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BULLETIN TECHNIQUE DE LA SUISSE ROMANDE

101¢ année 18 décembre 1975 N° 26

Equations fondamentales du comportement
des poutres-colonnes a section ouverte et parois minces

par SRIRAMULU VINNAKOTA, JEAN-CLAUDE BADOUX et YASUYUKI AOSHIMA

Introduction

Les équations fondamentales basées sur les déformations
finies du comportement des poutres-colonnes a section ouverte
et parois minces ont été établies par deux méthodes différentes,
soit par la formulation physique (1'équilibre des forces),
soit par la formulation mathématique (le théoréme énergé-
tique), ce qui nous permet d’avoir une meilleure compréhen-
sion du mécanisme de l'instabilité par torsion. Nous avons
aussi montré que la théorie développée dans cette étude
explique mieux le phénoméne du déversement que la théorie
existante.

Généralités

Il est connu que les pieces longues a section ouverte et parois
minces sont sensibles a I'instabilité par torsion comme c’est le
cas dans les phénomenes du déversement des poutres [1, 2, 311,
du flambage torsionnel des colonnes [4, 5] et du flambage biaxial
des poutres-colonnes [6]. Depuis que Prandtl [1] et Michell [2]
ont étudié séparément en 1899 le déversement d’une poutre
a section rectangulaire, un grand nombre de recherches théo-
riques ont été faites pour décrire les équations fondamentales
du comportement spatial des pi¢ces longues. L’effet du gau-
chissement d’une section rectangulaire étant négligeable,
Prandtl et Michell ne I’ont pas pris en considération. Timoshenko
[3] est le premier qui en a tenu compte pour les profilés en
double T. Une meilleure compréhension du phénoméne d’insta-
bilité par flexion et torsion suppose une connaissance approfondie
du comportement des barres a section non-symétrique. En 1920,
Eggenschwyler [7] a montré que le centre de gravité n’est pas
le seul point caractéristique de la section. Maillart [8] a défini
le centre de cisaillement. Wagner [9] a étudié le flambage tor-
sionnel des profilés a section ouverte et parois minces et introduit
le concept « gauchissement unitaire ». Mais ici, il a supposé que
lors du flambage, le centre de rotation coincide avec le centre
de cisaillement, ce qui n’est pas juste en général. Ostenfeld [10]
a relevé cette faute. F. Bleich et H. Bleich [11] ont développé
les équations fondamentales du comportement des barres
a section polygonale et parois minces, en utilisant le théoréme
de stationnarité de I'énergie potentielle totale. Kappus [12] a
obtenu une théorie raffinée applicable a la section quelconque
a parois minces, en utilisant le concept de Wagner « gauchisse-
ment unitaire » et le théoréme de stationnarité de I'énergie
potentielle totale. Goodier [13] a étudié le flambage torsionnel
des colonnes et réussi a simplifier les équations fondamentales,
en utilisant le centre de cisaillement comme origine du systéme
de coordonnées. La théorie générale du comportement des
piéces longues a section ouverte et parois minces a été systéma-
tisée par Chwalla [14], Kindem [15], Kappus [16], Timoshenko
[17], Bleich [18], Vlassov [19], Kuranishi [20], Kollbrunner et
Meister [21]. Cette théorie est traditionnellement appelée la
théorie linéaire élastique.

Comme la majorité de ces recherches théoriques a été faite
a I’époque ot il n’y avait pas encore le développement actuel de
I'ordinateur, les auteurs étaient obligés de linéariser les équa-
tions fondamentales pour les résoudre. Mais la meilleure com-
préhension du phénoméne de I'instabilité nous oblige a établir
les équations fondamentales basées sur les déformations finies.
Roik, Carl et Lindner [22] ont développé les équations fondamen-
tales en linéarisant le champ des déformations ainsi que celui des
contraintes et en considérant I’équilibre des forces aprés défor-
mation. Bdzant, Nimeiri [23] et Sakai [24] ont développé la

1 Les chiffres entre crochets renvoient a la bibliographie en
fin d’article.
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théorie en linéarisant le champ des déformations, en introduisant
la conception de la contrainte initiale (contrainte qui précéde
la perte de stabilité) et en utilisant le théoréme des travaux
virtuels des déformations finies. Le champ des déformations
étant linéarisé, leurs théories peuvent étre classifiées dans les
théories linéaires des déformations finies.

Les progres effectués dans le domaine des ordinateurs nous
ont libéré de la restriction de cette linéarisation. Zamost et
Johnston [25] ainsi que Trahair et Woolcook [26, 27] ont étudié
le comportement post-critique du déversement. Soltis et
Christiano [28] ont développé les équations non-linéaires des
déformations finies du comportement des poutres-colonnes
soumises a des moments et & une force axiale a leurs extrémités.
Vinnakota et Aoshima [29] et Vinnakota et Aystol [40] ont
établi les équations en considérant 1'équilibre des forces par
rapport a un systéme arbitraire d’axis. D’autre part, Ghobarah
et Tso [30] ainsi que Nishino, Kasemset et Lee [31] ont utilisé
le théoréme énergétique. Nishino, Kurakata, Hasegawa et
Okumura [32] ont complété la théorie précédente et discuté
I'importance du choix du champ des déformations.

