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Communication de la chaire de statique et de résistance des matériaux de I'EPFL,

professeur M.-H. Derron

Etude d’'une famille d’éléments spatiaux de barre courbe

de section rectangulaire variable

par MAURICE-H. DERRON et JAROSLAV JIROUSEK, Lausanne

Le développement des théories modernes de calcul des
structures et les progrés de la technologie permettent ['utili-
sation rationnelle d’éléments de construction de plus en plus
compliqués. Des études sont entreprises par divers chercheurs
pour analyser ces ouvrages par la méthode des éléments
finis, dont les résultats peuvent étre plus ou moins satisfai-
sants selon la maniére de définir les éléments. Pour juger la
valeur d’une proposition, il est indispensable de disposer
d’un outil de travail, en ’occurrence un programme de calcul
tres geénéral, permettant de tester les éléments proposés. La
création de cet outil dépasse les possibilités d’un chercheur
isolé.

Cette étude ne pouvait étre entreprise qu’avec [’aide du
Fonds national suisse de la recherche scientifique, auquel
vont nos plus sincéres remerciements.

Introduction

Au cours des dernieres années, on a vu se répandre de plus
en plus des constructions formées de barres courbes dans
I’espace. De tels éléments peuvent étre soit isolés comme la
poutre en spirale de la figure la supportant un escalier en coli-
magon, par exemple, soit assemblés pour former des systemes
plans ou spatiaux de poutres curvilignes croisées (voir les
exemples des figures 1b et 1c). Dans certains cas, les barres
curvilignes sont associées a des éléments de coque (fig. 1d).
Cette application est surtout fréquente dans la construction des
avions.

Bien que I'application des méthodes matricielles a I’analyse
de systemes plans ou spatiaux de poutres croisées formées
d’éléments rectilignes soit courante aujourd’hui, les systémes
spatiaux de poutres curvilignes croisées n’ont fait I'objet que de
quelques travaux de portée limitée. A notre connaissance, les
résultats des études publiées se résument principalement a ce
qui suit :

[1]1 Baron propose pour le calcul des barres courbes de I’es-
pace un procédé matriciel basé sur les approximations succes-
sives.

[2] Li Shu-t’ien propose une solution approchée des coupoles
de révolution formées de barres curvilignes, en assimilant le
systtme a une coque. La solution se limite aux cas de charges
symétriques et ne tient pas compte de la flexion et de la torsion
des barres.

[3] Eisemann, Who et Namyet assimilent les poutres courbes
a une suite de segments rectilignes, ce qui revient a introduire
des nceuds supplémentaires le long des poutres.

[4] Jirousek calcule approximativement les systemes plans de
poutres curvilignes croisées, constitués par un systeme d’an-
neaux circulaires et un systeme d’entretoises radiales, en rem-
plagant ce dernier par un milieu continu équivalent.

[5] Hutton publie une méthode de calcul de systémes de
poutres curvilignes planes croisées basée sur 'utilisation des
séries trigonométriques.

[6] Michalos propose un calcul des systémes de I’espace par
approximations successives en appliquant a tour de role la
méthode matricielle des forces et la méthode matricielle des
déplacements.

[7] Fenton considére des systémes spatiaux de barres curvi-
lignes constituées de segments circulaires de section constante,
dont il développe la matrice de raideur par linversion de la
relation déplacements-forces.
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Le champ d’application de toutes ces études est limité, soit
par les simplifications d’ordre géométrique, soit par I'impossi-
bilité de satisfaire certaines conditions aux limites ou de prendre
en compte n’importe quel cas de charge ; parfois les algorithmes
proposés conduisent a un volume de calcul difficilement tolé-
rable.

Les progres réalisés dans le calcul matriciel au cours de la
derniére décennie ayant clairement démontré les avantages et
les ressources de la méthode des éléments finis, il est possible
d’envisager un élément tres général de barre courbe dans I'es-
pace ; en premiére étape, nous considérons une barre de section
rectangulaire variable, qui peut étre représentée avec un mini-
mum de données; une prochaine étape sera consacrée aux
barres de section quelconque. Il s’agit de satisfaire aux condi-
tions suivantes :

— La géométrie de 1’élément doit permettre de réaliser avec
une précision suffisante une courbe axiale aussi compliquée
qu’on le désire et un taux quelconque de variation de la section
le long de I’axe. Par ailleurs, il faut pouvoir tenir compte de
I’excentricité éventuelle des nceuds par rapport a 1’axe de I’é1é-
ment.

