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Communication de la chaire de statique et de résistance des matériaux de l'EPFL,
professeur M.-H. Derron

Etude d'une famille d'éléments spatiaux de barre courbe
de section rectangulaire variable

par MAURICE-H. DERRON et JAROSLAV JIROUSEK, Lausanne

Le développement des théories modernes de calcul des

structures et les progrès de la technologie permettent l'utilisation

rationnelle d'éléments de construction de plus en plus
compliqués. Des études sont entreprises par divers chercheurs

pour analyser ces ouvrages par la méthode des éléments
finis, dont les résultats peuvent être plus ou moins satisfaisants

selon la manière de définir les éléments. Pour juger la
valeur d'une proposition, il est indispensable de disposer
d'un outil de travail, en l'occurrence un programme de calcul
très général, permettant de tester les éléments proposés. La
création de cet outil dépasse les possibilités d'un chercheur
isolé.

Cette étude ne pouvait être entreprise qu'avec l'aide du
Fonds national suisse de la recherche scientifique, auquel
vont nos plus sincères remerciements.

Introduction

Au cours des dernières années, on a vu se répandre de plus
en plus des constructions formées de barres courbes dans
l'espace. De tels éléments peuvent être soit isolés comme la
poutre en spirale de la figure la supportant un escalier en
colimaçon, par exemple, soit assemblés pour former des systèmes
plans ou spatiaux de poutres curvilignes croisées (voir les
exemples des figures lb et le). Dans certains cas, les barres
curvilignes sont associées à des éléments de coque (fig. Id).
Cette application est surtout fréquente dans la construction des
avions.

Bien que l'application des méthodes matricielles à l'analyse
de systèmes plans ou spatiaux de poutres croisées formées
d'éléments rectilignes soit courante aujourd'hui, les systèmes
spatiaux de poutres curvilignes croisées n'ont fait l'objet que de
quelques travaux de portée limitée. A notre connaissance, les
résultats des études publiées se résument principalement à ce
qui suit :

[1] Baron propose pour le calcul des barres courbes de
l'espace un procédé matriciel basé sur les approximations successives.

[2] Li Shu-t'ien propose une solution approchée des coupoles
de révolution formées de barres curvilignes, en assimilant le
système à une coque. La solution se limite aux cas de charges
symétriques et ne tient pas compte de la flexion et de la torsion
des barres.

[3] Eisemann, Who et Namyet assimilent les poutres courbes
à une suite de segments rectilignes, ce qui revient à introduire
des nœuds supplémentaires le long des poutres.

[4] Jirouäek calcule approximativement les systèmes plans de
poutres curvilignes croisées, constitués par un système
d'anneaux circulaires et un système d'entretoises radiales, en
remplaçant ce dernier par un milieu continu équivalent.

[5] Hutton publie une méthode de calcul de systèmes de
poutres curvilignes planes croisées basée sur l'utilisation des
séries trigonométriques.

[6] Michalos propose un calcul des systèmes de l'espace par
approximations successives en appliquant à tour de rôle la
méthode matricielle des forces et la méthode matricielle des
déplacements.

[7] Fenton considère des systèmes spatiaux de barres
curvilignes constituées de segments circulaires de section constante,
dont il développe la matrice de raideur par l'inversion de la
relation déplacements-forces.

Le champ d'application de toutes ces études est limité, soit
par les simplifications d'ordre géométrique, soit par l'impossibilité

de satisfaire certaines conditions aux limites ou de prendre
en compte n'importe quel cas de charge ; parfois les algorithmes
proposés conduisent à un volume de calcul difficilement
tolerable.

