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BULLETIN TECHNIQUE DE LA SUISSE ROMANDE 101" année 18 décembre 1975 N° 26

Equations fondamentales du comportement
des poutres-colonnes à section ouverte et parois minces

par SRIRAMULU VINNAKOTA, JEAN-CLAUDE BADOUX et YASUYUKI AOSHIMA

Introduction

Les équations fondamentales basées sur les déformations
finies du comportement des poutres-colonnes à section ouverte
etparois minces ont été établiespar deux méthodes différentes,
soit par la formulation physique (l'équilibre des forces),
soit par la formulation mathématique (le théorème énergétique)

ce qui nous permet d'avoir une meilleure compréhension

du mécanisme de l'instabilité par torsion. Nous avons
aussi montré que la théorie développée dans cette étude
explique mieux le phénomène du déversement que la théorie
existante.

Généralités

Il est connu que les pièces longues à section ouverte et parois
minces sont sensibles à l'instabilité par torsion comme c'est le
cas dans les phénomènes du déversement des poutres [1, 2, 3]1,
du flambage torsionnel des colonnes [4, 5] et du flambage biaxial
des poutres-colonnes [6]. Depuis que Prandtl [1] et Micheli [2]
ont étudié séparément en 1899 le déversement d'une poutre
à section rectangulaire, un grand nombre de recherches
théoriques ont été faites pour décrire les équations fondamentales
du comportement spatial des pièces longues. L'effet du
gauchissement d'une section rectangulaire étant négligeable,
Prandtl et Micheli ne l'ont pas pris en considération. Timoshenko
[3] est le premier qui en a tenu compte pour les profilés en
double T. Une meilleure compréhension du phénomène d'instabilité

par flexion et torsion suppose une connaissance approfondie
du comportement des barres à section non-symétrique. En 1920,
Eggenschwyler [7] a montré que le centre de gravité n'est pas
le seul point caractéristique de la section. Mai 11 art [8] a défini
le centre de cisaillement. Wagner [9] a étudié le flambage
torsionnel des profilés à section ouverte et parois minces et introduit
le concept « gauchissement unitaire ». Mais ici, il a supposé que
lors du flambage, le centre de rotation coïncide avec le centre
de cisaillement, ce qui n'est pas juste en général. Ostenfeld [10]
a relevé cette faute. F. Bleich et H. Bleich [11] ont développé
les équations fondamentales du comportement des barres
à section polygonale et parois minces, en utilisant le théorème
de stationnante de l'énergie potentielle totale. Kappus [12] a
obtenu une théorie raffinée applicable à la section quelconque
à parois minces, en utilisant le concept de Wagner « gauchissement

unitaire » et le théorème de stationnante de l'énergie
potentielle totale. Goodier [13] a étudié le flambage torsionnel
des colonnes et réussi à simplifier les équations fondamentales,
en utilisant le centre de cisaillement comme origine du système
de coordonnées. La théorie générale du comportement des
pièces longues à section ouverte et parois minces a été systématisée

par Chwalla [14], Kindern [15], Kappus [16], Timoshenko
[17], Bleich [18], Vlassov [19], Kuranishi [20], Kollbrunner et
Meister [21]. Cette théorie est traditionnellement appelée la
théorie linéaire élastique.

Comme la majorité de ces recherches théoriques a été faite
à l'époque où il n'y avait pas encore le développement actuel de
l'ordinateur, les auteurs étaient obligés de linéariser les équations

fondamentales pour les résoudre. Mais la meilleure
compréhension du phénomène de l'instabilité nous oblige à établir
les équations fondamentales basées sur les déformations finies.
Roik, Cari et Lindner [22] ont développé les équations fondamentales

en linéarisant le champ des déformations ainsi que celui des
contraintes et en considérant l'équilibre des forces après
déformation. Bâzant, Nimeiri [23] et Sakai [24] ont développé la

1 Les chiffres entre crochets renvoient à la bibliographie en
fin d'article.

théorie en linéarisant le champ des déformations, en introduisant
la conception de la contrainte initiale (contrainte qui précède
la perte de stabilité) et en utilisant le théorème des travaux
virtuels des déformations finies. Le champ des déformations
étant linéarisé, leurs théories peuvent être classifiées dans les
théories linéaires des déformations finies.

Les progrès effectués dans le domaine des ordinateurs nous
ont libéré de la restriction de cette linéarisation. Zamost et
Johnston [25] ainsi que Trahair et Woolcook [26, 27] ont étudié
le comportement post-critique du déversement. Soltis et
Christiano [28] ont développé les équations non-linéaires des
déformations finies du comportement des poutres-colonnes
soumises à des moments et à une force axiale à leurs extrémités.
Vinnakota et Aoshima [29] et Vinnakota et Aystol [40] ont
établi les équations en considérant l'équilibre des forces par
rapport à un système arbitraire d'axis. D'autre part, Ghobarah
et Tso [30] ainsi que Nishino, Kasemset et Lee [31] ont utilisé
le théorème énergétique. Nishino, Kurakata, Hasegawa et
Okumura [32] ont complété la théorie précédente et discuté
l'importance du choix du champ des déformations.

