application
des forces.

2. Principe de la solution et hypothéses de travail

Les équations différentielles des déplacements inconnus
u et w s’obtiennent en exprimant le principe d’équivalence
entre I'effort normal et la projection de forces extérieures
et entre le moment fléchissant et le moment des forces
extérieures. On tiendra compte des effets du second ordre
en appliquant les forces extérieures a 1’arc déformé.

Pour écrire les expressions de I’effort normal et du
moment fléchissant des efforts internes (expressions de N
et M en fonction des déplacements), on adoptera les hypo-
theses de travail suivantes :

— Apres la déformation, les sections planes et perpen-
diculaires a I’axe de I’arc dans sa position initiale restent
planes et perpendiculaires a I’axe déformé.

— Le rayon de courbure r = r (x) de I’axe non déformé
de I’arc est grand par rapport a la hauteur de la section
h = h(x). La différence de longueur initiale des fibres
comprises entre deux sections voisines étant alors relative-
ment faible sur la hauteur /, on n’en tiendra compte que
de maniére approchée.

— Les déplacements restent petits par rapport aux
dimensions de ’arc. On peut, par conséquent, appliquer
les simplifications géométriques courantes de la théorie des
petits déplacements.

— Le matériau obéit a la loi de Hooke.

3. Géométrie de la déformation d’une barre courbe

Considérons un élément d’arc selon la figure 10. Dans
les développements qui suivront, nous utiliserons les nota-
tions suivantes :

& ... allongement spécifique de I’axe de I’arc passant
par les centres de gravité des sections ;

¢ ... allongement spécifique des fibres a la distance z
de I’'axe (voir la figure 10) ;

@ ... rotation de la normale a 'axe de I’arc sous I’effet
de la déformation de ce dernier ;

Ar ... accroissement du rayon de courbure de I’axe sous
I’effet de la déformation de I’arc ;

u ... projection du déplacement d’un point de I’axe sur

la tangente a I’axe non déformé ;

. projection du déplacement d’un point de I’axe sur
la normale a I’axe non déformé.

|

Selon la figure 10, ’allongement spécifique s’exprime en
fonction des accroissements do et Ar par

(r + Ar—z) (do. + dp)—(r—2z) do.
g= =
(r — z)do

(15)

Dans la multiplication des deux premiéres parenthéses du
numérateur, on peut négliger le produit Ar-do. En effet,
conformément aux hypothéses adoptées au paragraphe
précédent, le produit de deux petites déformations est
négligeable par rapport aux termes qui sont linéaires en les
déformations. Aprés la simplification, on trouve alors :

2 Cette derniére hypothése semble pourtant adoptée dans [4]

a moins qu’il ne s’agisse d’une erreur commise dans I’expression
du moment des forces extérieures.
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Fig. 10. — Elément de barre courbe avant la déformation (a)
et apres la déformation (b).

d .
B (@)

do r—z

En posant z = 0, on en tire

Ar="r <60_ Z—Z) s (b)

Par combinaison de (b) et (a), la dilatation & s’exprime en
fonction de gy et ¢ :
r z d
&= ——_80*—_—(—/) " (16a)
r—z r—z do
Le premier terme du second membre peut encore étre écrit
de la maniére suivante

r r—z ¥ Z
—— =& ———8& + —=&=6&&+ ——¢&,
r—z r—z r—z r—z

ce qui donne :

dp\ z
%) —. (16b)

r—z

& =&+ <80—
F
Les relations (16a, b) montrent que la variation de la
dilatation ¢ sur la hauteur de la section est, en général, non
linéaire pour une barre courbe. Si I'on admet cependant
(conformément aux hypothéses énoncées au paragraphe
précédent), que la hauteur de la section /4 est petite vis-a-vis
du rayon r, alors la déviation par rapport a une variation
lin€aire est relativement faible, et on peut la négliger. En
négligeant z par rapport a r au dénominateur du facteur
z/(r—z) dans la relation (16b), on obtient une expression
linéarisée de la dilatation ¢ :
8=80+ <80_@)i. (17)
doa) r

/

1l est intéressant d’observer qu’en supprimant prématu-
rément z au dénominateur du second membre de la rela-
tion (16a), c’est-a-dire avant d’avoir modifié la relation (16a)
en (16b), on serait conduit a une expression moins précise,

dp

&':80—(52.

Cette derniére expression (également admise dans de nom-
breuses théories de coques cylindriques et des coques de
révolution) implique qu’un allongement ou un raccour-
cissement spécifique uniforme (g, = const., dp/doe = 0) de
I’axe d’un anneau circulaire provoque une répartition uni-
forme de contraintes, ¢ = Eg,, ayant pour résultante uni-
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quement un effort normal N = EFg,. En réalité, la lon-
gueur initiale des fibres variant linéairement avec z, & =
const. conduit a une répartition non uniforme des
contraintes ¢, ayant alors pour résultante non seulement
un effort normal, mais également un moment fléchissant M.
On remarquera que cette réalité est en revanche entiere-
ment respectée par la relation (17) que nous avons proposée.

