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BULLETIN TECHNIQUE DE LA SUISSE ROMANDE 101" année 27 février 1975 N° 5

Editorial
Une information diffusée ces jours derniers nous apprend

que la réduction des moyens accordés au Fonds national de la
recherche scientifique aurait pour conséquence la suppression
prochaine de quelque 250 postes de chercheurs. Parmi toutes
les mesures d'austérité suscitées par la grande misère des
finances fédérales, celle-là a peu de chance de connaître un
grand retentissement. Ce n'estpas le chiffre de 250 chômeurs,
en blouse blanche de surcroit, pour tout le pays qui frappe
l'imagination sur le plan social. L'activité de ces chercheurs
est pratiquement inconnue du grand public, sinon quelques
exceptions citées pour mettre en doute la valeur pratique des
travauxpatronnéspar le Fonds national. Il est donc à craindre
que cette réduction se fasse sans grande opposition, sinon
sans douleur.

Il serait dommage que la valeur de la recherche scientifique
soit mesurée selon des critères utilitaires, alors que cette
activité constitue une indispensable étape avant toute
recherche orientée sur des buts précis. Il serait bon de se
rappeler cette relation, au moment où l'on consacre tant
d'efforts à des études intégrant les différents grands
problèmes. Citons l'exemple de l'aménagement du territoire :
son examen doit pouvoir se baser sur les résultats de spécialistes

de domaines fort divers, dont les travaux ont souvent

été effectués depuis longtemps sans une motivation aussi
précise. De plus, la science pure est l'un des fondements de
notre culture, laquelle conditionne notre façon d'aborder et
de résoudre les problèmes.

Les postes de chercheurs financés par le Fonds national
constituent un appui précieux pour nos hautes écoles en leur
fournissant les moyens d'entreprendre à terme certaines
recherches sans surcharger de façon permanente leurs
effectifs.

Le Fonds national permet par exemple à de jeunes
ingénieurs de suivre et de développer leur goût de la recherche

par des travaux au sein d'équipes expérimentées, disposant
de moyens bien adaptés.

Finalement, les résultats constituent une monnaie d'échange
universelle pour accéder aux travaux effectués dans d'autres
pays et confronter l'acquis respectifdans nombre de domaines.

Il convient donc de tout entreprendre pour que des moyens
importants restent assurés à une recherche scientifique
indépendante des contraintes de l'industrie et de certaines limites
de l'enseignement, car de son activité et de ses succès dépendent

pour une grande part la qualité et la capacité de concurrence

de toutes nos industries.
J.-P. Weibel.

Communication de la chaire de statique et de résistance des matériaux de l'EPF-L,
Professeur M.-H. Derron

Contribution à l'étude des problèmes géométriquement
non linéaires des structures élastiques |||p|§||
par JAROSLAV JIROUSEK, Lausanne

Théorie du 2e ordre des arcs élastiques
1. Introduction

A la différence des poutres droites soumises à des
charges transversales, les déformations des arcs ont d'habitude

une influence non négligeable sur les efforts internes.
Ceci est essentiellement dû au fait que la ligne de poussée
se situe le plus souvent tout près de l'axe de l'arc, de sorte
que même une légère déformation de celui-ci entraîne une
grande variation des moments fléchissants. Les déformations

modifiant de manière appréciable le mode d'action
des forces, l'hypothèse habituellement admise dans le
calcul des structures, selon laquelle les conditions statiques
peuvent être formulées sur la structure non déformée,
n'est plus justifiée.

Dans le calcul des arcs, selon la théorie du second ordre,
les conditions d'équilibre sont appliquées à la structure
déformée ; on admet en même temps que les déplacements
restent suffisamment faibles pour justifier certaines
simplifications géométriques. Contrairement au cas d'une barre
droite, l'application de ce procédé à un arc conduit à un
calcul non linéaire. En général, on cherche à tourner cette
difficulté en remplaçant le calcul direct du problème non
linéaire par un calcul répété du problème linéarisé, constituant

une suite d'approximations successives. Une méthode
typique est exposée, par exemple, dans l'ouvrage du
professeur Ping-Chun Wang [4].

les barres droites, simplement : M EI^-g et N

Dans la théorie des barres courbes, on utilise d'habitude
des relations plus ou moins approchées entre le moment
fléchissant ou l'effort normal et les composantes du
déplacement. Dans [4], on prend par exemple, par analogie avec

d*w dû
—5-etJV=£,F—,dir ds

où ~ïv et m sont les composantes du déplacement, respectivement

normale et tangentielle à l'axe de l'arc, et ds un
élément de l'axe de l'arc. Dans notre étude, nous proposons
des expressions plus rigoureuses de M et N, qui tiennent
également compte de l'effet de la courbure initiale de l'arc
et de sa variation le long de l'axe. En partant de ces expressions,

nous développerons ensuite les équations différentielles

des déplacements. En les transformant par la
méthode des différences finies et en tenant compte des
conditions aux limites, on obtient un système d'équations
ordinaires mais non linéaires que l'on peut résoudre à l'aide
du programme SNOLIN.