Il n’est pas toujours assuré que la linéarisation est juste.
Récemment Nishino, Kasemset et Lee [31] ainsi que Trahair
et Woolcook [26], ont montré que la théorie linéaire sous-estime
la charge critique provoquant le déversement et qu’elle nous
conduit également a une contradiction. Il est normal qu’une
poutre soumise a un moment par rapport & l’axe faible ne
déverse pas. Mais la théorie linéaire ne permet pas de démontrer
ce fait. Le détail sera exposé dans le chapitre 6.

Le présent rapport essaie de formuler les équations fonda-
mentales non-linéaires des déformations finies par deux méthodes
différentes, soit par la considération de I’équilibre des forces
(dans le chapitre 1, soit par le théoréme énergétique (dans le
chapitre 2).

Le probleme envisagé ici n’est pas le phénomeéne des grandes
déformations, connu sous le terme élastica, mais celui des
déformations finies. Nous savons que des coques suffisamment
longues peuvent étre analysées comme des barres a parois
minces [19, 23]. Particulierement dans le cas de la section ouverte,
I’analyse est encore réduite au probléme d’une poutre a une
dimension a I’aide des deux hypothéses suivantes [19] :

— la section transversale est suffisamment rigide pour ne pas
se déformer,

— la déformation tangentielle est petite et négligeable (hypo-
thése de Bernoulli-Euler et hypothése de Wagner).

Par conséquent, les poutres a dme pleine et d’une grande
hauteur sortent du cadre de cette étude. Et la théorie qui sera
discutée dans ce rapport traite du comportement des poutres-
colonnes en profil laminé ou en profil composé soudé aux
dimensions correspondantes.

1. Formulation physique par I'équilibre des forces

1.1 Coordonnées

La figure 1 présente une poutre-colonne soumise a des
charges transversales entre ses extrémités, ainsi qu’a une
force axiale, a des efforts tranchants, 3 des moments de
flexion et torsion a ses extrémités. Il est peut-étre utile de
définir quatre systémes de coordonnées (fig. 2) : le premier
est X°- Y°o-Zo qui est fixé dans I’espace et 'axe Z° est
choisi comme I’axe de la poutre-colonne avant déformation;
le deuxiéme est x - y - z qui est fixé au profil et bouge avec
les déformations du profil; et le troisiéme est X-Y-Z
dont P'origine coincide avec celle de x-y-z mais qui
reste toujours paralléle au systéme X©- Y°- Zo. Ces trois
systémes sont & main droite. Le quatriéme est s - # - z, dont
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Fig. 1. — Charges extérieures.

Avant détormation

t(s)

Fig. 2. — Coordonnées.

I’abcisse s est mesurée sur le contour de la section trans-
versale. Il faut signaler que le troisiéme systtme X - Y- Z
sera le plus utile lorsque I’équilibre des forces est consi-
déré. En ce qui concerne la déformation de torsion, nous
choisissons la définition du point selon les coordonnées
Eulériennes.

Soit (X, Y) et (x, y) les coordonnées d’un point arbi-
traire A, respectivement dans le systtme X - Y et x-y;
la relation entre (X, Y) et (x, y) est:

X = x cos ¢p—y sin g,
Y = ycos ¢+ xsing; (1)
¢ = déformation de torsion.

Le point S est souvent choisi au centre de cisaillement
mais dans cette étude ce n’est pas absolument nécessaire
(fig. 3). Les coordonnées d’un certain point S (x;, ys)
dans le systtme X —Y aprés déformation sont (Xj, Y),
d’ou :

X; = Xz COS p—Y; Sin . 2)
Y, = ys cos ¢ + x4 sin .

438

Avant déformation

Aprés déformation

S(xg.,Ys)

Fig. 3. — Champ des déformations.

En introduisant oc comme angle de la tangente a la ligne
du profil au point 4 (x, y) avec I’axe x, on obtient une
relation entre x—y et s (fig. 2) :

d d
d_: = COS «, Ii‘) = sin o. (3)

D’aprés les équations (1) et (3), on obtient :

ax dy .
— = .COS — = .
Al @+¢), —-=sin (a+ o) 4)
La relation entre s et la surface sectorielle w, ayant son
pole au point S (x,, ys), s’écrit comme ci-apres [19] :

dw
= (x—x,) sin a—(y—y;) cos a. (5)
A Taide des équations (1) et (2), I’équation (5) s’écrit
sous la forme suivante, 1égérement différente :
dow

3 = (X—X,) sin (o« + ¢)—(Y—Y,) cos (a + ¢). (6)

1.2 Champ des déformations

Soit u et v les projections du déplacement d’un point
arbitraire 4 (x, y), respectivement sur les axes X° et Y°
(fig. 3); ces deux composantes des déformations sont
exprimées en fonction de celles appelées u; et vs d’un
certain point S (x,, ) et de la déformation de torsion ¢
(voir [29] ou appendice I) :

u = us—(y—y;) sin p—(x—x,) (1—cos @), @)
v =v; + (x—x;) sin p—(y—y;s) (1 —cos ¢).

La théorie linéaire existante [17, 18, 19] néglige les
troisiémes termes dans I’équation (7) et remplace sin ¢
par @. Mais dans la présente étude ces expressions sont
gardées. L’importance de cette différence du champ des
déformations sera discutée dans le chapitre 6.

