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BULLETIN TECHNIQUE DE LA SUISSE ROMANDE 100' année 31 janvier 1974 N° 3

Communications de la Chaire de la Mécanique de la Turbulence de l'EPFL et du groupe
de travail EPFL — Institut Suisse de Météorologie.

Théorie de la prévisibilité
par PIERRE RAVUSSIN, Lausanne

Avant-propos
Le calcul des probabilités est né d'un problème de prévisibilité concernant une partie de jeu de dés

inachevée. On sait par la suite l'extension qu'il a prise et les succès de son application dans de très nombreux
domaines : assurances, théorie cinétique des gaz, mécaniques statistiques diverses, etc.

Les mouvements désordonnés, discontinus, à évolution aléatoire, caractéristiques fondamentales des

écoulements turbulents ont conduit les hydrodynamiciens et aérodynamiciens à employer les méthodes
statistiques dans la mécanique de la turbulence. Mais, il importe de remarquer impérieusement que la suite
des mouvements tourbillonnaires n'est pas régie par un hasard pur, mais au contraire par un hasard lié
exprimable par des probabilités conditionnelles techniquement traduites par les corrélations des grandeurs
aléatoires du fluide turbulent.

La Chaire de la Mécanique de la turbulence et le Groupe de travail EPFL-Institut suisse de météorologie
effectuent des travaux théoriques et pratiques en mécanique de la turbulence.

L'étude de M. P. Ravussin, collaborateur scientifique, s'insère dans cette recherche.
L'incomparable laboratoire qu'est l'atmosphère montre des turbulences de toutes échelles. C'est pour

cela que dans la préface à la présente étude, M. D1' A. Junod, chef de la Division de météorologie appliquée
de l'Institut suisse de météorologie situe la « théorie de la prévisibilité » de P. Ravussin dans le contexte
des deux grandes méthodes de prévision utilisées par les météorologues.

Il serait intéressant d'en essayer ultérieurement la synthèse, ou alors d'en dégager leurs caractères de

complémentarité.

Professeur François Baatard
Chaire de la Mécanique de la Turbulence

de l'Ecole polytechnique fédérale de Lausanne

Préface
On dit souvent, non sans quelque raison, que la météorologie tient tout autant d'un art que d'une science.

Il est de fait que, dans le domaine de la prévision du temps, le jugement du météorologiste intervient en
maintes phases de l'opération, en partant du choix d'un jeu caractéristique de données initiales à l'interprétation

ultime d'une carte synoptique en termes de prévision régionale.
Cependant, au cours des dernières décennies, des efforts considérables ont été déployés en vue de réduire

systématiquement la part subjective dans les procédures prévisionnelles, sans pour autant faire table rase
de l'expérience acquise. Le développement méthodologique s'est concentré dans deux catégories principales.
La première, celle de la prévision numérique dit temps, met en jeu essentiellement des modèles
physicomathématiques de l'atmosphère, plus ou moins complexes mais volontairement simplifiés, reposant sur des

systèmes d'équations hydrodynamiques qui ne peuvent être résolus qu'à l'aide d'ordinateurs puissants. Le
résultat d'une telle prévision numérique s'exprime en répartitions spatiales à grande échelle d'éléments tels

que le vent, la pression, la température, et non en une description du temps futur en tel point particulier
de la surface terrestre.

Dans la deuxième catégorie de procédures prévisionnelles sont rangées diverses méthodes statistiques,
de complexité fort variable suivant la nature du matériel d'observations et le genre de technique utilisée.
On trouve ainsi dans cette catégorie des techniques simples comme la régression linéaire ou plus élaborées

comme l'analyse discriminante multiple. Bien qu'il n'y ait pas d'incompatibilité majeure entre les deux
catégories mentionnées — chacune d'elles s'appuyant sur des résultats acquis grâce à l'autre — il faut
constater que les recherches dans chacune de ces catégories se sont faites séparément, jusqu'ici.