— En vue de I'application au calcul des coques nervurées, le
développement de la matrice de rigidité de I’élément doit étre
basé sur la méthode directe des rigidités plutdt que sur I'inversion
de la relation déplacements-forces. Un choix convenable de
fonctions paramétriques des déplacements généralisés per-
mettra de satisfaire automatiquement les conditions de conti-
nuité aux interfaces des éléments.

— L’élément doit s’appliquer sans restrictions a tous les rap-
ports entre la hauteur de la section et la longueur de la barre.
En plus de déformations dues aux moments fléchissants et aux
moments de torsion, il doit par conséquent tenir compte égale-
ment des déformations dues aux efforts normaux et aux efforts
tranchants.

En partant des concepts fondamentaux de la méthode directe
des rigidités, la dernié¢re des conditions ci-dessus implique qu’il
faut dissocier les rotations de la section et les dérivées des
déplacements de I'axe des éléments, et donc représenter les
déplacements et les rotations par des fonctions géométrique-
ment indépendantes. Une famille d’éléments satisfaisant a ces
principes sera présentée ci-apres.

a)

Fig. 1. — Exemples de constructions formées d’éléments
spatiaux de barres courbes: a) poutre hélicoidale, ») pont
courbe (grille), ¢) coupole, d) coque nervurée.

Bulletin technique de la Suisse romande - 101e année - No 21 - 9 octobre 1975



I. Considérations géométriques

1.1 Définition d’une famille d’éléments de barre courbe de
section rectangulaire variable

Considérons un élément typique de barre courbe a
section rectangulaire (fig. 2). L’élément peut étre engendré
par une section rectangulaire dont le centre de gravité se
déplace sur une courbe appelée axe de la barre, les dimen-
sions de la section variant lentement le long de I’axe.
L’¢lément est repéré dans le systéme dit global d’axes
cartésiens x, y, z, commun a tous les éléments de la
structure.

Afin de pouvoir définir convenablement la forme de
I’élément, il est avantageux d’introduire un systéme de

Fig. 2. — Deux membres de la famille d’éléments spatiaux de
barre-courbe de section rectangulaire variable (a) et leurs
¢éléments de base (b): élément quadratique (A), élément cubi-
que (B).

E— ALy ... €& ) €—Ern) ... G0

trois paramétres sans dimensions, &, # et {, appelés coor-
données curvilignes, ¢ étant la coordonnée curviligne de
P’axe de I'élément, tandis que # et { sont les coordonnées
transversales définissant la position d’un point quelconque
par rapport a cet axe. De maniére générale, 1’élément
courbe sera géométriquement défini par une correspon-
dance biunivoque entre les coordonnées x, y, z et &, 7, (.
En pratique, il est commode d’établir les relations

x=x(&n.0, y=y¢&nl et z=z(&,n0 Q)

de telle fagon que les coordonnées &, # et { varient entre
+1 et —1 sur les diverses faces de I’élément. On remar-
quera alors (fig. 2Ab et 2Bb) qu’un élément courbe repré-
senté dans le systeme d’axes &, #, { prend la forme du
parallélépipede rectangle, dont les cotés sont égaux a deux
unités. (Pour des raisons pratiques, on a choisi dans la
figure des échelles différentes pour la coordonnée ¢ et pour
les coordonnées 7, {). Cet élément sera appelé « élément
de base ».