A l’aide des équations (1) et (2), la premiera dérivée
de I’équation (7) par rapport a Z est la suivante:

u' =u;—(Y—-Yy) ¢, ®)
v =v+X-X) 9"

Etant donné que X’ est égal a —Yp’ et Y’ est égal

a Xo’, I'équation (8) peut s’écrire différemment :
uw = (u; + X—Xy)’, ©)
vi= (s + Y=Yy .

1.3 Equations d’équilibre

Coupons la barre transversalement a la position Z et
considérons une piéce coupée qui se trouve entre 0 et Z.
La déformée de cette piéce et les contraintes normale o
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Fig. 4. — Piéce coupée.

a) Forces agissant sur la piéce coupée.
b) Projection sur le plan X° - Zo,

¢) Projection sur le plan Y°- Zo°,

d) Projection sur le plan X°- Yo.

et tangentielle 7 agissant sur la surface coupée sont mon-
trées & la figure 4 a. Les projections de ¢ et 7 sur les plans
Xo—Z° et Y°—Z° sont respectivement montrées a la
figure 4 b et c.

La condition d’équilibre des forces sur I’axe X° de cette
piéce peut s’écrire comme suit :

Z o
[lrcos(a+ @)+ ou'ldA + [Xq,dZ = Vyx,: (10)
A 0

2q, : somme des charges transversales g, agissant
a la position Z (0 = Z = Z),

V,1 : réaction d’appui au point (@) selon I’axe X°.

En remplagant cos (« + @) et «’ dans lintégrale de
I’équation (10) par les expressions (4) et (9), le premier
terme de I’équation (10) peut s’écrire comme suit :

dx o
[775 dA + / o (u; + X—X,)" dA.

A
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En appliquant a la premiére intégrale I’intégration par
parties, on obtient :

71X | f-a—(EQXd +faX’dA+(us—Xs)’ odA.
4 4

t : épaisseur des parois.

Etant donné que la contrainte tangentielle 7 est égale
a zéro a 'extrémité libre dans le cas de la section ouverte,
le premier terme t£X | peut étre égal a zéro, en choisissant
Porigine du domaine d’intégration a cette extrémité libre.
Drapres I’équation d’équilibre des contraintes suivants [19] :

a(tt) do
5 + ¢ 2z=0 an

on obtient :

do } -
f<92X+ 0‘X> dA + (us—Xj) /adA =
A

J (cX)
2z dA + (us—X;) fo'dA

En introduisant des efforts internes My et N:

MX = f O'X dA,
A
N=[agdd,
A
I’équation (10) peut s’écrire sous la forme suivante :

zZ _
M:Y + (us—X,)" N + Iqu dZ = V. (12)
0

En dérivant une fois par rapport a Z, on obtient :
Mx + (us—X;) NI" + Z g, = 0. 13)

De la méme fagon, la condition d’équilibre des forces
sur ’axe Y° peut s’écrire comme suit :

z _
M+ (vi—Y)' N+ [Xgq,dZ = Vyy; (14
0
ou: My = [0oYdA;
A
Vy, : réaction d’appui au point @ selon I’axe Y°.

En dérivant une fois par rapport a Z, on obtient la
deuxiéme équation fondamentale ci-apres :

My + (v,—Y,) N]"+ Z g, = 0. (15)

A la figure 4 d, les projections des contraintes normale o
et tangentielle 7 a la position Z sur le plan X°- Y°, sont
indiquées. La premiére torsion due a la contrainte tangen-
tielle 7 par rapport au point S, vaut :

[t [(X—X,) sin (@ + ¢)—(Y—Y,) cos (x + ¢)] dA.
A

Dr’apres 1’équation (6), I’'expression ci-dessus devient :

dw
— dA.
! ds

A

En appliquant 'intégration par parties et en introduisant
I’équation d’équilibre des contraintes (11), on obtient :

25 i

[
A
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En introduisant un effort interne défini par :
w= [ owdA,
A
la torsion due a la contrainte tangentielle 7 est exprimée
par Mg,.

La deuxiéme torsion due aux projections o u’ et g v’ de
la contrainte normale par rapport au point .S, vaut :

[lov (X—X;)—o u (Y—Y,)]dA.
A

A Taide de I’équation (8), on obtient :
vy Mx—Xs N) —u{ (My—Y; N)+ K¢’}
ot: K=[o[(X—X)*+ (Y—Yy%dA=
4

= ;]; a [(x_xs)2 -+ (y - ys)2] dA.

Par conséquent, en ajoutant la torsion de St. Venant T
[19], la torsion due aux contraintes vaut :

Mg+ T+ Ko + vi Mx—X; N) —u; (My—Y; N).

Cette torsion ainsi que celle due aux charges extérieures
agissant sur la partie de la piéce considérée qui se trouve
entre 0 et Z sont en équilibre.

Premiérement, la torsion, par rapport au point S de la
position Z, due aux réactions d’appui Vy; et Vyq, vaut:

VX]. Vs— VYl Us.
Deuxiémement, la torsion, par rapport au point S de

la position Z, due aux charges transversales g, et g,
agissant entre 0 et Z, vaut :

z s - = = = = -
({2 (9. (Yq_Ys_Vs + v5) —dy (Xq_Xs—u + uy)ldz,

Xy, Y, : coordonnées des points d’application des charges
transversales aprés déformation.

