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BULLETIN TECHNIQUE DE LA SUISSE ROMANDE

101 année 31 juillet 1975 N-° 16

Réflexions sur l'utilisation des méthodes de calcul des réseaux

d’'énergie électrique

par J.-J. MORF, Lausanne

1. Analogies et différences des calculs de réseaux d’'eau, de gaz et

d’électricite

Pour compléter les exposés précédents, il convient de mon-
trer d’'une part que ces méthodes peuvent aussi s’appliquer a
I’étude des réseaux d’eau et des réseaux de gaz a condition de
bien maitriser les analogies utilisables dans chaque cas. Ce sera
I'objet du premier exposé.

D’autre part, dans le second exposé, l'attention sera attirée
sur un risque inhérent a la méthode de calcul par itération du
probleme classique du «load-flow » des réseaux électriques.
Cette méthode ne donne qu’une solution alors que pour le pro-
bléme posé il en existe en général plusieurs.

L’étude des conduites d’eau et de gaz présente certaines
analogies avec celle des lignes électriques. Il faut cependant
étre conscient de deux faits importants :

10 Le choix de I’analogie est toujours arbitraire ; suivant
le probléme étudié, il convient de choisir une analogie
plutdt qu’une autre ; si le choix est bien fait, elle peut
apporter une meilleure compréhension du phénomene.

20 Le choix d’une analogie convenant pour résoudre un
probléme bien déterminé peut conduire a des conclu-
sions totalement fausses pour d’autres problémes. Il
faut donc user des analogies avec la plus grande
prudence.

1.1 Exemple 1: Transmission d’ondes le long d’une conduite
d’eau et le long d’une ligne électrique

La propagation d’ondes de tension et de courant le long

d’une ligne monophasée peut étre calculée a partir des
équations aux dérivées partielles

J di

u . .
S =Ri+ L5 )
di ,u

Pour les phénomeénes trés rapides ou a fréquence tres
¢élevée les termes R’i et G'u sont souvent négligeables par

i du
rapport aux termes L’;{ et C,T de telle sorte que I’on
1 17

calcule comme si R et G' étaient nuls. (En régime continu
stationnaire ce sont les termes L’-,Jf et C’% qui doivent
étre négligés.) ot ot

Les mémes équations permettent de calculer la propa-
gation d’ondes de pression et de débit le long d’une conduite
d’eau ou de gaz.

Pour ce type de calcul, les analogies suivantes peuvent
étre proposées.
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Sym- Ligne C?j?;lﬁte Cg: c;glzte
bole électrique horizontale horizontale
tension a pression 1) | pression 1)
u(x,t) | I'abscisse x a a I’abscisse x a I’abscisse x
Iinstant ¢ a I'instant 7 a l'instant ¢
enV en N/m?2 en N/m2
i(x,t) | courant a débit a débit massique

a ’abscisse x
a l'instant #

I’abscisse x
a l'instant ¢

I’abscisse x
a l'instant ¢z

en A en m3/s 2) | en kg/s 2)
R résistance résistance résistance
ohmique hydraulique linéique au
linéique linéique passage du
en Q/m en Ns/mé  3) | gazen 1/sm?2 3)
G’ | conductance perditance perditance
transversale linéique de de la
linéique la conduite conduite
en S/m en m4/Ns 4) | en s 4)
L’ | inductance coefficient coefficient
linéique d’inertie d’inertie
en H/m linéique linéique
en kg/m® 5) | en 1/m? 5)
¢’ capacité coefficient coefficient
transversale d’élasticité de compres-
linéique de la conduite sibilité
en F/m en m4/N 6) | linéique
en s2 6)
Remarques

1) Si les conduites ne sont pas horizontales, il faut
ajouter les pressions statiques aux pressions calculées.

2) On considére I’eau incompressible, ce qui est exclu
pour le gaz. Il convient de définir des débits conservatifs
pour respecter le lemme de Kirchhoff.

3) En courant continu comme en débit continu station-
naire I’équation (1) donne

du " e fure
7= — R’i donc apres intégration u = u (0)— R'xi ;
x

pour un débit 7 constant, la chute de tension ou la chute de
pression est proportionnelle a la longueur de la ligne ou
de la conduite pour autant que la section soit constante. Il
faut toutefois attirer I’attention sur une différence fonda-
mentale (voir tableau ci-dessus).
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En électricité, on admet généralement en premiére
approximation que la résistance linéique R’ est indépen-
dante du courant, alors qu’en hydraulique et en thermo-
dynamique une telle approximation est jugée insuffisante
(fig. 1). )

ARXi 2/1
1
P
//
—
- i
7
7
/
Fig. 1. — Non-linéarité de la «résistance hydraulique ».

1) chute de tension électrique en fonction du courant i
2) perte de pression hydraulique en fonction du débit i
(x = longueur de la ligne ou de la conduite considérée)

4) Pour une conduite saine G’ = 0, pour une ligne élec-
trique on peut en général négliger le terme G'u.

5) La grandeur L’ traduit I'effet de I'inertie de I’eau (ou
du gaz) dans la conduite ; pour accélérer la masse en mou-
vement, il faut en effet une différence de pression (fig. 2).