Les progrès réalisés dans le calcul matriciel au cours de la
dernière décennie ayant clairement démontré les avantages et
les ressources de la méthode des éléments finis, il est possible
d'envisager un élément très général de barre courbe dans
l'espace ; en première étape, nous considérons une barre de section
rectangulaire variable, qui peut être représentée avec un minimum

de données ; une prochaine étape sera consacrée aux
barres de section quelconque. Il s'agit de satisfaire aux conditions

suivantes :

— La géométrie de l'élément doit permettre de réaliser avec
une précision suffisante une courbe axiale aussi compliquée
qu'on le désire et un taux quelconque de variation de la section
le long de l'axe. Par ailleurs, il faut pouvoir tenir compte de
l'excentricité éventuelle des nœuds par rapport à l'axe de
l'élément.

— En vue de l'application au calcul des coques nervurées, le
développement de la matrice de rigidité de l'élément doit être
basé sur la méthode directe des rigidités plutôt que sur l'inversion
de la relation déplacements-forces. Un choix convenable de
fonctions paramétriques des déplacements généralisés
permettra de satisfaire automatiquement les conditions de continuité

aux interfaces des éléments.

— L'élément doit s'appliquer sans restrictions à tous les
rapports entre la hauteur de la section et la longueur de la barre.
En plus de déformations dues aux moments fléchissants et aux
moments de torsion, il doit par conséquent tenir compte également

des déformations dues aux efforts normaux et aux efforts
tranchants.

En partant des concepts fondamentaux de la méthode directe
des rigidités, la dernière des conditions ci-dessus implique qu'il
faut dissocier les rotations de la section et les dérivées des
déplacements de l'axe des éléments, et donc représenter les
déplacements et les rotations par des fonctions géométriquement

indépendantes. Une famille d'éléments satisfaisant à ces
principes sera présentée ci-après.

Fig. 1. — Exemples de constructions formées d'éléments
spatiaux de barres courbes : a) poutre hélicoïdale, b) pont
courbe (grille), c) coupole, d) coque nervurée.
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I. Considérations géométriques

1.1 Définition d'une famille d'éléments de barre courbe de

section rectangulaire variable

Considérons un élément typique de barre courbe à
section rectangulaire (fig. 2). L'élément peut être engendré
par une section rectangulaire dont le centre de gravité se
déplace sur une courbe appelée axe de la barre, les dimensions

de la section variant lentement le long de l'axe.
L'élément est repéré dans le système dit global d'axes
cartésiens x, y, z, commun à tous les éléments de la
structure.

Afin de pouvoir définir convenablement la forme de
l'élément, il est avantageux d'introduire un système de

5-1

BaAa) CJ

/y

vzx
Ab)

1

:

Fig. 2. — Deux membres de la famille d'éléments spatiaux de
barre-courbe de section rectangulaire variable (a) et leurs
éléments de base (b) : élément quadratique (A), élément cubique

(B).

trois paramètres sans dimensions, £, n et £, appelés
coordonnées curvilignes, £ étant la coordonnée curviligne de
l'axe de l'élément, tandis que n et f sont les coordonnées
transversales définissant la position d'un point quelconque
par rapport à cet axe. De manière générale, l'élément
courbe sera géométriquement défini par une correspondance

biunivoque entre les coordonnées x, y, z et £, n, £.
En pratique, il est commode d'établir les relations

x=x(£,r\,0, y=y(Ç,ti,Q et z=z(i,tj,0 (1)

de telle façon que les coordonnées <J, n et £ varient entre
+ 1 et —1 sur les diverses faces de l'élément. On remarquera

alors (fig. 2Ab et 2Bb) qu'un élément courbe représenté

dans le système d'axes Ç, t/JÊS prend la forme du
parallélépipède rectangle, dont les côtés sont égaux à deux
unités. (Pour des raisons pratiques, on a choisi dans la
figure des échelles différentes pour la coordonnée £, et pour
les coordonnées r\, £). Cet élément sera appelé « élément
de base ».