La notation - -- représente des valeurs seulement 2 la
position de Z (0 = Z =< Z).

Les réactions d’appui et les efforts tranchants sur appui
sont en équilibre mais il ne sont pas toujours sur la méme
ligne ; dans ce cas, ils provoquent une torsion. S’il y a
des déplacements aux extrémités, les réactions provoquent
une tension additionnelle. Etant donné que ces torsions
additionnelles sont indépendantes de Z, on peut les poser
égales a H. En présence de torsions extérieures, ces der-
niéres sont ajoutées a H [29].

La condition d’équilibre de la torsion, de la partie de
la piéce considérée, peut s’écrire comme suit :

Mo+ Ts+ Ko+ vi Mx—X; N) —u; (My—Y; N) =
zZ = . =
= Vx1 vs—Vy1 Us + f =z [qz(Yq_Ys_vs + vy) —
0
—q, (X;—Xs—us + u)ldZ + H. (16)
En dérivant I’équation (16) par rapport a Z, on obtient :
Mo+ T: + (K@) + vi(Mx—X;N) —ug (My—Y;N) +
+ v, Mx—X; N)' —u; (My—Y; N)' =
= VXl vs/_ VYl “s/ + X [(Iz (Yq—ys) —qy (Xq%Xs)] <F

VA - zZ =
+u [2q,dZ—v,[Xq,dZ.
0 0
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A Taide des équations (12) et (14), on obtient la troisieme
équation fondamentale ci-apres :

Mg+ T;+ (K@) +vi Mx—X;N) —uj (My—Y;N) +
+Z [qy (Xq_Xs) —qz (Yq_Ys)] = 0. (17)

Donc, les équations fondamentales formulées par la
considération de I’équilibre des forces valent :

[Mx + (us—X) N1" + £ g, = 0, (18 a)

[My + s~ Y) NI+ £g,=0,  (18b)

ML+ T, + (K 9") + v! (Mx—X, N) —ul (My—Y;N) +
+ 2 [Qy (Xq_‘Xs)‘qa: (Yq_ Ys)] = 0. (19)

Le cas spécial (g, =¢g, =0 et X;=Y,=0) a été
discuté dans I’article [29].

2. Formulation mathématique par le théoréme éner-
gétique (par le théoréme des travaux virtuels)

Le théoréme des travaux virtuels des déformations finies
dit que [33]:

[ o* de;, dV— [ F* u*dS = 0; (20)
v S
. 1. . ,C
ou: €= 5 (oot w9 + wj u,y). 21)

F* correspond a des charges extérieures agissant sur les
bords et I’expression (21) est basée sur les coordonnées
Lagrangiennes [33].

Vlassov a appelé un membre dont la longueur est suffi-
samment grande par rapport aux dimensions du profil :
piéce longue [19]. Les poutres-colonnes envisagées ici sont
classifiées dans cette catégorie. Soit u, v et w les déforma-
tions des piéces-longues respectivement sur les axes X?°,
Y© et Z° avec lesquels les axes x, y et z coincident respecti-
vement avant déformation. La grandeur de w est considérée
petite et négligeable par rapport aux autres déformations u
et v. D’aprés cette hypothése de déformation des piéces
longues, ’expression (21) peut s’écrire comme suit :

_(7u+1 (7u2+<vz_
w= e+ 3| G) + (G| - =
_9v+1 9112+ 9v2~
w=5+3) +G)] >

p) 1 2 2
€zz = 9_: + E [(%) + <%> ] = &, (22)

& du  Jdudu  Iv v

2=ty T an T mHy =
dw v dudu  Iv v
2€y2=7y+52+$z+jyz=yy2, (23)
du Jdw  Jdudu v Iv
2=t tantan = @&

En choisissant le méme champ des déformations que
pour I’équation (7), et en substituant I’équation (7) dans
les déformations &, &, et y,,, on obtient :

E; = &y = YPgy = 0.

Cela signifie que 1’équation (7) est basée sur I’hypothese
de I'indéformabilité de la section transversale. Donc, il n’y
a que trois déformations &, y,. et y,, a considérer.
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Ou en utilisant les coordonnées locales, s—n—z, on peut
aussi dire qu’il n’y a que trois déformations &, 7, et 7.,
d’ou :
dx dy
Vsze = a5 Vex T s Vyzs (25)

N dy n dx
yzn - d_s sz % Vyz-

La théorie de parois minces [19] ne peut tenir compte de
la variation des contraintes sur I’épaisseur des parois.
Elle suppose que la déformation de distorsion 7, est
constante sur toute I’épaisseur et qu’on laisse tomber la
déformation y,,. Pour tenir compte de cette variation, le
travail virtuel da a la variation de la contrainte tangentielle
sur I’épaisseur, c’est-a-dire la torsion pure, doit étre ajouté
dans I’expression (20). Nishino et ses collaborateurs
[31, 32] ont développé la théorie de parois d’épaisseur finie
ol la torsion pure est estimée en tenant compte de la
déformation y,, et de la variation de la déformation y,,
sur I’épaisseur.