Il n'est pas toujours assuré que la linéarisation est juste.
Récemment Nishino, Kasemset et Lee [31] ainsi que Trahair
et Woolcook [26], ont montré que la théorie linéaire sous-estime
la charge critique provoquant le déversement et qu'elle nous
conduit également à une contradiction. Il est normal qu'une
poutre soumise à un moment par rapport à l'axe faible ne
déverse pas. Mais la théorie linéaire ne permet pas de démontrer
ce fait. Le détail sera exposé dans le chapitre 6.

Le présent rapport essaie de formuler les équations
fondamentales non-linéaires des déformations finies par deux méthodes
différentes, soit par la considération de l'équilibre des forces
(dans le chapitre 1, soit par le théorème énergétique (dans le
chapitre 2).

Le problème envisagé ici n'est pas le phénomène des grandes
déformations, connu sous le terme elastica, mais celui des
déformations finies. Nous savons que des coques suffisamment
longues peuvent être analysées comme des barres à parois
minces [19,23]. Particulièrement dans le cas de la section ouverte,
l'analyse est encore réduite au problème d'une poutre à une
dimension à l'aide des deux hypothèses suivantes [19] :

— la section transversale est suffisamment rigide pour ne pas
se déformer,

— la déformation tangentiale est petite et négligeable (hypo¬
thèse de Bernoulli-Euler et hypothèse de Wagner).

Par conséquent, les poutres à âme pleine et d'une grande
hauteur sortent du cadre de cette étude. Et la théorie qui sera
discutée dans ce rapport traite du comportement des poutres-
colonnes en profil laminé ou en profil composé soudé aux
dimensions correspondantes.

1. Formulation physique par l'équilibre des forces

1.1 Coordonnées

La ligure 1 présente une poutre-colonne soumise à des
charges transversales entre ses extrémités, ainsi qu'à une
force axiale, à des efforts tranchants, à des moments de
flexion et torsion à ses extrémités. Il est peut-être utile de
définir quatre systèmes de coordonnées (fig. 2) : le premier
est X° - Y°- Z° qui est fixé dans l'espace et l'axe Z° est
choisi comme l'axe de la poutre-colonne avant déformation;
le deuxième est x - y - z qui est fixé au profil et bouge avec
les déformations du profil ; et le troisième est X-Y-Z
dont l'origine coïncide avec celle de x-y-z mais qui
reste toujours parallèle au systèmeX°- Y0-Z°. Ces trois
systèmes sont à main droite. Le quatrième est _ - n - z, dont
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Fig. 1. — Charges extérieures.
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Fig. 2. Coordonnées.

l'abcisse s est mesurée sur le contour de la section
transversale. Il faut signaler que le troisième système X- Y- Z
sera le plus utile lorsque l'équilibre des forces est considéré.

En ce qui concerne la déformation de torsion, nous
choisissons la définition du point selon les coordonnées
Eulériennes.

Soit (X, Y) et (x, y) les coordonnées d'un point
arbitraire A, respectivement dans le système X- Y et x - y ;

la relation entre (X, Y) et (x, y) est :

X x cos <p—y sin <p,

Y — y cos cp + x sin <p ; (1)

cp déformation de torsion.

Le point S est souvent choisi au centre de cisaillement
mais dans cette étude ce n'est pas absolument nécessaire

(fig. 3). Les coordonnées d'un certain point S (xt, yt)
dans le système X— Y après déformation sont (Xt, Y,),
d'où :

X, x, cos tp—y, sin cp. (2)

Y, y, cos <p + xs sin tp.

S(x..y.)//X r"s"s'//2 ,C

w
A(x.y)

b *>a_____

Fig. 3. — Champ des déformations.

En introduisant a comme angle de la tangente à la ligne
du profil au point A (x, y) avec l'axe x, on obtient une
relation entre x—y et s (fig. 2) :

dx dy
— cos a, SsS sin a.
ds ds

D'après les équations (1) et (3), on obtient

(3)

dX dY
— cos (a + m), —- sm (a + m). (4)
ds ds

La relation entre s et la surface sectorielle co, ayant son
pôle au point S (xs, ys), s'écrit comme ci-après [19] :

dco

~ds (x—xa) sin a—(y—y^ cos a. (5)

A l'aide des équations (1) et (2), l'équation (5) s'écrit
sous la forme suivante, légèrement différente :

dco

~ds (.X-Xs) sin (a + <p)-{Y- Fs) cos (a + q>). (6)

1.2 Champ des déformations

Soit « et v les projections du déplacement d'un point
arbitraire A (x, y), respectivement sur les axes X° et F0
(fig. 3) ; ces deux composantes des déformations sont
exprimées en fonction de celles appelées u, et v„ d'un
certain point S (xs, y^) et de la déformation de torsion tp

(voir [29] ou appendice I) :

u u„—(y—yt) sin cp—vmxà (1—cos tp),

v vs + {x—x,) sin (p—(y—y^ (1—cos ç>).

(7)

La théorie linéaire existante [17, 18, 19] néglige les

troisièmes termes dans l'équation (7) et remplace sin cp

par tp. Mais dans la présente étude ces expressions sont
gardées. L'importance de cette différence du champ des

déformations sera discutée dans le chapitre 6.