Une méthode des plus pratiques pour définir dans
l'espace l'axe de l'élément consiste à fixer sur cet axe un
certain nombre de nœuds L 1,2... M, répartis plus
ou moins régulièrement, et à faire passer par ces points
une fonction d'interpolation. En désignant par x0, j>n et
z0 les coordonnées globales d'un point quelconque de
l'axe, on peut par exemple écrire :

x0

JCo

z0

£^(0
m
yL

Zl

(2)

où les fonctions N (Ç), appelées fonctions de base, prennent
une valeur unité en L et nulle pour tous les autres nœuds
K ^ L. Les polynômes présentant cette propriété sont
connus sous le nom de polynômes de Lagrange ; ils ont
pour expression :

Afe«) g-&) tf-&) • • • (S-Çzr-Ù tf-6»i) • • • tf-fo)
(Çl-Zù (£l-£ù •¦¦ (Çl-Çi^-i) (Zl-Çl+i) ¦ ¦ ¦ (Çl-Zm)

(2a)

On remarquera que les triplets de points L, L' et
U (fig. 2), chacun affecté de ses coordonnées
cartésiennes x, y, z connues, définissent les dimensions
des sections nodales £, et leur orientation dans l'espace.
Pour décrire la forme de l'élément, y compris ses

dimensions transversales, et aboutir ainsi aux relations
du type (1), on peut utiliser à nouveau les fonctions
de base (2a). Pour les applications pratiques, il est
commode, en effet, de présenter ces relations sous la
forme :

^Nl(Ö
Xl
yL

Zl
yL'

-*l
-yL

-zL

+ (3)

La figure 2 montre deux exemples d'éléments courbes
définis par la relation (3). On remarquera que le nom de
ces éléments («quadratique» pour M 3, «cubique»
pour M 4) indique le degré des fonctions de base adoptées

pour leur description. De même, pour M — 5, 6, etc.,

nous parlerons des éléments «quartique», «quintique»,
etc.

Afin de pouvoir définir certaines matrices qui interviendront

plus tard dans les calculs pratiques, on peut mettre
l'équation (3) sous la forme :
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z \ J-i. z2 • ZM_ ta« -zi) Us—^a) •¦ ¦ (zM '—Zm)

+ c
-xi) (x2*

-yù Ov
-xè-.
-yè ¦¦

• (xM'—Xm)

• (ym—ym) )l N2
' •
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ou encore

r } ([Gol + n [GB] + C [Gei) {N}. (4)

Dans cette dernière équation, {Ni est la matrice-
colonne des fonctions de base, et [Gol. [Gß] et [Gc] sont
les matrices géométriques dont la signification est évidente.

En raison de certaines considérations géométriques

(voir 1.2) il est utile de représenter encore l'équation (3)
sous forme vectorielle, par l'introduction du rayon vecteur

r xi + yj + zk, (5a)

(où i, j et k désignent les vecteurs-unité selon les axes
—> —$•

globaux x, y et z) et des vecteurs BL et CL reliant
respectivement les points L, L'et L, L" :

BL

CL

BxL i + ByLj + BzLk (xL-—xL) i + (yL'—yL)J + (zL—z£) k,

Cxl l + CyLj + CzLk (xL-—x£) i + (yL—yL)j + (zL.—zL) k. J

(5b)

On aura alors

M

~?~YiNl(® fè + 1*l + CCl)

qui constitue la troisième forme de l'équation (3).

{'*>
xL

yL

zl
{4

En comparant les ensembles de relations (4a), (4) et
(5a), (5b), (5), on remarquera aisément que les colonnes

(5) des matrices géométriques [G0], [Gß] et [Gc] dans (4) sont
respectivement égales aux matrices-colonnes {ri.}, {-Si,} et
{C£} formées par les coordonnées cartésiennes des

vecteurs rL, BL et CL, soit :

I

i-i
-Xl

yv—yL
Zl' — Zl

S r \
xh- -Xl
yv -yL
ZL- -zL

(6)

Ajoutons que chaque section £ Çl aura pour nor-
—>

maie le vecteur AL égal au produit vectoriel des vecteurs
-*¦ -»•
fi et C:

Al fii x Cr,.

