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Méthode générale de calcul élastique et aux états limites
ultimes des sections rectangulaires de béton armé,
à simple ou double armature, en flexion simple ou composée

par J. M. ARIBERT et C. WATTECAMPS, Rennes

Introduction et notations
Le présent essai a pour but de réaliser une synthèse de nombreuses

méthodes de calcul de pièces rectangulaires en béton armé
existant dans la littérature tout en étendant leur champ d'application

à la flexion composée. On a tenté d'aboutir à une méthode
simple, rapide et aussi générale que possible. Cette méthode
consiste à passer par l'intermédiaire de tables de paramètres
adimensionnels, valables aussi bien en flexion simple que
composée, pour les sections rectangulaires à simple et double
armature. Un autre avantage de ces tables est que leur principe
d'utilisation reste le même, aussi bien dans un concept de calcul
élastique que dans celui d'un calcul aux états limites ultimes.
Dans une autre publication, on montrera que la méthode peut
être généralisée au cas des poutres en T et à la rigeur de forme
quelconque.

Pour parvenir à cette fin, on s'est fixé comme règle de n'utiliser
que les hypothèses classiques de la résistance des matériaux et du
calcul en béton armé. Ces hypothèses sont les suivantes :

a) la résistance du béton tendu est négligée ;

b) les armatures subissent la même variation linéaire que la
gaine de béton qui les entoure ;

c) les sections restent planes après application des efforts
(hypothèse de Bernoulli) ; cette hypothèse entraîne certaines
relations de similitude entre les déformations des fibres du béton
et des armatures ; seules seront mentionnées par la suite les
relations utiles à l'exposé ;

d) les efforts perpendiculaires à l'axe de la pièce ne sont pas
pris en considération.

Vu que par la suite on n'étudiera que des sections présentant
un plan de symétrie, on peut faire les commentaires suivants :

a) Le cisaillement et la torsion n'étant pas étudiés ici, la
section est en équilibre sous l'action de forces répondant aux
deux équations fondamentales d'équilibre ci-après :

J. Ar 0 ; la somme des efforts normaux à la section est nulle.
27 M 0 ; la somme des moments agissant sur la section est

nulle.

ß) Une autre conséquence de l'hypothèse d) est qu'il est
toujours possible de représenter l'ensemble des efforts s'exerçant
sur la section par une force unique iV plus ou moins excentrée
par rapport à cette section ; le cas de la flexion simple correspond
alors au cas limite d'une force N 0 située à l'infini par rapport
à la section. En outre, la force N sera dans le plan de flexion de la
pièce qui est également son plan de symétrie.

Principales notations :
N — Résultante des forces normales à la section ;

M — Moment s'exerçant sur la section (réduit au centre de
gravité des aciers A) ;

h — Hauteur utile de la section ;
ht — Hauteur totale de la section ;
b (y) — Largeur de la section au niveau y ;
B — Surface totale du béton de la section ;
B' — Surface comprimée de la section ;

A — Section totale des aciers les plus tendus ;
A' — Section totale des aciers les moins tendus ;

aa — Contrainte moyenne des aciers A (positive ou négative) ;
<r_ — Contrainte moyenne des aciers A' (positive ou néga¬

tive) ;

ai — Contrainte maximale admissible du béton sollicité en
compression simple (négative) ;

o£m — Compression moyenne du béton (négative) ;
o£s — Compression de la fibre supérieure du béton (négative) ;

o'w — Compression de la fibre inférieure du béton (négative) ;
ea — Déformation linéique relative de l'acier A ;

s'a — Déformation linéique relative de l'acier A' (avec
e'a 1*3 e0) ;

e'b — Déformation linéique relative du béton ;
e'bs — Déformation linéique relative de la fibre supérieure

du béton ;
e'bi — Déformation linéique relative de la fibre inférieure

du béton ;
yi — Distance de l'axe neutre à la fibre supérieure 0 ;
gyx — Distance à 0 de la résultante des contraintes de comet

g'hi pression du béton respectivement pour

yi^ht et yi> ht;
S =yilh;
S' ht/yi ;
d, _" — Distances A et A' respectivement à 0 et H (fig. l.a) ;
/ — Distance de N à A ;
0 — Rotation de la section après application de N.

En ce qui concerne les relations de comportement des
matériaux, non nécessairement linéaires, on écrira de manière très
générale :

— pour le béton : o\ =/6 (_p (1)

— pour les aciers __ et __' :

Oa—fa (e_) et a"a =/_ (««) (2)

1. Formulation générale de la pièce armée

1.1 Conventions et classification

Soit figure 1 .a, une section perpendiculaire à l'axe moyen
d'une pièce en béton armé de forme symétrique par rapport
à son plan de flexion OH. Cette pièce comporte deux
groupes d'armatures, supposées conventionnellement
concentrées en leur centre de gravité et dont les sections
ont pour valeurs A et A'. Ces deux lettres servent aussi à
repérer les armatures de la figure 1. A est le groupe qui
subit, après application des efforts, soit le plus grand
allongement unitaire, soit le plus petit raccourcissement
unitaire : ea — £_ • Il en résulte que, lors de l'application
des efforts, le pivotement de la section 9 sera toujours
_= 0 avec la convention indiquée sur la figure.

Sur la figure l.b, la position initiale de la section est
donnée par l'axe OH, ayant son origine au point 0 et
compté positivement vers A. Cet axe est gradué suivant la
variable sans dimension ô — ydh- Le point A correspond
ainsi à la valeur ô 1. Les déformations unitaires e sont
portées sur un axe horizontal, les tractions étant considérées

comme positives. Quel que soit le mode de sollicitation
en flexion composée, on peut toujours considérer que la
section est soumise à l'action d'une force N unique (comptée

positive pour une traction et négative pour une com-

Bulletin technique de la Suisse romande - 101e année - No 24 - 20 novembre 1976 409



Position initiait de la section

FigFigA a •1_>

-_+ £

4
N>o

<=

fcl

N
5 62

nations finales possiDm
de ta section

\<+6 11rn

CONVENTIONS:

Inclinaison tie
la section

V

e>o
allongement

pression), à une distance / du centre de gravité des aciers A.
On conviendra de donner au moment (M) le signe positif
s'il fait tourner la section dans le sens trigonométrique.