En introduisant les équations (23) et (24) dans I’équa-
tion (25), on obtient :

Jd [dx dy dw  dudu  Iv I
ysz_jz<d—s”+Zvv>+% + ZZ‘+ZZ’ (26)
2 _dx J dy o
ds  ds dx | dsdy’

En introduisant I’équation (7) dans I’équation (26),
on obtient :

ou:

COS ¢ e sin A + (cos dy
57— R — | Ug ==
Y 4 ds ¢ ds ¢ ds

B dy_(_ dx| , oJw
+[<x Xs>d—s > }’s>c7s‘:|¢ +9?.

A I'aide des équations (1) et (5), on obtient une expression
de y;, plus condensée :

_d_Xu,erY L dw ,+2w
Yo = PR N I ds

. odx\
—|—51n(p£> vy +

@7

L’hypothése de Bernouilli-Euler admet la déformation
sz €gale a nulle. On a donc:

’ ’

aw dx dy dow
S e 8E e  EE
Js ZETET T &

Q. (28)
En intégrant I’équation (28) par rapport a s, la déforma-
tion w s’exprime comme suit :
w=w—Xu,—Yv—we’; (28)
wy : fonction arbitraire dépendante seulement de Z.

En introduisant 1’équation (29) dans I’équation (22),
une seule déformation ¢, n’est pas nulle et peut s’exprimer
comme suit :

1 D] 9 ’ ’
& = wo + 5 [ + ()] + (Ysus =X, ve) "~
”n " ” ] 9 2
—Xu;—Yv,—w " + 5 P vy

ou: PP = (x—x)% + (y—y5). (30)
L’¢équation (30) montre que la déformation &, est cons-

l 2 9
tituée de termes w( + 5 [(W)? + (v + (Ysui—Xsv)) ¢’
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qui ne dépendent que de Z ; de termes X u; et Y'v, dépen-
dant linéairement des coordonnées X et Y d’un point de
la ligne du profil et suivant donc la loi des sections planes ;
d’un terme @ ¢” suivant la loi des surfaces sectorielles et
ayant pour cause le gauchissement de la section [19] et

1
d’un terme 5 p% ¢’ provoqué par la déformation finie de

torsion [34]. Le théoréme des travaux virtuels pour la piéce
longue & parois minces s’écrit comme suit :

L L
[[o,0e,dAdZ + [ T; 0’ dZ—
04 0
L
— [(Zq,0uy + Xq, 0, dZ—6W = 0. (31)
0
s contrainte normale associée a la défor-
mation &,
o torsion pure (torsion de St. Venant),

L

[Ts 09" dZ . travail virtuel dii 4 la torsion pure,

0

ow: travail virtuel dii & une charge axiale,
a des réactions d’appui et a des moments
aux extrémités,

Ug, Vg ! déformations des points d’application
des charges transversales g, et gq,.

En introduisant 1’équation (30) dans I’équation (31), en
appliquant l'intégration par parties (appendice II) et en
notant que les quatre variations des déformations oW,
Jus, Ovs et dg sont arbitraires, on obtient comme condition
nécessaire les quatre équations suivantes qui doivent étre
satisfaites pour tous Z.

N’ =0,
My + [(u;—Y; 9)NI"+ Z g, =0, (32a)
My + (v + X 9) NI+ Zq, = 0. (32b)
Mg+ T; + Ko’ + (Ys u;—X; v)) NI'—
—(Xsu; + Y v) o' N+ v Mx—uj My +
+ X [gy (xg—x5) — g (yg—ys)] cos p—
— Z (g (xg—x5) + gy (9g—9)lsinp =0.  (33)

3. Equivalence des deux méthodes exposées dans
les chapitres 1 et 2

En notant que X" est égal a —Y ¢’ et que Y’ est égal
a X ¢’, les équations (32 a), (32 b) et (33) deviennent les
équations (18 a), (18 b) et (19). La différence de la formu-
lation entre les différentes méthodes des chapitres 1 et 2
n’est pas seulement celle entre les formulations physiques
et mathématiques, mais également celle du choix des
coordonnées, c’est-a-dire qu’au chapitre 1, nous avons
choisi les coordonnées eulériennes pour exprimer la
déformation de torsion, tandis qu’au chapitre 2, les
coordonnées lagrangiennes pour exprimer les expressions
e;,- La formulation dans le chapitre 1 introduit I’équation
d’équilibre des contraintes et la formulation dans le cha-
pitre 2 utilise le théoréme des travaux virtuels. Etant donné
que le théoréme des travaux virtuels est tiré de I’équation
d’équilibre des contraintes [33], il est logique qu’on
obtienne les mémes équations fondamentales, en supposant
le méme champ des déformations (voir I’équation (7)).
Si on discute plus strictement 1’équation d’équilibre des
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contraintes, I’équation (11) n’est plus celle des déformations
finies [33] :

(G} + u,}) o%#],,. = 0.

Mais dans le cas des piéces longues ou la premiére
dérivée des déformations est petite et négligeable [26] par
rapport a I'unité, ’équation (11) peut étre utilisée.

La formulation par I’équilibre des forces explique visi-
blement la signification physique de chaque terme dans
les équations lors du développement des équations, mais
il faut faire trés attention a la grandeur, a la direction et
au sens des forces. Tandis que la formulation par le théo-
réme énergétique ne nécessite que 'opération mathématique,
une fois que toutes les hypothéses sont exprimées mathé-
matiquement. Nous avons donc montré que deux méthodes
différentes donnent les mémes résultats, en expliquant le
mécanisme physiquement et mathématiquement.