A l'aide des équations (1) et (2), la premiers dérivée
de l'équation (7) par rapport à Z est la suivante :

-{Y-Ys)<p',
h ÇC-X,) tp'.

(8)

Etant donné que X' est égal à — Ytp' et Y' est égal
à Xcp', l'équation (8) peut s'écrire différemment :

(v.
*-*_)',
Y-Y,y.

(9)

1.3 Equations d'équilibre

Coupons la barre transversalement à la position Z et
considérons une pièce coupée qui se trouve entre 0 et Z.
La déformée de cette pièce et les contraintes normale a
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En appliquant à la première intégra^l'intégration par
parties, on obtient :

ttX\ - ds Xds+ / 0--T' _M + (ug-X,)¦f.«.
t : épaisseur des parois.

Etant donné que la contrainte tangentielle t est égale
à zéro à l'extrémité libre dans le cas de la section ouverte,
le premier terme xtX I peut être égal à zéro, en choisissant
l'origine du domaine d'intégration à cette extrémité libre.
D'après l'équation d'équilibre des contraintes suivants [19] :

on obtient :

___dz X

i
*___ + ,*£__o

ds ^ dz '

aX'\ dA + (u8-Xsy / odA

A

d(aX)
dz

dA + («,-_-,)' I odAf-
A A

En introduisant des efforts internes Mx et N:

Mx J o-XdA,

(H)

5(X..YJ A(X,Y)
CT U

d)

''
Y°

Fig. 4. — Pièce coupée.
a) Forces agissant sur la pièce coupée.
b) Projection sur le plan X° - Z°.
c) Projection sur le plan Y" - Z".
d) Projection sur le plan X" • Y0.

et tangentielle t agissant sur la surface coupée sont montrées

à la figure 4 a. Les projections de a et t sur les plans
X°—Z° et Y°—Z° sont respectivement montrées à la
figure 4 b et c.

La condition d'équilibre des forces sur l'axe X° de cette
pièce peut s'écrire comme suit :

J [t cos (a + cp) + au'] dA + / Z qJZ VX1 : (10)
A 0

"Lqx : somme des charges transversales qx agissant
à la position Z (0 __! Z _= Z),

Vxi : réaction d'appui au point © selon l'axe X°.

En remplaçant cos (a + cp) et «' dans l'intégrale de

l'équation (10) par les expressions (4) et (9), le premier
terme de l'équation (10) peut s'écrire comme suit :

t — dA
ds

- / ci («s + X-X,)' dA.

N= $ adA,
A

l'équation (10) peut s'écrire sous la forme suivante :

M'x + (us-Xs)' N+f-LqxdZ= VX1. (12)
o

En dérivant une fois par rapport à Z, on obtient :

[Mx + (u8-Xs)N]" + -Lqx 0. (13)

De la même façon, la condition d'équilibre des forces
sur l'axe ï"0 peut s'écrire comme suit :

M'Y + (v„- Ys)' N + J 2 qy dZ VY1 ; (14)
o

où:My loYdA;
A

VY\ : réaction d'appui au point © selon l'axe Y°.

En dérivant une fois par rapport à Z, on obtient la
deuxième équation fondamentale ci-après :

[MY + (v.-y.) N]" + S qy 0. (15)

A la figure 4 d, les projections des contraintes normale a
et tangentielle t à la position Z sur le plan X° - Y0, sont
indiquées. La première torsion due à la contrainte tangentielle

t par rapport au point S, vaut :

/ r [(X-Xa) sin (a + cp)-(Y-Y,) cos (a + çj\ dA.
A

D'après l'équation (6), l'expression ci-dessus devient :

dea
T-r-dA.ds

En appliquant l'intégration par parties et en introduisant
l'équation d'équilibre des contraintes (11), on obtient :

f'd {aa)
dA.
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En introduisant un effort interne défini par :

Mm JtTCO dA,
A

la torsion due à la contrainte tangentielle x est exprimée
par M'.

La deuxième torsion due aux projections o- h' et c v' de
la contrainte normale par rapport au point S, vaut :

J [o- v' {X-Xs)-a u' (Y- ys)] dA.
A

A l'aide de l'équation (8), on obtient :

v; {Mx-Xs N) -< (My- Ys N) + K cp' ;

où : K=fa [{X-Xsf + (Y- Ys)2] dA
A

J a [{x-x,f + (y - ysf] dA.
A

Par conséquent, en ajoutant la torsion de St. Venant T,
[19], la torsion due aux contraintes vaut :

ML Ts + Kcp' + v,' {Mx-Xs N) -< {MY- Ys N).

Cette torsion ainsi que celle due aux charges extérieures
agissant sur la partie de la pièce considérée qui se trouve
entre 0 et Z sont en équilibre.

Premièrement, la torsion, par rapport au point S de la
position Z, due aux réactions d'appui VX1 et Vyi, vaut :

Vxlvs—VY1us.

Deuxièmement, la torsion, par rapport au point S de
la position Z, due aux charges transversales qx et qy
agissant entre 0 et Z, vaut :

/ S [._ {Ya-Ys-vs + v8) -qy {Xq-Xs «„)] dZ ;

Xg, Yq : coordonnées des points d'application des charges
transversales après déformation.