Une méthode des plus pratiques pour définir dans
I’espace I'axe de I’élément consiste & fixer sur cet axe un
certain nombre de nceuds L = 1,2 ... M, répartis plus
ou moins régulierement, et a faire passer par ces points
une fonction d’interpolation. En désignant par x,, y, et
zo les coordonnées globales d’un point quelconque de
I’axe, on peut par exemple écrire :

]Xo M [XL
Yo=Y M@t @
lZo L=1 lzL

ou les fonctions N (&), appelées fonctions de base, prennent
une valeur unité en L et nulle pour tous les autres nceuds
K # L. Les polyndémes présentant cette propriété sont
connus sous le nom de polyndmes de Lagrange ; ils ont
pour expression :

NL(CV)Z

On remarquera que les triplets de points L, L’ et
L” (fig. 2), chacun affecté de ses coordonnées
cartésiennes x, y, z connues, définissent les dimensions
des sections nodales ¢ et leur orientation dans I’espace.
Pour décrire la forme de I’élément, y compris ses

(€e=~&)(Er—Ca) ... EpCra) Cr—Lriy) :.. Cr—Cn)

(2a)

dimensions transversales, et aboutir ainsi aux relations
du type (1), on peut utiliser a nouveau les fonctions
de base (2a). Pour les applications pratiques, il est
commode, en effet, de présenter ces relations sous la
forme :

X M XL Xy —XL ’XL”_XL
Y= Z N @ ye g+ nsyr—yey +C3 yer—ys . )
z] e Zr, zL»~le l Zpr—2p,

La figure 2 montre deux exemples d’éléments courbes
définis par la relation (3). On remarquera que le nom de
ces éléments (« quadratique » pour M = 3, «cubique »
pour M = 4) indique le degré des fonctions de base adop-
tées pour leur description. De méme, pour M = 5, 6, etc.,

nous parlerons des ¢éléments « quartique », « quintique »,
etc.

Afin de pouvoir définir certaines matrices qui intervien-
dront plus tard dans les calculs pratiques, on peut mettre
I’équation (3) sous la forme :

‘ x | Sy Kot oo s Xy (X7 —x1) (xgr—X9) ... (X3 —Xnr)
Y= \|nre---yu| +0|Ovr—y) Gr—r2d ... Or—ya) | +
l z l Zi Z5:ws: Zhir) (zy—2z1) (20— 23) ... (zZppr—2zpp)
N
(g7 —x1) (Xgr—x2) ... (Xpr7—Xpr) N l
+ | rr—r1) Ger—ya) ... Vs — a0 :M > (4a)
(zyr—21) (20— 29) ... (Zy»—za1) | I Nﬂll
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ou encore

r}= (Gl +nlGsl + {IGc){N}. (C))

Dans cette derniére équation, {N} est la matrice-
colonne des fonctions de base, et [Gy], [Gg] et [G¢] sont
les matrices géométriques dont la signification est évidente.

En raison de certaines considérations géométriques

5 - — =
By, = B,,i + By, j + B, k = (xp—

(voir 1.2) il est utile de représenter encore 1’équation (3)
sous forme vectorielle, par I’introduction du rayon vecteur
— - — —

r=xi+y + zk, (5a)
e e — 0 -
(ou i, j et k désignent les vecteurs-unité selon les axes

—- —
globaux x, y et z) et des vecteurs By, et Cy, reliant respec-
tivement les points L, L’ et L, L” :

=5 - =
xp) i+ =y j + (zp—zp) k,

(5b)

= By R o e > 2
Co=Coi+ Cyrj+ Curk = (xpr—xp)i+ pr—y)j+ (zpr—2zpL) k.

On aura alors

M
_r>= Z N (©) (7L 0y 773[, TR CEL) > ®
I=1

qui constitue la troisieme forme de I’équation (3).

XL
YL (> {BL}=

Zr

{ro} =

Ajoutons que chaque section & = &; aura pour nor-
—
male le vecteur A4; égal au produit vectoriel des vecteurs
- —
B et C;
— — —
A, = By, X Cp,.