La méthode s'adapte à des arcs de forme quelconque
(plats, hauts, symétriques ou non) et quelles que soient
leurs conditions d'appui (arcs à deux articulations, arcs
encastrés à l'une des extrémités, arcs biencastrés, etc.). En
ce qui concerne la charge de l'arc, nous avons supposé que
celle-ci garde sa direction, mais qu'elle se déplace en fonction

de la déformation de l'arc, ce qui nous a paru prati-
1 Voir Bulletin technique de la Suisse romande, N° 24 du 21

novembre 1974.
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quement plus intéressant que de supposer une position fixe
des forces extérieuresa. La solution s'adapte d'ailleurs
facilement à cette seconde possibilité, si l'on en a
exceptionnellement besoin ; il suffit de supprimer les termes qui
expriment l'effet du déplacement des points d'application
des forces.

2. Principe de la solution et hypothèses de travail

Les équations différentielles des déplacements inconnus
u et w s'obtiennent en exprimant le principe d'équivalence
entre l'effort normal et la projection de forces extérieures
et entre le moment fléchissant et le moment des forces
extérieures. On tiendra compte des effets du second ordre
en appliquant les forces extérieures à l'arc déformé.

Pour écrire les expressions de l'effort normal et du
moment fléchissant des efforts internes (expressions de N
et M sa fonction des déplacements), on adoptera les
hypothèses de travail suivantes :

— Après la déformation, les sections planes et
perpendiculaires à l'axe de l'arc dans sa position initiale restent
planes et perpendiculaires à l'axe déformé.

— Le rayon de courbure r r(x) de l'axe non déformé
de l'arc est grand par rapport à la hauteur de la section
h h(x). La différence de longueur initiale des fibres
comprises entre deux sections voisines étant alors relativement

faible sur la hauteur h, on n'en tiendra compte que
de manière approchée.

— Les déplacements restent petits par rapport aux
dimensions de l'arc. On peut, par conséquent, appliquer
les simplifications géométriques courantes de la théorie des

petits déplacements.

— Le matériau obéit à la loi de Hooke.

3. Géométrie de la déformation d'une barre courbe

Considérons un élément d'arc selon la figure 10. Dans
les développements qui suivront, nous utiliserons les notations

suivantes :

e0 allongement spécifique de l'axe de l'arc passant
par les centres de gravité des sections ;

e allongement spécifique des fibres à la distance z
de l'axe (voir la figure 10) ;

(/>... rotation de la normale à l'axe de l'arc sous l'effet
de la déformation de ce dernier ;

Ar accroissement du rayon de courbure de l'axe sous
l'effet de la déformation de l'arc ;

« projection du déplacement d'un point de l'axe sur
la tangente à l'axe non déformé ;

w projection du déplacement d'un point de l'axe sur
la normale à l'axe non déformé.

Selon la figure 10, l'allongement spécifique s'exprime en
fonction des accroissements da et Ar par

(r + Ar—z) (da. + dç)—(r—z) da

(r — z) da
(15)

Dans la multiplication des deux premières parenthèses du
numérateur, on peut négliger le produit Ar-da. En effet,
conformément aux hypothèses adoptées au paragraphe
précédent, le produit de deux petites déformations est

négligeable par rapport aux termes qui sont linéaires en les

déformations. Après la simplification, on trouve alors :

2 Cette dernière hypothèse semble pourtant adoptée dans [4]
à moins qu'il ne s'agisse d'une erreur commise dans l'expression
du moment des forces extérieures.

aj

<tf

Fig. 10. — Elément de barre courbe avant la déformation (a)
et après la déformation (b).

dtp Ar
da r—z

En posant z 0, on en tire

m «il
(a)

(b)

Par combinaison de (b) et (a), la dilatation e s'exprime en
fonction de e0 et cp :

r z dtp
^e° HÜr—z r—z da

(16a)

Le premier terme du second membre peut encore être écrit
de la manière suivante

r r—z r
—- £n £o—!—1 £o + 1 £o
r—z r—z r—z

£o
z

£n
r—z

ce qui donne :

e e0 + e0 dal r-
(16b)

Les relations (16a, b) montrent que la variation de la
dilatation s sur la hauteur de la section est, en général, non
linéaire pour une barre courbe. Si l'on admet cependant
(conformément aux hypothèses énoncées au paragraphe
précédent), que la hauteur de la section h est petite vis-à-vis
du rayon r, alors la déviation par rapport à une variation
linéaire est relativement faible, et on peut la négliger. En
négligeant z par rapport à r au dénominateur du facteur
l/(r—z) dans la relation (16b), on obtient une expression
linéarisée de la dilatation e :

«0 60-
dtp

da
(17)

U est intéressant d'observer qu'en supprimant prématurément

z au dénominateur du second membre de la relation

(16a), c'est-à-dire avant d'avoir modifié la relation (16a)
en (16b), on serait conduit à une expression moins précise,

dtp -
da

Cette dernière expression (également admise dans de
nombreuses théories de coques cylindriques et des coques de
révolution) implique qu'un allongement ou un
raccourcissement spécifique uniforme (e0 const., dtp jda — 0) de
l'axe d'un anneau circulaire provoque une répartition
uniforme de contraintes, a Eeu, ayant pour résultante uni-

64 Bulletin technique de la Suisse romande - 101e année - No 6 - 27 février 1975



quement un effort normal JV= EFëq. En réalité, la
longueur initiale des fibres variant linéairement avec z, e0

const, conduit à une répartition non uniforme des

contraintes a, ayant alors pour résultante non seulement

un effort normal, mais également un moment fléchissant M.
On remarquera que cette réalité est en revanche entièrement

respectée par la relation (17) que nous avons proposée.
Pour les futures applications, il convient encore d'exprimer

la dilatation e en fonction des déplacements « et w de
l'axe de l'arc. Selon la figure 10, on trouve facilement les

expressions :

du w
«0

ds
(18a)

da 1 dx
orthogonale x. Avec — - et —
nous avons :

ds r ds

d d dx d

cos a (figure 11),

ds dx ds dx cosa.