4. Comparaison avec la théorie linéaire classique

Il n’y a que le choix du champ des déformations qui nous
a conduit aux résultats différents des équations fondamen-
tales entre la théorie linéaire classique [17, 18, 19] et la
théorie des déformations finies [29, 32]. C’est-a-dire qu’au
lieu de prendre I’équation (7), Vlassov [19] et les autres
chercheurs ont linéarisé le champ des déformations comme
suit :

u=us— (y—ys o, (34
v =y, + (x—x,) ¢.

Par conséquent, ils ont obtenu les expressions des défor-

mations de premiére dérivée au lieu de I’équation (8) :
u'=ui— (y—ys) o', (35)
vi=v;+ (x—x5) @’

Il est bon de signaler qu’il y a une différence de x—y
et X—Y dans les équations (35) et (8). C’est un des buts
de cet article de montrer que cette différence joue un role
important en ce qui concerne le déversement. Dans la
théorie linéaire classique, on utilise des moments de flexion
définis par :

M, = [oxdA,

M, = [oydA.

Dr’aprés I’équation (1), nous obtenons une relation entre
les efforts internes définis dans cette étude :

My = cos ¢ M,—sin p M, (36)
My = cos ¢ M, + sin p M,.

Dans le but de comparer la théorie présente avec la
théorie linéaire classique, on admet que la déformation de
torsion ¢ est petite, en sorte que cos ¢ est égal a 1 et sin ¢
a ¢. On obtient alors :

My = My—¢p M, (37)
My =M, + ¢ M,.

En introduisant I’équation (37) dans I’équation (32 a),
on obtient :

Mg+ [(u;—ys ) NI'—(p M})" + g, = 0.

L’équation ci-dessus n’est pas autre chose que celle de
la théorie linéaire classique.
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Dr’autre part, si on introduit I’équation (37) dans I’équa-
tion (19), on n’obtient pas le méme résultat que celui de
la théorie linéaire classique. C’est-a-dire que :

My + T, + (K@) + v{ (M;—x; N)—
—ug (My—ys N) + [v; (My—y; N) +
+ ug (M —x, N)l g + X lg, %)~ (37— 91—
— 2 gy (xg—x5) + gy (yg—y5)]1 ¢ = 0. (38)

La troisiéme équation fondamentale basée sur la théorie
linéaire n’a pas le terme [v; (M, —ys N) + u; (M,—x; N)]
@. Pour montrer I'importance de ce terme, on prend
I’exemple du déversement élastique d’une poutre en
double 7 soumise & des moments égaux aux extrémités,
en appui simple par rapport aux déformations latérales et
rotationnelles. La théorie linéaire classique montre que le
moment provoquant le déversement est donné par la
formule suivante [17] :

2

7 % \/ EL, G J<l + gfé@ : (39)
L3 longueur de la poutre,
e module d’élasticité,
G module de glissement,
I,(= [x*d4): moment d’inertie par rapport

alaxe y,
Jii constant de torsion,

I, (= [w*dA): moment d’inertie sectoriel.

Tandis que la théorie non-linéaire développée dans cette
étude nous permet d’avoir une formule différente de I’équa-
tion (39) (appendice III), d’ou :

n 1 RELY
My = Z\/ : EIyGJ<1 + 7G[ JL‘;’> 5 (40)
2

I, (= [y*dA): moment d’inertie par rapport a I'axe x.

L’équation (40) montre que dans le cas ou I, < [,
c’est-a-dire que la poutre est fléchie par rapport a I'axe
faible, la poutre ne déverse pas, car la valeur dans la racine
devient négative. Tandis que I’équation (39) montre une
contradiction puisque la poutre fléchie par rapport a I’axe
faible déverse toujours quand M atteint une valeur donnée
par cette méme équation. On peut dire que I’équation (40)
est une solution plus raisonnable.

Dans le cas d’un profilé 7, le moment d’inertie par rapport
a 'axe fort est considérablement plus grand que celui par
rapport a I’axe faible ; il n’y a donc que trés peu de différence
entre les valeurs numériques des équations (39) et (40).
Mais lors du déversement d’une poutre en profil H, ce n’est
pas le cas. Prenons un profil HEA 200 (I, =~ 3 I,); I’équa-
tion (39) sous-estime le moment critique de 25 % par
rapport a ’équation (40). Pour les profilés H, il est mieux
de modifier I’équation (39) en multipliant le moment
d’inertie I, par le coefficient [14]:

1

1=

?}ﬁN

Ce coefficient a ¢t¢ mentionné depuis longtemps, soit
par Chwalla [14], Julian [35], Flint [36], Petterson [37],
soit par Clark et Knoll [38]. En tenant compte de la
déformation vy avant la perte de stabilité, ils ont obtenu
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Effet de
membrane

M
Merit _/ C)
1,25
LN e e S el 912 tcm
M(f 1)” x
L 8 m J HEA 200

1:0 ) [rqdian]

Théorie non-linéaire

———————— Théorie linéaire classique

Fig. 5. — Comportement ¢lastique d’un membre dans le domaine
post-critique.

a) Flambage d’une colonne.

b) Voilement d’une plaque.

c) Déversement d’une poutre.

le méme résultat que celui de 1’équation (40). Le terme
[vé (My—ys N) + ug (M,—x; N)] ¢ dans I’équation (38)
représente I'effet de la déformation avant la perte de stabi-
lit¢. D’autre part, Mikkola [39] a étudié le déversement
d’une poutre en arc et obtenu ce coefficient, en assimilant
I’effet de la courbure de I’arc & une sorte de déformation
avant la perte de stabilité.