—= -
pression &1 masse d’eau pSdx = pressalon
u(x) —> i [ u(x)e XM dx
o vitesse L = ax
—| S ——
+dx

t

Fig. 2. — Effet de 'inertie de I'eau.
force = masse x accélération

My g DS o Ju v i
— (.}—xdx-S—yde It d’ol e halcE T
comparer a ’équation (1) L’ = %
w_EA a Iéquation (1))
— — = ~ — (comparer a I’équation
dx S ot B 9
Pour I’eau, le coefficient d’inertie linéique est donné par
9%

la relation L' = S ou

y = masse spécifique de I’eau, 1000 kg/m?
S = section de la conduite en m?>

: . i
<Pour le gaz, la vitesse est donnée par TS‘;
I

on trouve alors L' = §>

6. La grandeur C’ traduit D'effet de I’élasticité de la
conduite d’eau (ou I'effet de la compressibilité du gaz). On
sait qu'une augmentation de pression « produit un agran-
dissement de la section de la conduite d’eau S = S, + C'u

( c m> m? Ju
en

’

]
Ix ot

)(ﬁg. 3), et par conséquent —

(E:omparer a I’équation (2) )

i) [y 100+ g; dx
| W |
| |

L section (S+ g% dt) sous la pression(u+ %\{1 dt)

Fig. 3. — Effet de I’élasticité de la conduite.
accroissement de volume = accroissement de section x longueur

Ji . du e ﬂ_ , Ju
_,7,\:{['”1! =C E(I!(I.\dou = c v
comparer a I’équation (2)
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(Pour le gaz, il faut tenir compte de la compression
adiabatique.

En général, les variations de température ont un effet
négligeable, de sorte que la masse spécifique du gaz y peut
étre considérée comme proportionnelle a sa pression u :

kg m?
y=ku <k en )

m® N |

i Ju . .
On retrouve —-—— = C’—— , mais cette fois C'= S-k
dx ot

2
S o kgm 2
et s’exprime en m 3 =s5).

m° N

Pour autant que I’on puisse négliger les termes R" i et G" u
. . . di
dans les équations (1) et (2), vis-a-vis des termes L,E et

u :
C’a—t , ce qui est admissible pour I'étude de propagations

d’ondes a front raide ou d’ondes alternatives a fréquence
relativement élevée, on obtient :

Pu e u
Ix? or?
v 2y
Ix? Ji?

On sait que ces équations sont satisfaites pour des

fonctions quelconques u, (y) et u, (z) avec y = x—
¢ \’/L/CI

\/‘L/C/

etz=x+

On trouve finalement :

\

4 t
u(x,t) = u, ( x—
JEE?

S~
_|_.
RS
/‘\
=
_l_
(‘
5a |
Q
ST

i(x,1)=

La fonction u, est I'expression d’une onde progressive
de tension (ou de pression) qui est accompagnée par une
onde progressive simultanée de courant (ou de débit)

, 3 llp
représentée par ——

L/
C/

Ces deux ondes progressives sont parfaitement semblables
entre elles, de méme signe et en phase.

La fonction u«, est I’expression d’une onde rétrograde de
tension (ou de pression) ; elle est accompagnée par une
onde rétrograde de courant (ou de débit) représentée par

U, Q
— ", Ces deux ondes rétrogrades sont parfaite-
L’

e
ment semblables entre elles, de signes opposés et en phase.
Par contre, les ondes rétrogrades peuvent étre d’une forme
différente de celle des ondes progressives.

1

est la vitesse de propagation d’onde en m/s dans
VL'C les trois cas (électricité, eau, gaz) ;
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\/ - est 'impédance caractéristique de la ligne ouide
c la conduite et s’exprime

en Q pour la ligne électrique,

kg .
en —,— pour la conduite d’eau,
m?s

1 .
en —— pour la conduite de gaz.
s-m

Si I'on termine la ligne ou la conduite par son « impé-
dance caractéristique », il n’y a pas de réflexion. (Il s’agit
d’une résistance pour la ligne, d’'un diaphragme pour la
conduite.)

Si I'on termine la ligne par un interrupteur ouvert ou la
conduite par un robinet fermé, il y a réflexion positive de
I'onde u :

t ) t
Uy (xfin + ,—-) + Uy | Xpin— — j
VL' Cc JIre

I

\ /

et négative de I'onde i :

r . t
7 ) = —lp (xfin“ e
\/‘L'C// q \»‘L'C’y

\

) “@

ir (xfin =+

SiI’on termine la ligne par un court-circuit ou la conduite
par un robinet ouvert, il y a réflexion négative de I'onde u :

! t t
A ; ) = —Up | X— )
yC'L VC'L

et positive de ’onde 7 :

. iy ’ ;
i | x4 =+i, [ x—— ) (5)
’ ( \/L’C’) ! ( VEer

Cette similitude des trois phénoménes de propagation
(électricité, eau, gaz) a inspiré Louis Bergeron dans sa
fameuse étude : Du coup de bélier en hydraulique au coup de
foudre en électricité [1]1.