Pour les futures applications, il convient encore d’expri-
mer la dilatation ¢ en fonction des déplacements u et w de
I’axe de I’arc. Selon la figure 10, on trouve facilement les
expressions :

di w

80=$_'—,, (182)
u dw
p=-+=. (18b)

En les portant dans la relation (17) et en posant rdo = ds,
on trouve pour la dilatation &, aprés simplification

di w [dP% w udr\._

— + 5—==]z. 19

<ds2 r2 r? ds) 4 (19)

4. Relations entre les efforts internes et les dépla-
cements de I'axe de l'arc

Avec la convention de signes de la figure 11, Peffort
normal et le moment fléchissant dans une section de I’arc
seront définis par les relations suivantes :

N=fadF et M= [ ozdF,
F F

ol Fest I'aire de la section. Compte tenu de la loi de Hooke,
o = Eg, on trouve a partir de la relation (19) :

i
N=EF <i‘ - Y) , (202)
ds - r
d®w w udr
Y IIRY  J it h B B Yo I 2
<a’s2 3 ré e ds> (200)

Pour les futures applications, il est avantageux de trans-
former les relations (20a, b) en remplagant les déplace-
ments tangentiel z et normal w dont la direction varie d’une
section a I’autre, par les déplacements « et w selon un sys-
téme fixe d’axes orthogonaux x et z. Selon la figure 11, les
déplacements locaux u et w s’obtiennent a partir des dépla-
cements globaux u et w au moyen des relations suivantes :

U = wucoso-+ wsinao,
w= —usino + wcos .

Par ailleurs, on exprimera les dérivées par rapport a la
coordonnée curviligne s en fonction de la coordonnée

Fig. 11. — Composantes de la résultante des efforts internes
dans une section de I'arc.
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d 1 d
orthogonale x. Avec d_oc = —et Z{f = cos o (figure 11),
nous avons : AN

En outre, en dérivant sin o et cos « par rapport a s, on
trouve :

dsinoa  coso . dcos o sin o
= e

ds r ds r

La transformation des équations (20a, b) conduit, aprés
quelques modifications, a :

N
u + witgo = —E?sec a, (21a)

M 1N NY
w = —E—Isecoz +;ﬁseca(l +sec2a)+<ﬁ> tgo,| (21b)

ou, pour simplifier Iécriture, nous avons désigné les déri-
vées par rapport & x par des primes.

1l est intéressant de remarquer que la transformation directe
de la seconde des équations (20) conduit a une équation
contenant les dérivées secondes de u et de w. Puisque le
systéme original d’équations différentielles (20) est du troi-
siéme ordre (et comme tel admet seulement trois condi-
tions aux limites), il doit étre possible de transformer la
seconde équation a I’aide de la premiére de fagon a éliminer
I’'une des secondes dérivées. En effet, en utilisant (21a) pour
éliminer «”, on aboutit a I’équation (21b).

5. Equations différentielles de la théorie du second
ordre des arcs

Les équations (21a, b) peuvent &tre considérées comme
équations différentielles de la théorie du premier ordre des
arcs. En effet, en exprimant I’effort normal N et le moment
fléchissant M a I’aide des forces extérieures, on obtient les
équations différentielles de la ligne élastique, que I'on
détermine par intégration en tenant compte des conditions
aux limites.

Pour obtenir les équations différentielles de la théorie
du second ordre, on doit tenir compte, pour exprimer les
efforts N et M, de la déformation de I’arc et du déplace-
ment des forces extérieures. Considérons le systéeme fonda-
mental d’un arc hyperstatique selon la figure 12, ou Xj,
X, et X3 sont les forces hyperstatiques généralisées. (Pour
un arc a deux articulations, on a X, = X3 = 0). Pour
simplifier les calculs, on admettra que la charge de I’arc
est représentée par un systéme de forces isolées verti-
cales P, et horizontales P,. Compte tenu des déformations
et avec la condition aux limites u4 = 0, la réaction ¥4 du
systéme fondamental s’écrit

1
Va= 7 [2P, (l—xp—up)—2P, (zg—zp—Wp)—
—‘Xl ZB—XZ—X:;] . (22)

L’effort normal et le moment fléchissant dans une section x
ont pour expression :

N =sin o (V4—2P,e)—cos a (X; + ZPq), (22a)
G G

M=V (x+u)+ X1(z+ w) + Xo— ZPe[(x + u)—
G
—(xg+ ug)l+ZPycl(z + w)—(z¢ + wg)l, (22b)
G
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Fig. 12. — Systéme fondamental pour le calcul d’un arc bien-
castré selon la théorie du second ordre.

ou la somme X concerne toutes les forces P, et P, a
¢

gauche de la section x. Dans la premiére équation, confor-
mément aux hypothéses énoncées au second paragraphe,
nous avons négligé le petit effet de la rotation ¢ sur les
fonctions trigonométriques de la tangente en posant :

sin (@ + @) =2sina et cos(x+ @) =2cosa.