En outre, en dérivant sin a et cos a par rapport as, on
trouve :

d sin a cos a d cos a
et

ds ds
sina

r
La transformation des équations (20a, b) conduit, après

quelques modifications, à :

tp
dw
'ds'

(18b)

En les portant dans la relation (17) et en posant rda ds,

on trouve pour la dilatation e, après simplification

du

ds'
w /d2w

"r~~\d72
u dr
rz ds

(19)

4. Relations entre les efforts internes et les
déplacements de l'axe de l'arc

Avec la convention de signes de la figure 11, l'effort
normal et le moment fléchissant dans une section de l'arc
seront définis par les relations suivantes :

N= I adF et M- f azdF,

F F

où Fest l'aire de la section. Compte tenu de la loi de Hooke,
a — Es, on trouve à partir de la relation (19) :

/dzw w « dr
\ds2 r2 rz ds

(20a)

(20b)

Pour les futures applications, il est avantageux de
transformer les relations (20a, b) en remplaçant les déplacements

tangentiel « et normal w dont la direction varie d'une
section à l'autre, par les déplacements « et w selon un
système fixe d'axes orthogonaux x et z. Selon la figure 11, les

déplacements locaux û et w s'obtiennent à partir des
déplacements globaux u et w au moyen des relations suivantes :

û~ — u cos a + w sin a

w — —u sin a + w cos a

Par ailleurs, on exprimera les dérivées par rapport à la
coordonnée curviligne s en fonction de la coordonnée

x,a

ZjW

ds

Z :VC' y

Fig. U. — Composantes de la résultante des efforts internes
dans une section de l'arc.
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«' + w' tg a ¦¦

N
—- sec a
EF

w"
M

~E~I

1

seca+-r
N
— seca
EF

(1 +sec2a) +i tga,

(21a)

(21b)

où, pour simplifier récriture, nous avons désigné les dérivées

par rapport à x par des primes.

Il est intéressant de remarquer que la transformation directe
de la seconde des équations (20) conduit à une équation
contenant les dérivées secondes de u et de w. Puisque le
système original d'équations différentielles (20) est du
troisième ordre (et comme tel admet seulement trois conditions

aux limites), il doit être possible de transformer la
seconde équation à l'aide de la première de façon à éliminer
l'une des secondes dérivées. En effet, en utilisant (21a) pour
éliminer u", on aboutit à l'équation (21b).

5. Equations différentielles de la théorie du second
ordre des arcs

Les équations (21a, b) peuvent être considérées comme
équations différentielles de la théorie du premier ordre des

arcs. En effet, en exprimant l'effort normal N et le moment
fléchissant M à l'aide des forces extérieures, on obtient les

équations différentielles de la ligne élastique, que l'on
détermine par intégration en tenant compte des conditions
aux limites.

Pour obtenir les équations différentielles de la théorie
du second ordre, on doit tenir compte, pour exprimer les

efforts N et M, de la déformation de l'arc et du déplacement

des forces extérieures. Considérons le système
fondamental d'un arc hyperstatique selon la figure 12, où X\,
X2 et Xs sont les forces hyperstatiques généralisées. (Pour
un arc à deux articulations, on a Xz= Xa 0). Pour
simplifier les calculs, on admettra que la charge de l'arc
est représentée par un système de forces isolées verticales

Pz et horizontales Px. Compte tenu des déformations
et avec la condition aux limites uA 0, la réaction VA du
système fondamental s'écrit

Va r [EPt(!—Xp—Up)—EPx(zB—zP—wp)-

-X^B-Xs-Xd. (22)

L'effort normal et le moment fléchissant dans une section x
ont pour expression :

N sin a VA-£PtB)- cos a (Xi + ZPxQ), (22a)
g a

M= VA(x + u) + X1(z + w) + X%-EPtal(x + u)-
|

-(*e+ ua)]+i;Pxa[<iz+ w)-(za+ woïi, (22b)
a
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z z(*)

Pxs 6'
i-i

w *-D-~
rv—fi

//>/" 7":

z;w

Fig. 12. — Systeme fondamental pour le calcul d'un arc bien-
cas tré selon la théorie du second ordre.

Les conditions de déformation concernant la rotation <p

u dw
—h -r (equation (18b)) doivent être exprimées en
r ds

fonction des déplacements u et w. Après quelques
transformations nous obtenons :

<P w cos° a—u sin a cos a (23)

Rappelons que dans les cas pratiques où la forme de
l'arc est définie par l'équation z z (x), les fonctions tri-
gonométriques dé l'angle de la tangente sont données par
des relations

tg a z', sin a
1

y/l+z'2' v/T
(24a)

Par ailleurs, le rayon r r (x) s'obtient à partir de la
relation

(1 + z'2)'/*
(24b)

où la somme E concerne toutes les forces Pz et Px à
a

gauche de la section x. Dans la première équation,
conformément aux hypothèses énoncées au second paragraphe,
nous avons négligé le petit effet de la rotation <p sur les
fonctions trigonométriques de la tangente en posant :

sin (a + f) sin a et cos (a + <p) ^ cos a

Les équations différentielles de la théorie du second ordre
s'obtiennent maintenant en remplaçant dans les équations
(21a, b) Veffort normal N et le moment fléchissant M par
leurs expressions (22a, b).

