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BULLETIN TECHNIQUE DE LA SUISSE ROMANDE 101« année 31 juillet 1975 N° 16

Réflexions sur l'utilisation des méthodes de calcul des réseaux
d'énergie électrique

par J.-J. MORF, Lausanne

1. Analogies et différences des calculs de réseaux d'eau, de gaz et
d'électricité

Pour compléter les exposés précédents, il convient de montrer

d'une part que ces méthodes peuvent aussi s'appliquer à
l'étude des réseaux d'eau et des réseaux de gaz à condition de
bien maîtriser les analogies utilisables dans chaque cas. Ce sera
l'objet du premier exposé.

D'autre part, dans le second exposé, l'attention sera attirée
sur un risque inhérent à la méthode de calcul par itération du
problème classique du « load-flow » des réseaux électriques.
Cette méthode ne donne qu'âne solution alors que pour le
problème posé il en existe en général plusieurs.

L'étude des conduites d'eau et de gaz présente certaines
analogies avec celle des lignes électriques. Il faut cependant
être conscient de deux faits importants :

1° Le choix de l'analogie est toujours arbitraire ; suivant
le problème étudié, il convient de choisir une analogie
plutôt qu'une autre ; si le choix est bien fait, elle peut
apporter une meilleure compréhension du phénomène.

2° Le choix d'une analogie convenant pour résoudre un
problème bien déterminé peut conduire à des conclusions

totalement fausses pour d'autres problèmes. Il
faut donc user des analogies avec la plus grande
prudence.

1.1 Exemple 1 : Transmission d'ondes le long d'une conduite
d'eau et le long d'une ligne électrique

La propagation d'ondes de tension et de courant le long
d'une ligne monophasée peut être calculée à partir des

équations aux dérivées partielles

du di
Tx Ri + Ldt
di du

•3- G'u+C'^-dx dt

(D

(2)

Pour les phénomènes très rapides ou à fréquence très
élevée les termes R'i et G'u sont souvent négligeables par

di du
rapport aux termes L -=- et C -=- de telle sorte que l'on

dt dt
calcule comme si R' et G' étaient nuls. (En régime continu

di du
stationnaire ce sont les termes L -=- et C -=- qui doivent
a« x i- jt \ dt dtêtre négligés.)

Les mêmes équations permettent de calculer la propagation

d'ondes de pression et de débit le long d'une conduite
d'eau ou de gaz.

Pour ce type de calcul, les analogies suivantes peuvent
être proposées.

Symbole Ligne
électrique

Conduite
d'eau.

horizontale

Conduite
de gaz

horizontale

u {x, i)
tension à
l'abscisse x à
l'instant t
enV

pression
à l'abscisse x
à l'instant f
en N/m2

D pression 1)
à l'abscisse x
à l'instant t
en N/m2

i(x,t) courant à
l'abscisse x
à l'instant f
en A

débit à
l'abscisse .v
à l'instant t
en m3/s 2)

débit massique
à l'abscisse x
à l'instant t
en kg/s 2)

R' résistance
ohmique
linéique
en Q /m

résistance
hydraulique
linéique
en Ns/m6 3)

résistance
linéique au
passage du
gaz en l/sma 3)

G' conductance
transversale
linéique
en S/m

perditance
linéique de
la conduite
en m4/Ns 4)

perditance
de la
conduite
en s 4)

L' inductance
linéique
en H/m

coefficient
d'inertie
linéique
en kg/m5 5)

coefficient
d'inertie
linéique
en l/ma 5)

C capacité
transversale
linéique
en F/m

coefficient
d'élasticité
de la conduite
en m4/N 6)

coefficient
de compres-
sibilité
linéique
en s2 6)

Remarques

1) Si les conduites ne sont pas horizontales, il faut
ajouter les pressions statiques aux pressions calculées.

2) On considère l'eau incompressible, ce qui est exclu

pour le gaz. Il convient de définir des débits conservât ifs

pour respecter le lemme de Kirchhoff.

3) En courant continu comme en débit continu stationnaire

l'équation (1) donne

du
d~x

—R'i donc après intégration u — u(0)—R'xi:

pour un débit i constant, la chute de tension ou la chute de

pression est proportionnelle à la longueur de la ligne ou
de la conduite pour autant que la section soit constante. D
faut toutefois attirer l'attention sur une différence
fondamentale (voir tableau ci-dessus).
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En électricité, on admet généralement en première
approximation que la résistance linéique R' est indépendante

du courant, alors qu'en hydraulique et en
thermodynamique une telle approximation est jugée insuffisante
(fig. 1).

iiR'xi

Fig. 1. — Non-linéarité de la « résistance hydraulique ».
1) chute de tension électrique en fonction du courant /
2) perte de pression hydraulique en fonction du débit i

(x longueur de la ligne ou de la conduite considérée)

4) Pour une conduite saine G' 0, pour une ligne
électrique on peut en général négliger le terme G'u.