Les équations différentielles de la théorie du second ordre
s’obtiennent maintenant en remplacant dans les équations
(2la, b) Ieffort normal N et le moment fléchissant M par
leurs expressions (22a,b).

Les équations différentielles dépendant aussi des forces
hyperstatiques inconnues, il est nécessaire de formuler
encore trois conditions supplémentaires pour les inconnues
X1, X et X3, en dehors des trois conditions aux limites
(correspondant a l’ordre de ce syst¢éme d’équations diffé-
rentielles). Ces conditions supplémentaires concernent les
déplacements généralisés associés aux forces hyperstati-
ques (voir le systétme fondamental de la figure 12).

A titre d’exemple, considérons I’arc de la figure 13,
encastré a gauche et simplement appuyé a droite. L’hyper-
statique X étant nulle, on écrira en plus des trois conditions
aux limites deux conditions de déformation pour les hyper-
statiques X; et Xy inconnues :

Conditions aux limites :
pourtx=0... w0 =0,
pourx=1[,... u() =w(l)=0.

Conditibns de déformation :
pourx=0... u(0)=¢0)=0.

Fig. 13. — Exemple pour la formulation des conditions aux
limites et des conditions de déformations nécessaires pour la
résolution du syst¢éme d’équations différentielles du probleme.
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Les conditions de déformation concernant la rotation ¢

d
= :; -+ d_w (équation (18b)) doivent étre exprimées en
s

fonction des déplacements u et w. Aprés quelques trans-
formations nous obtenons :

¢ = w cos?q—u’sinacosa. (23)

Rappelons que dans les cas pratiques ou la forme de
I’arc est définie par I’équation z = z (x), les fonctions tri-
gonométriques de I’angle de la tangente sont données par
des relations

Z/

tga=12", sina=7‘—, coscx=\/—. (24a)
14

1
1422 z2
Par ailleurs, le rayon r = r(x) s’obtient a partir de la

relation

a + 2%
yr= ———

” *

z

(24b)

La solution des équations différentielles du probléme,
avec les conditions aux limites et les conditions de défor-
mation données, se complique du fait de la présence des
termes non linéaires (en vertu de I’équation (22b), le
moment M des forces extérieures est une fonction des
déplacements inconnus u et w et aussi des forces hyper-
statiques Xj, X2, X3 qui les multiplient). Pratiquement,
on peut résoudre le probléme par exemple par la méthode
des différences finies (voir le paragraphe suivant), qui
conduit & un systéme d’équations ordinaires mais non
linéaires.

6. Application de la méthode des différences finies

Le principe de la méthode des différences finies étant
suffisamment connu, on se bornera a quelques particula-
rités :

1) Etant donné la forme géométrique des arcs, il est
avantageux du point de vue de la précision des calculs, de
répartir les points-pivots inégalement. En diminuant les
intervalles Ax vers les extrémités de 1’arc, on cherche a
rendre approximativement égaux les segments correspon-
dants 4s de l’axe de I'arc (figure 14). Il s’agit alors de
trouver, pour une fonction f= f(x) quelconque, les
expressions aux différences finies avec des intervalles iné-

<
B ser K.xk fat
K Sz
L_L >
Faxg $Axc -t
Ax

L}x; Axyx - Axxr | Axx -——— -1

Fig. 14. — Répartition des points-pivots pour la solution par
la méthode des différences finies.

f0
- " i Paet
Bt & Rl .
X
X&Lﬂ,__ Axd
Fig. 15. — Différences finies avec des intervalles inégaux.
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gaux (figure 15) des dérivées premiére et seconde. En faisant
passer par les extrémités des ordonnées fj_1, f; et f+1 Un
polynéme d’interpolation du second degré, on trouve :

k= a1 fr-1+ b1 fir + ¢1fps1 s

: @9
f'e= a2 fe—1 + bo fi + €2 frr1
avec
e —Axi
5T Axy Axq (Ax, + Axg)
o —-Axi + Axs (252)
% Axy Axg (Ax, + Axg) |D ;
Ax>
C = £
Ax, Axq (Ax, + Axg)
P ZAx,z
2" Ax, dxg Ux, + Axg)
—2 (Axg + Axd)
bo = 25b
2 Axy Axgq (Ax, + Axg) @55)
o 2 Ax,
S Axy Axq (Uxg + Axz)

2) Considérons la subdivision de la projection horizon-
tale d’'un arc & deux articulations en N—1I intervales iné-
gaux Axp, Axy ... Axy_; (figure 14). Les déplacements
aux extrémités de I’arc, ainsi que les moments d’encastre-
ment, étant nuls, on a :

u1=w1=un=wn=X2=X3=0.
Les inconnues du probléme sont alors :

les déplacements us, g . .. U,—;, Ssoit (n—2) inconnues,
les déplacements wg, w3 ... W,_1, soit (n—2) inconnues,

la réaction hyperstatique X7, soit 1 inconnue,

(2 n—3) inconnues.