Les équations différentielles dépendant aussi des forces
hyperstatiques inconnues, il est nécessaire de formuler
encore trois conditions supplémentaires pour les inconnues
Xi, X% et X3, en dehors des trois conditions aux limites
(correspondant à l'ordre de ce système d'équations
différentielles). Ces conditions supplémentaires concernent les
déplacements généralisés associés aux forces hyperstatiques

(voir le système fondamental de la figure 12).
A titte d'exemple, considérons l'arc de la figure 13,

encastré à gauche et simplement appuyé à droite. L'hyper-
statique X3 étant nulle, on écrira en plus des trois conditions
aux limites deux conditions de déformation pour les hyper-
statiques Xx et X2 inconnues :

La solution des équations différentielles du problème,
avec les conditions aux limites et les conditions de
déformation données, se complique du fait de la présence des
termes non linéaires (en vertu de l'équation (22b), le
moment M des forces extérieures est une fonction des
déplacements inconnus u et w et aussi des forces hyper-
statiques Xx, Xz, Xa qui les multiplient). Pratiquement,
on peut résoudre le problème par exemple par la méthode
des différences finies (voir le paragraphe suivant), qui
conduit à un système d'équations ordinaires mais non
linéaires.

6. Application de la méthode des différences finies

Le principe de la méthode des différences finies étant
suffisamment connu, on se bornera à quelques particularités:

1) Etant donné la forme géométrique des arcs, il est
avantageux du point de vue de la précision des calculs, de
répartir les points-pivots inégalement. En diminuant les
intervalles Ax vers les extrémités de l'arc, on cherche à
rendre approximativement égaux les segments correspondants

As de l'axe de l'arc (figure 14). Il s'agit alors de

trouver, pour une fonction f=f(x) quelconque, les
expressions aux différences finies avec des intervalles iné-

Conditions aux limites :

pour x 0 w(0) 0

pourx= l h(/)=w(/) 0.

Conditions de déformation :

pour x 0 u (0) <p (0) 0

Xf /

I/W

Fig. 13. — Exemple pour la formulation des conditions aux
limites et des conditions de déformations nécessaires pour la
résolution du système d'équations différentielles du problème.

66

H** t*1
N-rN,n

M, «J ««-I ÛXK

Fig. 14. — Répartition des points-pivots pour la solution par
la méthode des différences finies.

fw
ft+l

¦( i «+<

ùx ûJfd

*ft

Fig. IS. — Différences finies avec des intervalles inégaux.
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gaux (figure 15) des dérivées première et seconde. En faisant
passer par les extrémités des ordonnées fje-ufic et /*+!. un
polynôme d'interpolation du second degré, on trouve :

/'* ai/*-i + bxh + ci/ft+i,
f"k= «2/ft-i + b2fn + c2fie+1,

(25)

«i
—AxA

Axg Axd (Axg + Axd)
A 2

I A 2
—Axg + Axd

Cl

02

*2

Axg Axa (Axg + Axd)
A 2

^g
Axg Axa (Axg + Axa)

2Axa
Axg Axd (Axg + Axd)

—2 (Axg + Axd)

(25a)

cz

AXg AXd (AXg

2 Ax„

Axa)

Axg Axd (Axg + Axt)

(25b)

2) Considérons la subdivision de la projection horizontale

d'un arc à deux articulations en N—I intervales
inégaux Axi, Axjx ¦ ¦ ¦ AxN-i (figure 14). Les déplacements
aux extrémités de l'arc, ainsi que les moments d'encastrement,

étant nuls, on a :

«x Wi un wn X2 X8 0

Les inconnues du problème sont alors :

les déplacements u2, «s k»-i, soit (m—2) inconnues,
les déplacements w2, w3 w„_i, soit (n—2) inconnues,
la réaction hyperstatique Xlt soit 1 inconnue,

(2 n—3) inconnues.

Pour avoir le même nombre d'équations que d'inconnues,
nous pouvons écrire :

l'équation (21a) s

aux points I, u N—I, soit (n—1) équations,
l'équation (21b)8

aux points 2,3 n—1, soit (n—2) équations,

(2 n—3) équations.

La possibilité d'écrire des équations aux différences
finies pour les centres I, II... (N—T) des intervalles est
due au fait que l'équation (21a) ne comprend que des
dérivées premières. Leurs expressions aux différences finies
dans le cas d'intervalles égaux (Axg Axd — 2AxK) ne
dépendent pas des ordonnées en ces points, de sorte que
pour un centre K quelconque

u'k — g— ("*+i-"*), w'K -—Ax& Axjc
(w*+i—wK). (26a, b)

Pour avoir les valeurs Nk de l'effort normal aux points
d'application des forces isolées de remplacement, on
prendra la moyenne arithmétique des valeurs NK et

8 Avec les expressions (22a, b) de l'effort JV et du moment
M des forces extérieures.

Nk-i (exprimées aux centres des intervalles selon la relation

(22a)) :

î,

Par ailleurs, on posera :

n_v | 2

EF/k " AxR Axs
NK
EFK

Nn
EFK-,

(27a)

(27b)

Remarquons que l'utilisation de ces expressions assez
approchées se justifie du fait de l'influence relativement
très faible des second et troisième termes du second
membre de l'équation (21b), sur les résultats.