Après application de la force N, la section prend, par
rapport à sa position initiale, une des positions n° 1 à 8

indiquées à la figure 1 .b qui peuvent se grouper en 3 zones
distinctes suivant l'ordonnée de leur intersection avec l'axe
des ô.

1.2 Zonen"!

C'est le cas de la position 2, comprise entre les positions
extrêmes 1 et 3; (—oo _=<?_= 0). Toutes les fibres de la
section sont allongées et donc soumises à une traction.
Dans ce cas, le béton n'intervient pas et la force N, qui est
nécessairement une traction, est équilibrée par les forces
de traction Aaa et Ä a'a existant dans les armatures A et
A'. La coexistence de A et A' est indispensable. De plus,
N se situe nécessairement entre A et A' et (NI) est __: 0.

Les équations d'équilibre donnent :

j N= Aaa + A' a'a

\(N0 A'a/a(h-d')
(3.N)
(3. M)

A noter que pour ô fixé, les taux de travail aa et o~'a ne
sont pas indépendants ; en effet, on a d'après l'hypothèse
de Bernouilli la relation de similitude géométrique
suivante (avec ô _= 0) :

1-Ö
(4)

(d'lh-5) e'a

où, d'après (2)": ea fZ1 (ff_) et e_ f'-1 (<fa).

La position 1 est celle où ea e'a, soit : ô — oo.

La position 3 est celle où S 0, soit : s'a ea --

Bien que le calcul en zone I soit aisé, le projecteur devra
tenir compte que les valeurs e_ et e'a sont limitées par le
règlement de béton armé à des valeurs maximales liées au

410

6 ô

danger de fissuration du béton et aux conséquences
fâcheuses qui peuvent en résulter.

1.3 Zonen" II
Cette zone est comprise entre les positions 3 (ô 0) et

ht\
— I. Elle est caractérisée par le fait que le béton est
hJ

partiellement comprimé. L'existence de l'acier A' n'est
théoriquement nécessaire que lorsque les cas étudiés au
paragraphe (1.3.1) ci-après n'équilibrent pas la force N
dans des conditions de sécurité suffisantes : l'acier A' vient
alors compenser une insuffisance de béton.

La zone II est la plus rencontrée en calcul de béton armé.
Elle intervient lorsque :

a) une traction est située en dessous de A ((NI) négatif) ;

b) une compression est située au-dessus du noyau central
(de la section hétérogène), côté de 0 ((NT) est négatif) ;

c) un moment négatif simple est appliqué ; (il correspond
à une force N nulle appliquée à ô — co).

On peut écrire l'équilibre des efforts dans la zone n,
soit dans le cas de l'existence de A seul, soit dans le cas de
l'existence simultanée de A et de A '.

1.3.1 Zone II sans A'

Les équations d'équilibre donnent :

| N^Aaa + B't/^ (5.N)
\(Nl) B'(T'tmh(l-gÔ) (5.M)

On a également la relation de similitude suivante :

~8f •
(5

c„ £&_

soit :

5 (6)i + y
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en posant :

.£_. (7)

Dans le cas particulier très courant d'une section
rectangulaire (b cte), on a :

B' bôh;
le système des équations d'équilibre peut être résolu de la
manière suivante :

(5.M)=>
bh^oL 1

(5.M) et(5.N)_==>

ß; (8.M)

¦ a.. (8.N)

(NI) (\-gS)ô
(N~Aaa)h _

1

(NI) 1 -g ô

a, ß, y, ô sont des nombres adimensionnels.

1.3.2 Zone n" II avec A'

Les équations d'équilibre s'écrivent :

| AT= A aa + A' o'a + B'_-;_ (9.N)

\ (NI) A' a'a (h -d1) + B' a'bm h (1 -gS) (9. M)

A et A' sont des paramètres qui ne jouent aucun rôle
dans Farchitecture de la pièce. Ils sont donc tout désignés,
étant donné qu'ils interviennent linéairement dans les

formules, pour constituer les deux inconnues du problème.
La poutre à double armature est donc, en principe,
relativement assez facile à calculer. Il faut cependant tenir
compte que aa est lié à a'a puisque les déformations relatives

ea et e'a obéissent toujours à la relation de similitude
géométrique (avec maintenant ô __: 0) :

_______
ô-d'jh

(10)

Rappel pratique :
D est peu probable que les valeurs optimales de aa, a'a

et a'bm soient atteintes simultanément. Dans la plupart
des cas, c'est l'armature A' qui est utilisée avec un o~'a

médiocre. De plus, les barres comprimées donnent lieu à

des problèmes de flambement exigeant la pose d'armatures
transversales de soutien.

On aura donc recours à l'usage de barres comprimées
A' lorsqu'il ne sera pas possible de résoudre le problème
en augmentant b ou h.

Dans le cas particulier de la section rectangulaire, les

formules (8.N) et (8.M) se généralisent sous la forme:

et

a

/?

1 (N-A oa-A' a'a) h

-gö (NI)-A' a'a(h-d')

1 b h2 o-L

(l-gâ)ô (NI)-A' a'a(h-d')

(11 .N)

(11.M)

1.4 Zonen" III
Cette zone correspond au cas : — __<$_= oo et aux posi-

h

tions de section comprises entre 6 et 8 (fig. 1 .b).
Afin d'éviter d'utiliser dans les calculs de trop grandes

valeurs de ô, on remplacera ô par S'tel que :

Ô=Th>

la zone n° III est alors définie par : 1 =3_ ô' =_: 0.

(12)

Les équations d'équilibre s'écrivent :

j N=A(7a + A'a'a + Ba'bm (13.N)

\(Nt) A'o'a(h-d') + Bo'bm(h-g'ht) (13.M)

On a posé ici g' g ydht.
Les fibres supérieure et inférieure du béton sont

soumises respectivement à des compressions a'bt et au.