Pour avoir le méme nombre d’équations que d’inconnues,
nous pouvons écrire :

I’équation (21a) 8
aux points I, IT ... N—I, soit (n—1) équations,
I’équation (21b) 3

aux points 2,3 ... n—1, soit (z—2) équations,

(2 n—3) équations.

La possibilit¢ d’écrire des équations aux différences
finies pour les centres I, II ... (N—I) des intervalles est
due au fait que I’équation (21a) ne comprend que des
dérivées premiéres. Leurs expressions aux différences finies
dans le cas d’intervalles égaux (dx, = Axgz = %AxK) ne
dépendent pas des ordonnées en ces points, de sorte que
pour un centre K quelconque

1 1
Wg=—— (Upp—up), Wrx=—— Wr1—wp). (26a, b)
A)CK AXK

Pour avoir les valeurs N, de I’effort normal aux points
d’application des forces isolées de remplacement, on
prendra la moyenne arithmétique des valeurs N et

3 Avec les expressions (22a, b) de I’effort N et du moment
M des forces extérieures.
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Ng-1 (exprimées aux centres des intervalles selon la rela-
tion (22a)) :

Ni=3(Ng_1+ Ng) . (27a)

Par ailleurs, on posera :

<_J‘£> Aol A2 T <iV£___NK“> . (27b)
EF)k  Axg; + Axg \EFx EFyx_;
Remarquons que I’utilisation de ces expressions assez
approchées se justifie du fait de I’influence relativement
trés faible des second et troisiéme termes du second
membre de I’équation (21b), sur les résultats.

Au moyen des relations (25) a (27), les équations aux
différences finies du probléme s’écrivent :

165 tgo sec2 o
T (ups1—uz) + A—x,: (Wgs1—wip) —Ng EFKK =0, (28a)
K =100 IN==T
sec o
ag Wi—1 + ba Wi + co Wiy + My Lo
EI
—sec o (1 + sec? o)
21 EF; (Ng—1 + Ng) (28b)
Ztgka NK _NK—I -0
AXK—I + AXK EFK EFK—I e
k=2,3:.. n—=1
avec
& A
NK=sinocK(VA—-ZPzi)+cosocK(X1+ P,,{) , (29a)
=1 =1
r-1
My = V4 (xp+ ug) + X1 (25 + wy) — Z Py [(xp + up)—
1 B (29b)
—C+ )]+ ) P [ + W)= + wo)]
=1
et ou

=1 n—1
1 1 z
VA=7 ;Pzz(l—xi—ut)"7 ‘lezi(zB_Zi_wi)_TBXL (290

En écrivant toutes les équations (28a) et 28b), on obtient
un systéme d’équations non linéaires (termes X;wj et
V4 uy de I’équation (29b)). On peut le résoudre directement
a l'aide du programme SNOLIN, en prenant par exemple
comme premiere estimation de la valeur des inconnues :

Up=Ug= ... Up ] =Wog=Wg= ... Wp1=X;=0.

Selon nos expériences, la solution partant de ces valeurs
initiales converge rapidement vers les résultats exacts. Il
n’est alors pas nécessaire de chercher une estimation plus

précise.

3) Dans le cas d’un arc encastré, on a, en plus de la
force hyperstatique X7, deux nouvelles inconnues : X, et X
(ou une nouvelle inconnue si I’arc n’est encastré que d’un
coté). Les expressions (29b) et (29¢c) doivent alors étre
complétées par les termes suivants (voir (22)) :

1
= (Xp + X3) pour V4 et X, pour M .

Les conditions supplémentaires pour calculer ces incon-
nues expriment les déformations g4 = 0 et (ou) gz = 0,
en fonction des déplacements au moyen de la relation (23).
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Afin de ne pas devoir introduire les points-pivots fictifs 0
et n+ 1 a Pextérieur de I’arc pour remplacer les dérivées u;,
wy et u,, w,, aux extrémités de I’arc par les expressions aux
différences finies, on utilisera un polyndme d’interpolation
du troisiéme degré. En le faisant passer par les extrémités
des ordonnées de la fonction f= u(x) ou f= w(x) en
quatre points-pivots consécutifs 1, 2, 3, 4, on trouve, par
exemple, ’expression suivante de la dérivée premiére en 1 :

b
fi= z—fl(c—b) (fo=f+ Z—Z(a—(f) (fs—f)+ Z—d(b—a)(ﬁ—ﬁ) (30)

avec
a=A4xy, b=Ax;1+ Adxy, c=Ax1+ Axp+ Axp, (3la)

d=32b(—a) + a(B®—c) + c(@—b)]. (31b)

La condition de déformation ¢4 = 0 peut alors étre rem-
placée par :

bc

— (c—b) (wa—ug tg o) +

ad

ca
o= bd (a—c) (wg—ustg ¢1) +

+ Z—Z(b—a) (wy—agtm o) = 0 (D)