Au moyen des relations (25) à (27), les équations aux
différences finies du problème s'écrivent :

-j— («*+i-«*) + -j— (Wt+x—Wk)—NK 0, (28a)
axk axK z.tK

J5T=I, n JV-I

«a »f*_i + b2wK+ ca Wu+x + Mu

— secafc(l + sec2a4)

secajt

2 rk EFk
2 tg a* / NK

AxK-z + AxK \EFK EFK-x

Eh

(Mm + NJ-
NK-i

(28b)

0

k 2, 3 n—\

avec

iV;K smaK(vA-YiPzt) + costXK(Xi+ J]**). C29*)

*-i (-1

*-i
Mi

(29b)

(xt + «i)] + V r** Kz* + w*)_(z* + wi )] >

<-l
et où

«—1 n—1

%$iYip«y-*-^-lYip^ZB~Zi~Wi)~jXi- (29c)

En écrivant toutes les équations (28a) et 28b), on obtient
un système d'équations non linéaires (termes X1w!c et
Va Uk de l'équation (29b)). On peut le résoudre directement
à l'aide du programme SNOLIN, en prenant par exemple
comme première estimation de la valeur des inconnues :

«a «s • • • M»-i Wa H>8 W«-! Xx 0

Selon nos expériences, la solution partant de ces valeurs
initiales converge rapidement vers les résultats exacts. Il
n'est alors pas nécessaire de chercher une estimation plus
précise.

3) Dans le cas d'un arc encastré, on a, en plus de la
force hyperstatique Xlt deux nouvelles inconnues : X2 et Xs
(ou une nouvelle inconnue si l'arc n'est encastré que d'un
côté). -Les expressions (29b) et (29c) doivent alors' être
complétées par les termes suivants (voir (22)) :

— j(Xi + .Ya) Pour Va et Xt pour M»

Les conditions supplémentaires pour calculer ces inconnues

expriment les déformations <pA 0 et (ou) <pB 0,
en fonction des déplacements au moyen de la relation (23).
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Afin de ne pas devoir introduire les points-pivots fictifs 0

et n +1 à l'extérieur de l'arc pour remplacer les dérivées u[,
w[ et u'n, w'n aux extrémités de l'arc par les expressions aux
différences finies, on utilisera un polynôme d'interpolation
du troisième degré. En le faisant passer par les extrémités
des ordonnées de la fonction f—u(x) ou /= w(x) en

quatre points-pivots consécutifs 1, 2, 3, 4, on trouve, par
exemple, l'expression suivante de la dérivée première en 1 :

fi -,{c-b)(f2-fù + ^Xa-c)C/3-/1) + -Ab-aWi-fù (30)
ad bd cd

avec

a Axj, b Axx + Axjj, c Ax-i + Ax-a + Axm., (31a)

d | [2 b (^-a2) + a (b*-c*) + c (a2-62)]. (31b)

La condition de déformation tpA 0 peut alors être
remplacée par :

bc
— (c—b) (vf2-«2 tg a0 +
ad

avec

bd
(a—c) (wa—«3 tg pi)

ab

cd
(b—a) (vv4—j/4 tg ai) 0 • (31)

De manière analogue, on peut exprimer la dérivée f'n en
fonction des ordonnées /B-s. /n-2> fn-x et f„, et exprimer
la condition tpB 0 par l'équation :

bc

ad (c-b) (*„_!—k„_i tg a{)

+ -r-, (a—c) (w„_a-Kn-a tg aj +bd

ab
+ — (A-a)(vc„_3-M„_3tgan) 0, (32)

cd

a)
ph=|Pv un tu 1 i 1 u 1 u i u 111 m u u t i if p^t/m

(4 VPZ87

xercte

60m

b;

Mf «yi3

o.lf 5055P0.1 ni DOSI

0.1 3.K KM

h=(8n

Z;w 0065F
U

0,055t aoBt

Fig. 16. — a,) Géométrie et chargement de l'arc étudié, b)
Répartition des points-pivots et introduction des forces concentrées
de remplacement pour l'application de la méthode des différences
finies.

a —AxN- -AxN-i—Axtr-jz,
(32a)

c — —Axtf-x—Axit-xt—Axjf-ju

d=\[2b (c*-a*) + a (^-c2) + c (a2-b*)]. (32b)

7. Exemple d'application

Pour tester l'efficacité de la méthode, nous avons calculé
l'arc à deux articulations de la figure 16a, constitué par
une poutrelle américaine 14WF287 en acier A36
(F 84,37 in2 =—544,326 cm2, / 3912,1 in4

162 836 cm4, E 29 000 000 lb/in2 2 038 894 kg/
cm2). Les dimensions ont été tirées de l'ouvrage du
professeur Ping-Chun Wang [4]. Nous avons également
adopté la même répartition de points-pivots (figure 16b).

Pour résoudre le système de 23 équations non linéaires
du problème (inconnues Xlt k2 à ui2 et JMà wia), et pour
calculer les efforts normaux et les moments fléchissants,
nous avons utilisé le programme SNOLIN (voir Appendice

A). Nous n'entrerons pas dans les détails de calcul,
très simple et rapide, et nous analyserons brièvement
quelques résultats.

La figure 17 montre la comparaison des résultats de
notre calcul avec ceux de la théorie du 1er ordre (en pointillé).