Les méthodes graphiques de Bergeron permettent de
calculer élégamment les phénoménes relativement simples
lors de variation brusque dans une conduite ou dans une
ligne. Deés qu’il s’agit d’un réseau de conduites ou d’un
réseau de lignes radial, bouclé ou maillé, il faut recourir
I’ordinateur.

1.2 Exemple 2 : Calcul des flux en régime stationnaire
dans un réseau d’eau (ou de gaz) et dans
un réseau électrique

Les similitudes entre réseau d’eau et réseau électrique en
régime permanent sont différentes de celles qu'on vient
d’évoquer dans I'exemple précédent. En fait, déja pour les
divers problémes électriques, on a utilisé des similitudes
diverses ; c’est ainsi que dans les tables & calcul & courant
continu les résistances de la table représentent en images

X
des valeurs A pour I’étude des chutes de tension pro-
" voquées par les puissances réactives
représentées par les courants de la table ;

2
™ voqués par les puissances actives repré-

sentées par les courants de la table ;

X
des valeurs U pour I'étude des écarts de phase pro-

I Les chiffres entre crochets renvoient a la bibliographie en
fin d’article.
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des réactances X pour I'’étude des court-circuits (X, X;
et X}, suivant que I’on cherche la compo-
sante directe, inverse ou homopolaire du
courant de court-circuit).

Ce n’est guére que pour calculer des chutes de tension
dans un réseau a courant continu que les résistances de la
table sont des images de résistances réelles.

Pour I'é¢tude d’un réseau d’eau composé de conduites
radiales, bouclées ou maillées en régime permanent ou
quasi stationnaire, on peut prendre des méthodes sem-
blables a celles utilisées pour les réseaux électriques.
Dehousse, Coyette et Piraprez [2] en ont décrit une dont
voici les étapes essentielles :

Considérons un réseau d’eau maillé 3 B branches et
N nceuds. Dans notre exemple (fig. 4) B = 6 et N = 5.

noeud 3
branche (4) -Q3
——
L i @) H
-q, g
) 93) (5)
— e —
branche (1) noeud 2 branche (3) noeud 4
noeud 1 “
Q
%6) —
-Qs G(2) branche (2)
noeud 5
Fig. 4. — Réseau d’eau maillé & 6 branches et 5 nceuds.

Pour simplifier I’exemple, nous choisissons un réseau
horizontal (si tel n’est pas le cas, il faut ajouter les pressions
statiques provenant des différences d’altitude aux pressions
qui vont étre calculées).

On suppose le réseau d’eau défini géométriquement
(diamétre des conduites, longueurs, rugosité, nombre de
coudes, etc.).

Sur la base des données hydrauliques suivantes :

a) en chaque nceud de réseau arrivent (ou partent) des
quantités d’eau données par unité de temps. Vu I'incom-
pressibilit¢ de I'eau, on peut exprimer les débits Q;
enm?/s ou en kg/s. (Pour les gaz, il convient d’exprimer
les débits en kg/s ; le débit volumique n’est pas conser-
vatif, il peut étre calculé en divisant le débit massique
par la masse spécifique du gaz, laquelle est proportion-
nelle a la pression absolue et inversement proportion-
nelle a la température absolue, toutes deux dépendant
de I’endroit et de I'instant considérés) ;

b) la pression P; en un nceud est supposée connue (elle
correspond a celle au bas d'un réservoir de grand
volume réel ou fictif imaginé pour les besoins du calcul ;
on remplace donc les pompes par des réservoirs fictifs
fournissant la pression P;).

Le probléme des débits et des pressions consiste a
déterminer les B débits dans les branches, les N débits
injectés (ou soutirés) des nceuds connaissant les N pres-
sions P; aux N nceuds.

Pour ce faire, on dispose de B équations de Bernoulli,
soit une pour chaque branche et de N équations de
continuité exprimant que le débit Q; injecté au nceud i
est la somme algébrique des débits g;, des branches
partant du nceud 7.

Au début, on assigne un sens positif arbitraire aux
debits g ;) pour chaque branche ((/) = (1) ... (B)).

Il est aisé¢ d’écrire la matrice d’incidence nceuds-bran-
ches K du réseau hydraulique.
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B branches

» @ 6 @ 6 ©

(6) 1 1. -1 0 0 0 +1
2 —1 0 —1 -1 0 0

N nceuds § 3 0 0 0 +1 -1 0 =K
4 0 —1 +1 0 +1 0
5 0 0 0 0 0 —1

Pour construire la matrice, il est plus aisé de considérer
une branche aprés lautre, compte tenu du sens positif
adopté la branche (3)

part du nceud 4 donc Ky 3y = + let
aboutit au nceud 2 donc K (5 = — 1

Aprés avoir passé en revue les B branches, on a déterminé
2 B éléments K; ;) de la matrice K, tous les autres éléments
sont nuls.

On retrouve une similitude parfaite avec la matrice d’in-
cidence K d’un réseau électrique .