De maniére analogue, on peut exprimer la dérivée f,, en
fonction des ordonnées f,_s, fn—2, fu—1 €t fn, €t exprimer
la condition ¢p = 0 par I’équation :

bc
7 (C_b) (wn—l_un—l tg (xl) +
ad

ca
+ v (a—c) Wp—g—lin_otg o) +

b
L ‘c’—d (b—a) Wys—ttn_atg ) = 0, (32)

a)
prep, BT DTV T T LTI P 4t

14 Wr 287
h=18m

1" 0,05F| 0,050 13
I \
Z;\L 0,065¢ off (14 ol 008f|  [gos5P
e . R
00550 008t oft Tt 040 005t

Fig. 16. — a) Géométrie et chargement de I’arc étudié. b) Ré-
partition des points-pivots et introduction des forces concentrées
de remplacement pour I’application de la méthode des différences
finies.
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avec

a= —Adxy1, b= —Adxy1—Axy_11, (322)
c = —AXN_I—AXN_H_AXN—III ’

d=312b(2—a?) + a(B®—c?) + c (a®—b?)]. (32b)

7. Exemple d’application

Pour tester I’efficacité de la méthode, nous avons calculé
Parc a deux articulations de la figure 16a, constitué par
une poutrelle américaine 14 WF 287 en acier A36
(F = 84,37 in® =—544,326 cm?, I= 3912,1 in*=
= 162 836 cm?, E = 29000000 Ib/in® = 2038 894 kg/
cm?). Les dimensions ont été tirées de ’ouvrage du pro-
fesseur Ping-Chun Wang [4]. Nous avons également
adopté la méme répartition de points-pivots (figure 16b).

Pour résoudre le systéme de 23 équations non linéaires
du probléme (inconnues X, us & ujs €t we & wye), €t pour
calculer les efforts normaux et les moments fléchissants,
nous avons utilisé le programme SNOLIN (voir Appen-
dice A). Nous n’entrerons pas dans les détails de calcul,
trés simple et rapide, et nous analyserons bri¢évement
quelques résultats.

La figure 17 montre la comparaison des résultats de
notre calcul avec ceux de la théorie du 1¢r ordre (en poin-
tillé). La différence entre les deux solutions est assez grande,
malgré que les sollicitations restent encore relativement
faibles par rapport a la capacité portante de la section (on

-4oo T T T T | o) S ] [ T T T T T
o i f i I Ll 1)
=300+ i H 0 ]. N (t) 0 7 7 I
! I L I I | | ! Ll e
-200 F‘i‘ e e ) T + e e ]
B o e o e e e o
| | | (e I
0 ol | ! { | | _30m| | | _: ! { 60m
kI E] [ i3 4 [ iw [73 x Ix Ix1 =
100 |11 1 L I ] L 1 L L
-300 I I
-200 M (tm) S
-100 ' i
NN | 7 =
0 iy Jx 30m 60m
Rt 2 3 N 3 7 8.7 |9 10 i 12 13
\ ~ + /,/
{00 ey —=
200
U T
ol = T~ 30m 60m x
5;72\3 YA 5 6 7 8 9 10 "o 12 i3
~
fo <z
B - +
20 =
3 ~\\ 7/
0
-
-40
-30 [ { =
/_‘\\
-20 W (cm) va
-0 | 27 i \
! 7
0 Z:—:\‘ " 30m P 60m_
(N AN 5 g 7 a//, El (I I (P )
1o 5
N\ 4
20 i
7/
%0 = NS //
40 ==
50

Fig. 17. — Influence des effets du 2¢ ordre sur l'arc de la
figure 16. Théorie du 2¢ ordre: en ligne continue, théorie du
1er ordre : en traitillé.
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Fig. 18. — Variation des déplacements de I’arc de la figure 16a
en fonction de l'intensit¢ de la charge. Les diagrammes en
traitillé représentent les résultats selon la théorie du 1¢r ordre.
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Fig. 19. — Variation de I’effort normal, du moment fléchissant
et de la réaction horizontale gauche de I’arc de la figure 16a en
fonction de I'intensité de la charge. Les diagrammes en traitillé
représentent les résultats selon la théorie du 1¢r ordre.
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trouve par exemple dans les fibres inférieures de la sec-
tion £ = 11, une contrainte de compression de 0,456 t/cm?
selon la théorie du 1¢r ordre et de 0,377 t/cm? selon la
théorie du 2¢ ordre). Cette différence croit rapidement si
I’on augmente I’intensité de la charge.

Les figures 18 et 19 montrent comment varient, dans la
théorie du 2¢ ordre, certains efforts et déplacements de I’arc
en fonction de l'intensité de la charge p, (la charge p,

. 1 ; e
étant toujours 3 de p,). Tandis que la variation de la

réaction X; et de I’effort normal Nxy; est assez longtemps
approximativement linéaire, le moment fléchissant M;; et
les déplacements u;; et wi; croissent beaucoup plus rapi-
dement. Autour de lintensité de p, = 7 t/m’ on remar-
quera un accroissement tres rapide des déplacements et du
moment fléchissant, ce qui semble indiquer que la charge
est proche de son intensité critique de divergence. Cepen-
dant, cette conclusion ne devrait pas étre acceptée sans
réserve ; en effet, les déplacements étant déja trés impor-
tants, les simplifications géométriques adoptées dans la
théorie du 2¢ ordre ont pu entrainer une erreur non négli-
geable dans les résultats.