La différence entre les deux solutions est assez grande,
malgré que les sollicitations restent encore relativement
faibles par rapport à la capacité portante de la section (on
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Fig. 17. — Influence des effets du 2e ordre sur l'arc de la
figure 16. Théorie du 2e ordre : en ligne continue, théorie du
1er ordre : en trainile.
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Fig. 18. — Variation des déplacements de l'arc de la figure 16a
en fonction de l'intensité de la charge. Les diagrammes en
trai til lé représentent les résultats selon la théorie du 1er ordre.

trouve par exemple dans les fibres inférieures de la
section k 11, une contrainte de compression de 0,456 t/cm2
selon la théorie du 1er ordre et de 0,377 t/cm2 selon la
théorie du 2e ordre). Cette différence croît rapidement si
l'on augmente l'intensité de la charge.

Les figures 18 et 19 montrent comment varient, dans la
théorie du 2e ordre, certains efforts et déplacements de l'arc
en fonction de l'intensité de la charge pv (la charge p^

étant toujours - de pv). Tandis que la variation de la

réaction Xx et de l'effort normal Nxn. est assez longtemps
approximativement linéaire, le moment fléchissant Mu et
les déplacements «u et % croissent beaucoup plus
rapidement. Autour de l'intensité de p„ 7 t/m' on remarquera

un accroissement très rapide des déplacements et du
moment fléchissant, ce qui semble indiquer que la charge
est proche de son intensité critique de divergence. Cepen- ¦

dant, cette conclusion ne devrait pas être acceptée sans
réserve; en effet, les déplacements étant déjà très importants,

les simplifications géométriques adoptées dans la
théorie du 2e ordre ont pu entraîner une erreur non
négligeable dans les résultats.

APPENDICE A

Description et emploi du programme
SNOLIN

t.t
900

X,(l)
50000

100

2 3 <l 5 6 H Bt/m

-20
¦ 100

200

M« tim;

1)00

'600

NnttJ
-180

1000

-100

-240
1200

1300

two

-1500

1. But du programme
Le but du programme SNOLIN est de résoudre un système

de M équations non linéaires en partant de la valeur approchée
ou estimée des inconnues.

2. Méthode utilisée

On utilisera la méthode d'itération de Newton (avec la
formation numérique de la matrice Jacobienne), suivie du contrôle
des résidus après chaque cycle d'itération. Le calcul s'arrête
automatiquement dès que tous les résidus deviennent inférieurs
à une valeur «admissible lue dans les données.

3. Structure du programme
Le programme SNOLIN est constitué de trois parties :

1. La partie standard, destinée à organiser et effectuer les cal¬
culs. Elle lit les données, calcule et, après chaque cycle
d'itération, imprime les valeurs approchées des inconnues
du système d'équations non linéaires défini dans la deuxième
partie, semi-standard, du programme. Elle arrête automatiquement

le calcul dès que les résidus deviennent inférieurs à
une valeur «admissible choisie par l'utilisateur. Si on le désire,
elle permet également de calculer et imprimer d'autres
résultats, obtenus en fonction des inconnues selon les
relations que l'utilisateur définira dans la deuxième partie
(FORMFF).

2. Le sous-programme FORMFF, préparé par l'utilisateur du
programme selon le paragraphe 5 ci-après. Ce sous-programme

sert à définir le système d'équations non linéaires,
ainsi que d'autres résultats que l'on désirerait 'éventuellement

obtenir en fonction des inconnues du système.
3. Les données, préparées par l'utilisateur. La structure des

données est précisée dans le paragraphe 6. Elles comprennent
notamment les noms et les valeurs estimées des inconnues
du système.

Fig. 19. — Variation de l'effort normal, du moment fléchissant
et de la réaction horizontale gauche de l'arc de la figure 16a en
fonction de l'intensité de la charge. Les diagrammes en traitillé
représentent les résultats selon la théorie du 1er ordre.

4. Utilisation du programme SNOLIN

Le programme SNOLIN fait partie de la bibliothèque des
programmes GC INFO du département de Génie Civil de
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l'EPFL. Il est mis à la disposition des participants des cours
du 3e cycle donnés par la chaire ainsi qu'à d'autres utilisateurs

du Centre de calcul. L'accès au programme est rendu
possible par l'utilisation des cartes de contrôle spécifiées dans le
mode d'emploi du programme.

5. Préparation du SP FORMFF

Soit XX(I), 1= 1, M.
FF(I), 1= 1, M

vecteur des inconnues,
vecteur des résidus.

Le système d'équations non linéaires est considéré sous la
forme :

F\ (XX (\), XX(2), XX(M)) 0,

FI (XX(I), XX(2), XX(M)) 0,

FM(XX(1), XX(2), XX(M)) 0.

La structure du SP FORMFF est donnée ci-contre :

6. Cartes des données

Les cartes des données préparées selon le mode d'emploi du
programme contiennent :

1. Un texte quelconque que l'on veut faire figurer comme titre
précédant l'impression des résultats.

2. Nombre d'équations et valeur admissible a des résidus.
3. Noms des inconnues et valeurs estimées des inconnues.

Remarque :
Certains problèmes admettent de prendre comme première

estimation des inconnues les valeurs nulles.

7. Capacité du programme
Le programme SNOLIN stocké sur le fichier permanent est

constitué par la variante SNOLIN 130 du programme. Cette
variante de base permet de résoudre au maximum un système
de 130 équations non linéaires. En cas de besoin, la capacité
du programme peut être augmentée de la manière indiquée dans
le mode d'emploi.