Par sa définition méme, la somme des éléments d’une
colonne quelconque de la matrice K est nulle

(+1-14+04+040=0 (7)

—

N—-2)

La derniére ligne de la matrice K est donc obtenue par
la somme des précédentes changée de signe ; elle dépend
donc linéairement des (N—1) lignes précédentes et n’ap-
porte aucune information nouvelle. On peut donc réduire
la matrice K a la matrice d’incidence nceuds-branches
réduite C en supprimant une ligne de K (par exemple la
derniére).

1l est évident que les débits Q; «injectes » dans les
neceuds 7 sont liés aux débits g (;, passant par les branches (;)
par la relation

Q1 qq
Qi |=&Envw) | 90
On q(B)
ce que ’on notera pour simplifier par
@) (Q4) =(K) - (@)
ou (Q4) est le vecteur des débits injectés aux acces
(= nceuds)

et (q) estle vecteur des débits dans les branches.
Drautre part, pour chaque branche (), I’équation de
Bernoulli permet d’écrire (fig. 5) :

® pPpp=EP—P~ O_(j)'z(j)'q(?) B équations

W= ...18
PK 9 /F,\////
/;/\k/ H l

1
I

Fig. 5. — Branche (j) entre nceud k et neeud /.

En effet, la perte de charge (P,— P,) 1’est pas une fonction
linéaire du débit (voir [2] et [3]), si 'on tient compte du

1 Voir I'exposé de A. Germond et H. B. Piittgen sur la
Répartition des puissances dans un réseau électrique en régime
permanent, paru dans le BTSR n° 16 du 1.8.1974 et reproduit
en page 11 du présent tiré a part.
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« régime laminaire » pour les faibles débits, du régime
« turbulent lisse » pour les moyens débits et du régime
« turbulent rugueux » pour les forts débits, on constate
qu’il conviendrait d’écrire :

1 3 5
Pe—P) =204 + %2 ap + *2mnag + -
la relation (8) n’est qu’une approximation parmi d’autres,

valable pour le domaine prévisible ¢ ) min < 7y < 4 (j) max

_|a)|

oG = est une variable logique qui vaut évidem-

404
ment +lsiPk>Plet—15iP]c<Pl;

elle donne le signe du débit g ;.

. ! ; k
Z @) = résistance quadratique de la conduite (;) en é
m

3
: : ; m
q ) = débit volumique de la conduite () en —

s

. N
Py et P, = pressions aux nceuds k et /en — -
m

(Si I’on traite des conduites de gaz, il faut tenir compte
10 du fait que le débit volumique croit du début a la fin de
la conduite en raison de la diminution de pression et de
masse spécifique ; 2° du fait que dans les étranglements le
débit volumique est plus grand (pression et masse spéci-
fique réduite) que dans les parties larges. C’est pourquoi il
faut utiliser les débits massiques qui seuls sont conservatifs.
Pour plus de détails, voir [3], pages 20-23.) Pour la suite
des calculs nous en resterons a I’exemple des conduites
d’eau pour lesquelles les débits volumiques sont pratique-
ment conservatifs, aux pressions et températures usuelles.

Py
P;
. : le vecteur des pressions
oient (P,) = P 4
SOIERL {ea) & aux N nceuds (accés)
P,
Py
0-(1) q(%)
: le vecteur des carrés des
(0¢) = | 04y 45, | débits de conduites (multi-
: pliés par le signe de g(;)
e fl(f;,
Za) 0 0
la matrice diagonale des
(z) = 0 Z() 0 résistances quadratiques
2 des conduites
0 0 'Z(B)

- et K la matrice des incidences nceuds-branches,

on peut alors écrire les B équations (8) sous la forme
(K)p + (Po) = (z)  (0g?) (8) bis

Pour l’exemple choisi (fig. 4), I'équation matricielle
(8) bis donne les six équations suivantes :

Py—Py = zqgy - 0y fl&)

= 2
Py—P; = z¢) - 0 45, (8) ter
2
@)
(‘j’;) pour l'exemple de la
o figure 4
®)

Pi—P5=z4 0 2
I s ® " 9@ 4

Py—Py =2z - 04
Pg—Po = 2(4) . 0(4) q

Py—Py =z « 04
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et I’équation matricielle (7) donne les « injections» aux
acces

Q1 = + [](1) + f](g) T M & @re + CI(G) (7) blS
0, i —d4qqy --- — 4@ — 9w pour

Q3 = ... o Sl - + 11(4) = (I(5) l’exemple
Q1= ... —dqdo+ds- .-+ T4 de la

Os = . — g figure 4

-
On vérifie facilement que E Q; =0, ce qui est évi-
i=1
dent si I’on utilise des débits conservatifs. (Ce ne serait pas
le cas pour des débits volumiques de gaz.)

Plusieurs cas se présentent :

1.2.1 Cas le plus simple

Si l'on connait les N pressions aux nceuds et les B résis-
tances quadratiques des conduites, il est ais¢ de calculer
les B carrés de débits q(?) (() = () ... (B)), par exemple:

.