Notons qu'en pratique la relation (3) (ou ses formes
équivalentes (4) et (5)) peut en principe être utilisée de
deux manières différentes pour définir la forme de
l'élément. Dans la première, on s'en sert pour exprimer
approximativement la forme déjà donnée d'un élément par
une expression analytique unique et mieux adaptée aux
besoins du calcul. C'est la manière que l'on peut qualifier
de passive. Dans la seconde, au contraire, on se servira
de (3) (ou de (4) ou (5)) de manière active : en fixant
convenablement dans l'espace un nombre approprié de triplets
de points L, U et L", cette relation permet d'engendrer
des formes aussi compliquées qu'on le désire. On
considérera alors la définition (3) (ou (4) ou (5)) comme la
forme véritable d'un élément qui, au départ, n'était défini
que grossièrement par un nombre limité de points.

1.2 Coordonnées locales d'une section de l'élément

1.2.1 Généralités

Afin de pouvoir tenir compte des hypothèses et des lois
fondamentales de la théorie classique des barres, on
considérera en tout point de l'axe de l'élément un système dit
local d'axes orthogonaux, constitué par l'axe x* tangent à
l'axe de l'élément et des axes y* et z* confondus avec les

axes principaux de la section (voir par exemple la fig. 3).
La détermination de ce système local recèle quelques
difficultés, propres à la méthode utilisée pour la définition
géométrique de l'élément, définition qui, forcément, ne
représente qu'imparfaitement la réalité. D faut notamment
remarquer qu'une section Ç const, n'est en général
qu'approximativement perpendiculaire à l'axe de l'élément
(fig. 3). Nous nous en rendrons facilement compte en
étudiant de plus près certaines propriétés de la définition
(5).

On remarquera tout d'abord que la perpendicularité des

vecteurs BL et CL en tout point nodal L implique qu'il en
sera de même pour tout point / intermédiaire (£ ^ Ç£) de
l'axe. En effet, en tenant compte de (5) on aura :

B (7a)

C r
M

?i=Y,Nl®Cl. (7b)

Puisque le produit scalaire des vecteurs BL et CL est
—> —>¦

nul en tout nœud (condition d'orthogonalité B-C 0,
L 1, 2 M), il en résulte nécessairement, en vertu
de (7), qu'il en sera de même pour tout point intermédiaire
de l'axe. Les sections â, — const, sont alors des rectangles
de côtés

b=2\B\ et A 2 C (7)

où | B | et | C | sont respectivement les valeurs absolues des

vecteurs B et C.

«"El

t.*.X"t
t const. \ ]

n.r

l
Fig. 3. — Section Ç const, et section perpendiculaire à
l'axe en un point intermédiaire de l'élément.
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Avec (7a, b), le vecteur A de la normale à une section

£ const, s'écrit :

A=YiNL(S)BLx £] NL(0 CL (7c)

En revanche, compte tenu de (5), le vecteur t de la
tangente à l'axe de l'élément aura pour expression

t
d-l

Hin,

M

£jv£(örL (8)

où le prime désigne la dérivée par rapport à d; : N'L (£)
dN^d^. La comparaison de ces expressions montre que
la définition géométrique (5) de l'élément n'implique pas

que la normale à la section £, — const, soit parallèle à la
tangente de l'axe.

1.2.2 Première méthode de définition des axes locaux d'une
section

il découle de la discussion précédente que les sections
d; const, ne peuvent en général être perpendiculaires à
l'axe qu'en un nombre limité de points particuliers de

l'élément. Si l'on adopte l'expression (5) comme la forme
véritable de l'élément, on peut par exemple choisir le

triplet de points L, L' et L" définissant chaque section
nodale de telle manière que le plan £ ÇL soit
perpendiculaire à l'axe (voir la section hachurée dans la fig. 3).
Si le nombre M de nœuds est suffisant et si la distorsion
de l'élément n'est pas excessive, il n'y a souvent, en tout
point intermédiaire de l'axe, que très peu de différence

-> —>¦

entre les directions des vecteurs t et A. En négligeant
cette différence, on peut approximativement choisir les

axes x*, v* et z* suivant les vecteurs A, B et C définis par
-»-—>- —>

les relations (7a, b, c). Les vecteurs-unités i*, j* et k*

Q)

°§ (b)C

^»n

X?
ieclion

t f[=cons1
/ 0 0

1 0
0 1

n// i

t!.»