Notons qu’en pratique la relation (3) (ou ses formes
équivalentes (4) et (5)) peut en principe étre utilisée de
deux manieres différentes pour définir la forme de I’élé-
ment. Dans la premiére, on s’en sert pour exprimer
approximativement la forme déja donnée d’un élément par
une expression analytique unique et mieux adaptée aux
besoins du calcul. C’est la maniére que I’on peut qualifier
de passive. Dans la seconde, au contraire, on se servira
de (3) (ou de (4) ou (5)) de maniére active : en fixant con-
venablement dans I’espace un nombre approprié de triplets
de points L, L’ et L”, cette relation permet d’engendrer
des formes aussi compliquées qu’on le désire. On consi-
dérera alors la définition (3) (ou (4) ou (5)) comme la
forme véritable d’un €élément qui, au départ, n’était défini
que grossiérement par un nombre limité de points.

1.2 Coordonnées locales d’une section de [’élément

1.2.1 Généralités

Afin de pouvoir tenir compte des hypotheses et des lois
fondamentales de la théorie classique des barres, on consi-
dérera en tout point de I’axe de I’élément un systéme dit
local d’axes orthogonaux, constitué par I’axe x* tangent a
I’axe de I’élément et des axes y* et z* confondus avec les
axes principaux de la section (voir par exemple la fig. 3).
La détermination de ce systéme local recéle quelques diffi-
cultés, propres a la méthode utilisée pour la définition
géométrique de I’élément, définition qui, forcément, ne
représente qu’imparfaitement la réalité. 11 faut notamment
remarquer qu’une section & = const. n’est en général
qu’approximativement perpendiculaire a ’axe de I’élément
(fig. 3). Nous nous en rendrons facilement compte en
étudiant de plus prés certaines propriétés de la définition

(5).
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En comparant les ensembles de relations (4a), (4) et
(5a), (5b), (5), on remarquera aisément que les colonnes
des matrices géométriques [Gy], [Gg] et [G] dans (4) sont
respectivement égales aux matrices-colonnes {rz}, { B.} et

CL} formees par les coordonnées cartésiennes des vec-

teurs rL, BL et CL, soit :

xL'—xLl Xpr—Xr,
yois {Co}y = yp—yry.- (6)
Zy—ZL l Zpr—ZL

On remarquera tout d’abord que la perpendicularité des

vecteurs BL et CL en tout point nodal L implique qu’il en
sera de méme pour tout point 7 intermédiaire (& # &) de
I’axe. En effet, en tenant compte de (5) on aura :

e 4 Lo

B=rp—ri= Z N.© By, (7a)
L=1

— —- — M —

C=rﬂ—r;=ZNL(é)cL. (7b)
I=1

Puisque le produit scalaire des vecteurs BL et CL est

nul en tout nceud (condition d’orthogonalité B C =0,
L=1,2... M), il en résulte nécessairement, en vertu
de (7), qu’il en sera de méme pour tout point intermédiaire
de I’axe. Les sections ¢ = const. sont alors des rectangles
de cotés

.
b=2|B|

)

— -

ol | B| et | C| sont respectivement les valeurs absolues des
—

vecteurs B et C.

Fig. 3. — Section { = const. et section perpendiculaire 2
I’axe en un point intermédiaire de 1’élément.
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=3
Avec (7a, b), le vecteur A de la normale a une section
& = const. s’écrit :

M M
2=2Nud&xZNuaq. (7¢)
L=1 =1

s
En revanche, compte tenu de (5), le vecteur ¢ de la
tangente a ’axe de I’élément aura pour expression

= @Qmo mem. ®)

ou le prime désigne la dérivée par rapport a ¢: N, (&) =
dN,/dE. La comparaison de ces expressions montre que
la définition géométrique (5) de I’élément n’implique pas
que la normale a la section £ = const. soit paralléle a la
tangente de I’axe.

1.2.2 Premiére méthode de définition des axes locaux d’une
section

Il découle de la discussion précédente que les sections
¢ = const. ne peuvent en général étre perpendiculaires a
P’axe qu’en un nombre limité de points particuliers de
I’élément. Si I’on adopte I'expression (5) comme la forme
véritable de D’élément, on peut par exemple choisir le
triplet de points L, L" et L” définissant chaque section
nodale de telle maniére que le plan & = &, soit perpen-
diculaire a I’axe (voir la section hachurée dans la fig. 3).
Si le nombre M de nceuds est suffisant et si la distorsion
de I’élément n’est pas excessive, il n’y a souvent, en tout

point intermédiaire de I’axe, que trés peu de différence
— —
entre les directions des vecteurs ¢ et A. En négligeant

cette différence, on peut approximativement choisir les
- —> —>

axes x*, y* et z* suivant les vecteurs 4, B et C définis par

. O =

les relations (7a, b, c). Les vecteurs-unités i*, j* et k*

Fig. 4. — Projection de la section { = {7 sur le plan perpen-

diculaire a I’axe et détermination des axes locaux x*, y* et z*.
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suivant ces axes s’expriment alors simplement par les
relations