P4_P2
9@ =
Z@3) 03

Le calcul du débit est aisé : g(;y = (s ‘/E}) ,

(La variable logique o(;, nous garantit automatiquement
que le sens réel d’écoulement de I’eau va toujours du nceud
a la pression la plus élevée au nceud a la pression la plus
basse, quel que soit le sens positif arbitraire qui a été choisi
initialement.)

Les N équations (7) nous donnent immédiatement les
injections aux N nceuds.

Il y a 1a une analogie frappante avec le probléme élec-
trique : si I’on connait les N tensions aux N nceuds (en
modules et en phase) ainsi que les B impédances complexes
des B branches, on peut immédiatement en déduire les
B courants électriques complexes dans les B branches, puis
les N courants complexes injectés aux N nceuds. Toutefois,
une différence fondamentale subsiste : dans le réseau élec-
trique, les relations entre courants et tensions sont linéaires,
ce n'est qu’en passant aux puissances que les relations
deviennent non linéaires ; dans le réseau d’eau, les relations
non linéaires interviennent déja entre les pressions et les
débits.

1.2.2  Cas plus difficile

On donne (N—1) « injections » positives ou négatives
désirées en (N—1) nceuds (une « injection négative » cor-
respond a4 un soutirage) ainsi que la pression Py au
neeud N (nceud bilan).

Il est évident qu’on connait immédiatement I'injection

au nceud N
(N—-1)

Oy =) O
i=1
Restent a déterminer les 7 débits de conduites et les (N—1)
pressions inconnus.

Dans des cas trés favorables (réseau radial ou débouclé),
on peut théoriquement récrire ’équation matricielle (8)
en la multipliant membre & membre par (K),', a condition
que la matrice K soit carrée. En général, ce n’est pas le cas.
(On pourrait la rendre carrée par des artifices de calculs.)

Il est préférable d’utiliser une méthode itérative nous
amenant a répéter plusieurs fois le calcul du cas le plus
simple décrit précédemment en partant pour commencer
de (N—1) valeurs initiales des pressions aux (N—1) nceuds
en les choisissant arbitrairement, mais malgré tout assez
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judicieusement pour ne pas égarer 'ordinateur dans des
calculs sans fin.

Admettons par exemple que I’'on connaisse les débits
« injectés » aux nceuds de la figure 4,

avec 0,>0 0,>0
0,<0 0;<0

On calcule immédiatement Q5 = —(Q; + Os+ 05+ 04);
supposons Qs < 0 (le débit au nceud bilan est beaucoup
plus rapidement calculé que la puissance au nceud bilan
d’un réseau électrique, pour autant qu’aucune conduite
n’ait des fuites fonctions de la pression !).

Partant de la pression P; connue que 1’on désire avoir au
nceud 5, il semble a priori assez judicieux de choisir

Py > Ps donc gg, = + 1
Pyy < Py doncogy,=+1
Py > Py, doncog,=+1
ng <= P40 donc Oy = +1

l’indice 0 indique qu’il s’agit du premier choix arbitraire
(mais raisonnable) des pressions. Ce choix étant fait on

constate peut-&tre que Pyy > Pig, donc gy, = —1
et éventuellement que Pgy << Py, donc oy, = —1 au
départ.

N.B. — Les variables logiques ;) peuvent changer de

signe au cours des itérations successives, ce qu’il est facile
de programmer.

Partant de ce premier choix des pressions P;,, on calcule
les débits dans les conduites et les débits injectés aux
neeuds Q;,, correspondant a ce premier choix. Il est évident
que Q;, 7%~ Q; désiré.

Pour le nouveau choix des pressions P;;, on désire partir
de nouvelles valeurs qui nous rapprochent si possible de
la solution désirée. Comme les relations entre pressions et
débits ne sont pas linéaires, il est nécessaire de les linéariser
au voisinage des valeurs de départ.

Les (N—1) dérivées partielles de g, par rapport aux
(N—1) pressions P ... P; ... Py ... P, ... Py, sont
d’aprés ’équation (8)

@2 = Rl o s toujours > 0 | pour les deux
IPy Gy 25y 2 Ao nceuds k et /
4 1 adjacents a la

—2 = ———— toujours < 0 ‘ branche (7
IP GGy 24y 2 Ao ()

Da.
et - 2B =g M i % k ou [, soit pour tous les
()PZ

autres nceuds

1l est aisé de déduire maintenant les dérivées partielles
de Q; par rapport aux (N—1) pressions indépendantes,

ce qui donne le jacobien (J) = (—Q—j , Mmatrice carrée

JP,
(N—1) (N—1).

Ces dérivées partielles permettent de déterminer en
premiére approximation l'influence de chaque écart 4P;
apporté a la pression choisie en chaque nceud 7 sur tous les
débits-g(;, des B branches et sur tous les débits Q; injectés
aux N nceuds.

En notation matricielle :

(404 = (J)-(4Py) (10)
d'ou (4Py) = (J) 1 (4Qx) €8Y)
Pi1—Pyo Ce vecteur permet

de passer de l'an-
cienne approxima-
tion a la nouvelle
approximation

avec (AP4) = | Pu—Pio

Pv-1y1—Pv-1y0
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(J)™* = inverse de la matrice carrée du jacobien

(7_Q1 @ & Cette matrice est
JP; IP, IP(x-1y trés creuse, tous
905 905 : les termes concer-
2P, 0P, - nant deux nceuds
1 2 .y

()= . non reliés par une
: branche sont nuls.
Elle doit étre re-

calculée apres
Rw-y IQ -1y chaque itération.