La notation — représente des valeurs seulement à la

position de Z (0 __! Z __! Z).
Les réactions d'appui et les efforts tranchants sur appui

sont en équilibre mais il ne sont pas toujours sur la même
ligne ; dans ce cas, ils provoquent une torsion. S'il y a
des déplacements aux extrémités, les réactions provoquent
une tension additionnelle. Etant donné que ces torsions
additionnelles sont indépendantes de Z, on peut les poser
égales à H. En présence de torsions extérieures, ces
dernières sont ajoutées à H [29].

La condition d'équilibre de la torsion, de la partie de
la pièce considérée, peut s'écrire comme suit :

Mi, + T, + K cp' + v', {Mx-Xe N) -«; {My- Y, N)

Vxl v,- VY1 «, + J I [qx{Yt-Y,-v, + f.) -
o

-qy {Xq-Xs-u, + «,)] dZ + H. (16)

En dérivant l'équation (16) par rapport à Z, on obtient :

m_. + r; + (__ cpy + v",{mx-x,n) -u"s{my-y,n) +

+ v'. (Mx-X, N)' -««' (My-Y, N)'

- V,_ri v,- 'Yl S [._ (Ya- Y.) -qy {Xq-X,)] +
z z

u', J 2 qx dZ-v', fLqy dZ.
o o

A l'aide des équations (12) et (14), on obtient la troisième
équation fondamentale ci-après :

M£ + T't + {Kcpr + v"s {MX-X,N) -u"a{MY-Y,N) +
+ E [qy {Xe-Xs) -qx {Yg- Y,)] 0. (17)

Donc, les équations fondamentales formulées par la
considération de l'équilibre des forces valent :

[Mx + {us-Xs) NY + Z qx 0, (18 a)

[My + {vs-Y8) NT + Z qy 0, (18 b)

M'a + T's + {Kcpy + v"s{Mx-XsN)-ul{My-YsN) +
+ S [qy {Xq-X,)-qx {Yq- Ys)] 0. (19)

Le cas spécial {qx qy 0 et X, — Ys 0) a été
discuté dans l'article [29].

2. Formulation mathématique par le théorème
énergétique (par le théorème des travaux virtuels)

Le théorème des travaux virtuels des déformations finies
dit que [33] :

ou :

J" a1" òek dV- J F* ou* dS 0;
v s

«_„= - (",£+">_+ ",*"$•

(20)

(21)

F* correspond à des charges extérieures agissant sur les

bords et l'expression (21) est basée sur les coordonnées
Lagrangiennes [33].

Vlassov a appelé un membre dont la longueur est
suffisamment grande par rapport aux dimensions du profil :

pièce longue [19]. Les poutres-colonnes envisagées ici sont
classifiées dans cette catégorie. Soit u, v et w les déformations

des pièces-longues respectivement sur les axes X",
Y0 et Z° avec lesquels les axes x, y et z coïncident respectivement

avant déformation. La grandeur de w est considérée

petite et négligeable par rapport aux autres déformations «
et v. D'après cette hypothèse de déformation des pièces

longues, l'expression (21) peut s'écrire comme suit :

du i
dx 2 w+(sr — o_»

dv 1

eyv * d'y + 2 'mwi Zy,

dw 1

e" Tz + 2 iH£)>- (22)

dv du du du dv dv
2exv=~Tx*" _V +~d~xd~y*"didy^71"'

dw dv du du dv dv

ve='Ty*'Jz* dyTz* dïdz*=yy" (23)

du dw
£ ezx Tr- -y •«

dz dx
du du dv o

dz dx dz 6

V

- )__. (24)

En choisissant le même champ des déformations que
pour l'équation (7), et en substituant l'équation (7) dans
les déformations ex, ey et yxy, on obtient :

C_ — ßy ™ y_y — V.

Cela signifie que l'équation (7) est basée sur l'hypothèse
de l'indéformabilité de la section transversale. Donc, il n'y
a que trois déformations sz, yyt et yzx à considérer.
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Ou en utilisant les coordonnées locales, s—n—z, on peut
aussi dire qu'il n'y a que trois déformations ez, yzs et yzn,
d'où :

ïzn

dx
ds~

_dy
ds

dy
ds

(25)

lz.
dx
d~s

La théorie de parois minces [19] ne peut tenir compte de
la variation des contraintes sur l'épaisseur des parois.
Elle suppose que la déformation de distorsion ysz est
constante sur toute l'épaisseur et qu'on laisse tomber la
déformation yzn. Pour tenir compte de cette variation, le
travail virtuel dû à la variation de la contrainte tangentielle
sur l'épaisseur, c'est-à-dire la torsion pure, doit être ajouté
dans l'expression (20). Nishino et ses collaborateurs
[31, 32] ont développé la théorie de parois d'épaisseur finie
où la torsion pure est estimée en tenant compte de la
déformation yzn et de la variation de la déformation y8Z

sur l'épaisseur.
En introduisant les équations (23) et (24) dans l'équation

(25), on obtient :

d /dx dy
dz \ds ds

dw
~ds

du du

dz ds

dv dv

dz ds ' (26)

d dx d dy d
ds ds dx ds dy '