Remarque :

L'hypothèse sa __: e'a avec sa conséquence 6 -^ 0 a été

admise uniquement pour clarifier l'exposé. En particu_wp
la zone III peut être envisagée avec 0 _=_ 0.

Si, dans ce cas, tout ou partie de la force de compression,

soit \Ni\ _= | TV |, provient artificiellement d'une
traction initiale des armatures A et A', ces armatures
auront des allongements relatifs initiaux e° et Ea°

correspondant à des tensions o°a et o~'a".

Les formules (13.N) et (13.M) restent valables en
tenant compte que :

Sa fa (<7a)-fa «) et Ba f'a (o'a)-f'a (<x'a") (14)

et que

j -Ni^Aal + A' o'a°

\-(N1l) A'a'a°(h-dr)
(15)

Les deux dernières formules (15) s'apparentent à celle de la
zone n° I.

On touche ici au domaine du béton précontraint qui
sort du cadre de la présente étude.

2. Première application: la méthode dite
« élastique »

2.1 Rappel [l]1
La méthode élastique est la plus ancienne. Elle est basée

sur la loi de Hooke, les relations (1) et (2) devenant :

Oa

Ei, eb ;

On pose :

¦*-_ Ea et oa

Et,

(16)

(17)

En France, n 15 par convention (mais d'autres valeurs

pourraient être attribuées à ri).
On prend généralement : Ea 2.000.000 bars.

Il est également convenu dans cette méthode que, si

a'b est la tension maximale admissible de calcul en
compression simple, on doit avoir impérativement :

2.2 Sections rectangulaires

2.2.1 Zonen"!

Les formules (3.N) et (3.M) sont directement
applicables.

2.2.2 Zone n" II (avec ou sans armature A' comprimée).
La répartition des contraintes dans le béton étant

triangulaire, on a :

g 1/3 0,333 (18)

1 Les chiffres entre crochets renvoient à la bibliographie en
fin d'article.
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et c'est-à-dire en introduisant 5' htjôh :

___
2

(19)

où on rappelle que a'ba est la compression du béton de la
fibre supérieure.

Les formules (6) et (7) donnent ici :

y
i -i o_

lno'h
(20)

Les formules (11 .N) et (11. M) deviennent respectivement :

1 (N-Aoa-A'o'a)h
1

ß

-5/3

1

(Nl)-A't/aVl-d1)
b h2 a'bm

(.1-0/3)3 (Nl)-A' oa(h-dr)

(21. N)

(21. M)

Dans certains problèmes, on peut être amené à se fixer o~a

et non a'bm ; il est alors utile de substituer aa à a'bm dans
la relation (21. M) à l'aide de (20), ce qui conduit à la
définition d'un nouveau coefficient adimensionnel :

ß'
2(1-5)

(l-5ß)5*
bh*oa

n[(Nl)-A'<r'ah-d')]
(21'. M)

On notera que dans le cas particulier de la flexion simple
(A^ nul situé à l'infini et (NI) M __! 0) et en l'absence
d'armature comprimée, le rapport

k a/ß' (22)

redonne une valeur classique employée dans la littérature :

nA
Th. (23)

Les valeurs des paramètres a, ß, ß', y et A: peuvent être
tabulées aisément en fonction de 5 ; (Table n° 1), par
exemple : pour l'intervalle

0 1,25.

2.2.3 Zonen" III
La répartition des contraintes dans le béton étant

trapézoïdale, on a :

et:

1 0't,B + 2 a'bi

3 °6s + °6<

Oft, + Ohi

(24)

(25)

Ces valeurs sont celles à prendre en considération dans
les équations (13.N) et (13.M) qui s'écrivent en section
rectangulaire :

N A oa + A' a'a + b ht a'bm (26.N)

(ArO A'a^(h-d') + bhta'bm(h-g'ht). (26.M)

Les taux de travail des aciers et du béton dans ces équations

ne sont évidemment pas indépendants puisque les
relations de similitude géométrique suivantes :

5h 5 h-d' h (5-1) 5 h-ht
entraînent :

oa

y«. (27)
ht bs ht-d'â' a ht-hSr a ht(l-ô')

Remarque :

On peut exprimer aisément g' en fonction de 5'. Des
deux termes extrêmes de (27), on tire :

0"m °6s (1 -<S0,

d'où en reportant dans (24) :

3-2 <5'

(28)
3(2-5')

3. Deuxième application : la méthode aux états
limites ultimes

3.1 Rappel

Plus récente que la précédente et peu utilisée, elle est
basée sur des conditions limites conventionnelles (résultant
d'un grand nombre d'essais) qui sont censées correspondre
à la limite de résistance des matériaux acier-béton. On
rappelle en passant que la rupture n'est pas la seule condition

limite à considérer dans le calcul d'une pièce ; la
fissuration ou la flèche peuvent rendre cette pièce inutilisable
avant que le danger de rupture soit prépondérant.

Si les calculs sont menés à partir des états limites
prédites, la figure générale 1 se transforme en la figure 2.

bjm -eut5f.w * -a

mm

ôh 5 h-d' h (5-1) 5 h-ht

L'état limite de l'acier en traction est donné par l'allongement

relatif sa 10-10-3. Le raccourcissement relatif du
béton en flexion par e'b=— 3,5-IO-8 et en compression
simple par e'b —2 • 10~3.

Le principe de la méthode étant qu'un au moins des
deux matériaux soit sollicité au maximum, les plans 1 à 8

de la figure 1 se retrouvent sur la figure 2 passant
obligatoirement par un des pivots (a), (b) ou (c), déterminés par
les allongement précités; [2] — article R.42; 11).