(7P1 (7P(N—1)
O1aes. —010

Ecarts entre les débits
désirés et les débits
donnés lors de I'ap-
proximation 0.

(AQA) = Qz dés. fQiO

Ow-1) ats. —Qwv-1)0

L’algorithme permettant de choisir les nouvelles valeurs
P;; est donné par

(12) (Pa)) = (Pag) + (I [(Q4 assird)  —(Qa0)]

Lanotation matricielle n’est 1a que pour simplifier I'exposé
du probléme. Dans la pratique, on programme directement
chaque opération a effectuer. Voir a ce sujet [2], pages 1
a 27, article qui présente cette méthode de résolution du
probléme du réseau d’eau maillé par ordinateur. Elle trans-
forme les données par deux procédés de linéarisation a

A

q())

Fig. 6. — Allure du débit gy en fonction de p; pour diverses
valeurs de p;.

‘o Pp—P
9 = o) \/ o Pe=P)
(D

a qd (Pr) pour Pi = Pw donné, tg a 0 tangente a la courbe a)
au pomt Pro g o lors de la premiere itération, par itérations
successives on trouve Pr1 —> g1 —> tga 1 — P2 — g2 qui
est assez voisin de gu) désiré on peut arréter le calcul.

b g (Px) pour Pi = Pw donné, tg b0 tangente a la courbe b)
au point Pro, quoe etc. (Il faut deux itérations de plus pour
obtenir gu désiré).

choix que I’on résout par itérations. Les deux programmes
proposés sont appliqués a un petit réseau et une application
trés importante montre ’efficacité du programme proposé.
La figure 6 donne une vision graphique de ces approxima-
tions par itérations successives du méme algorithme.

1.3 Conclusion

En conclusion, on peut remarquer que I’ordinateur per-
met de résoudre des problémes de réseaux d’électricité,
d’eau et de gaz qu’ils soient radiaux, bouclés ou maillés. On
retrouve dans chaque cas des procédés similaires tels que
matrice d’incidence, remplacement d’'un probléme com-
pliqué non linéaire par itération d’un procédé de calcul rela-
tivement plus simple et linéaire, matrice Jacobienne des
dérivées partielles, inversion, etc. Toutefois, les méthodes
doivent étre adaptées dans chaque cas spécifique a la nature
du réseau (eau, gaz, électricité) et a la nature du probléme
a résoudre : coup de bélier, coup de foudre, régime transi-
toire lors de la fermeture ou de I'ouverture d’une vanne,
du déclenchement ou de I’enclenchement d’un interrupteur,
d’une rupture de conduite ou de son blocage par un bou-
chon, d’un court-circuit ou d’une rupture de conducteur.
Les méthodes qui ont été plus particuliérement dévelop-
pées concernent des régimes permanents sinusoidaux tri-
phasés symétriques en électricité et des régimes permanents
continus en hydraulique.

Il ne faut pas se laisser leurrer par les similitudes, les
correspondances ne sont qu’apparentes; s’il y a une cer-
taine ressemblance entre pressions hydrauliques et tensions

. électriques, les relations non linéaires qui apparaissent dés

le départ en hydraulique n’interviennent qu’au stade du
calcul des puissances en électricité. Il existe beaucoup plus
de différences fondamentales que d’analogies entre les
réseaux d’eau, de gaz et d’électricité. Songeons simplement
au fait que les pertes de charge en hydraulique augmentent
avec l’'age de la conduite, avec le nombre de coudes de la
conduite et avec le nombre de toutes les modifications de
forme localisées ([3], pages 41 a 113), toutes choses qui
n’ont aucune correspondance en électricité. L’intérét des
puissances en jeu est primordial en électricité et tout a fait
secondaire en distribution d’eau (conduites forcées des
turbines exceptées). En distribution d’eau et de gaz, ce
sont surtout les quantités livrées qui importent, donc les
débits ; les pressions sous lesquelles ces débits sont livrés
peuvent varier dans de tres larges limites sans inconveé-
nients, de pareilles marges pour les tensions seraient into-
lérables. Que dire enfin des réducteurs de pression qui ne
sont rien d’autre que des destructeurs d’énergie ? Une
pareille technique reviendrait a remplacer les transforma-
teurs de quartier par des potentiométres pour réduire les
tensions a I’entrée des maisons.

Il n’en reste pas moins que I’ordinateur arithmétique se
préte parfaitement bien a toutes ces formes de calcul.