Pour formuler les équations linéaires, il est nécessaire
de négliger les termes non-linéaires. Pour la plupart des
phénomenes qui nous intéressent, les termes non-linéaires
€tant constitués de puissances d’ordres supérieurs, nous
pouvons les négliger. Nous trouvons un bon exemple dans
le flambage d’une colonne. Au point de vue de ’estimation
de la valeur propre (charge critique), il n’y a pas de diffé-
rence entre la théorie linéaire et celle non-linéaire en tenant
compte du carré de la premiére dérivée de la fleche dans
I'expression de la courbure. Méme au-dela de la charge
critique, il n’y a que trés peu de différence entre I’allure
des diagrammes [17] (fig. 5a). Parce que le carré de la
premiére dérivée de la fleche est non seulement un terme
non-linéaire, mais également d’ordre supérieur. Dans le cas
du voilement d’une plaque, la théorie linéaire nous fournit
la méme valeur propre que la théorie non-linéaire (fig. 5 b).
Tandis que dans le cas du déversement d’une poutre, la
valeur propre estimée par la théorie linéaire classique n’a
pas la méme valeur que celle par la théorie non-linéaire
parce que les termes non-linéaires ne sont pas constitués
de puissances d’ordres supérieurs. Donc, il n’est pas juste
de linéariser le champ des déformations (voir I’équa-
tion (34)) quand on parle du déversement des poutres.

Dans la figure 5 ¢, 'allure de la déformation de torsion
d’une poutre constituée d’'un HEA 200 de 8 m de long
est une courbe continue. Le moment critique estimé par
la théorie classique est de 912 tcm. La déformation de
torsion ¢ est calculée en résolvant I’équation non-linéaire
(appendice II1-6). La valeur a partir de laquelle la défor-
mation de torsion ¢ commence a s’accroitre est de 1140 tcm
(équation (40)). La déformation de torsion ¢ s’accroit
rapidement a mesure que le moment appliqué aux extré-
mités augmente au-dela de 1140 tcm. Par exemple, si le
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moment augmente de 10 % de 1140 tcm, la déformation
de torsion ¢ devient égale 4 0,6 radian (35°) ; dans ce cas-1a,
la plastification du matériau conduit la poutre a la rupture.
On peut dire que, dans la recherche du déversement, il n’y
a pas besoin de tenir compte de la « grande » déformation
de torsion ¢.

5. Conclusion

Il a donc été exposé que par la linéarisation du champ
des déformations, la troisiéme équation fondamentale
concernant la torsion de la théorie linéaire classique est
insuffisante, surtout quand on parle du phénomeéne du
déversement.

Les équations fondamentales basées sur la théorie des
déformations finies expliquent mieux le phénoméne du
déversement que la théorie classique.

Les équations fondamentales établies dans cette étude
ne tiennent compte que de ’équilibre des forces, c’est-a-dire
que jamais I’on a introduit la propriété du matériau. Donc
ces équations peuvent étre utilisées pour analyser le com-
portement élasto-plastique des poutres-colonnes. En intro-
duisant des efforts internes définis par :

Mx = [0 (X—X,) dA = Mx—X, N,
A

My = [0 (Y—Y)dA = My—Y,N.
A

Et en les substituant dans les équations (18 a), (18 b)
et (19), on obtient les équations fondamentales plus con-
densées suivantes :

(Mx + Nu)" +2g, =0,
(My + Nvy)' +Zgq, =0,
Mg+ T + (K ¢7)' + v Mx—uj My +
+ 2 [gy (Xq_Xs)_"Ix (Yq_Ys)] = 0.

Appendice |

Soit f ’angle entre le vecteur SA4 et I'axe Y° (fig. 3). Selon
I’hypothése de I'indéformabilité de la section transversale, la

longueur du vecteur SA4 ne change pas lors de la déformation de
la barre. On a donc:

u = u; + SAsin f—SAsin (f + ¢) =

= us + SA sin f—SA sin B cos p—SA cos fsin ¢ =
us—SA cos fsin ¢ + SA sin (1 —cos @) ;
v = v;—SA cos B+ SA cos (B + ¢) =
vs—SA cos f + SA cos ff cos p—SA sin fsin p =
= v;—SA sin fsin p—SA cos (1 —cos ).

I

I

En notant que :
SA cos f = y—ys,
SA sin f = x;—x,
on obtient :
u = us—(y—ys) sin p—(x—x;) (1 —cos ¢),
v = v + (x—x) sin ¢ —(y—ys) (1 —cos ¢).

Appendice Il
D’apres I’équation (30) la variation de la déformation g, vaut:
0e, = owg + u; ouy + vi ovy + (Ysu;—X;v{) 0’ +
+ Y5 u;—0Xsv) 9" + (Y 0u,—X; 0vs) ¢’ —
— x Oug—ug 0X—Y ovy—vi 0X—w dp" +
+ [(x—x9)* + (y—y)*1 @’ dp".