»Bnla b-=s(b>

=—-i

1*(N cp:

[AVB" l

w»C

L
Fig. 4. — Projection de la section f f/ sur le plan
perpendiculaire à l'axe et détermination des axes locaux x*, y* et z*.

suivant ces axes s'expriment alors simplement par les

relations

Bx C -»¦

\Bx C\

B

fil

C

\C\
(9)

Ajoutons que les dimensions b et h des sections
s'obtiennent à l'aide de (7).

1.2.3 Deuxième méthode de définition des axes locaux
d'une section

Une méthode plus précise et plus générale de définition
des axes locaux consiste à couper le solide défini par (5)

par un plan perpendiculaire à l'axe r\ f 0. La
section obtenue n'étant en général pas tout à fait
rectangulaire, il s'agira de déterminer une section rectangulaire

de remplacement. Ce problème n'est pas univoque et

plusieurs formulations ont été tentées. Nous avons finalement

retenu celle qui parait la plus simple. Elle consiste à

projeter suivie plan perpendiculaire à l'axe la section

£ const., soit la section rectangulaire ABCD de la

figure 4a, et à ramener ensuite le parallélogramme
{A)(B)(C)(D) ainsi obtenu à un rectangle A*B*C*D*
(fig. 4b) par les rotations appropriées 9i et $2 de ses

axes (//) et (£)•
Dans les relations qui suivent, on désignera par / un

point quelconque de l'axe de l'élément. Si l'on appelle B.

le rayon-vecteur d'un point quelconque du plan
perpendiculaire à l'axe, l'équation du plan passant par / s'écrit :

f/-(A-rj) 0. (10)

Soit (/ 0, respectivement (/*), la projection du point /',
respectivement /", sur le plan (10) (fig. 4a). On trouve
après un calcul simple :

'(/') a -t et '(T)

avec

t -B

t\
et a

rr + a • t,

t -C

(H)

(Ha)
\t\

Si l'on désigne les vecteurs (I—W)) et (/—(/*)) respec-
-> —».

tivement par (B) et (C), les longueurs des côtés du
parallélogramme (/4)(B)(C)(£>), et par suite aussi celles des

côtés du rectangle de remplacement A*B*C*D* (fig. 4b),
deviennent :

2|(fi)| et 2 |(C)|

avec

(B) ra')-r/ et (C) r(1-y

(12)

(12a)

L'angle co compris entre les vecteurs (B) et (C) peut
être obtenu au moyen de la relat i on :

(fl)-(O
I (fi)H (Ol b* h'

{B)-(Q. (13a)

Pour le ramener à l'angle droit, on admettra que les

rotations .9i et 33 \ dont la somme est égale à la correction
7^

totale 5i + $2 — to—'-^ sont telles que les arcs circulaires

(F)!*' et (/") /** parcourus pendant la rotation (fig. 4b)
sont de longueur égale. Ceci conduit aux expressions
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n h* A n b**- -pmn? r-2Jet 5z=-^w (13)
où {N}' est la matrice-colonne des premières dérivées par
rapport à Ç des fonctions de base.

La simplicité de l'hypothèse adoptée ici se justifie en
raison de l'influence relativement faible des petites corrections

angulaires qui interviennent dans la majorité des cas
pratiques.