En introduisant l'équation (7) dans l'équation (26),
on obtient :

cos cp

dx
ds

-sin m — \u. + cos cp —- + sin cp — vs ¦

ds \ ds dsl

dy
ds y-ys

dx
ds

<P' +
dw

ds

A l'aide des équations (1) et (5), on obtient une expression
de yaz plus condensée :

dX dY dœ dw
-dSU> + HsV° + lis,p +Ts (27)

L'hypothèse de Bernouilli-Euler admet la déformation
ysz égale à nulle. On a donc :

dw
~ds'

dX dY dœ

ds ds ds V (28)

En intégrant l'équation (28) par rapport à s, la déformation

w s'exprime comme suit :

w — w0—Xu's — Y v's—cjû cp'' ; (28)

wo : fonction arbitraire dépendante seulement de Z.

En introduisant l'équation (29) dans l'équation (22),
une seule déformation ez n'est pas nulle et peut s'exprimer
comme suit :

Bz=w'+- K«,')2 + (v,02] + {Ys u's-Xa v,') cp'-

-Xu"a-Yv"a-cû cp" + - p2cp'2 ;

{x-xa)2 + {y-y,? (30)

L'équation (30) montre que la déformation ez est

constituée de termes w'0 + - [{u'8f + (v/)2] + {Y, u'8-Xa v,0 cp'

qui ne dépendent que de Z ; de termes Xua et Yv8 dépendant

linéairement des coordonnées X et Y d'un point de
la ligne du profil et suivant donc la loi des sections planes ;
d'un terme co cp" suivant la loi des surfaces sectorielles et
ayant pour cause le gauchissement de la section [19] et

d'un terme - p2 cp'2 provoqué par la déformation finie de

torsion [34]. Le théorème des travaux virtuels pour la pièce
longue à parois minces s'écrit comme suit :

J \ az ôsz dA dZ + J Ta ôcp' dZ-
0 A 0

- J (E qx ôug + E qy ôg) dZ-ôW 0. (31)
o

az : contrainte normale associée à la défor¬
mation ez,

T8 : torsion pure (torsion de St. Venant),
L
J" T8S<p' dZ : travail virtuel dû à la torsion pure,
o

ÔW: travail virtuel dû à une charge axiale,
à des réactions d'appui et à des moments
aux extrémités,

uq, vq : déformations des points d'application
des charges transversales qx et1©!®!

En introduisant l'équation (30) dans l'équation (31), en
appliquant l'intégration par parties (appendice H) et en
notant que les quatre variations des déformations ôW0,
ôu8, ôv8 et ôcp sont arbitraires, on obtient comme condition
nécessaire les quatre équations suivantes qui doivent être
satisfaites pour tous Z.

_v" 0,

Mx + [K- Ya cp') N]' + E qx 0, (32 a)

MY+ [{vï + X8(P')N]' + I,qy 0. (32 b)

MZ+T'8 + [Kcp' + {Y8 u'a-Xa v'8) NY-

- {X8 u'8 + Y8 vs') cp'N+v"8 Mx-u"a MY +

+ E [qy {xg—x8)—qx {yg—y8)] costp—

- E [qx {xg—xa) + qy {yq-ya)] sin cp 0. (33)

3. Equivalence des deux méthodes exposées dans
les chapitres 1 et 2

En notant que X' est égal à —Ycp' et que Y' est égal
à Xcp', les équations (32 a), (32 b) et (33) deviennent les

équations (18 a), (18 b) et (19). La différence de la formulation

entre les différentes méthodes des chapitres 1 et 2
n'est pas seulement celle entre les formulations physiques
et mathématiques, mais également celle du choix des

coordonnées, c'est-à-dire qu'au chapitre 1, nous avons
choisi les coordonnées eulériennes pour exprimer la
déformation de torsion, tandis qu'au chapitre 2, les
coordonnées Iagrangiennes pour exprimer les expressions

eXfl. La formulation dans le chapitre 1 introduit l'équation
d'équilibre des contraintes et la formulation dans le
chapitre 2 utilise le théorème des travaux virtuels. Etant donné
que le théorème des travaux virtuels est tiré de l'équation
d'équilibre des contraintes [33], il est logique qu'on
obtienne les mêmes équations fondamentales, en supposant
le même champ des déformations (voir l'équation (7)).
Si on discute plus strictement l'équation d'équilibre des
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contraintes, l'équation (11) n'est plus celle des déformations
finies [33] :

K<î2+«,#***],_ 0.

Mais dans le cas des pièces longues où la première
dérivée des déformations est petite et négligeable [26] par
rapport à l'unité, l'équation (11) peut être utilisée.

La formulation par l'équilibre des forces explique
visiblement la signification physique de chaque terme dans
les équations lors du développement des équations, mais
il faut faire très attention à la grandeur, à la direction et
au sens des forces. Tandis que la formulation par le théorème

énergétique ne nécessite que l'opération mathématique,
une fois que toutes les hypothèses sont exprimées
mathématiquement. Nous avons donc montré que deux méthodes
différentes donnent les mêmes résultats, en expliquant le
mécanisme physiquement et mathématiquement.