SUBROUTINE FORMFF (FF,XX,LM,IMP)

DIMENSION FFCLM),XXCLM)

SUIVRA LE PAQUET NON-STANDARD DE CARTES

DEFINISSANT LE VECTEUR FF

FFCl) FICXXCD,XXC2),... XXCM))
FFC2) F2CXXC1),XXC2),.. XXCM))

FFCM) FMCXXCD,XXC2),... XXCM))

PARFOIS, EN PLUS DE LA RESOLUTION DU SYSTEME D'EQUATIONS NON

LINEAIRES, ON DESIRE CALCULER ET IMPRIMER D'AUTRES RESULTATS

(OBTENUS EN FONCTION DES INCONNUES DE CE SYSTEME). DANS CE

CAS-LA, LA DEFINITION DU VECTEUR FFCI) SERA SUIVIE DU PAQUET

NON-STANDARD SUPPLEMENTAIRE CONSTITUE DE LA MANIERE SUIVANTE

CNNN EST UNE ETIQUETTE NUMERIQUE)

IFCIMP.EQ.0)GOTO NNN

PROGRAMME PORTRAN DU CALCUL ET DE L'IMPRESSION
DES RESULTATS SUPPLEMENTAIRES

A LA FIN DE L'IMPRESSION DES RESULTATS SUPPLEMENTAIRES, IL
FAUT PREVOIR 2 OU 3 LIGNES LIBRES. L'IMPRESSION DES ^SULTATS
SUPPLEMENTAIRES PREDEDE DANS CHAQUE CYCLE D'ITERATION
L'IMPRESSION STANDARD DES INCONNUES ET DES RESIDUS

NNN CONTINUE

RETURN
END

REMARQUE

LE VECTEUR FF PEUT AUSSI ETRE DEFINI DE FACON INDIRECTE
SOIT PAR EXEMPLE

X,Y,Z R,S N INCONNUES, Y COMPRIS LES INCONNUES
NON INDEPENDANTES (N EST PLUS GRAND

OU EGAL A M)

ON EXPRIME ALORS

A) LES INCONNUES X,Y,Z
PAR EXEMPLE

R,S EN FONCTION DU VECTEUR XXCI)

X=XXC1)S Y=XXC2)S Z=-XXC1)S R=XXCM)2 S=-XXCM)

OU Z ET S SONT DES VARIABLES NON INDEPENDANTES

B) LE VECTEUR FFCI),1 1,M D'EQUATIONS NON LINEAIRES EN

FONCTION DES INCONNUES X,Y,Z R,S

FFCI)=F1CX,Y,Z
FFC2)=F2CX,Y,Z

R,S)
R,S)

APPENDICE B

FFCM)=FMCX,Y,Z

Exemple d'application du programme
SNOLIN

non linéaires. Dans ce cas-là, le vecteur des inconnues XX(I),
I 1,20 et le vecteur des résidus FF (/),/= 1,20 seront définis
de la manière suivante :

1. Données du problème

Résoudre le système d'équations non linéaires aux différences
finies du problème aux limites (13a, b, c) défini dans le
paragraphe 7 de la première partie de l'article et calculer le moment
d'encastrement.

2. Définition des vecteurs XX(I) et FF(I)

Puisque la première des équations (13) et les deux premières
conditions aux limites (13c) ne dépendent pas des déplacements

relatifs U, on pourrait tout d'abord résoudre le système de
10 équations aux différences finies pour les inconnues W\ à JPio.
Ensuite, après avoir substitué les résultats dans le second
système de 10 équations aux différences finies (système qui correspond

à l'équation (13b)), on pourrait calculer les inconnues Ux
à t/10.

Etant donné que le nombre total d'équations (20 au total)
n'est pas trop grand et, par conséquent, la durée du calcul
insignifiante, on a avantage, pour simplifier la programmation, de
ne pas profiter de la décomposition en deux systèmes distincts de
10 équations et de considérer un seul système de 20 équations

7 1 XX (1) k= 1 W{\)

10 XX (10) 10 W(W)

11 XX (11) k= 1 U(\)

20 XX (20) 10 r/(io)

/= 1

10

11

20

FF(\)

FF (10)

FF (11)

FF (20)

Ar 0

9

Wi

W,,

U,

éq. (13a) en k

éq. (13b) en K
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3. Sous-programme FORMFF pour le programme
SNOLIN

Pour exprimer les dérivées première et seconde de W dans la
relation (13a), on utilisera les relations (14a, b). Pour les dérivées

premières de U et W dans (13b), on appliquera la
formule (14c). Afin de faciliter la programmation du vecteur FF,
on formera les sous-programmes de fonction suivants :

D\ (F,K) Dx (f) lre dérivée en k selon (14a)

Z>2 (F,K) D2 (/)... 2e dérivée en k selon (14b)

DD\ (F, KK) Dx(f) lre dérivée en K selon (14c)

Pour la dérivée seconde, on écrira par exemple :

FUNCTION D2 (F, K)
DIMENSION F(10)
COMMON /BN/DEL
D2 (F(.S:-l)-2. *F(K) + F(K+ 1))/DEL**2
RETURN
END

A l'aide de ces sous-programmes de fonction, celui de
FORMFF peut être présenté, par exemple, sous la forme simple
suivante :