Pour trouver les vecteurs-unités /*, j*, k* selon les
axes x*, y*, z* du système local, on exprimera tout

—>¦ ->
d'abord les vecteurs B* et C* de longueur quelconque
disposés selon les axes y* et z*. Etant donné que les vec-

—>¦—>¦ —> —>
teurs (_B*), (C*), B* et C* sont coplanaires, les deux
derniers peuvent s'exprimer par une combinaison linéaire
des deux premiers ; par exemple :

B* (B) + ax (C),

C* a2 (B) + (C),
(14a)

1.3 Compléments

Les développements du chapitre suivant impliquent un
certain nombre de relations mathématiques en rapport
avec la définition géométrique de l'élément. Nous pensons
utile de les résumer ci-après :

1.3.1 Intégration sur l'axe de l'élément

Compte tenu des relations (15a, b) eï|p6d), la valeur
absolue t I /1 du vecteur tangent s'écrit

t t (dj) V{N'}T-[G0]T.[G0]-{N'} (17a)

Avec ds td£,, l'intégrale d'une fonction f(Ç)
quelconque sur l'axe de l'élément aura pour expression :

où ai et a% sont des coefficients inconnus que l'on
déterminera en tenant compte respectivement de l'angle connu
9i des vecteurs (5), B* et de l'angle connu 52 des vecteurs

(O. C*. Après un calcul élémentaire, on obtient les
relations

I=ff(Ç)ds=ff<Ç)-t(Odc:. (17)

1.3.2 Relations entre les coordonnées globales et les
coordonnées locales d'un vecteur

ai — [sin co • cotg (ta—i9i)—cos co]
h*

a% — [sin ta ¦ cotg {co—$2)—cos co].b*

(14b)

Les vecteurs-unités selon les axes locaux auront alors
pour expression :

k* — C*
h*

(14)

1.2.4 Expression matricielle des relations définissant les
axes locaux

Pour le calcul sur ordinateur, il convient de remplacer
l'ensemble des relations vectorielles donnant les vecteurs-
unités /*, j* et k* par un ensemble équivalent de
relations matricielles conduisant aux matrices-colonnes {i*},
{/*} et {k*}. On y parvient aisément en opérant les
substitutions suivantes :

.{V}, \V\=>V= \J{V}T{V),

V,

vh vzmvh vs

vm v*mvu v\
Vu v*,rvy, ^

(15a)

(15b)

(15c)

où V, Vi et V2 sont des vecteurs quelconques, et où
l'indice supérieur T désigne la matrice transposée. Par
ailleurs, en partant de (4) plutôt que de (5), on aura :

(B) IGB]{N} {C}= [GC]{N] (16a)

[G0]{/V}, (16b)

M ([G„] + [Gß]) {N}, {/y} ([G0] + [GC]){N}, (16c)

IrA

{'} [G0] {TV] (16d)

Soit V un vecteur quelconque ayant pour expression,
suivant le référentiel orthogonal choisi :

V= VJ+ vj+ V$= m* + V*ï* + V*k*

La matrice [0] qui définit la transformation orthogonale
entre les coordonnées cartésiennes,

{ V) [6>] { V*} et {V*}= mT{V), (18)

aura alors pour expression

[6>] =[{/*}{/*} {**}], (18a)

où {i*}, {j*} et {k*} sont respectivement les matrices-
colonnes des coordonnées cartésiennes globales des vec-

teurs-unités locaux i*, y**, k* calculées selon les
relations données dans le paragraphe 1.2.

1.3.3 Dérivée par rapport à x* des coordonnées carté¬
siennes locales d'un vecteur

Soit { V\ { V(Ç)} la matrice-colonne des coordonnées
cartésiennes globales connues d'un vecteur. La dérivée par
rapport à x* de la matrice-colonne {V*} des coordonnées
cartésiennes locales du même vecteur aura pour valeur :

j-m{v*} c[eF{vy, (19)

où le prime désigne la dérivée par rapport à £ et où le
coefficient c est égal à la valeur inverse de la longueur du

vecteur tangent t :

1

_
- 1

C~7~ V{N'}'r[Go\T[GQi{N'}
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(à suivre)
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