Les relations (2) de comportement des aciers sont
parfaitement déterminées à la référence 2 et représentées
graphiquement à la figure 4. La relation (1) concernant le
béton n'est pas encore définitivement adoptée [2] (article
R.42.112; 1.2.3). Certains proposent (dans le but de
simplifier les calculs) un simple diagramme rectangulaire
qui ne correspond en fait à aucune réalité physique. Afin
de montrer le caractère général de la méthode présentée
ici, on a adopté la forme dite « parabole-rectangle» qui
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est une des plus complexes. Toute autre forme serait
possible à condition que la fonction (1) soit continue.

La courbe « parabole-rectangle » est représentée à la
figure 3 ; l'équation du tronçon de parabole donnée dans
la littérature [3] est la suivante :

% -- 10+3 e'b (4 + 10+3 e^).
oh 4

Pour simplifier les développements ultérieurs, on conviendra

de considérer les allongements relatifs de l'acier et du
béton à un facteur multiplicatif près de 10~3. En particulier,

l'équation de la parabole précédente devient :

(4 + e'b) (29)

3.2 Sections rectangulaires

3.2.1 Zonen"!

Tous les plans (1) à (3) correspondant à cette zone passent

par le pivot (a) pour lequel _0 10 (par convention
de notation). Les formules (3.N) et (3.M) sont
applicables sans aucune difficulté.

A noter que l'allongement des aciers est 5 fois plus
grand que celui que le béton peut supporter sans montrer
une fissuration excessive (1 cm par mètre linéaire de béton).

3.2.2 Zone n" Il avec pivot (a)

C'est le cas des plans compris entre les positions 3 et 4.
On a encore e_ 10, mais ici le béton intervient.

Même si les aciers A' ne sont pas utilisés de manière
optimale, on va considérer le cas général où il existe des
armatures A et A'.

Le coefficient y défini en (7) vaut ici :

y
10

(30)

et la position relative de l'axe neutre est donnée par :

5
i + y 10-

(31)

Le pivot (b) étant fixé à e'bs =—3,5, la zone n° II avec
pivot (a) sera caractérisée par l'intervalle :

avec :

0 __; 5 -È 5a

3,5

A~Ï3^5 0,259 (32)

Les formules générales (11. N) et (11. M) sont applicables.
En ce qui concerne la formule (11. M) faisant intervenir
a'bm, il est préférable en vue des applications, de l'écrire
en fonction de la tension admissible cr'b. On définira un
coefficient K par :

K

On a alors

ß

1 (N—A Gq—A' a'a) h

(NI)-A' a'a(h-d')

bh2~5'b

(l-g5)5K~ (NI)-A' o'q (h-d')

1-gô
1

(33)

(34. N)

(34. M)

Le calcul donnerait pour les paramètres K et g à cckteidérer
dans ces formules, les expressions suivantes :

al pour : —2 __ï e'bs ±= 0 (ou, ce qui revient au même :

o __;<5__; 1/6):

5 (3-8 5)5K -^(6 + sL)
12 3 (l-<5)2

9 5-4
(35)

4(6 + 4,) 4(8_"-3)

bj pour : —3,5

__

g

3 £„

-2 (ou, ce qui revient au même
1

6

165-1

5 __ 0,259)

3 e' 15<5
(36)

2 £_, (3 4s + 2) 20 5(16 5-1)
Les valeurs des paramètres a, ß, y, g et K peuvent ainsi
être tabulées aisément en fonction de 5 (Table n° H) pour
l'intervalle :

0 __; 5 __; 0,259

caractéristique de la zone n° II avec pivot (a).

3.2.3 Zone n" II avec pivot (b)
C'est le cas des plans compris entre les positions 4 et 6

(cf. fig. 2). Le pivot (b) étant déterminé par la condition
e'bs — — 3,5, les coefficients y et 5 valent ici :

7 3,5'

(5
3,5

i + y 3,5

(37)

(38)

Quelle que soit la position de la section fléchie, le béton
travaille avec le diagramme « parabole-rectangle » complet,

et les paramètres K et g sont constants :

| K 0,8095

\ g 0,4160
(39)

La tabulation pour l'intervalle 0,259 _= ô _= 1,25 (suffisant
en pratique pour caractériser la zone n° II avec pivot (b))
est donc plus simple que dans le cas précédent.

3.2.4 Zone n" III avec nécessairement le pivot (c)
La section fléchie est située entre les plans 6 et 8

(cf. fig. 2), le pivot (c) étant fixé conventionnellement à la

distance — ht de O et à e'b ¦¦
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D en résulte que les raccourcissements unitaires des

fibres inférieure et supérieure du béton sont liés par la
relation de similitude géométrique :

4=-3-(7+2 4). (40)

En fonction du paramètre de position de l'axe neutre :

5' ~ avec 1 __; 5' -Ë 0
o h

on peut calculer :

14

3 5' -7
et:

14
bi 3 5'-l

en posant :

(l-ô') (l-5r)E'b V ___ba ï °bs »

Y 1 -5' (41)

Le calcul donnerait pour les paramètres K et g' les expressions

:

K
6 fil 12ei

s =-

12 (sbs-ebi)

43/2.4/(4-3 yQ-8(2y'-3)] + 8(3 s'b2-4Ebs + 2)

4e;8 (1 -Y) [Y2 4Ï (Y s'bs + 6) + 12 e'bs + 8]

(42)

(43)

Les paramètres adimensionnels y', K et g' sont tabulés en
fonction de 5' à la table H, pour l'intervalle 1 __ 5' __! 0.
Us seront utilisés dans les équations (13.N) et (13.M) qui
s'écrivent plus précisément :

j N= Aaa +A'a'a +bhtKä'b (44.N)

\(NI) A'a'q(h-d') + bhtKc'b(h-g'ht). (44.M)

4. Exemples numériques

Les données des applications numériques qui suivent
sont, pour certaines, empruntées à un document rédigé

par le bureau SOCOTEC [3]. Les calculs seront effectués

parallèlement par la méthode classique élastique (table I)
et par la méthode aux états limites ultimes sur la base du
diagramme « parabole-rectangle » (table II). Afin de

comparer les résultats obtenus par les deux méthodes (sans
chercher évidemment une coïncidence systématique), on
supposera que :

— les sollicitations de calcul aux états limites sont
obtenues par multiplication des sollicitations réelles avec
le coefficient 1,5 (conformément à l'article R.22, 211 du
document [2]).