2. Existence, inexistence ou multiplicité de solutions mathématiques

réalisables ou irréalisables

Nous revenons sur le calcul des flux de puissances et
des tensions d’un réseau électrique tel qu’il se présente le
plus souvent. On connait en général les puissances actives
et réactives que I’on veut tirer ou fournir de chaque nceud.
Le calcul classique de « load-flow » décrit dans I’exposé de
A. Germond et H. B. Piittgen ! permet alors de trouver

1 Voir BTSR n° 16 du 1.8.1974, reproduit en pages 10 a 16
du présent tiré a part.
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une solution du probleme, mais en général il y en a plu-
sieurs. Fort heureusement le choix judicieux des valeurs
initiales des tensions conduit I'ordinateur a trouver la solu-
tion qui est pratiquement réalisable, toutefois il faut savoir
qu’il existe en réalité aussi d’autres solutions. Pour illustrer
ce fait, nous partirons de I’exemple le plus simple, puis
nous généraliserons la méthode a un réseau radial a
N nceuds et B branches.
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Cas le plus simple: N=2 B =1 (fig. 7).

Zy =Rp+jXy,

lu,
18

S=P+jQ, "9'2

Fig. 7. — Réseau élémentaire & deux nceuds et a une ligne.

Ui = Ure'?* = premiére ten- Pour simplifier I’exposé 1’effet
- sion simple au des capacités transversales des
neud 1 mul- lignes est inclus dans les puis-
tiplié par V'3 sances réactives consommées

Uz = Uze® — premiére ten- aux neeuds )
1 1 o« 2 "
sonsmoleu | g, - 0wt — 203U
tipliée par V3 Os = Qs uillisé — @ Ciz U
L2 = premier courant de ligne At 2

multiplié par V'3
Zi» = impédance d’une phase
de la ligne

Lz = courant mesuré au mi-
lieu de la ligne

2.2 Probléeme élémentaire

En général, I'impédance de ligne Z;, est bien connue et
le probléme serait relativement simple a résoudre si 1’on
connaissait a priori chaque tension en module (U7, Us, . . .)
et en phase (61, Os; ...). Si tel était le cas, le programme
de calcul se résumerait a peu de chose.

U,-5

1) calculer Iy = ?

2) calculer S, = —U,-If,
P, =R ‘S‘ethzlm{Sl

et S, =+ U,-I,
P2:Re/S‘etQ2—Im{52}

Tout serait maintenant connu. Posé ainsi, il existe tou-
jours une solution mathématique compléte et une seule.
Pour savoir si cette solution est effectivement réalisable
dans la pratique, il faut vérifier :

1° que la ligne peut supporter le courant —= trouvé ;

/3

2° que les utilisateurs et les générateurs existants en
chaque nceud sont capables de consommer (ou de
fournir) les puissances actives et réactives trouveées.

Remarquons a ce propos que, dans son principe, le
calcul d’'un réseau radial, bouclé ou maillé 3 N nceuds et
B branches, n’est pas plus compliqué ; il comporte B opéra-
tions du type 1) et N opérations du type 2) sans aucun
tatonnement.

2.3 Probléme réel

Dans la réalité, le probléme ne se pose pas d’une fagon
si simple, car les données sont les puissances aux nceuds
que I’on doit garantir et non pas les tensions qui peuvent
varier dans de larges limites, encore moins les phases.

Des huit grandeurs Uy, 0,, Py, QO
UZa 02a PZ’ Q2
seules quatre peuvent étre en principe choisies arbitraire-
ment.
Nous venons de voir qu’en partant de Uy, 0y, Us, 0,, la
solution du probléme est immédiate ; il en serait de méme

en partant de Uy, 0y, Py, Qy, ou de Us, 05, Py, Qs. (Dans
ce dernier cas, on calcule immédiatement les composantes
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. P2 - . Q2 .
actives — et réactives A du courant I, qui est alors
2 2

connu, puis Uy = Us + Zjp- s etenfin §; = —U; 1)
Par contre, plus flequemment, on connait bien les puis-
sances actives et réactives désirées en certains nceuds et la
tension en un autre. C’est alors que tout se complique.
Examinons le cas ou P, et O, sont donnés ainsi que U;
et 01 ; on cherche & connaitre Us et 0, ainsi que P; et Q;.
Mathématiquement, ce probléme présente deux solutions
réelles, confondues ou imaginaires. En d’autres termes, il
peut arriver que ce probléme n’ait aucune solution mathé-
matique réelle et que sa solution technique soit a fortiori
irréalisable. Il arrivera aussi que le probléme ait deux solu-
tions mathématiques dont I'une est techniquement réali-
sable, I'autre difficilement réalisable. C’est pourquoi, il
vaut la peine d’examiner ce cas plus en détail. Pour ce faire,
nous introduisons dans le calcul une variable auxiliaire

P Qs
2 2 2+ 702

2
en Q.
L’ensemble des consommateurs (et des éventuelles géné-
ratrices) du nceud 2 est remplacé par cette impédance
variable Z, dont I’argument invariable est précisément

y le module Z, réel variant de — o0 3 + o

celui de S, soit arc tg gz
) .P2

Le schéma se simplifie (fig. 8) :

Zp=Rp+jX;,

l &

U, =U,el ;

| u;or\r':.JéLe ‘ ZZ: Zze’%

] i)

) ~ Z,variable

y_crc tg Q,/R,
invariable

Fig. 8. — Remplacement des utilisateurs du nceud 2 par une

impédance & module variable.