5) La grandeur L'traduit l'effet de l'inertie de l'eau (ou
du gaz) dans la conduite ; pour accélérer la masse en
mouvement, il faut en effet une différence de pression (fig. 2).

pression ^£
u(x) -£

mosse d'eau jfSdx

vitesse -^ e»~

*— pression

£ u(x)*|^dx

* „ *dx __w

Fig. 2. •— Effet de l'inertie de l'eau.
force masse x accélération

d" j c cj dilS du r di
— TZ"X-S yi>ax—r— dou-T- -p^r;dx dt dx Sdt

du y di

comparer à l'équation (1) V

(comparer à l'équation (1))dx S dt

Pour l'eau, le coefficient d'inertie linéique est donné par

la relation L' y-ou

y masse spécifique de l'eau, 1000 kg/m3
S section de la conduite en m2

Pour le gaz, la vitesse est donnée par — ;
yS j

on trouve alors L' — -S
6. La grandeur C traduit l'effet de l'élasticité de la

conduite d'eau (ou l'effet de la compressibilité du gaz). On
sait qu'une augmentation de pression u produit un
agrandissement de la section de la conduite d'eau S S0 + Cu

di du
C en —ZT- I (fig. 3), et par conséquent - r- CSrN

(comparer à l'équation (2)
dx dt

Ü
IW.-i

L section (S•l^dt) sous la prMSÌon(u.|Udt)

Fig. 3. — Effet de l'élasticité de la conduite.
accroissement de volume accroissement de section x longueur

M- dxdt C'^dt dx d'où -£¦
dx dt dx dt

comparer à l'équation (2)

(Pour le gaz, il faut tenir compte de la compression
adiabatique.

En général, les variations de température ont un effet
négligeable, de sorte que la masse spécifique du gaz y peut
être considérée comme proportionnelle à sa pression u :

f kg m2\
y k u A: en —=—" \ m3 N,

di du
On retrouve — -=- C -=- mais cette fois C S • k

dx dt
kg m

et s'exprime en m2 •—=— s2
m3 AT

Pour autant que l'on puisse négliger les termes R' i et G' u
di

dans les équations (1) et (2), vis-a-vis des termes L — et
du dt

C'-tt- ce qui est admissible pour l'étude de propagations
dt

d'ondes à front raide ou d'ondes alternatives à fréquence
relativement élevée, on obtient :

(3)

On sait que ces équations sont satisfaites pour des

fonctions quelconques up (y) et «r (z) avec y x ^=t \ftyc'

dht dhtr C"
dx* dt*

dzi d*ir rdx* dt''

et z
\JL'C

On trouve finalement :

u (x, t) u

i (x, z)

Jl'C

\jL C

x +

Uf x +

sjL'C

t

V L'C
L'

La fonction uP est l'expression d'une onde progressive
de tension (ou de pression) qui est accompagnée par une
onde progressive simultanée de courant (ou de débit)

u«
representee par ¦

L'
a

Ces deux ondes progressives sont parfaitement semblables
entre elles, de même signe et en phase.

La fonction u,. est l'expression d'une onde rétrograde de
tension (ou de pression) ; elle est accompagnée par une
onde rétrograde de courant (ou de débit) représentée par

ment semblables entre elles, de signes opposés et en phase.
Par contre, les ondes rétrogrades peuvent être d'une forme
différente de celle des ondes progressives.

i est la vitesse de propagation d'onde en m/s dans
\L'C les trois cas (électricité, eau, gaz) ;

Ces deux ondes rétrogrades sont parfaite-
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est l'impédance caractéristique de la ligne ou'de
la conduite et s'exprime

en Q pour la ligne électrique,

en —— pour la conduite d'eau,
m4 s

en pour la conduite de gaz.
s-m

Si l'on termine la ligne ou la conduite par son «
impédance caractéristique », il n'y a pas de réflexion. (Il s'agit
d'une résistance pour la ligne, d'un diaphragme pour la
conduite.)

Si l'on termine la ligne par un interrupteur ouvert ou la
conduite par un robinet fermé, il y a réflexion positive de
l'onde u :

+ «p xt
y/L'C

et négative de l'onde i :

t
h *îln +

L'C
lp I xtin

SJL'C

s]L'C
(4)

Si l'on termine la ligne par un court-circuit ou la conduite
partita robinet ouvert, il y a réflexion négative de l'onde u :

des reactances X pour l'étude des court-circuits (Xa, X{
et X/i suivant que l'on cherche la composante

directe, inverse ou homopolaire du
courant de court-circuit).

Ce n'est guère que pour calculer des chutes de tension
dans un réseau à courant continu que les résistances de la
table sont des images de résistances réelles.

Pour l'étude d'un réseau d'eau composé de conduites
radiales, bouclées ou maillées en régime permanent ou
quasi stationnaire, on peut prendre des méthodes
semblables à celles utilisées pour les réseaux électriques.
Dehousse, Coyette et Piraprez [2] en ont décrit une dont
voici les étapes essentielles :

Considérons un réseau d'eau maillé à B branches et
N nœuds. Dans notre exemple (fig. 4) B 6 et JV 5.

noeud 3

branche (4) ^S-&3

1(1)

"(4)

q(3) V)
branched) noeud 2 branche(3)

O4

'(6)

a«) branche (2)

Fig. 4. — Réseau d'eau maillé à 6 branches et 5 nœuds.