— le béton utilisé a une résistance caractéristique à la
compression de 240 bars, conduisant à une résistance

(réduite) de calcul en flexion aux états limites de :

(-240) (-240)
0,85 X 0,85 x

*¦

lb 1,5
136 bars.

Un tel béton doit en principe présenter les mêmes
performances que celles qui sont attribuées par les règles CCBA 68

à un béton de résistance nominale de 270 bars, conduisant
à une contrainte moyenne en calcul élastique de :

°'bm -67,5 bars.

Les nuances d'acier utilisées sont les suivantes :

— en calcul élastique, un acier courant Fe E 40, de

contrainte admissible aa 2800 bars ;

— en calcul aux états limites, un acier naturel (ou
écroui) de contrainte de calcul 3600 bars.
(Les lois de comportement des aciers sont celles rappelées
en (2.1) ou en (3.1).)

4.1 Exemple n" 1 : flexion simple sans armature comprimée
[3](n°4, 11).

Données : M -2.227.000 daN.cm ; h 60 cm ; b
32 cm.

Inconnues : A, a'b ou aa.

aj calcul élastique

On s'efforce de faire travailler le béton à son taux
maximal rjL, -67,5 bars. Il en résulte que :

b h2 o'bm 32 x 602 x (-67,5)
3,492 ;

M (-2.227.000)

la table I donne pour cette valeur de ß :

a= 1,119 et y 2,125.

Le taux de travail de l'armature tendue serait donc :

Oq -2nyabm -2 x 15 x 2,125 x (-67,5) 4303bars.

Cette valeur est manifestement trop élevée. On s'efforce
alors de faire travailler l'acier au taux admissible ?Ja

2800 bars. Il en résulte que :

P
bh2aa 32 x 602 x 2800

9,656 ;nM 15 x (-2.227.000)

la table I donne pour cette valeur de ß' :

a= 1,146 et y 1,613.

D'où:
öl M 1,146 x (-2.227.000) le_A - 15,2 cmz
aa h 2800 x 60

et

<?»»

2800

2ny 2 x 15 x 1,613
-57,9 bars.

bj calcul aux états limites ultimes

On adopte pour moment fléchissant de calcul :

M (-2.227.000) x 1,5 -3.340.000 daN.cm

On cherche à faire travailler le béton à la valeur maximale

admissible : a'b =* —136 bars. Il en résulte que :

bh2â'b 32 x 6Ö2 x (-136) J 4mM (-3.340.000)

la table II indique que l'on a le pivot (b) pour cette valeur
de ß et donne :

a =1,143 et y 2,322.

L'allongement unitaire de l'armature tendue serait donc :

ea 3,5 IO"3 • y 3,5 X 2,322-10"3 8,127 • 10"8.

Cette valeur est acceptable (puisque inférieure à lfisjlO-8).
Pour cet allongement, la figure 4 donne pour l'acier écroui
correspondant à un acier naturel de 3600 bars, un taux
de travail de 3880 bars. Finalement, le calcul aux états

limites ultimes donne comme solution :

— pour le taux de travail du béton : a'bs —136 bars ;

— pour section d'acier tendu :
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en acier naturel :

a M 1,143 x (-3.340.000)
A

aqh

en acier écroui :

3600 x 60
17,7 cm2 ;

1,143 x (-3.340.000) m
A 388Ö1T6Ö 1M Cm '

4.2 Exemple n" 2 : flexion composée sans armature
comprimée [3] (n° 4, 12).

Données : M —2.413.300 daN.cm ; N -33.333 daN
(les sollicitations sont évaluées au centre de gravité de la
section).

h 60 cm ; ht 64 cm ; b 32 cm.

Inconnues : A, a'b ou aa.

a\ calcul élastique

Au préalable, on détermine la distance / entre le centre
de pression des sollicitations (N, M) et l'acier tendu A :

-2.413.300 64
/ ,„„„, + — -4 100,4 cm.

—33 333 2

Le béton étant supposé travailler à son taux maximal,
le coefficient ß vaut :

ß~
bh2a'bm 32 X 602 x (-67,5)

(NI) (-33.333 X 100,4)

La table I donne pour cette valeur de ß :

a =1,210 et y 0,920.

2,324

D'où la contrainte de l'armature tendue :

oa -2nya'bm -2 x 15 x 0,920 X (-67,5) 1863 bars.

et la section d'acier nécessaire :

1

A= —
(Ta

N-a.
(NI) 33.333/ 1,210x100,4

1863 60
18,3 cm3.

b\ calcul aux états limites ultimes

Le moment fléchissant et l'effort normal de calcul sont
respectivement :

M (-2.413.300) x 1,5 =-3.620.000 daN.cm;

N= (-33.333) x 1,5 =-50.000 daN.

(La valeur de / est évidemment la même que précédemment.)
La fibre supérieure du béton étant supposée travailler à la
valeur â'b —136 bars, on a :

0 bh2c'b 32 X 6Ö8 X (-136)
ß i - 3 121H (NT) (-50.000 X 100,4) '

La table II indique que l'on a le pivot (b) pour cette valeur
de ß et donne :

a 1,262 et y =M002

L'allongement unitaire de l'armature tendue est acceptable :

Ea 3.5-10-3 y 3,5 x 1.002-10-8 3,507-10-3.

Pour cet allongement, la figure 4 donne pour l'acier écroui
correspondant-à un acier naturel de 3600 bars, un taux de
travail d'environ 3580 bars. Finalement, la solution est la
suivante :

— taux de travail du béton : ab8 =|ral36 bars ;

— section d'acier tendu :

• en acier naturel :

o--
N-<x

(NI)

-50.000

3600

• en acier écroui :

A =-
-50.000

3580

1,262 X 100,4

60

1,262 X 100,4

60

15,4 cm8 ;

15,5 cm2.