En première analyse, la « Théorie de la prévisibilité » de P. Ravussin semble se rattacher à la catégorie
des méthodes statistiques car elle ne repose sur aucun modèle physique particulier et fait intervenir des
schémas de calcul analogues à ceux de la statistique. Cependant, un examen plus attentif révèle que l'auteur,
dépassant largement le cadre d'une nouvelle technique statistique, bâtit une théorie générale de la prévisibilité
des phénomènes aléatoires. A ceux-ci appartiennent les écoulements turbulents de l'atmosphère, milieu
d'élection des prévisionnistes. Il ne fait pas de doute que les météorologistes liront avec profit le présent
mémoire ; ils y trouveront notamment une méthode pour « qualifier quantitativement » leurs prévisions.

André Junod
Chef de la Division de météorologie appliquée

de l'Institut suisse de météorologie
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1. Introduction

Genèse du concept aléatoire de la prévisibilité

Nous trouverons dans les pages qui suivent une théorie
nouvelle de la prévisibilité numérique dont les météorologistes

français Dedebant et Wehrlé ont perçu certains
éléments dans quelques-uns de leurs essais.

Dès que l'on parle de prévision, on fait appel à la notion
de causalité (« causa efficiens » des Anciens). En remontant
à la haute antiquité, la constatation de liens célestes entre
certains phénomènes terrestres, par exemple entre la position

du soleil sur le zodiaque et le déroulement des saisons,
aboutit à une application hâtive du principe de causalité.
On attribua une signification particulière aux événements
célestes qui devaient déterminer l'avenir des hommes.
Ainsi naquit l'astrologie, qui avec ses lois aussi précises que
mal fondées, et ses affirmations fatalistes, contribua à introduire

le concept de nécessité absolue. L'interprétation
mystique et animiste du mouvement des astres conduisit les

philosophes antiques à la notion de cycle au bout duquel
tous les phénomènes doivent se reproduire d'une façon
identique et dans le même ordre. Ces concepts sont à rattacher

à une théorie cosmologique concevant l'univers issu
d'un «œuf» initial et qui, après une période d'expansion
se recondenserait.

Historiquement parlant, l'application du concept de
causalité à la règle de cause à effet est relativement récente.
Actuellement, lorsque nous apprenons qu'une chose arrive,
nous présupposons toujours qu'une chose a précédé, dont
la première découle selon une règle.

La physique de Newton, puis de Lagrange (mécanique
analytique) est ainsi conçue que l'on peut calculer à

l'avance, à partir de l'état d'un système à un moment déterminé,

le mouvement futur du système.
Le déterminisme est l'établissement de lois naturelles

fixes qui prédisent rigoureusement l'état futur d'im système
d'après l'état actuel. Ces lois sont celles de la physique
générale, qui régissent l'évolution et les interactions de

l'énergie, au sens le plus général, dans l'espace-temps. Ces

lois sont celles par exemple du champ électromagnétique
de Maxwell ou de la théorie relativiste de la gravitation
d'Einstein.

La science atomique a développé des notions qui conduisent

la physique générale à une impasse : c'est l'impossibilité
du physicien de déterminer exactement les conditions

initiales. Cette difficulté a été partiellement soulevée en
faisant appel à l'idée d'un concours statistique de nombreux
petits processus isolés. U en découle que l'on considère les

lois de la nature uniquement comme des lois statistiques.
Ces lois peuvent cependant conduire à des affirmations
d'un degré de probabilité si élevé qu'il équivaut presque à

une certitude. Ce « presque » est la différence qui existe
entre une loi purement déterministe et une mécanique
aléatoire. Les lois statistiques signifient que l'on ne connaît
qu'incomplètement les systèmes physiques dont il s'agit.
La physique quantique a d'ailleurs démontré qu'il n'était
pas possible de connaître exactement les données d'un
système à un instant fixé (principe d'incertitude d'Heisen-
berg). Les thermodynamiciens présupposent une connaissance

incomplète du système physique qu'ils étudient. La
notion de température par exemple n'a pas de sens si l'on
connaît toutes les positions et toutes les vitesses des atomes
d'un gaz. Le concept de température caractérise un groupe
de systèmes équivalents dont on connaît en moyenne la

position et la vitesse des atomes.
Or, il existe dans la nature de nombreux phénomènes

que l'on ne connaît qu'imparfaitement, soit que la loi qui

les régit ne nous est pas entièrement connue, soit que l'on
n'en possède pas toutes les données, soit encore que la

complexité du phénomène est telle qu'il ne nous est
matériellement pas possible de l'appréhender entièrement.