4. Première estimation des inconnues et résultats
du calcul

Dans de nombreuses applications du prà^amme SNOLIN
aux problèmes non linéaires, il suffit de prendre pour point de
départ les valeurs nulles des inconnues. Dans notre cas, ceci
n'est pas possible, puisque les valeurs nulles des déplacements
transversaux constituent l'une des solutions possibles ; solution
qui correspond à l'équilibre instable de la barre. Pour éviter
cette solution triviale, on peut par exemple assimiler la déformée

à un segment de cercle de longueur / et de rayon r, et l'on
obtient, pour la première estimation des déplacements relatifs

Wjc et U]c, les relations

Wk [Y0k-r

% 5sin(l^)-l*
En partant des valeurs que l'on trouve en prenant, par exemple,

r / (ces valeurs sont lues sur les cartes des données) et en
admettant une erreur e 0.000001, on obtient après six cycles
d'itération les résultats suivants :

SUBROUTINE FORMFFIFF,XX,LM,IMP)

DIMENSION FF(LMI,XXILMI,HI10),UI10I
COMMON /BN/DEL
REAL LAMBDA,MO

DONNEES ET VALEURS AUXILIAIRES

ALPHA=1.1S
LAMBDA=10CO.
DEL=.l
PI=3.1i|1592
C1*ALPH«».25«PI"2
C2=C1/LAHB0A"2

DEFINITION DES INCONNUES

00 51 K-lilO
H(K]=XX!K I

1 K«I
51 U(K)=XX(I

0EFINITICN OU VECTEUR DES RESIDUS

FFI1I=2.»WI1>/OEL*«2-C1'KI10)
FF(2)=(-2.*K(1H-NI2) )/ (0EL,*é"SQRI(l.-l.5«H(2>/CEL)»«2>>

1 «Cl* IWID-WIIO >

U0 52 K=2,9
I=KH

52 FFII>=02IK>K>/SQRTI1.-0KW>K)'*2]*C1»IH(K>-WI1C>>
FF Uli =ulll/DEL't.5*IUIl )/DEL)*»2*.5*(H(ll/DEL)*»2

1 *C2*S0RT ll.-IW11)/DEL>»«2>
00 53 KK=2,10
I=KK+1 0

5 3 FFII)=UD1 (U,KKI«.5»0 01 I U.K K I "Z* .5*DD1 <W,KK> «*2
1 <CZ*SQRTI1.-0C1IW,KK)*«2I

CALCUL ET IMPRESSICN DU MOMENT 0"tNCASTREMENT

IF (IMP.EO .0) GOTO 999

HÛ=-ALPHA*K(10)
PRINT 101, MO

101 FORMAT KSX.ISHMO/ (PCR«L> - E 12. 5 ,/"t5 » ,25 UH» >//)

999 CONTINUE
RETURN
END

CALCUL DE LA COLONNE SOUMISE
P : 1.15»PCR

N0HBRE D'EQUATIONS

A UNE CHARGE POST-CRITIQUE
L/I 1000

ERREUR ADMIS.

CYCLE D-ITERATION NO

MO/tPCR«L) -.68678E*0O

1= I RACINES XXIII= fl^PfflSIOUS FFI1I

1 I Hl ' .84728E-02 - .7105*iE-li*
2 I N2 .33M6E-01 -.K.211E-13
3 ] «3 .73I.88E-01 I .35527E-13
<+ I W4 .12670E*0C -.7105I.E-13
5 I H5 -1907iiE+0a -.21316E-13
6 I HE .26320EtOQ .92371E-13
7 I H7 .341878+00 -.156326-12
6 I W8 .".246C'E»J3 •78515E-12
9 I W9 .51J38E»00 S^M725E-12

10 I «10 .59720EH0 [ .53113E-12
11 I Ul -.35987E-03 -.12035E-16
12 I U2 -.3520 9E-J 2 .16306E-1S
13 I U3 -.11303E-Qlîtfjfg .137396-1«.
1<* I u<< -.27237E-01 -.20539E-l<i
15 I U5 -.5C.27E-01 .25535E-1".
16 I U6 -.81512E-01 j» .12".3<tE-13
17 I U7 -.11978E»00 3H -.10658E-13
16 ua -.16391E*JC .13767E-13
19 I u? -.21217E»0C .12<»3i|E-13
20 I uio -.2625SE*0C .62172E-1I.

RÉFÉRENCES

Dans le sous-programme ci-dessus, on a remplacé la lettre
minuscule k par K et la lettre majuscule K par KK. On remarquera

que, pour les points K ou KK suffisamment éloignés de
l'extrémité gauche de la barre, les équations correspondantes
s'obtiennent par l'application d'une boucle appliquée à une
équation rédigée pour une valeur indéterminée de K ou de KK.
La définition du système d'équations non linéaire devient ainsi
encore plus simple que la définition d'une matrice de coefficients
telle qu'on l'utilise dans la plupart des programmes de résolution

de systèmes d'équations linéaires.
Notons encore que, dans le sous-programme FORMFF ci-

dessus, on a prévu des valeurs particulières des paramètres a
et X (voir 12b)) définissant la charge et l'élancement de la barre :

« p)p„ =1,15, X Ili 1000. Par ailleurs, en plus du
calcul des déplacements Wk et Uk, on calcule également le
moment d'encastrement que l'on exprime en fonction du produit

Pcrl :

Mo —Pwxo —aWxo-Pcrl •
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