¦Q5
^-^ noeud 5

tir x
sjCL

et positive de l'onde i :

x +
SJL'C

—u„ x

+ »Ü

\jCL'

s/L'C
(5)

Cette similitude des trois phénomènes de propagation
(électricité, eau, gaz) a inspiré Louis Bergeron dans sa
fameuse étude : Du coup de bélier en hydraulique au coup de
foudre en électricité [l]1.

Les méthodes graphiques de Bergeron permettent de
calculer élégamment les phénomènes relativement simples
lors de variation brusque dans une conduite ou dans une
ligne. Dès qu'il s'agit d'un réseau de conduites ou d'un
réseau de lignes radial, bouclé ou maillé, il faut recourir à
l'ordinateur.

1.2 Exemple 2 : Calcul des flux en régime stationnaire
dans un réseau d'eau (ou de gaz) et dans
un réseau électrique

Les similitudes entre réseau d'eau et réseau électrique en
régime permanent sont différentes de celles qu'on vient
d'évoquer dans l'exemple précédent. En fait, déjà pour les
divers problèmes électriques, on a utilisé des similitudes
diverses ; c'est ainsi que dans les tables à calcul à courant
continu les résistances de la table représentent en images

Y
des valeurs -^ pour l'étude des chutes de tension pro¬

voquées par les puissances réactives
représentées par les courants de la table ;

Un

des valeurs
X

U~*v n
pour l'étude des écarts de phase
provoqués par les puissances actives
représentées par les courants de la table ;

1 Les chiffres entre crochets renvoient à la bibliographie en
fin d'article.

Pour simplifier l'exemple, nous choisissons un réseau
horizontal (si tel n'est pas le cas, il faut ajouter les pressions
statiques provenant des différences d'altitude aux pressions
qui vont être calculées).

On suppose le réseau d'eau défini géométriquement
(diamètre des conduites, longueurs, rugosité, nombre de
coudes, etc.).

Sur la base des données hydrauliques suivantes :

a) en chaque nœud de réseau arrivent (ou partent) des
quantités d'eau données par unité de temps. Vu
l'incompressibilité de l'eau, on peut exprimer les débits Qt
en m3/s ou en kg/s. (Pour les gaz, il convient d'exprimer
les débits en kg/s ; le débit volumique n'est pas conser-
vatif, il peut être calculé en divisant le débit massique
par la masse spécifique du gaz, laquelle est proportionnelle

à la pression absolue et inversement proportionnelle
à la température absolue, toutes deux dépendant

de l'endroit et de l'instant considérés) ;

b) la pression P{ en un nœud est supposée connue (elle
correspond à celle au bas d'un réservoir de grand
volume réel ou fictif imaginé pour les besoins du calcul ;
on remplace donc les pompes par des réservoirs fictifs
fournissant la pression P<).
Le problème des débits et des pressions consiste à
déterminer les B débits dans les branches, les N débits
injectés (ou soutirés) des nœuds connaissant les N
pressions Pi aux N nœuds.
Pour ce faire, on dispose de B équations de Bernoulli,
soit une pour chaque branche et de N équations de
continuité exprimant que le débit Q( injecté au nœud i
est la somme algébrique des débits ç0) des branches
partant du nœud i.

Au début, on assigne un sens positif arbitraire aux
débits qy) pour chaque branche ((/) (1) (B)).

Il est aisé d'écrire la matrice d'incidence nœuds-branches

K du réseau hydraulique.
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(6)

AT nœuds

73 bn inches

(D (2) (3) (4) (5) (6)

1 / + 1 + 1 0 0 0 + 1

2/ -1 0 -1 -1 0 0

3 0 0 0 + 1 -1 0

4 0 -1 +1 0 +1 0

\ 0 0 0 0 0 -1

K

Pour construire la matrice, il est plus aisé de considérer

une branche après l'autre, compte tenu du sens positif
adopté la branche (3)

part du nœud 4

aboutit au nœud 2

donc Ki (3) + 1 et

donc K2 (3) — 1

Après avoir passé en revue les B branches, on a déterminé
2 B éléments Kf y) de la matrice K, tous les autres éléments

sont nuls.
On retrouve une similitude parfaite avec la matrice

d'incidence K d'un réseau électrique 1.

Par sa définition même, la somme des éléments d'une
colonne quelconque de la matrice K est nulle

(+1-1 + 0 + 0 + 0) 0 (y)
(JV-2)

La dernière ligne de la matrice K est donc obtenue par
la somme des précédentes changée de signe ; elle dépend
donc linéairement des (N—ï) lignes précédentes et
n'apporte aucune information nouvelle. On peut donc réduire
la matrice K à la matrice d'incidence nœuds-branches
réduite C en supprimant une ligne de K (par exemple la
dernière).