Tels sont par exemple les écoulements turbulents, les

phénomènes météorologiques, etc.
Ces phénomènes ne sont pas prévisibles au sens classique

du terme, car l'on ne possède pas toutes les données pour
résoudre le système d'équations qui les décrit : on ne peut
pas calculer à l'avance quel sera l'état du système à un
moment donné du futur.

L'approche classique de la prévision de tels phénomènes
consiste en l'établissement d'un modèle mathématique
simplifié dont la maille soit suffisamment lâche pour que les

données incomplètes que l'on possède forment un système
qui puisse être résolu.

On obtient ainsi une solution qui est l'évolution du
modèle dans le futur.

Mais il n'est pas possible par cette méthode de dire quelle
est la probabilité que cette prévision se réalise, quelle est

la prévisibilité du phénomène étudié.

2. Mécanique aléatoire

La solution présentée dans ce travail fait appel à des

concepts statistiques. Le champ de dépendance de probabilité

du phénomène étudié, mesuré pratiquement par les

corrélations, est le concept de base de la mécanique
aléatoire.

Le relâchement du champ de dépendance de probabilité
au cours du temps met en évidence la diffusion du milieu
et la dissipation de son énergie : le champ de corrélation
tend vers zéro.

La prévisibilité du phénomène sera d'autant plus grande

que le relâchement du champ de dépendance de probabilité
est plus faible.

Aux limites, la mécanique aléatoire devient d'une part
une mécanique classique certaine à prévisibilité maximum ;

d'autre part, elle devient une mécanique statistique à

probabilités indépendantes lorsque la prévisibilité est minimum.
Entre ces limites, il y a autant de mécaniques aléatoires
qu'il existe de fonctions de connexion des probabilités.

3. Exemple des grandeurs aléatoires d'un
phénomène

Prenons comme exemple un phénomène aléatoire transitoire

(non stationnaire) : la diffusion d'une particule de

fluide, c'est-à-dire une particule aléatoire.
L'expérience est réalisée en prenant de façon reproductible

une poire en caoutchouc (fig. 1).
On a créé une particule aléatoire qui va diffuser dans

l'espace-temps et dont l'énergie va se dissiper.

Px

Fig. 1
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Supposons que cette particule aléatoire ne nous est

connue que par la composante x (t) du vecteur vitesse en
un point fixe P de l'espace.

La particule aléatoire est alors définie par une fonction
aléatoire x (t) représentative du phénomène.

Chaque fois que l'on presse sur la poire, on crée une
réalisation Xj (t) de la fonction aléatoire x (t).

On dit aussi que Xj est une valeur de la fonction aléatoire

x (t). j est la numérotation de la réalisation.
Xj (t) est une fonction réelle du temps t.
La fonction aléatoire x (t) est représentée par l'ensemble

des réalisations possibles Xj (t) (fig. 2).
Considérons ce qui se passe à un instant donné tu :

x x (fu) est une variable aléatoire.

x (tu) Ux} (tu)

Soit k le nombre de réalisations x} (ti) possible (j 1,
/c).

Supposons que l'on ait trouvé k1 fois la valeur de alt
k2 fois la valeur a2, etc., ke fois la valeur ae avec
k k± + k2 + ke;
par exemple : % x% xkl a1

X+1 X+2 ¦ • ¦ Xlcn+lce ac

Alors pi k1/k est la probabilité que la variable aléatoire

xn ait une réalisation x de valeur ai.
Alors

X.'n 2_j Pi °' eSt la valeur moyenne

ou moment de premier ordre de la

variable aléatoire Xu.

Ilïi =1

Il x2
lu

j 2

t

t.

,£ J=3

Uxj(t)= X(t)
Fig. 2

En généralisant on obtient

X ^ p, xj

en passant au cas continu

+ 0O

X(t) f x(t)p(x/t)dx

C'est la valeur moyenne de la fonction aléatoire X au
temps t, ou moment au premier ordre au temps t.

C'est une intégrale au sens de Lebesgue (fig. 3).