.4.3 Exemple n" 3 : flexion composée avec armature
comprimée [3] (n° 4, 13)

Données : M -3.333.300 daN.cm ; N -53.333 daN
(les sollicitations sont évaluées au centre de gravité de la
section).

ht 64 cm ; d d' 4-cm ; b 32 cm

Section de Parmature comprimée : A' 12,56 cm8

(soit 4 0 20).
Inconnues : A, a'b ou aa.

al calcul élastique

Au préalable, on détermine la distance / :

-3.333.300 64
1--

-53.333 -4 90,5 cm

En supposant que la fibre supérieure du béton travaille à
la valeur maximale, on est assuré que la contrainte de
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l'acier comprimé est inférieure (en valeur absolue) à :
2 x 15 X 67,5 2025 bars. On procède par itérations,
en admettant au départ, par exemple :

a'a -1800 bars

On a pour le coefficient ß la valeur :

b h2 a'bm
A

soit:

(NI)-A' a'q (h-d-)
32 X 602 X (-67,5)

(-53.333 X 90,5)-12,56 x (-1800) x 56

ßi 2,184;

la table I donne pour valeur correspondante : 5 0,564 ;
d'où la nouvelle valeur de a'. :

aa n <*b

soit :

5 h-d'
5h

15 x 2 x (-67,5)
0,564 x 60-4

0,564 X 60

a'a 1786 bars

La valeur correspondante de ß est alors :

32 X 6Ö2 X (-67,5)Ä- (-53.333 X 90,5)-12,56 X (-1786) X 56
2,177.

En pratique, cette valeur de ß& est suffisamment proche de

ßx pour considérer comme correct le taux de compression
de l'acier a'a =—1786 bars. La table I donne pour cette
valeur de jff2 :

a =1,233 et y 0,766

D'où la contrainte de l'armature tendue :

o_ —2«yo"sm -2x 15 x 0,766 x (—67,5)= 1551 bars

et la section d'acier nécessaire :

A
1

N-
aa

1

Ï55Ï

[(Nl)-A'a'a(h-dOÌ-A'a'a

-53.333 1
1,233 x 90,5

60

27,4 cm2.

12,56 X (-1786)

1,233 X 56'
1

60

6/ calcul aux états limites ultimes

Le moment fléchissant et l'effort normal de calcul sont
respectivement :

M (-3.333.300) X 1,5 =-5.000.000 daN.cm

/V= (-53.333) X 1,5 =-80.000 daN.

On fait au départ deux hypothèses (à vérifier ultérieurement)

:

1°) la section tourne autour du pivot (b), d'où e'bi

—3,5-10"8;
2°) le raccourcissement de l'acier A' étant nécessairement

un peu plus faible (en valeur absolue) que e'b„ on
adopte comme première estimation de e'a la valeur :

-3-10-8.
Il résulte de cette deuxième hypothèse et du diagramme

de la figure 4 relatif à un acier écroui à 3600 bars, que la
compression correspondante de l'acier A' est environ :

ai -3500 bars.

D'où
32 X 60a X (-136)

(-80.000 X 90,5)-12,56 (-3500) X 56
3,279.

La table II indique que l'on se situe bien en pivot (b) et
donne :

a 1,241 y 1,138 et 5 0,468

Avec cette dernière valeur de 5, on trouve pour deuxième
estimation de e'„ :

5 h-d'
oh

-3,00-10

-3,5-KT3
0,468 x 60-4

0,468 X 60

Cette valeur étant identigle à celle de départ (s'il n'en
avait pas été ainsi, on aurait poursuivi les itérations
jusqu'à obtenir la bonne valeur de e'a), les valeurs trouvées

pour a et y sont correctes. D'où :

ea 3,5-10"3 y 3,5-IO"3 x 1,138 3,98-IO-8,

allongement unitaire auquel correspond (d'après la fig. 4)
une tension de l'acier (écroui) de : aa — 3630 bars.
La section nécessaire d'acier tendu est donc :

__
1 -80.0001

3630}

1,241 X 90,5

60

-12,56 X (-3500) (1
1,241 X 56

6Ô~
soit :

A 17,3 cm2 pour un acier écroui.

Pour un acier naturel, on obtiendrait A 17,4 cm8.

4.4 Exemple n" 4 : flexion composée de traction
(sans armature comprimée)

Données : M -2.227.000 daN.cm ; N + 50.000
daN.
ht — 64 cm ; d d' 4 em ; b 32 cm.

Inconnues : A et a'b ou aa.

al calcul élastique :

-2.227.000 64/= + 4
50.000 2

-16,54 cm.

32x602x(-67,5)
H -(50.000 X 16,54) 1

Pour cette valeur de ß, la table I donnerait y 8,01,
d'où :

aa -2nya'bm -2x 15 X %m X (—67,5)= 16220bars.

Cette situation est impossible, aa ne pouvant dépasser la
valeur admissible de 2800 bars. On utilisera alors le
coefficient ß' en fixant le taux de travail de l'acier au maximum

de 2800 bars :

P —
bh*aa 32 x 602 X 2800

n (NI) 15 (-50.000 X 16,54)

D'où, d'après la table I :

a=* 1,091 et y 2,988

Par conséquent :

26,00

A
50.000

2800
1-

1,091 X (-16,54)
60

23,2 cm8
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et:
2800

2 X 15 X 2,988
-31,2 bars.

b/ calcul aux états limites ultimes

La traction de calcul étant: 7^=50.000x1,5
75.000 daN, on a :

-\ : ^32x6ô2x(-136) \
y -(75.000 x 16,54)

La table II indique que l'on se situe en zone n° II avec
pivot (a). Elle donne pour cette valeur de ß :

a =1,054 et y 6,130

Il en résulte que :

lo-io-3 io.io-3=_1)63-10_3i
y 6,130

La contrainte a'bs correspondant à ce raccourcissement
unitaire est donnée par l'équation de parabole (29) :

<4= !36) X 1,63(4-1,63) 131,3 bars

Quant à la section d'acier tendu, elle vaut :

• en acier naturel :

75.000

3600
1

1,054 X (-16,54)
~~60 26,9 cm8 ;

• en acier écroui (la figure 4 donnant pour _a 10-10 3

la tension de 3900 bars) :

26,9

3900
x 3600 24,8 cm2.