Il est évident que les débits Qt « injectes » dans les

nœuds i sont liés aux débits q y> passant par les branches (y)
par la relation

Gi

(Kn (b))

9a>

9u)

Qn / \9(B).
ce que l'on notera pour simplifier par

(7) (QA) (K) • (q)

où (Qa) est le vecteur des débits injectés aux accès

nœuds)
et (q) est le vecteur des débits dans les branches.

D'autre part, pour chaque branche (y), l'équation de

Bernoulli permet d'écrire (fig. 5) :

(8) P(j) Pic-Pifü c m • * ö) • « m B équations
(y) (1) (5)

Fig. 5. — Branche (/) entre nœud k et nœud /.

En effet, la perte de charge (Pk—Pi) n'estpas une fonction
linéaire du débit (voir [2] et [3]), si l'on tient compte du

1 Voir l'exposé de A. Germond et H. B. Püttgen sur la
Répartition des puissances dans un réseau électrique en régime
permanent, paru dans le BTSR n° 16 du 1.8.1974 et reproduit
en page 11 du présent tiré à part.

« régime laminaire » pour les faibles débits, du régime
« turbulent lisse » pour les moyens débits et du régime
« turbulent rugueux » pour les forts débits, on constate

qu'il conviendrait d'écrire :

(P/c—Pi) 1Z(i) 9(j) + z<j) <!(]) + z«) q(j) +
la relation (8) n'est qu'une approximation patti d'autres,
valable pour le domaine prévisible #w) min < 9w < 9<j) max

_kc/)l
'(« im

est une variable logique qui vaut évidem-

kg

ment + 1 si Pk > Pt et -1 si Pk < Px ;

elle donne le signe du débit #W).

Z(j-) résistance quadratique de la conduite (y) en
m

m3
<7m débit volumique de la conduite (y) en —

s

N
Pie et Pt pressions aux nœuds a: et / en —= -

nr
(Si l'on traite des conduites de gaz, il faut tenir compte

1° du fait que le débit volumique croît du début à la fin de
la conduite en raison de la diminution de pression et de

masse spécifique ; 2° du fait que dans les étranglements le
débit volumique est plus grand (pression et masse spécifique

réduite) que dans les parties larges. C'est pourquoi il
faut utiliser les débits massiques qui seuls sont conservatifs.
Pour plus de détails, voir [3], pages 20-23.) Pour la suite
des calculs nous en resterons à l'exemple des conduites
d'eau pour lesquelles les débits volumiques sont pratiquement

conservatifs, aux pressions et températures usuelles.

Soient (PA)

(ff<72)

Pi

Pk

Pi

Pn

ff(i> 9,

ff<*) 9,

le vecteur des pressions
aux N nœuds (accès)

d)

(z)

'd)

0

O)

ff(B) 9iB)

0 0

Hi)

0

0

Z(B)

-,lg|secteur des carrés des

débits de conduites (multipliés

par le signe de q(j))

la matrice diagonale des

résistances quadratiques
des conduites

et K la matrice des incidences nœuds-branches,
on peut alors écrire les B équations (8) sous la forme

(K)t-(Pa) (z) (ff<7a) (S) bis

Pour l'exemple choisi (fig. 4), l'équation matricielle
(8) bis donne les six équations suivantes :

P1—P2 Z(i) • ff<i> 9

P1--P4

P4-P2

Ps-P*
P4-P3

P1-P5

Z(2) • ff(2) 9
(D
2
(8)

z(3)

z(4)

Z(S)

Z(6)

ff(3) 9(3)

ff(4)9

ff(S) 9

ff(6) 9,

(8) ter

pour l'exemple de la
figure 4
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et l'équation matricielle (7) donne les « injections » aux
accès

Qi= + 9(i) + 9(2) ¦¦¦ ' + 9(6) (7) bis

02= — 9d) ¦¦¦ — 9(3) — 9(i) w
03 + 9«> - q™ l'exemple
Q4 - 9(2) + 9(3) ¦¦¦ + 9(ò) de la
05= — ?(6) figure 4

N
On vérifie facilement que V Qi 0, ce qui est évi-

ï-i
dent si l'on utilise des débits conservatifs. (Ce ne serait pas
le cas pour des débits volumiques de gaz.)

Plusieurs cas se présentent :

1.2.1 Cas le plus simple

Si l'on connaît les N pressions aux nœuds et les B
résistances quadratiques des conduites, il est aisé de calculer
les B carrés de débits qz ((J) (1) (B)), par exemple:

'(3) ' (3) * O (3)

Le calcul du débit est aisé : q^ a^ yq.2

(La variable logique o^ nous garantit automatiquement

que le sens réel d'écoulement de l'eau va toujours du nœud
à la pression la plus élevée au nœud à la pression la plus
basse, quel que soit le sens positif arbitraire qui a été choisi

initialement.)
Les N équations (7) nous donnent immédiatement les

injections aux N nœuds.