IX

Fig. 3

4. Mesure et échelle d'observation

La mesure est l'élément clef de toute étude scientifique.
Dans l'hypothèse déterministe, la mesure permet de

comparer le phénomène étudié avec le modèle physique. Dans
le cas aléatoire, c'est de la mesure que l'on tirera le champ
de dépendance de probabilité caractéristique du phénomène.

Dans les phénomènes naturels, on n'a en général accès
qu'à une seule réalisation .v}.

Soit X* (t) la mesure d'un phénomène aléatoire
représentable par la fonction aléatoire x(l).

Revenons à l'exemple : pour effectuer la mesure, nous
sommes obligés d'introduire un capteur qui occupe un
volume d'épreuve AV autour du point P et dont la constante

de temps vaut At (fig. 4).

AV

x
x

X

X

Fig. 4
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Soit X*j (t) laje mesure au point P

x; (p, o
î

AVAt fil xi <X 0 dVdt (en négligeant
JJJ J les erreurs de
V-AV l-At

les erreurs de

mesure)

C'est la moyenne spacio-temporelle, autour du point P,
vers l'instant t, de la je réalisation d'une fonction aléatoire
spacio-temporelle x (P, t) dont x (t) est une des composantes.

Par définition X] (P, t) # x (t) au point P sauf
éventuellement pour certaines valeurs particulières de P
et de t.

Car x(t) x(t)p(xjt) dx : c'est la moyenne « à tra¬

vers le processus » de toutes les réalisations Xj possibles :

Xj 1, k.
Par contre, X*} (t) est la moyenne «le long du processus »

non seulement d'une réalisation particulière Xj (t) de x (t)
(j n), mais aussi d'un certain nombre de réalisations
particulières Xj (P, t) (j 1, n) autour du point P d'un
certain nombre de fonctions aléatoires x (P, t).

On posera de manière générale

x (t) x; (t) + x) (t)

x (t) : fonction aléatoire du temps

Xj (t) : mesure de la réalisation/
x*j (t): terme complémentaire

Posons x x + x'
X X + X

x, x* : valeurs moyennes

x', x" : valeurs purement aléatoires

Par définition X* X*

Alors
x'(t)

Xj (n + a-; (o
X'j (t)

Ce qui précède entraîne l'énoncé des théorèmes
suivants :

Théorème 1

Une mesure X*} (t) d'une réalisation d'une fonction aléatoire

x(t) est en général différente de la valeur moyenne de

cette fonction.

Théorème 2

La partie purement aléatoire x'* (t) du terme
complémentaire de la mesure d'une réalisation quelconque Xj (t)
est égal à la partie purement aléatoire x' (t) de la fonction
aléatoire elle-même.

AV et At définissent l'échelle d'observation ou « l'étage »

observé d'un phénomène aléatoire.

I. Espace aléatoire

§1. Introduction

La mécanique aléatoire est basée sur un élément appelé
variable aléatoire, dont nous avons vu une définition
particulière précédemment. Nous allons généraliser sa définition

et en rappeler les propriétés.

§ 2. Variable aléatoire

Définition
On appelle variable aléatoire X un ensemble d'éléments xn

appelés valeurs ou réalisations de la variable aléatoire.

n est la numérotation de la réalisation

n 1, n

Les xn sont souvent les composantes d'un vecteur. On
les notera alors xn. ; par exemple / 1, 4 vecteur
spatio-temporel.

Alors : en un point P de l'espace et au temps / il existe

n valeurs xn définissant une variable aléatoire X en ce point
et à cet instant.

§3. Champ de dépendance de probabilité

Définition 1

On appelle densité de probabilité p (.r„) la fréquence relative

d'apparition de la valeur xn de la variable aléatoire X.

P (X) -rk

kn : nombre de réalisations identiques à xn

k : nombre total de réalisations de X

Considérons maintenant deux variables aléatoires X1 et
X2 (par exemple en deux points de l'espace-temps) définies

par des paires x\, x\ de valeurs.