4. Comparaison avec la théorie linéaire classique

II n'y a que le choix du champ des déformations qui nous
a conduit aux résultats différents des équations fondamentales

entre la théorie linéaire classique [17, 18, 19] et la
théorie des déformations finies [29, 32]. C'est-à-dire qu'au
lieu de prendre l'équation (7), Vlassov [19] et les autres
chercheurs ont linéarisé le champ des déformations comme
suit :

u= us- {y—ya)cp, (34)

v vs + {x—x8) cp.

Par conséquent, ils ont obtenu les expressions des
déformations de première dérivée au lieu de l'équation (8) :

«' «,'- {y-yò tp',

v' v'a + {x—x8) cp'.

(35)

Il est bon de signaler qu'il y a une différence de x—y
et X— Y dans les équations (35) et (8). C'est un des buts
de cet article de montrer que cette différence joue un rôle
important en ce qui concerne le déversement. Dans la
théorie linéaire classique, on utilise des moments de flexion
définis par :

Mx J" a x dA,

My J" oydA.

D'après l'équation (1), nous obtenons une relation entre
les efforts internes définis dans cette étude :

Mx cos cp Mx—sin cp My, (36)

My cos cp My + sin cp Mx.

Dans le but de comparer la théorie présente avec la
théorie linéaire classique, on admet que la déformation de
torsion cp est petite, en sorte que cos cp est égal à 1 et sin cp

à cp. On obtient alors :

Mx Mx-cp My, (37)

My M„ cpMx.

En introduisant l'équation (37) dans l'équation (32 a),
on obtient :

M"x + [{u'8-y, cp') NY-{<p MyY + E qx 0.

L'équation ci-dessus n'est pas autre chose que celle de
la théorie linéaire classique.

D'autre part, si on introduit l'équation (37) dans l'équation

(19), on n'obtient pas le même résultat que celui de
la théorie linéaire classique. C'est-à-dire que :

MZ + T8 + {K cpy + v8" {Mx-x. N)-
-< {My-y8 N) + [v," {My-y8 N) +

+ u"8 {Mx—xs N)]ç> + E [qy {xg-x8)-qx (yt—y,)]-
— E [qx {xg-x8) + qy {yg—y8)] cp 0. (38)

La troisième équation fondamentale basée sur la théorie
linéaire n'a pas le terme [v8 {My—y8 N) + u'a {Mx—x8 N)]
cp. Pour montrer l'importance de ce terme, on prend
l'exemple du déversement élastique d'une poutre en
double T soumise à des moments égaux aux extrémités,
en appui simple par rapport aux déformations latérales et
rotationnelles. La théorie linéaire classique montre que le
moment provoquant le déversement est donné par la
formule suivante [17] :

(39)Mcrlt | y ei, cjU 1 ***-)¦,(jJ[1 ' GJL2)'
L: longueur de la poutre,
E: module d'élasticité,
G: module de glissement,

Iy{=fx2dA): moment d'inertie par rapport
à l'axe y,

J: constant de torsion,
Ita{=)Co2dA): moment d'inertie sectoriel.

Tandis que la théorie non-linéaire développée dans cette
étude nous permet d'avoir une formule différente de l'équation

(39) (appendice IH), d'où :

Mc°rit EIyGJ[l +
%2EIa

GJL2
(40)

Ix J" y2 dA) : moment d'inertie par rapport à l'axe x.

L'équation (40) montre que dans le cas où __ < Iy,
c'est-à-dire que la poutre est fléchie par rapport à l'axe
faible, la poutre ne déverse pas, car la valeur dans la racine
devient négative. Tandis que l'équation (39) montre une
contradiction puisque la poutre fléchie par rapport à l'axe
faible déverse toujours quand M atteint une valeur donnée
par cette même équation. On peut dire que l'équation (40)
est une solution plus raisonnable.

Dans le cas d'un profilé /, le moment d'inertie par rapport
à l'axe fort est considérablement plus grand que celui par
rapport à l'axe faible ; il n'y a donc que très peu de différence
entre les valeurs numériques des équations (39) et (40).
Mais lors du déversement d'une poutre en profil H, ce n'est
pas le cas. Prenons un profil HEA 200 (/_ 2; 3 Iy); l'équation

(39) sous-estime le moment critique de 25 % par
rapport à l'équation (40). Pour les profilés H, il est mieux
de modifier l'équation (39) en multipliant le moment
d'inertie Iy par le coefficient [14] :

1

Ce coefficient a été mentionné depuis longtemps, soit
par Chwalla [14], Julian [35], Flint [36], Petterson [37],
soit par Clark et Knoll [38]. En tenant compte de la
déformation v, avant la perte de stabilité, ils ont obtenu
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Fig. 5. — Comportement élastique d'un membre dans le domaine
post-critique.
a) Flambage d'une colonne.
b) Voilement d'une plaque.
c) Déversement d'une poutre.

le même résultat que celui de l'équation (40). Le terme
[v? {My—y8N) + u8 {Mx—x8N)] cp dans l'équation (38)
représente l'effet de la déformation avant la perte de stabilité.

D'autre part, Mikkola [39] a étudié le déversement
d'une poutre en arc et obtenu ce coefficient, en assimilant
l'effet de la courbure de l'arc à une sorte de déformation
avant la perte de stabilité.