Il y a là une analogie frappante avec le problème
électrique : si l'on connaît les N tensions aux N nœuds (en
modules et en phase) ainsi que les B impédances complexes
des B branches, on peut immédiatement en déduire les

B courants électriques complexes dans les B branches, puis
les N courants complexes injectés aux N nœuds. Toutefois,
une différence fondamentale subsiste : dans le réseau

électrique, les relations entre courants et tensions sont linéaires,
ce n'est qu'en passant aux puissances que les relations
deviennent non linéaires ; dans le réseau d'eau, les relations

non linéaires interviennent déjà entre les pressions et les

débits.

1.2.2 Cas plus difficile
On donne (N— 1) « injections » positives ou négatives

désirées en (N— 1) nœuds (une «injection négative»
correspond à un soutirage) ainsi que la pression PN au
nœud N (nœud bilan).

H est évident qu'on connaît immédiatement l'injection
au nœud N

W-l)
Qn -JJ Qt

i~i
Restent à déterminer les T débits de conduites et les (N— 1)

pressions inconnus.
Dans des cas très favorables (réseau radial ou débouclé),

on peut théoriquement récrire l'équation matricielle (8)

en la multipliant membre à membre par (UT)™1, à condition

que la matrice K soit carrée. En général, ce n'est pas le cas.

(On pourrait la rendre carrée par des artifices de calculs.)
Il est préférable d'utiliser une méthode itérative nous

amenant à répéter plusieurs fois le calcul du cas le plus

simple décrit précédemment en partant pour commencer
de (TV— 1) valeurs initiales des pressions aux (N— 1) nœuds

en les choisissant arbitrairement, mais malgré tout assez

judicieusement pour ne pas égarer l'ordinateur dans des

calculs sans fin.
Admettons par exemple que Ton connaisse les débits

« injectés » aux nœuds de la figure 4,

avec öi > 0 04 > 0

02 < 0 Sa < 0

On calcule immédiatement Q5 — (Qi + 62 + ôs + Qui
supposons Ô5 < 0 (le débit au nœud bilan est beaucoup
plus rapidement calculé que la puissance au nœud bilan
d'un réseau électrique, pour autant qu'aucune conduite
n'ait des fuites fonctions de la pression

Partant de la pression P$ connue que l'on désire avoir au
nœud 5, il semble a priori assez judicieux de choisir

Pio > P5 donc <t(6)0 + 1

P20 < Pio donc er(i)0 + 1

donc a&)0 + 1P40 > P20

P30 < P40 donc a.(5)0
1

l'indice 0 indique qu'il s'agit du premier choix arbitraire
(mais raisonnable) des pressions. Ce choix étant fait on
constate peut-être que P40 > Pio, donc a(g,„ — 1

P30 < P21 donc a.(4)0 •1 auet éventuellement que
départ.

N.B. — Les variables logiques <7W) peuvent changer de

signe au cours des itérations successives, ce qu'il est facile
de programmer.

Partant de ce premier choix des pressions Pi0, on calcule
les débits dans les conduites et les débits injectés aux
nœuds Q{0, correspondant à ce premier choix. Il est évident

que Qi0 # Qi désiré.
Pour le nouveau choix des pressions P<i, on désire partir

de nouvelles valeurs qui nous rapprochent si possible de

la solution désirée. Comme les relations entre pressions et
débits ne sont pas linéaires, il est nécessaire de les linéariser

au voisinage des valeurs de départ.
Les (7Y—1) dérivées partielles de q^ par rapport aux

+ 1

ff(fl

(N—l) pressions P
d'après l'équation (8)

d9(j)

dPk

dg«)

dPi

d9(j)

dp,

Pt

zd)'^9(r>o

-1
'(1)'¦*(!) 2 9(})o

toujours > 0

toujours < 0

sont

pour les deux
nœuds k et /
adjacents à la
branche (y)

et 0 V i ¥= k ou /, soit pour tous les
autres nœuds

Il est aisé de déduire maintenant les dérivées partielles
de Qi par rapport aux (JV—1) pressions indépendantes,

(dQ\
ce qui donne le jacobien (/) \-^=) > matrice carrée

(N-\) (N-l).
Ces dérivées partielles permettent de déterminer en

première approximation l'influence de chaque écart APi
apporté à la pression choisie en chaque nœud 1 sur tous les

débits -qu) des B branches et sur tous les débits Qt injectés

aux N nœuds.
En notation matricielle:

(AQA)=(.J)-(APJd

d'où (APA) (Z)'1 'AQjd

P11—P10

avec (AP^) Pu—Pio

P(N-1)1~ P(tf-1)0

(10)

(11)

Ce vecteur permet
de passer de
l'ancienne approximation

à la nouvelle
approximation
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(J)1 inverse de la matrice carrée du jacobien

(J)

dQidÇh
dPx dP2

dQ2 dQ2

dPx dP2

dQi
dp,,

dQ(N-l) dQ(N-l)
dPi

ôldés.

dp(N-l)

Cette matrice est
très creuse, tous
les termes concernant

deux nœuds

non reliés par une
branche sont nuls.
Elle doit être
recalculée après
chaque itération.