Définition 2

On appelle densité de probabilité composée p (x}n, x„) la

fréquence relative d'apparition de la paire

P vw?n * vu
km

On écrit aussi p (.r1 n x'm).

k,„ : nombre de réalisations de paires identiques à la
paire .r;i,.r,2

k12 : nombre total de réalisations de paires de X1 et X2

Définition 3

On appelle densité de probabilité conditionnelle p (xmlx%)
le rapport des fréquences relatives d'apparitions des paires

xm, xfn et de la valeur x% ;
2 .2avec x,"t — xn

alors

7>CXX)XX/X>
P (r'i)

Définition 4

On appelle densité de probabilité totale p (x}n \j x'm) la

grandeur définie par

P (¦'',}, u x'm) p (xm) + p (xm) - p (r,},, x'm)
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Définition fondamentale

Le champ de dépendance de probabilité ou champ de

probabilité composé (par exemple dans l'espace
spatiotemporel) est défini au moyen de l'ensemble des variables
aléatoires Xe dans cet espace par l'ensemble des couples
xc, xD des réalisations de ces variables.

Remarque 1

Lorsque les réalisations d'une variable aléatoire ont
plusieurs composantes, on peut écrire :

+00 +00

P (Xj) =-- P Xx A X„2 A Xn.)

alors

P 04, A X2h) p (.r^ A Xla A X\t A Xli A xl)

La probabilité composée d'une paire de valeurs est égale
à la probabilité composée des composantes de ces valeurs.

On écrira X X (Xy, X()

les Xt étant eux-mêmes des variables aléatoires.

Remarque 2

On dit que deux variables aléatoires sont indépendantes
si et seulement si

p (x1, x2) p (x1). p (x2)

pour tout x1 et pour tout x2 ;

alors p (x1jx2) p (x1)

pour tout .r1 et pour tout x2.

Remarque 3

On considère souvent les variables aléatoires X (Xi,
X^ pour des valeurs particulières x} d'une ou de plusieurs
composantes Xj (j ±^ i).

On parle alors de fonctions aléatoires

X(X1 Xk, xk+1, Xj) (k + j i)

les Xj sont appelés alors des paramètres.
On écrira x (xk+1, .r;) comme fonction paramètre.
La probabilité des réalisations Xy, xk pour les valeurs

xk+1, Xj est une probabilité conditionnelle.

p (xy, xk/xk+1 Xj) est la probabilité d'avoir les

valeurs Xy xk lorsque les valeurs xk+1 Xj ont été
réalisées.

Il n'est donc pas possible, si ce n'est par une convention
d'écriture, de distinguer une fonction aléatoire d'un
paramètre, d'une variable aléatoire à deux dimensions.

X(x2) < y X(XUX2)

Remarque 4

Les mesures ne permettent d'obtenir que les probabilités
conditionnelles p (xy xk/t) probabilités au temps t.

Définition 5

On appelle moment du Ier ordre ou moyenne, les relations

+00 +CO

1) X{ j j xtp (.Tj xj) dxy d.Vj i 1,.

Définition 6

On appelle moment du 2° ordre ou moyenne quadratique

2) XtXk ¦ ¦¦ xi xk P X ¦ • • X àxx dXj
¦' i 1, ...y

k=l, ...j
—00 —00

Remarque 5

Sachant que p (x-y) / 1 p (xy xf) dx2

+ CC +00

dxi

—00 —00

les relations 1) et 2) s'écrivent

X; / Xi p (Xi) dX{

*x / xjp(Xi)dXi

moment du 1er ordre

moment du 2e ordre

— r rXj Xj i / xt Xj p (.Vi, Xj) d.Ti d.Xj moment composé du
2e ordre

La densité de probabilité composée n'intervient que dans
le moment composé du 2e ordre.

Remarque fondamentale

Le moment composé du 2e ordre étant une grandeur réelle,
nous avons là un moyen de mesure de l'état de champ de

dépendance de probabilité.

Définition 7

Nous appelons coefficient de corrélation le moment composé

du 2e ordre normalisé.

Pu i
(Xj - Xj) (Xj - Xj) Xi Xj - Xt Xj

(xf-xt)(x2-x;) Ci O)

o \ X\ — Xi a, écart type

Définition 8

Une variable aléatoire peut être représentée par un vec-
—>-

teur aléatoire X qui est défini dans l'espace aléatoire par sa

norme II X II

avec \\X\ < X I X > X2

Le vecteur aléatoire représente dans l'espace aléatoire
l'état physique d'un phénomène physique pour des valeurs
particulières des paramètres Xj.