Pour formuler les équations linéaires, il est nécessaire
de négliger les termes non-linéaires. Pour la plupart des
phénomènes qui nous intéressent, les termes non-linéaires
étant constitués de puissances d'ordres supérieurs, nous
pouvons les négliger. Nous trouvons un bon exemple dans
le flambage d'une colonne. Au point de vue de l'estimation
de la valeur propre (charge critique), il n'y a pas de
différence entre la théorie linéaire et celle non-linéaire en tenant
compte du carré de la première dérivée de la flèche dans
l'expression de la courbure. Même au-delà de la charge
critique, il n'y a que très peu de différence entre l'allure
des diagrammes [17] (fig. 5 a). Parce que le carré de la
première dérivée de la flèche est non seulement un terme
non-linéaire, mais également d'ordre supérieur. Dans le cas
du voilement d'une plaque, la théorie linéaire nous fournit
la même valeur propre que la théorie non-linéaire (fig. 5 b).
Tandis que dans le cas du déversement d'une poutre, la
valeur propre estimée par la théorie linéaire classique n'a
pas la même valeur que celle par la théorie non-linéaire
parce que les termes non-linéaires ne sont pas constitués
de puissances d'ordres supérieurs. Donc, il n'est pas juste
de linéariser le champ des déformations (voir l'équation

(34)) quand on parle du déversement des poutres.
Dans la figure 5 c, l'allure de la déformation de torsion

d'une poutre constituée d'un HEA 200 de 8 m de long
est une courbe continue. Le moment critique estimé par
la théorie classique est de 912 tcm. La déformation de
torsion cp est calculée en résolvant l'équation non-linéaire
(appendice III-6). La valeur à partir de laquelle la
déformation de torsion cp commence à s'accroître est de 1140 tcm
(équation (40)). La déformation de torsion cp s'accroît
rapidement à mesure que le moment appliqué aux extrémités

augmente au-delà de 1140 tcm. Par exemple, si le

moment augmente de 10 % de 1140 tcm, la déformation
de torsion cp devient égale à 0,6 radian (35°) ; dans ce cas-là,
la plastification du matériau conduit la poutre à la rupture.
On peut dire que, dans la recherche du déversement, il n'y
a pas besoin de tenir compte de la « grande » déformation
de torsion cp.

5. Conclusion

Il a donc été exposé que par la linéarisation du champ
des déformations, la troisième équation fondamentale
concernant la torsion de la théorie linéaire classique est
insuffisante, surtout quand on parle du phénomène du
déversement.

Les équations fondamentales basées sur la théorie des
déformations finies expliquent mieux le phénomène du
déversement que la théorie classique.

Les équations fondamentales établies dans cette étude
ne tiennent compte que de l'équilibre des forces, c'est-à-dire
que jamais l'on a introduit la propriété du matériau. Donc
ces équations peuvent être utilisées pour analyser le
comportement élasto-plastique des poutres-colonnes. En
introduisant des efforts internes définis par :

Mx la {X-X8) dA Mx-Xg N,
A

My Sa{Y- Y8) dA My- Y„ N.
A

Et en les substituant dans les équations (18 a), (18 b)
et (19), on obtient les équations fondamentales plus
condensées suivantes :

{Mx + Nu8Y + Y,qx 0,

{My + Nv8)" + 'Eqy 0,

MZ, + r; + (__ cpy + v; mx-u"8 my +
+ E [qy {Xq-X8)-qx {Yq- F,)] 0.

Appendice I

Soit ß l'angle entre le vecteur S"., et l'axe Y0 (fig. 3). Selon
l'hypothèse de l'indéformabilité de la section transversale, la
longueur du vecteur SA ne change pas lors de la déformation de
la barre. On a donc :

u u„ + SÄ sin ß—SÄ sin {ß + <p)

u8 + SÄ sinß—SA sinßamp—SA cosßsin cp

u8—SA cos ß sin cp + SA sin/?(l —cos cp) ;

v v8—SÄ cosß+SÄ cos (ß+ t?)

v8—SÄcosß + SA cos)?cos p-tMÄ sin ß sin q>

v8—SÄ sin ß sin cp—SA cos ß (1 —cos cp).

En notant que :

SA cos ß y—y8,

SA sin ß — x,—x,
on obtient :

« u8—{y-y8) sin cp—{x—x„) (1 —cos cp),

v v, + {x-xs) sin cp-{y-y8) (1 -cos cp).

Appendice II
D'après l'équation (30) la variation de la déformation ez vaut:

ôez ôw'0 + «; ou', + v, ôv, + {Y,u',—Xs v,') ôcp' +
+ {ÔY8 u'8-ÔX8 v,0 cp' + {Y, Ôu'8-Xa ôvf) cp'-

— xSu,—ua òX—Yòv"t—v"8 ôX—coôcp" +
+ [(*-*,)* + {y-y,)2] cp' ôcp'.
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En notant que SX — Y ôcp et ôY X Sep, on obtient :

ôez ôw'0-Xôu"8 + « + Y8 cp') ôu's-Yôv8 +
+ (v,'—*, cp') ôv'8-co ôcp" + {Yu'é-Xvï +
Y8u'8-X8v^+[{x-xs)2 +
+ {y-ys)2i cp'} ôcp' + {X, u's + Y8 v8) cp' ôcp.