APPENDICE A

Description et emploi du programme
SNOLIN

1. But du programme

Le but du programme SNOLIN est de résoudre un systéme
de M équations non linéaires en partant de la valeur approchée
ou estimée des inconnues.

2. Méthode utilisée

On utilisera la méthode d’itération de Newton (avec la for-
mation numérique de la matrice Jacobienne), suivie du controle
des résidus apres chaque cycle d’itération. Le calcul s’arréte
automatiquement dés que tous les résidus deviennent inférieurs
a une valeur &gamissible lue dans les données.

3. Structure du programme

Le programme SNOLIN est constitué de trois parties :

1. La partie standard, destinée a organiser et effectuer les cal-
culs. Elle lit les données, calcule et, aprés chaque cycle
d’itération, imprime les valeurs approchées des inconnues
du systéme d’équations non linéaires défini dans la deuxiéme
partie, semi-standard, du programme. Elle arréte automati-
quement le calcul dés que les résidus deviennent inférieurs a
une valeur eaamissiple choisie par l'utilisateur. Si on le désire,
elle permet également de calculer et imprimer d’autres
résultats, obtenus en fonction des inconnues selon les rela-
tions que Iutilisateur définira dans la deuxi¢me partie
(FORMFEF).

2. Le sous-programme FORMFF, préparé par I'utilisateur du
programme selon le paragraphe 5 ci-aprés. Ce sous-pro-
gramme sert a définir le systéme d’équations non linéaires,
ainsi que d’autres résultats que 1’on désirerait éventuelle-
ment obtenir en fonction des inconnues du systéme.

3. Les données, préparées par l'utilisateur. La structure des
données est précisée dans le paragraphe 6. Elles comprennent
notamment les noms et les valeurs estimées des inconnues
du systéme.

4. Utilisation du programme SNOLIN

Le programme SNOLIN fait partie de la bibliothéque des
programmes GC INFO du département de Génie Civil de
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PEPFL. Il est mis a la disposition des participants des cours
du 3¢ cycle donnés par la chaire ainsi qu’a d’autres utilisa-
teurs du Centre de calcul. L’acces au programme est rendu pos-
sible par l'utilisation des cartes de contrdle spécifiées dans le
mode d’emploi du programme.

5. Préparation du SP FORMFF

Soit XX (I), =1, M ... vecteur des inconnues,
FF(I), I=1, M ... vecteur des résidus.

Le systeme d’équations non linéaires est considéré sous la
forme :

F1(XX(1), XX (2), ... XX(M)) =0,
F2(XX (1), XX (2), ... XX (M)) =0,

FM (XX (1), XX(2), ... XX (M)) =0.
La structure du SP FORMFF est donnée ci-contre :

6. Cartes des données

Les cartes des données préparées selon le mode d’emploi du
programme contiennent :

1. Un texte quelconque que I'on veut faire figurer comme titre
précédant I'impression des résultats.

Nombre d’équations et valeur admissible € des résidus.
3. Noms des inconnues et valeurs estimées des inconnues.

Remarque :

Certains problémes admettent de prendre comme premiére
estimation des inconnues les valeurs nulles.

7. Capacité du programme

Le programme SNOLIN stocké sur le fichier permanent est
constitué par la variante SNOLIN 130 du programme. Cette
variante de base permet de résoudre au maximum un systeme
de 130 équations non linéaires. En cas de besoin, la capacité
du programme peut étre augmentée de la maniere indiquée dans
le mode d’emploi.

APPENDICE B

Exemple d’application du programme
SNOLIN

1. Données du probléme

Résoudre le systéeme d’équations non linéaires aux différences
finies du probléme aux limites (13a, b, ¢) défini dans le para-
graphe 7 de la premiére partie de I’article et calculer le moment
d’encastrement.

2. Définition des vecteurs XX(I) et FF(I)

Puisque la premiére des équations (13) et les deux premiéres
conditions aux limites (13c) ne dépendent pas des déplace-
ments relatifs U, on pourrait tout d’abord résoudre le systeme de
10 équations aux différences finies pour les inconnues Wj a Wjy.
Ensuite, aprés avoir substitué les résultats dans le second sys-
teme de 10 équations aux différences finies (systéme qui corres-
pond a I’équation (13b)), on pourrait calculer les inconnues U;
a Ujp.