4.5 Exemple n° 5 : détermination d'une hauteur de poutre
en flexion composée (sans armature comprimée)

Données : M -1.200.000 daN. cm ; N -20.000 daN.
d 3cm ; b 20 cm.

Inconnues : h minimum et A.

al calcul élastique

Les matériaux seront utilisés au mieux de leur capacité
en fixant aa à 2800 bars et c^-, à—67,5 bars ;
d'où:

_ _
2800

_7~~2x 15 X (-67,5)
"~ '

et, d'après la table I :

a 1,162 et ß 2,771

La distance du centre de pression au centre de gravité de
l'acier tendu étant :

-1.200.000 h
/== + - +•3 h

2—3=2+58,5,-20.000

la valeur obtenue pour ß impose :

20 X A2 X (-67,5)
2,771

- + 58,5

c'est-à-dire :

1350 A8-27.710 A-3.242.070 0

La racine positive de cette équation du second degré est :"

h 60,3 cm

Il en résulte que :

60,3
/ ~- + 58,5 88,7 cm

et que la section d'acier tendu est (compte tenu de la valeur
trouvée pour a) :

-20.000/ 1,162 x 88,7\
A — 11 - —j^ 1 5,1 cnr.2800 60,3

(La hauteur totale de la section est évidemment : ht
60,3 + 3 ~ 63 cm.)

b/ calcul aux états limites ultimes

Les matériaux seront utilisés au mieux de leur capacité
si la section passe simultanément par les pivots (a) et (b).

D'où:
10

>¦=-; 2,857,
(-3,5)

valeur pour laquelle la table II donne :

a =1,121 et /?= 5,343.

La valeur obtenue pour ß impose :

20 x A8 x (-136)
5,343

(-20.000 X 1,5) - + 58,5

c'est-à-dire :

2720 A8-80.145|K-9.376.965 0

On trouve :

D'où:
A 75,3 cm

/= ^ +58,5 96,1 cm

et, pour un acier écroui (de aa 3900 bars à e„ 10 • 10-3) :

A
-30.000 / 1,121 x 96,1\

—:__-_ I 3,3 cma
3900 75,3

(La hauteur totale de la section serait ici : h\ 75,3 +
+ 3 __; 78 cm.)

5. Conclusion

On s'est efforcé de montrer dans la présente étude en
illustrant la théorie dans les domaines élastique et aux
états limites ultimes :

1° Qu'il est toujours possible d'établir une table de
coefficients adimensionnels «, /?, y, 5, etc., pour tout
couple de relations de comportement des matériaux (1) et
(2) conventionnel ou simulant au mieux la réalité physique.

2° Qu'une fois établie la table correspondant à un
certain choix des fonctions (1) et (2), les principes de calcul
des sections rectangulaires en béton armé, sans avoir à
distinguer la flexion simple de la flexion composée, demeurent

les mêmes dans tous les cas. Cela permet de passer
sans difficulté d'un concept de calcul à un autre.

3° Qu'il suffisait de considérer trois zones pour classer
tous les problèmes relatifs au béton armé, en notant que
le domaine du béton précontraint, en flexion simple ou
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composée, rejoint celui du béton armé sous forme d'une
combinaison des zones I et HI.

On montrera dans une publication ultérieure que cette
théorie peut être étendue au calcul des pièces de formes
quelconques, en flexion éventuellement déviée, par une
méthode itérative simple et très convergente ; le calcul
d'une section quelconque est alors ramené à celui d'une
suite de sections rectangulaires.
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VII ANNEXB : EXTRAIT DES TABLES DE PARAMÈTRES ADIMENSIONNELS

On précise que seules les valeurs utiles aux exemples numériques

de l'article et celles correspondant à des changements de
zone ont été portées dans cette reproduction des tables.

VIII-I Table Ipour le calcul élastique (n \5)

Vin-II Table II pour le calcul S\l'êtat limite ultime
(parabole-rectangle)

a a 8' Y 5 k

1.oooo Œ co 0» 0.000 0.00000
1.0006 500.333 499332. 499.000 0.002 0.00000
1.0013 250.333 124666. 249.000 0.004 0.00000
1.0020 167.000 55332.8 165.666 o.oos 0.00001
1.0026 125.334 31082.8 124.000 0.008 0.00003

1.0373 9.6050 158.661 8.2592 0.108 0.00653
1.0380 9.4369 152.706 8.0909 0. 110 0.00679
t.0387 9.2748 147.072 7.9285 0.112 0.00706
1.0395 9.1184 141.735 7.7719 0.114 0.00733

1.0901 4.3956 26.6573 3.0322 0.248 0.04089
1.0909 4.3636 26.1818 3.0000 0.250 0.04166
1.0917 4.3321 25.7178 2.9682 0.252 0.04244
1.0924 4.3011 25.2651 2.9370 0.254 0.04324

1. 1185 3.5175 15.0876 2.1446 0.318 0.07413
1.1194 3.4981 14.8670 2.1250 0.320 0.07529
1.1202 3.4790 14.6507 2.1055 0.322 0.07646
1.1210 3.4601 14.4384 2.0864 0.324 0.07764

1.1380 3.1266 10.9259 1.7472 0.364 0.10416
1.1389 3.1 118 10.7810 1.7322 0.366 0.10564
1.1398 3.0973 10.6386 1.7173 0.368 0.10713
1.1406 3.0829 10.4986 1.7027 0.370 0.10865