R Rl B-Z. o
|B x C| | B | C]

Ajoutons que les dimensions b et /2 des sections s’ob-
tiennent a 'aide de (7).

1.2.3 Deuxieme méthode de deﬁmnon des axes locaux
d’une section

Une méthode plus précise et plus générale de définition
des axes locaux consiste a couper le solide défini par (5)
par un plan perpendiculaire a laxe # = { = 0. La
section obtenue n’étant en général pas tout a fait rectan-
gulaire, il s’agira de déterminer une section rectangu-
laire de remplacement. Ce probléme n’est pas univoque et
plusieurs formulations ont été tentées. Nous avons finale-
ment retenu celle qui parait la plus simple. Elle consiste a
projeter sur le plan perpendiculaire a I’axe la section
¢ = const., soit la section rectangulaire ABCD de la
figure 4a, et a ramener ensuite le parallélogramme
(A)(B)(C)(D) ainsi obtenu a un rectangle A*B*C*D*
(fig. 4b) par les rotations appropriées J; et Jo de ses
axes (1) et (0).

Dans les relations qui suivent, on désignera par / un
point quelconque de I'axe de I’¢lément. Si I'on appelle_;?
le rayon-vecteur d’un point quelconque du plan perpen-
diculaire & I’axe, I’équation du plan passant par I s’écrit :

e (R—r) =0 (10)

Soit (1), respectivement (/”), la projection du point I”,
respectivement ”, sur le plan (10) (fig. 4a). On trouve
aprés un calcul simple :

| ”

- Y —
ray =ry+a-t et rgy=rp+a-t, (1)

avec

ad=—— &¢e a = — = (11a)

Si 'on de51gne les vecteurs (I—(I")) et (I—(I")) respec-

tivement par (B) et (C), les longueurs des cotés du paral-
lélogramme (A)(B)(C)(D), et par suite aussi celles des
cotés du rectangle de remplacement A*B*C*D* (fig. 4b),
deviennent :

b =2|(B)| et ¢ =2|©), (12)

avec

B) = rgy—r1 et (O)= rgn—rr.  (12a)
L’angle @ compris entre les vecteurs (B) et (C) peut

étre obtenu au moyen de la relation :
COS (0 = 79}}0 = 7_4 - (E)-(E). (13a)

|(B)$ |(C)| b*h

Pour le ramener a I’angle droit, on admettra que les
rotations 9 et 3o (dont la somme est égale a la correction
totale 9y -+ 32 = w— Zj sont telles que les arcs circulaires

f[’)l"‘; et (I”) ™+ parcdurus pendant la rotation (fig. 4b)
sont de longueur égale. Ceci conduit aux expressions
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h* /4 b* n
= (“"5) = <°’“5>' )

La simplicit¢ de I’hypothése adoptée ici se justifie en
raison de I'influence relativement faible des petites correc-
tions angulaires qui interviennent dans la majorité des cas
pratiques.

s e P B

Pour trouver les vecteurs-unités i*, j*, k* selon les

axes x*, y* z* du systéme local, on exprimera tout

— —
d’abord les vecteurs B* et C* de longueur quelconque
disposés selon les axes y* et z*. Etant donné que les vec-

teurs (B¥), (C*), B* et C* sont coplanaires, les deux
derniers peuvent s’exprimer par une combinaison linéaire
des deux premiers ; par exemple :

B = B+ a1 (O, |

. s N (14a)
C* = ay (B) + (O), ‘

ou a; et as sont des coefficients inconnus que ’on déter-
minera en tenant compte respectivement de ’angle connu
— —
9, des vecteurs (B), B* et de ’angle connu 3, des vecteurs
—_

—
(C), C*. Aprés un calcul élémentaire, on obtient les
relations

a; = % [sin w - cotg (w—31) —cos w] , ‘
(14b)

1*
as = [% [sin w - cotg (w0 —33)—cos w] .