Etant donné que le nombre total d’équations (20 au total)
n’est pas trop grand et, par conséquent, la durée du calcul insi-
gnifiante, on a avantage, pour simplifier la programmation, de
ne pas profiter de la décomposition en deux systémes distincts de
10 équations et de considérer un seul syst¢éme de 20 équations

70

SUBROUTINE FORMFF (FF,XX,LM, IMP)
PR M R R 2 MM H 3 0 M K R

DIMENSION FF(CLM),XX(LM)
C

SUIVRA LE PAQUET NON-STANDARD DE CARTES
DEFINISSANT LE VECTEUR FF

FFC1) = FI1(XX(1),XX(2), ... XX(M))
FF(2) = F2(XX(1),%XX(2),... XX(M))
FF(M) = FH(XX(I);XX(?),... XX(M))

PARFOIS, EN PLUS DE LA RESOLUTION DU SYSTEME D'EQUATIONS NON
LINEAIRES, ON DESIRE CALCULER ET IMPRIMER D'AUTRES RESULTATS
(OBTENUS EN FONCTION DES INCONNUES DE CE SYSTEME). DANS CE
CAS-LA, LA DEFINITION DU VECTEUR FF(I) SERA SUIVIE DU PAQUET
NON-STANDARD SUPPLEMENTAIRE CONSTITUE DE LA MANIERE SUIVANTE
(NNN EST UNE ETIQUETTE NUMERIQUE)

IFCIMP.EQ.0)GOTO NNN

PROGRAMME PORTRAN DU CALCUL ET DE L'IMPRESSION
DES RESULTATS SUPPLEMENTAIRES

A LA FIN DE L'IMPRESSION DES RESULTATS SUPPLEMENTAIRES, IL
FAUT PREVOIR 2 OU 3 LIGNES LIBRES. L'IMPRESSION DES RESULTATS
SUPPLEMENTAIRES PREDEDE DANS CHAQUE CYCLE D'ITERATION L'IM-
PRESSION STANDARD DES INCONNUES ET DES RESIDUS

NNN CONTINUE

RETURN
END

LE VECTEUR FF PEUT AUSSI ETRE DEFINI DE FACON INDIRECTE
SOIT PAR EXEMPLE

X,Y,Z ... R,S ... N INCONNUES, Y COMPRIS LES INCONNUES
NON INDEPENDANTES (N EST PLUS GRAND
OU EGAL A M)

ON EXPRIME ALORS :

A) LES INCONNUES X,Y,Z ... R,S EN FONCTION DU VECTEUR XX
PAR EXEMPLE

X=XXC1)8 Y=XX(2)8 Z=-XXC1)8 ... R=XX(M)8 S=-XX(M)
S

ouU Z ET SONT DES VARIABLES NON INDEPENDANTES
B) LE VECTEUR FF(I),I=1,M D'EQUATIONS NON LINEAIRES EN
FONCTION DES INCONNUES X,Y,Z ... R,S
FFC1)=F1(X,Y,Z ... R,S)
FFC2)=F2CK, Yo Z . on (RFSD
FFCM)=FM(X,Y,Z .:s R,S)

non linéaires. Dans ce cas-la, le vecteur des inconnues XX (/),
I = 1,20 et le vecteur des résidus FF (I'), I = 1,20 seront définis
de la maniére suivante :

I=1(XXxXQ) k=1 W) Wy
'10 XA;(IO) '10 W(.IO) VI'/lo
Cu|xxan | k=t]|ow | |w [
'20 /\’z\; (20) .10 U(.IO) Uio
I=1( FFQ) k=20
: éq. (13a) en k
.10 FI.:(IO) 9
cw | meay| r=p] -
. éq. (13b)en K
.20 Fl"(20) X
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3. Sous-programme FORMFF pour le programme
SNOLIN

Pour exprimer les dérivées premiere et seconde de W dans la
relation (13a), on utilisera les relations (14a, b). Pour les déri-
vées premicres de U et W dans (13b), on appliquera la for-
mule (14c). Afin de faciliter la programmation du vecteur FF,
on formera les sous-programmes de fonction suivants :

D1 (F,K) = D;(f)...1re dérivée en k selon (14a)
D2 (F,K) = Dy(f)...2¢ dérivée en k selon (14b)
DD1 (F, KK) = Dy (f) ... 1ve dérivée en K selon (14c)

Pour la dérivée seconde, on écrira par exemple :

FUNCTION D2 (F, K)

DIMENSION F (10)

COMMON /BN/DEL

D2 = (F(K—1)—2. *F(K) + F(K + 1))/DEL**2
RETURN

END

A Tlaide de ces sous-programmes de fonction, celui de
FORMPFF peut étre présenté, par exemple, sous la forme simple
suivante :

SUBROUTINE FORMFF (FF 4 XX,LMyIMP)

c FEARFF R ARRARNIRNAN RN AY
DIMENSION FF(LM) 4 XX(LM),W(10),U(10)
COMMON /BN/DEL
REAL LAMBDA,MO

(& DONNEZES ET VALEURS AUXILIAIRES

ALPHA=1.,1€
LAMBDA=10CC,
DEL=.1

PI=3.141592
C1=ALPHA¥ ,25*PI**2
C2=C1/LAMBDA**Z

C DEFINITION DES INCONNUES

00 51 K=1,10
WIK)=XX(K)
I=K+10

51 U(K)I=XX(I)

[sXa

OEFINITICN DU VECTCUR DES RESIODUS

FF(1)=2.*W(1) /DELY*2-C1*W(10)
FF(2)=(=2*N(1)+W(2) )/ (DEL**Z*SQRT(1.=(+5*W(2)/CEL)**Z))
1 4C1% (W(1)=W(10))
U0 52 k=2,9
I=K+1