VQa) Qt,

Qio

Qio

Ecarts entre les débits
désirés et les débits
donnés lors de

l'approximation 0.
Q(N-1) dés. Q(N-1) 0 '

L'algorithme permettant de choisir les nouvelles valeurs
Pu est donné par

(12) (PA1) (PA0) + (J)'1 KQa d&iré) -(Oio)]
La notation matricielle n'est là que pour simplifier l'exposé

du problème. Dans la pratique, on programme directement
chaque opération à effectuer. Voir à ce sujet [2], pages 1

à 27, article qui présente cette méthode de résolution du
problème du réseau d'eau maillé par ordinateur. Elle
transforme les données par deux procédés de linéarisation à

[]l*5

Fig. 6. — Allure du débit qy) en fonction de pic pour diverses
valeurs de pi.

<7(» a(J) \l-U) (Plc-PÙ
z(i)

qóì (P*) pour Pi Pia donné, tg a 0 tangente à la courbe d)
au point PkoQuto lors de la première itération, par itérations
successives on trouve Pu -*¦ «u>i -*¦ tg a 1 -*¦ Phi -*¦ gaia qui
est assez voisin de gu> désiré on peut arrêter le calcul.
ao> (P') pour Pi •= Pu, donné, tg è 0 tangente à la courbe b)
au point Pto, qoìo etc. QI faut deux itérations de plus pour
obtenir gin désiré).

choix que l'on résout par itérations. Les deux programmes
proposés sont appliqués à un petit réseau et une application
très importante montre l'efficacité du programme proposé.
La figure 6 donne une vision graphique de ces approximations

par itérations successives du même algorithme.

1.3 Conclusion

En conclusion, on peut remarquer que l'ordinateur permet

de résoudre des problèmes de réseaux d'électricité,
d'eau et de gaz qu'ils soient radiaux, bouclés ou maillés. On
retrouve dans chaque cas des procédés similaires tels que
matrice d'incidence, remplacement d'un problème
compliqué non linéaire par itération d'un procédé de calcul
relativement plus simple et linéaire, matrice Jacobienne des
dérivées partielles, inversion, etc. Toutefois, les méthodes
doivent être adaptées dans chaque cas spécifique à la nature
du réseau (eau, gaz, électricité) et à la nature du problème
à résoudre : coup de bélier, coup de foudre, régime transitoire

lors de la fermeture ou de l'ouverture d'une vanne,
du déclenchement ou de l'enclenchement d'un interrupteur,
d'une rupture de conduite ou de son blocage par un
bouchon, d'un court-circuit ou d'une rupture de conducteur.
Les méthodes qui ont été plus particulièrement développées

concernent des régimes permanents sinusoïdaux
triphasés symétriques en électricité et des régimes permanents
continus en hydraulique.

Il ne faut pas se laisser leurrer par les similitudes, les
correspondances ne sont qu'apparentes; s'il y a une
certaine ressemblance entre pressions hydrauliques et tensions
électriques, les relations non linéaires qui apparaissent dès
le départ en hydraulique n'interviennent qu'au stade du
calcul des puissances en électricité. Il existe beaucoup plus
de différences fondamentales que d'analogies entre les
réseaux d'eau, de gaz et d'électricité. Songeons simplement
au fait que les pertes de charge en hydraulique augmentent
avec l'âge de la conduite, avec le nombre de coudes de la
conduite et avec le nombre de toutes les modifications de
forme localisées ([3], pages 41 à 113), toutes choses qui
n'ont aucune correspondance en électricité. L'intérêt des
puissances en jeu est primordial en électricité et tout à fait
secondaire en distribution d'eau (conduites forcées des
turbines exceptées). En distribution d'eau et de gaz, ce
sont surtout les quantités livrées qui importent, donc les
débits ; les pressions sous lesquelles ces débits sont livrés
peuvent varier dans de très larges limites sans inconvénients,

de pareilles marges pour les tensions seraient
intolérables. Que dire enfin des réducteurs de pression qui ne
sont rien d'autre que des destructeurs d'énergie Une
pareille technique reviendrait à remplacer les transformateurs

de quartier par des potentiomètres pour réduire leç
tensions à l'entrée des maisons.

Il n'en reste pas moins que l'ordinateur arithmétique se

prête parfaitement bien à toutes ces formes de calcul.