1.1450 3.0132 9.8327 1.6315- 0.380 0.11645
1.1459 2.9997 9.7060 1.6178 0.382 0.11806
1.1467 2.9864 9.5814 1.6041 0.384 0.11968
1.1476 2.9732 9.4588 1.5906 0.386 0.12133
1.1485 2.9601 9.3382 1.5773 0.388 0.12299

1.1583 2.8251 8.1308 1.4390 0.410 0.14245
1.1591 2.8135 8.0310 1.4271 0.412 0.14434
1.1600 2.8021 7.9326 1.4154 0.414 0.14624
1.1609 2.7908 7.8358 1.4038 0.416 0.14816
1.1618 2.7796 7.7404 1.3923 0.418 0.15010
1.1627 2.7685 7.6464 1.3809 0.420 0.15206
1.1636 2.7575 7.5539 1.3696 0.422 0.15405

1.1773 2.6048 6.3161 1.2123 0.452 0.18640
1.1783 2.5954 6.2427 1.2026 0.454 0.18875
1.1792 2.5860 6.1702 1.1929 0.456 0. 19111

a ß
Y 5 g K

1.0000 » _ 0.000 0.3333 0.0000
1.0006 50125.3 499.00 0.002 0.3336 0.0099
1.0013 12551.7 249.00 0.004 0.3338 0.0199
1.0020 5589.55 165.66 0.006 0.3341 0.0298
1.0026 3150.66 124.00 0.008 0.3344 0.0397

1.0528 12.9996 6.2463 0.138 0.3636 0.5868
1.0537 12.6903 6.1428 0.140 0.3643 0.5531
1.0546 12.3942 6.0422 0.142 0.3650 0.5992
1.0556 12.1108 5.9444 0.144 0.3658 0.6052 o
1.0565 11.8391 5.8493 0.146 0.3665 0.6112

_
1.0653 9.8396 5.0975 0.164 0.3738 0.6601
1.0663

1.0673

9.6587

9.4847

5.0240 0. 166 0.3747 0.6650

4.9523 0.168 0.3756 0.6698
1.0683 9.3173 4.8823 0.170 0.3765 0.6745

M

1.1175 5.4708 2.9370 0.254 0.4140 0.8041 g
1.118: 5.4205 2.9062 0.256 0.4147 0.8062 N
1.1200 5.3711 2.8759 0.258 0.4155 0.8082

1.1212
1.1223
1.1233
1.1244
1.1254
1.1265
1.1275

1.1414
1.1425
1.1436
1.1447

1.2404
1.2417
1.2430

1.2599
1.2612
1.2625
1.2639

1.7073
1.7097
1.7122
1.7183
1.7245
1.7307

2.0476
2.0564
2.0652
2.0741
2.0831

5.3274
5.2917
5.2565
5.2218
5.1877
5.1541
5.1210

4.7319
4.7048
4.6781
4.6518

3.2883
3.2776
3.2670

3.1380
3. 1286
3.1194
3.1102

2.1176
2.1163
2.1151
2.1121
2.1092
2.1064

2.0565
2.0569
2.0574
2.0580
2.0587

2.8461
2.8167
2.7878
2.7593
2.7313
2.7037
2.6764

2.3557
2.3333
2.3112
2.2894

1.1459
1.1367
1.1276

1.0161
1.0080
1.0000
0.9920

0.0040
0.0020
0.0000

-0.0049
-0.0099
-0.0147

-0.1869
-0.1902
-0.1935
-0.1967
-0.2000

0.00
-0.02
-0.04
-0.06
-0.08
-0.10

-0.92
-0.94
-0.96
-0.98
-1.00

.262

.264

.266

.268

.270

.272

.298

.300

.302

.304

0.500
0.502

0.996
CT. 998
1.000
1.005
1.010
1.015

1.230
1.235

__J__M
1.245
1.250

1.00
0.98
0.96
0.94
0.92
0.90

0.06
0.04
0.02
0.00

0.4160
0.4228
0.4291
0.4349
0.4401
0.4449

0.4998
0.4999
0.4999
0.4999
0.5000

0.8095
0.8224
0.8345
0.8458
0.8565
0.8664

0.9995
0.9997
0.9998
0.9999
1.0000

a e B' Y S k

1.1801 2.5767 6.0987 1.1834 0.458 0.19350
1.2087 2.3334 4.3424 0.9305 0.518 0.27834
1.2096 2.3263 4.2947 0.9230 0.520 0.28166
1.2106 2.3192 4.2475 0.9157 0.522 0.28502
1.2116 2.3122 4.2009 0.9083 0.524 0.28842

1.2295 2.1955 3.4501 0.7857 0.560 0.35636
1.2305 2.1895 3.4128 0.7793 0.562 0.36055
1.2315 2.1835 3.3759 0.7730 0.564 0.36478
1.2325 2.1776 3.3395 0.7667 0.566 0.36907
1.2335 2.1717 3.3035 0.7605 0.568 0.37340

1.4970 1.5030 0.0120 0.0040 0.996 124.003
1" 1.4985 ' 1.5015 0.0060 0.0020 0.998 249.001

1.5000 1.5000 0.0000 0.0000 1.000 ± -
1.5037 1.4962 - 0.0148 - 0.0049 1.005 - loi.ooo
1.5075 1.4926 - 0.0295 - 0.0099 1.010 - 51.0049
1.5113 1.4890 - 0.0440 - 0.0147 1.015 - 34.3408

1.6949 1.3779 - 0.5153 - 0.1869 1.230 - 3.28891
1.6997 1.3762 - 0.5237 - 0.1902 1.235 - 3.24515
1.7045 1.3746 - 0.5321 - 0.1935 1.240 - 3.20333
1.7094 1.3730 - 0.5403 - 0.1967 1.245 - 3.16331
1.7142 1.3714 - 0.5485 - 0.2000 1.250 - 3.12500

[3] « Calcul à l'état limite ultime des sections en flexion simple
et composée», Document SOCOTEC par MM. Albiges,
Jal'l et Perchat, Février 1972.

[4] « Le calcul pratique des sections de béton armé », par
P. Charon, Editions Eyrolles, 1973.
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