Les vecteurs-unités selon les axes locaux auront alors
pour expression :

- - 2 =
i*= ., j*=_B% k*=_0Cr. (14

1.2.4  Expression matricielle des relations définissant les
axes locaux

Pour le calcul sur ordinateur, il convient de remplacer
I’ensemble des relations vectorielles donnant les vecteurs-

- = —
unités i*, j* et k* par un ensemble équivalent de rela-
tions matricielles conduisant aux matrices-colonnes {i*‘,
{i*} et {k*}. On y parvient aisément en opérant les substi-
tutions suivantes :

v=>{r}, |V|=>V=y{r\7{r}, (15a)
Vi Va=s {7 {Vs) 15b
1Y rea==\"1y \Yayps ( )

’ V1y~ Va,— V1, - sz

— — ~

Vl X VZ == V1 ® ng— le * sz 5

Vi - Vo—Vy Vs ’
x y Y %

(15¢)

z

- = —
ou V, Vi et Vy sont des vecteurs quelconques, et ot
I'indice supérieur 7' désigne la matrice transposée. Par
ailleurs, en partant de (4) plutét que de (5), on aura :

{B} = [Gl{N}, {C})=I[Gcl{N}, (l6a)

(rr} =[Gl {N}, (16b)
{re}=(Gol + [GED N}, {rp} = (IGo] + [Ge){ N}, (160)

(t) = GI{NY, (16d)
334

ol { N} est la matrice-colonne des premiéres dérivées par
rapport a £ des fonctions de base.
1.3  Compléments

Les développements du chapitre suivant impliquent un
certain nombre de relations mathématiques en rapport
avec la définition géométrique de 1’élément. Nous pensons
utile de les résumer ci-aprés :

1.3.1 Intégration sur ’axe de [’élément
Compte tenu des relations (15a, b) et (16d), la valeur
—
absolue 7 = | 7| du vecteur tangent s’écrit
t=1() = V{N)-[GI"-[Gl-{N'}. (I7a)

Avec ds = td¢, Dintégrale d’une fonction f(&) quel-
conque sur I’axe de I’élément aura pour expression :

4 +1
I=[f©ds =_f1f(é)~t (& de . (a7

1.3.2 Relations entre les coordonnées lobales et les
8
coordonnées locales d’un vecteur

xg
Soit ¥ un vecteur quelconque ayant pour expression,
suivant le référentiel orthogonal choisi :

— —> — — => —> —>
V="Vi+ Vyj+ Vik = Vi* + Vi 1+ vies,
La matrice [@] qui définit la transformation orthogonale

entre les coordonnées cartésiennes,
{V‘ = [9]{V*} et { V*) = [@]T{V‘ , (18)
aura alors pour expression
[01=[{i*} {i*} {£*}], (18a)
ou {i*}, {j*} et {k*} sont respectivement les matrices-
colonnes des coordonnées cartésiennes globales des vec-

2,7 W £
teurs-unités locaux i*, j*, k* calculées selon les rela-
tions données dans le paragraphe 1.2.

1.3.3 Dérivée par rapport a x* des coordonnées carté-
siennes locales d’un vecteur

Soit { V} = V' (&)} la matrice-colonne des coordonnées
cartésiennes globales connues d’un vecteur. La dérivée par
rapport a x* de la matrice-colonne {¥'*} des coordonnées
cartésiennes locales du méme vecteur aura pour valeur :

ﬂ{v*}:c[a]T{V}', (19)

ou le prime désigne la dérivée par rapport a & et ou le

coefficient ¢ est égal a la valeur inverse de la longueur du
—

vecteur tangent 7 :

1

. — . (1%9)
{N"}7[Gol” [Gol {N"}

c =

~ | =

(a suivre)
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