X -f. p (xjxy Xj) dx

Le vecteur aléatoire peut être décomposé en un vecteur
•±

certain X et un vecteur purement aléatoire X' orthogonal
au premier.

On doit donc avoir II X||2 Il X II2 + || X' II2

+00

avec 11 X 11 X xp (x/xy xj) dx
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Fig. 5

d'où llJSr'll \ X2-X a écart type (fig. 5)

Définition 9

La dépendance de probabilité entre les deux états Xy et X2
du phénomène physique sera représenté dans l'espace aléatoire

par l'angle a que forment les composantes aléatoires

X[ et X2 des vecteurs Xy et X2, les composantes réelles étant
portées par la droite réelle.

Considérons la variable aléatoire X pour une valeur
différente des paramètres Xj, noté X2.

La mesure de cet angle est donnée par (fig. 6) :

cos a12 />i2 coefficient de corrélation
Or

COS «12
X[ X'

Xy X2

11X11 IIXH
X\X2 produit scalaire.d'où X[ X2

Définition 10

n variables aléatoires Xi(i 1, n) définissent un
espace aléatoire à n + 1 dimensions, au plus, composé de

la droite réelle, orthogonale à un espace purement aléatoire
à n dimension, au plus.

X

aléatoire
plan

droite
réelle

Fig. 6

Remarque 6

Le champ de dépendance de probabilité du phénomène
physique n'appâtait plus dans l'espace aléatoire que sous la forme
intrinsèque des moments du 1er et du 2e ordre.

Remarque 7

Si la dépendance de probabilité est maximum, p 1 —>-

a 0: les deux vecteurs X[ et X2 sont confondus. S'il
n'y a pas de dépendances de probabilité entre les états

Xy et X2,

alors p 0, a —

Les vecteurs X[ et X'2 sont perpendiculaires.
Espace aléatoire des probabilités indépendant, champ

de corrélation nul.

Remarque 8

L'espace aléatoire satisfait aux conditions de l'espace de

Hubert.

II. Prévisibilité d'une fonction
aléatoire le long d'une trajectoire

§1. Trajectoire dans l'espace des paramètres

Définition 1

Les paramètres Xy Xj forment une base orthogonale
dans l'espace euclidien.

On suppose donc que les paramètres forment un système
linéairement indépendant d'ordre/.

Il est alors impossible de trouver / nombres Xj, non
tous nuls tels que

(Xy Xy + a2 X2 + + (Xj Xj

Il existe une base orthogonale telle que

X X1 Xy + X2 X2 + + X1 Xj

avec Xy (xy, 0, 0)

lc2 (0, x2, 0)

Xj (0, 0, Xj)

0

Soit S une courbe régulière dans l'espace des paramètres
X] d'équation.

x* x* (t)

ou /- (.r1, x2, x}) avec r'(t) ^0 (fig. 7)

Alors il existe en tout point de S un repère naturel
tangent

dr r'(t)dt

de composante ey, e2, e;-, vecteurs unitaires.

Nous pouvons alors introduire sur cette courbe une
métrique ds avec

et

ds2 gij dx1 dx1

ïa et e}
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X

23

ot
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Définition 2

Soit sur la courbe 5 un point P appelé présent
correspondant à la valeur t0. Nous appellerons futur la demi-
courbe définie par

r
I ds > 0

F : point du futur
Alors

i

PF= \/gt1 dx1 dxl

Définition 3

Nous appellerons passé la demi-courbe définie par

p

f ds > 0

'a

A : point du passé

§2. Mesure du relâchement du champ de
dépendance de probabilité

—>-

Soit une suite de vecteurs aléatoires Xt représentant les

états successifs d'un phénomène physique le long de la

trajectoire 5.

Si le phénomène est suffisamment cohérent, les Xt
définissent un espace de Hubert à / + 1 dimensions, dans

lequel le champ de dépendance de probabilité est représenté

par tous les coefficients de corrélation.

Ptj (X,, Xj)
1.