52 FF(I)=02(W,K)/SQRT(14=D1(W,K)¥*¥2)+C1* (W(K)=W(10))
FF(L1)=U(1)/DEL+45%(U(1)/0EL)**2+.,5%(W(1)/DEL) **2
8 +C2*SORT (14-(W (1) /DEL)**2)
D0 53 KK=2,10
I=KK+10

53 FF(I) =001 (UyKK)+.5¥001 (U,KKk) ¥¥2+ ,5%DD1(H,KK) *¥¥Z
1 4+C2%SORT (1.-DC1 (W,KK)I**2)

an

CALCUL ET IMPRESSICN DU MOMENT D"ENCASTREMENT
IF(IMP.EQ.0) GOTO 939

MO==ALPHA*W(10)
PRINT 101 ,M0
101 FORMAT (45X,13HMO/ (PCRYL) = ,E12454/45%,25(1H*)//)

999 CONTINUE
RE TURN
END

Dans le sous-programme ci-dessus, on a remplacé la lettre
minuscule k& par K et la lettre majuscule K par KK. On remar-
quera que, pour les points K ou KK suffisamment ¢loignés de
I'extrémité gauche de la barre, les équations correspondantes
s’obtiennent par P'application d’une boucle appliquée a une
équation rédigée pour une valeur indéterminée de K ou de KK.
La définition du systeme d’équations non linéaire devient ainsi
encore plus simple que la définition d’une matrice de coefficients
telle qu’on I'utilise dans la plupart des programmes de résolu-
tion de systemes d’équations linéaires.

Notons encore que, dans le sous-programme FORMFF ci-
dessus, on a prévu des valeurs particulieres des paramétres o
et A (voir 12b)) définissant la charge et I’élancement de la barre :
o= P[Py = 1,15, A =1/i =1000. Par ailleurs, en plus du
calcul des déplacements W et Uy, on calcule également le
moment d’encastrement que I’on exprime en fonction du pro-
duit Pel:

Mo = —Pyro = —aWig: Pel -
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4. Premiére estimation des inconnues et résultats
du calcul

Dans de nombreuses applications du programme SNOLIN
aux problémes non linéaires, il suffit de prendre pour point de
départ les valeurs nulles des inconnues. Dans notre cas, ceci
n’est pas possible, puisque les valeurs nulles des déplacements
transversaux constituent I’'une des solutions possibles ; solution
qui correspond a I’équilibre instable de la barre. Pour éviter
cette solution triviale, on peut par exemple assimiler la défor-
mée & un segment de cercle de longueur / et de rayon r, et I’'on
obtient, pour la premiére estimation des déplacements rela-
tifs Wy et Uy, les relations

r 1 /8
Wy = 7 [l—cos (1—0 k ;)] 5

v, 1 l 1
Uk~i51n(ﬁk;>—mk.

En partant des valeurs que I’on trouve en prenant, par exem-
ple, » = I (ces valeurs sont lues sur les cartes des données) et en
admettant une erreur ¢ = 0.000001, on obtient aprés six cycles
d’itération les résultats suivants :

CALCUL DE LA COLONNE SOUMISE A UNE CHARGE POST-GCRITIQUE
P = 1.15%PCR , L/1 = 1000
R R S S R
R e R PR R P A R S g g g g

NOMBRE OD“EQUATIONS M= 20

R T R e

ERREUR ADMIS. EPS= .1E-05
R e Ry

CYCLE D™ITERATION NO 6

R T

MO0/ (PCR¥*L) = =-.68678E+00
R R T T P T

I= I RACINES XX (1)= I RESIOUS FF(I)=
________ I mminim e mie e e e S e[ S S e S e e S S S
1 1 WL = L B4T728E-02 1 - 71054E=-14
2 I W2 = . 33416E-01 1 -.14211E-13
3 I W3 = ,73488E-01 1 +35527€-13
4 1 W4 T ,12670E+0C 1 -«71054E-13
5 7 W5 = .19074E+0Q 1 -.21316E-13
6 1 We = ,26320E+00 1 «92371E-13
v I W7 = LJ341BT7E+0C 1 -+15632E€-12
6 I WB = L4Z4BRE+YD 1 «78515E-12
9 I WS = .51)38E+00 1 -.38725E-12
10 1 Wi0 =  .59720E+00 I «52113€-12
11 I Ul = -,35987E-03 I -+12035E-1€
12 1 U2 = -.35209€-02 I «16306E-15
13 I U3 = -.11901€-01 1 «13739E-14
14 1 U4 = =,27237E-01 1 -420539E-14
15 I Ub = =,SC427E-01 1 «25535E~-14
16 1 U6 = -.81512E-01 1 «12434E-13
17 1 U7 = -,11978E+00 I -.10658E-13
18 by UB8 = -.16391E+0C 1 «13767E-13
19 I U3 = -,21217E+00 1 212434E-13
20 I U10 = =.26255E+00 I «€2172E-14
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