2. Existence, inexistence ou multiplicité de solutions mathématiques
réalisables ou irréalisables

Nous revenons sur le calcul des flux de puissances et
des tensions d'un, réseau électrique tel qu'il se présente le
plus souvent. On connaît en général les puissances actives
et réactives que l'on veut tirer ou fournir de chaque nœud.
Le calcul classique de « load-flow » décrit dans l'exposé de
A. Germond et H. B. Püttgen* permet alors de trouver

i Voir BTSR n° 16 du 1.8.1974, reproduit en pages 10 à 16
du présent tiré à part.

une solution du problème, mais en général il y en a
plusieurs. Fort heureusement le choix judicieux des valeurs
initiales des tensions conduit l'ordinateur à trouver la solution

qui est pratiquement réalisable, toutefois il faut savoir
qu'il existe en réalité aussi d'autres solutions. Pour illustrer
ce fait, nous partirons de l'exemple le plus simple, puis
nous généraliserons la méthode à un réseau radial à
N nœuds et B branches.
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Cas le plus simple : JV 2 5=1 (fig. 7).

Zl2="l2+JXl2

u,
I

+
S,=P,+jQ,

u2

1^2 *S=P2+jQ2

Fig.
r/i

Réseau élémentaire
r/ie>91 premiere ten¬

sion simple au
nœud 1

multiplié par V3
Uf Uae1"' première ten¬

sion simple au
nœud 2 muN
tipliée par y 3

/ia^ premier courant de ligne
multiplié par V3

Zi^ impédance d'une phase
de la ligne

à deux nœuds et à une ligne.
Pour simplifier l'exposé l'effet
des capacités transversales des
lignes est inclus dans les
puissances réactives consommées
aux nœuds

Qi Qi utilisé
<» Cl. U\ et

Q.

/l2

Qz utilisé
co Ci. E/aa

2

courant mesuré au nu-
lieu de la ligne

2.2 Problème élémentaire

En général, l'impédance de ligne Z12 est bien connue et
le problème serait relativement simple à résoudre si l'on
connaissait a priori chaque tension en module (Ult U2,...)
et en phase (Ou On ¦..). Si tel était le cas, le programme
de calcul se résumerait à peu de chose.

U,-Ua
1) calculer ¦*12 — 7±112

2) calculer ëi -Ui'Ou
Pi Re {§.1) et Ö! /«{&}

et ^2 + Um'IÎm

p2 Re {S^ et 02 /«{&}
Tout serait maintenant connu. Posé ainsi, il existe

toujours une solution mathématique complète et une seule.
Pour savoir si cette solution est effectivement réalisable
dans la pratique, il faut vérifier :

/l21° que la ligne peut supporter le courant —== trouvé :
V/3

2° que les utilisateurs et les générateurs existants en
chaque nœud sont capables de consommer (ou de
fournir) les puissances actives et réactives trouvées.

Remarquons à ce propos que, dans son principe, le
calcul d'un réseau radial, bouclé ou maillé à JV nœuds et
B branches, n'est pas phis compliqué ; il comporte B opérations

du type 1) et JV opérations du type 2) sans aucun
tâtonnement.

2.3 Problème réel

Dans la réalité, le problème ne se pose pas d'une façon
si simple, car les données sont les puissances aux nœuds
que l'on doit garantir et non pas les tensions qui peuvent
varier dans de larges limites, encore moins les phases.

Des huit grandeurs Uu du Pu ßi
Us, 02, P2, Q2

seules quatre peuvent être en principe choisies arbitrairement.

Nous venons de voir qu'en partant de Uu Ou U2, ög, la
solution du problème est immédiate ; il en serait de même
en partant de Uu Ou Pu Qu ou de U%, 02, P2, 02- (Dans
ce dernier cas, on calcule immédiatement les composantes

P O
actives — et réactives — du courant /,, qui est alors

U2 U2 -12

connu, puis Ux U2 + Z12-I12 et enfin Sx — —Ux I\\.)
Par contre, plus fréquemment, on connaît bien les

puissances actives et réactives désirées en certains nœuds et la
tension en un autre. C'est alors que tout se complique.

Examinons le cas où P2 et Q2 sont donnés ainsi que Ux
et Ox ', on cherche à connaître Uz et 02 ainsi que Pi et ßi-
Mathématiquement, ce problème présente deux solutions
réelles, confondues ou imaginaires. En d'autres termes, il
peut arriver que ce problème n'ait aucune solution
mathématique réelle et que sa solution technique soit a fortiori
irréalisable. Il arrivera aussi que le problème ait deux solutions

mathématiques dont l'une est techniquement
réalisable, l'autre difficilement réalisable. C'est pourquoi, il
vaut la peine d'examiner ce cas plus en détail. Pour ce faire,
nous introduisons dans le calcul une variable auxiliaire

^ „P2+/Q2
1 le module Z2 réel variant de — 00 à + °°

A2
en Q.

L'ensemble des consommateurs (et des éventuelles
génératrices) du nœud 2 est remplacé par cette impédance
variable Z% dont l'argument invariable est précisément

02celui de S2, soit arc tg —
P2

Le schéma se simplifie (fig. 8) :

2l2=Rl2*J'*12

1,2

UsUe1*'
donnée

Z2= Z2e'ft

Z 2 variable
j£arc tg Q2/P2

invariable

Fig. 8. — Remplacement des utilisateurs du nœud 2 par une
impédance à module variable.