En introduisant des efforts internes N, Mx, My, Ma et K,
le premier terme de l'équation (31) devient :

L L
J J az âsz dA dZ J N Swq dZ +
0 A 0

+ / [~MX ôu"8 + « + Y8 cp') NôuA dZ +
o

+ J [-My ôv"8 + {v'8-X8 cp^Nôv',] dZ +
o

L
+ I {-Mm ôcp" + Kcp' ôcp' + [u"8 My-v"8 Mx +

0

+ {Y8umxsv'8)N]ôcp' +
+ {X8 «; + Ys vs0 N cp' ôcp) dZ.

En appliquant l'intégration par parties, par exemple au
premier et au deuxième termes, on a :

{Nôw'0dZ=Nôw0\ - fN'ôwodZ;
0 0 0

J [-Mx ou! + {u's + Y8cp')NôuA dZ
o

L L

-Mx ôu8 I + J" [M'x + « + Y8 cp1) N] ôu8 dZ
0 0

-Mx ôu's I + [M'x + {u'8 + Y8 cp') N] ôu8 f-
0 0

- J {Mx + [{u'8 + Y8 cp') N]'} ôus dZ.
o

D'autre part, les variations des déformations du point d'application

des charges transversales Suq et ôvq sont :

ôug — ôu8—{yq—ys) cos tp ôtp—{xg—x8) sin cp ôcp,

ôvg ôv8 + {xq—x8) cos cp ôcp—{yq—y8) sin cp ôcp.

Donc, l'expression finale du théorème des travaux virtuels de
l'équation (31) est donnée comme suit :

L

- / N' ôw0 dZ—
o

- J {Mi + K«.' + Y8 cp1) NY + E qx) ôu8 dZ-
o

- }{My + [{v'8-X8 cp')NY + Z qy} ôv8 dZ-
0

- /{MZ + T'8 + [Kcp' + {Y8 u'8-X8 v80 _V]'-
o

- {X8 < + y, v,0 cp' N + v," Mx-u"8 MY +
+ E [qy {xg—x8)-qx {yg-y8)] cos cp +
+ E [qx {xq-x8)-qy {yq-y8)] sin cp] ôcp dZ +

+ Nôw0 I + [M'x + « + Y, cp') N] ôu8 I -
o o

-Mx ôu^ I + [M'y + {v'8-X8 cp") N] ôv8 | -
0 0

- MY ôv'8 I + [M'o, + T, + K cp' +
0

L L
+ {Y, u'8-X8 v'8) N] ôcp I -Ma, ôcp' I -ôW 0.

0 0
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Appendice III

Considérons une poutre en double T soumise à des moments
égaux aux extrémités. Soit M" le moment appliqué aux extrémités
par rapport à l'axe X ; le moment intérieur par rapport à l'axe Y
est nul et le moment intérieur par rapport à l'axe X est M° ; ceci
sans tenir compte de l'équilibre avant et après déformation.
Les trois équations fondamentales (18 a), (18 b) et (19)
deviennent :

My 0,

MY M°,
MZ + Ti + {K cpy-u"8 M° 0.

(m-i)

En admettant que œ satisfasse aux conditions d'orthogonalité
[19]:

lcodA \tùxdA lcùydA — 0,
A A A

et que les axes x - y soient les coordonnées principales :

IxdA jydA IxydA 0,AAAon obtient :

J XdA cos cp J" x dA—s'm. cp J" y dA 0,
A A A

J" YdA 0,
A

f X Y dA {Iy—Ix) sin cp cos cp,
A

jX2dA cos2 cp Iy + sin2 cp Mm (HI-2)
A

J Y2 dA sin2 cp Ix + a|§| cp Iy,
A

J co XdA cos cp J co x dA —sin cp j coy dA 0,
A A A

S co YdA 0;
A

où : Iy J x2 dA, Ix $y2 dA.
A A

De par la symétrie de la section, on a :

J Xp2 dA $Yp2dA 0.
A A

(HI-3)

En utilisant les équations (II1-2) et (III-3), on a donc les
expressions des efforts internes Mx, MY, Ma, et K, en fonction
des déformations, comme suit :

Mx \a XdA lEezXdA,
A A

—Eu8 (cos2 cp Iy + sin2 cp Ix)—
—E v"8 {Iy-Iè sin cp cos cp,

MY —E u8 {Iy—__) sin cp cos cp—

—E v8 (sin2 cp Iy + cos2 cp i_) ;

Mm —E cp" la,,

K =0;

(m-4)

(m-5)

où : la, J" co2 dA.
A

En éliminant v£ dans l'équation (1II-4) et en introduisant
l'équation (III-5) dans l'équation (III-l), on obtient :

„ Moa/l 1\ _Ela,cp""—GJcp ——(—— — Isin cpcos cp 0; (III-6)

où : T, G J cp'.

En admettant que q> est pet it, la valeur propre de cette équation
sous les conditions d'appui simples (tp q>" 0) est :

m£m! ELGJll +
n*EIa
GJL2)'
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