Le probleme ainsi posé redevient simple; on calcule
immédiatement et dans I’ordre

A
]) 110 = aien
0 Zpt+ 4,
puis 2) S, = Z,12 d'out P,=Re /\§2} et Qo =1Im {§2}
enfin 3) P; = —(Py + Rip-Iy)
et 0= —(Q:+ X12'112-z)

La solution graphique du probléme est immédiate en
représentant dans le plan U, par un phaseur fixe; on cons-
tate que 'extrémité du phaseur U, = (U, — Z,,-1;,) décrit
un cercle (voir fig. 9).

La puissance apparente vaut en module Sy = Uy I}
elle est immédiatement calculable en effectuant le produit
des segments O B et B D (exprimés en volts), divisé par
I'impédance constante Z;, (en ohms).

— Bp

Sz = OB'
Zl?
Pz = Sg COS @9
Qz = Sysin ¢y
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0A =Z,cos ¢,y
AB =jZ;sing,l,
0B =U, )
BC =R I,
CD =jXg1y
BD =Zy Iy
oD =y,

1/712 =arctg % =constante
Q, /
p,=arc tg$2—= constante

e M-+, =constante /

donc B décrit un cercle L/

Re

Fig. 9. — Lieu de U, pour Z, variant de —oco a 0 (a gauche
de U;) et de 0 a + oo (a droite de U;). Il existe deux solutions
(B et B’) qui donnent la méme puissance active Py et la méme
puissance réactive Qs.

En représentant U, et P, en fonction de I35 (voir fig. 10),
on constate mathématiquement qu’il peut y avoir deux
solutions réelles si Py << Ps may, une solution double si
Ps = Py . €t aucune solution si Py > Py pax. Dans le
premier cas (Ps << Pmax), 12 solution B, Us et I, est proche
de la marche a vide et techniquement réalisable dans la
pratique, tandis que la solution B’, Uy’ et I;5" est proche
du court-circuit et pratiquement irréalisable.

/
/ 44 U, —| Uy(1,)
ro d=d 44
: R=<0 G0 @®R”>0 Q70
]
\
\ B
\ U; —
\
. 7
L R S| T
\ 12 W
\
i
//
\ / !
\ i /
~ /

Fig. 10. — Représentation de Uz et Py en fonction de I3 pour
@2 = constante et U; = constante.

La plus grande puissance utilisable correspond a
| Z3| = | Z12| (point B”); elle est égale au quart de la puis-
sance de court-circuit si g5 = @;2 et plus grande encore si
®s # (12. Comme dans la pratique, on part généralement
de régimes plus voisins de la marche a vide que de la
marche en court-circuit, les méthodes usuelles de calcul
par itération partant des tensions a vide donnent presque

toujours de bons résultats.

250

2.4 Réseau a N neeuds et B branches

Le réseau 2 N nceuds et B branches est facile a calculer
si I'on part des N tensions complexes (/N valeurs des U; et
N valeurs des 0;). Toutefois, I'ordinateur est nécessaire a
cause du grand nombre de nceuds et de branches.

La de nouveau, le probléme se complique si ’on part
des (N—1) puissances complexes désirées ((N—1) valeurs
de P; et (N—1) valeurs de Q;) en ne fixant qu’une seule
tension complexe Uy = UN-ejgN 4 un nceud quelconque.

Dans un réseau purement radial (fig. 11) si 'on fixe les
(N—1) valeur de S; (N—1) P; et (N—1) Q;) aux (N—1)
nceuds périphériques et qu’on choisit le nceud central N

3 4

;53 ;54
2 7—': 5
S j_Us Ss

1 7—E| lVl 6
§1 __LU1 7 N=7 IUG SS

Sn =UN'ej'}" ’l'

[
ot

Fig. 11. — Réseau radial pour N =7, B = N—1 = 6.

comme nceud bilan, avec une tension Uy et sa phase Oy
données, il peut y avoir mathématiquement zéro, une ou
plusieurs solutions possibles jusqu’a 2 (N—1). Ce n’est que
dans la mesure ou l’on part de données vraisemblables
que l'on trouvera, aprés quelques itérations de calcul a
I’'ordinateur, la solution qui correspond a un fonctionnement
réalisable, pour autant qu’elle existe mathématiquement et
physiquement. ;

Pour un réseau bouclé ou maillé, le probléeme présente
aussi plusieurs solutions.

2.5 Conclusion

Le praticien seul ne peut plus calculer les réseaux
modernes, a cause du trop grand nombre de nceuds, de
branches, de boucles et de mailles; il a donc besoin du
théoricien capable de programmer l'ordinateur.

Le théoricien seul se perd & coup stir dans des solutions
irréalisables s’il ne part pas de données réelles ou au moins
réalisables ; il a donc besoin des informations du praticien.

En conclusion, une collaboration étroite et constante
entre praticiens et théoriciens des réseaux électriques est
indispensable si nous voulons dominer le fonctionnement
de ce giganiesque appareil synchrone qu’est le réseau
électrique d’Europe, auquel nous sommes tous raccordés.
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