443



En notant que X = —Y dp et Y = X dp, on obtient :
g, = Owg—X ouy + (uj + Y5 ¢') ouy—Y ov, +
+ (vs—xs ") Ovg—w 09" + {Y ug—X vy +
Ysu;—X;v{ + [(x—x5)% +
+ (y—y)? @’} 0" + (Xsui + Ysv)) ¢’ dp.

En introduisant des efforts internes N, My, My, Mo et K,
le premier terme de I’équation (31) devient :

L L
[Jo.0e,d4dZ = [ N ow;dZ +
04 0
L
+ [[—Mx ou] + (u; + Ys ') Nou]1dZ +
0
L
+ [[—My ovi + (v;— X5 ¢") N ov{1dZ +
0

L
+ [{—My 9" + K¢’ 5S¢’ + [uf My—v{ Mx +
0

+ (Y u;—X; v)) N1 op’ +
+ (Xsu; + Y, v) N o’ dp} dZ.

En appliquant l'intégration par parties, par exemple au
premier et au deuxiéme termes, on a :

L L L
IN&WédZZ N&W()l = INI(SWOCIZ,

0 0 0

L

T1—Mx ou! +  + Y, ¢) N oulldZ =
0

L L
= —Mxou |+ [ My + (u + Y5 ¢") N1ou, dZ =
o 0

I

7 L
—Myx ou | + My + (u, + Ys ¢") N]Ous | —
0 0

L
— [{Mx + (] + Y, ¢") N1’} Ou, dZ.
[
D’autre part, les variations des déformations du point d’appli-
cation des charges transversales dug et dv, sont :
Oty = Oug—(y,—ys) cos ¢ 0p—(x,—x) sin @ dp,
O0vg = 0vs + (xg—x5) oS ¢ 0p —(y,—s) sin ¢ Jp.

‘ Donc, I’expression finale du théoréme des travaux virtuels de
‘ I’équation (31) est donnée comme suit :

L
_J‘N16W0dza
0

L
*f{M)Z"‘ [(u;'{_ Ys(/)/)N]/+ Z(Iz}5llsdz_
0

L

— [ {My + [(v;—X, p) NI’ + Z q,} Ov, dZ—
0
L

— [{M5+ T, + [Ko' + (Y, u— X, v)) N]'—
0
— (Xsu + Ysv)) ¢’ N+ vi Mx—u; My +
+ Z [y (xg—X5) —q (yg—ys)] cos ¢ +
+ X [‘Ix (xq‘Xs)_qU (yq_ys)] sin (/7] (5(/) dZ +

L T
+ Nowy | + My + (i + Ys9’) N1ous | —
0 0
L L
—My ou) | + My + (vi—X; ") N1 vy | —
0 0
L
— My v, |+ Mo+ Ts+ Ko’ +
0
L . L |
+ (Ysu;—Xs;v)) N]op | —M,, 09’ | —0W = 0.
0

0
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Appendice Il

Considérons une poutre en double 7" soumise a des moments
égaux aux extrémités. Soit M°le moment appliqué aux extrémités
par rapport a I’axe X ; le moment intérieur par rapport a ’axe Y
est nul et le moment intérieur par rapport a 'axe X est M© ; ceci
sans tenir compte de I’équilibre avant et aprés déformation.
Les trois équations fondamentales (18 a), (18 b) et (19)
deviennent :

MX = 09
My = Mo, (I1I-1)
Mo+ T + (Kg')' —ug M°=0.

En admettant que o satisfasse aux conditions d’orthogonalité
[19]z

fwdd=[wxdd=[wydd =0,
A A A

et que les axes x - y soient les coordonnées principales :
[xdA=[ydAd=[xydA =0,
4 A A
on obtient :
[XdA =cosg [xdA—sing [ydA =0,
4 4 A
[YdA =0,
4
[ XYdA = (I,—1,) sin ¢ cos ¢,
A
[ X?dA = cos® ¢ I,, + sin® ¢ 1, (I11-2)
A
[ Y2dA = sin® ¢ I, + cos® ¢ I,
A
JoXd4d =cosp[wxdAd—sing [wydAd =0,
4 A 4
JoYdd =0;
4
ou:l,= [x*dA, I, = [ y* dA.
A A
De par la symétrie de la section, on a:

[ Xp*dA=[Yp*dd =0. (I11-3)
A A

En utilisant les équations (II1I-2) et (III-3), on a donc les
expressions des efforts internes My, My, Mo et K, en fonction
des déformations, comme suit :

My =[0XdA = [Eeg XdA,
4 A

= —Eug (cos®> ¢ I, + sin®> ¢ I,)—
—E v (I,—1I,) sin ¢ cos ¢,

r ) (I11-4)
My = —Euj (I,—1,) sin ¢ cos p—
—Ev] (sin> ¢ I, + cos®> ¢ 1) ;
M, = —E¢" I,
@ s (I11-5)
K =0;

ou:l,= [w?dA.
A

En éliminant v{ dans I’équation (III-4) et en introduisant
I’équation (III-5) dans I’équation (III-1), on obtient :

M® /1 1
EIL, (/)"”%GJ(ﬂ”“ T <T = I_> sin ¢ Cos @ = 0; (111-6)
v x

ou: T, =GJg'.

En admettant que g est petit, la valeur propre de cette équation
sous les conditions d’appui simples (p = ¢” = 0) est :

n2 El,
GJit

n 1
M= Sl EIUGJ<1 +
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