Le problème ainsi posé redevient simple ; on calcule
immédiatement et dans l'ordre

U,
1) /l2

~12 ' ±12

puis 2) S2 Za /^ d'où P2 Re (S2\ et Q2 Im {Sa

enfin 3) Px -(Pa
et Qx =-(02 + Xx2-Ixl

Rx2 ¦ Aa)
r2.

La solution graphique du problème est immédiate en
représentant dans le plan U^ par un phaseur fixe ; on constate

que l'extrémité du phaseur U2 — (U_x~ ?i%'liù décrit
un cercle (voir fig. 9).

La puissance apparente vaut en module .S'a £VAa>
elle est immédiatement calculable en effectuant le produit
des segments O B et B D (exprimés en volts), divisé par
l'impédance constante Z12 (en ohms).

Sa OB-
BD

-^12

Pa £2 cos q>2

Q2 Sa sin ç>2
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Re

OA =Z2cos^J2Ii2

AB =jZ2sina52Ii2

OB=U2

BC =Rh'I)2

CD =fXKlB

BD =Z12I,2

OD =U,

tp are tg 7^=constante"n R12

tp are tg-^-= constante
7 2 h2

t -H-tp+tp - constante /

donc B décrit un cercle /

Fig. 9. — Lieu de U2 pour Z2 variant de —co à 0 (à gauche
de IQ et de 0 à + oo (à droite de Uj). Il existe deux solutions
(B et 50 qui donnent la même puissance active P2 et la même
puissance réactive Q2.

En représentant U2 et P2 en fonction de 712 (voir fig. 10),
on constate mathématiquement qu'il peut y avoir deux
solutions réelles si P2 < P2 m^, une solution double si

P2 P2 max et aucune solution si P2 > P2 max. Dans le
premier cas (P2 < Pmax), la solution B, U2 et I12 est proche
de la marche à vide et techniquement réalisable dans la
pratique, tandis que la solution B', U2 et I12' est proche
du court-circuit et pratiquement irréalisable.

*>4
P,<=0 CL<0 b5 r>o q,>o

i u2

®

(DîrrKw

/
P2Ö«L ./

/̂
//V S;

Fig. 10. — Représentation de U2 et P2 en fonction de 1x2 pour
ç>2 constante et Ux constante.

La plus grande puissance utilisable correspond à

| Z21 | Zx21 (point B") ; elle est égale au quart de la
puissance de court-circuit si ç>% ç>x2 et plus grande encore si

<p2 ¥= (px2- Comme dans la pratique, on part généralement
de régimes plus voisins de la marche à vide que de la
marche en court-circuit, les méthodes usuelles de calcul

par itération partant des tensions à vide donnent presque
toujours de bons résultats.

2.4 Réseau à N nœuds et B branches

Le réseau à JV nœuds et B branches est facile à calculer
si l'on part des JV tensions complexes (JV valeurs des £7< et
JV valeurs des f?< Toutefois, l'ordinateur est nécessaire à

cause du grand nombre de nœuds et de branches.
Là de nouveau, le problème se complique si l'on part

des (JV—1) puissances complexes désirées ((JV—1) valeurs
de Pi et (JV—1) valeurs de Qt) en ne fixant qu'une seule

tension complexe U^ UN • ei N à un nœud quelconque.
Dans un réseau purement radial (fig. 11) si l'on fixe les

(JV-1) valeur de S( ((N-l) P{ et (JV-1) Qt) aux (JV-1)
nœuds périphériques et qu'on choisit le nœud central JV

/£ T

T,

x

T«

1!u5 V

s/ ÏSiatffi
¦N=7 i

6

Se

Fig. 11. — Réseau radial pour N ^f|B N—1 6.

comme nœud bilan, avec une tension Un et sa phase Otr

données, il peut y avoir mathématiquement zéro, une ou
plusieurs solutions possibles jusqu'à 2 (JV— 1). Ce n'est que
dans la mesure où l'on part de données vraisemblables

que l'on trouvera, après quelques itérations de calcul à
l'ordinateur, la solution qui correspond à un fonctionnement
réalisable, pour autant qu'elle existe mathématiquement et

physiquement.
Pour un réseau bouclé ou maillé, le problème présente

aussi plusieurs solutions.

2.5 Conclusion,

Le praticien seul ne peut plus calculer les réseaux

modernes, à cause du trop grand nombre de nœuds, de

branches, de boucles et de mailles ; il a donc besoin du
théoricien capable de programmer l'ordinateur.

Le théoricien seul se perd à coup sûr dans des solutions
irréalisables s'il ne part pas de données réelles ou au moins
réalisables ; il a donc besoin des informations du praticien.

En conclusion, ime collaboration étroite et constante
entre praticiens et théoriciens des réseaux électriques est
indispensable si nous voulons dominer le fonctionnement
de ce gigantesque appareil synchrone qu'est le réseau

électrique d'Europe, auquel nous sommes tous raccordés.
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