J

k
k

Définition 1

La dépendance de probabilité d'un vecteur aléatoire par
rapport aux vecteurs précédents est donnée par un coefficient
de corrélation multiple R

Pu

Pix 1

déterminant des pi}
d'ordre k

R est la mesure d'hypervolume à k dimensions formé sur

la base unitaire purement aléatoire ut

avec x:
\\x'i\\ Oi

En passant à la limite, on obtient la fonction ressemblance

R(t) du phénomène aléatoire le long de la trajectoire

S (t).
0 ^ Ä fË 1 en vertu des propriétés de l'espace vectoriel

aléatoire (inégalité de Schwarz) ;

en outre, R décroît lorsque / croît, car pour chaque

augmentation infinitésimale dt de t,

on multiplie R par un terme 0 ^ Y ^ 1

où T cos ß, cosinus de l'angle que forme le nouveau

vecteur m avec la normale à Phypervolume précédent. De

plus, à l'origine :

R pxi - 1 (fig- 8)

R (t) est donc une fonction monotone, décroissante,
bornée.

Ri 1

R2
1 P12,

Pl2 1
V 1 — p\2 sin cci2 S surface

I Pli Pli
^12 1 P2i

Pli P23 1

K volume

*s V (\-p\2) + (1 -/>ïa) + (1 -Ph)-2Q -pnPispxd

R3 „— cos p
R2
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normale

12

,ß

Fig. 9. — Hypervolume du passé.

Remarque 1

R cte 1 signifie que les dépendances de probabilité
sont nulles : il n'y a aucune liaison entre les différents états
du phénomène le long de la trajectoire S (fig. 9).

Si le kème vecteur est situé dans le futur immédiat, on
peut représenter l'espace aléatoire par la figure ci-dessous.

Définition 2

On appelle Inconnexe J la mesure du champ de dépendance

de probabilité.

d'où

Remarque

J sin ß

J2 1 -cos2 ß 1- Pij

Pu

(oo)

y 1 si et seulement si I p{. |(oo+l) 0

car

alors H (oo+l)

I Pu X+1) X Pu X»

1 I 1, oo + 1 et ß 0.

En ce point, la dépendance de probabilité est maximum.
J est défini sur un élément ds de la courbe S. En effet,

on peut écrire sans autre

I pij I <(+(W)

Pu (t)

Théorème 1

J (t) est une fonction monotone bornée de bornes 0 et
(fig. 10)

I pij I «+<«> ^ I pij I «> et

0 ^ I Pi, I (t>

car

I

Définition 3

On appelle fonction connaissance K(t) la fonction duale
de la fonction ressemblance R (t).

Soit X", X* deux vecteurs de l'espace aléatoire

Xi+ le vecteur correspondant de l'espace dual.

U" U* cos a

U° Ui+ cos a+

avec cos a+ y 1 — cos2 a sin a

Fig. 10

[/ vecteur unitaire.
Alors

K2

cos «,-

cos «7 1

\1 -/>«

V i - Pi 1

K(t) est une fonction monotone, décroissante, bornée, de
bornes 0 et 1. Car

0 ^ cos a;1 1

Remarque 3

K varie d'autant plus lentement que la dépendance de

probabilité est grande (fig. 11).

En effet, p ^ 1 et \ 1 -p2 ä 0.

Pour chaque augmentation dt de t, on multiplie K par

un terme ~ X ^ ^ 1 avec cos ß+ A.

L'inconnexe se calcule alors par

K(t + dt) (nJ cos — — pK(t) \2
d'où

Fig. 11. — Hypervolume dual du passé.
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debut des mesures
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Fig. 14

Fig. 12

a) phénomène ayant une forte dépendance de probabilité;
b) phénomène ayant une dépendance de probabilité plus faible ;

c) phénomène n'ayant aucune dépendance de probabilité avec
le passé lontain.

Calculons K à partir du présent P vers le passé.
La fonction K mesure la connaissance que l'on a du

phénomène au cours du temps, celle-ci étant normalisée à 1

au présent (fig. 12).

Postulat de prévisibilité
Le degré de prévisibilité du futur proche est égal à

l'influence du passé proche sur le présent, c'est-à-dire à son
degré de connaissance.

P(At+ t0) K(t0~At)
Remarque 4

Le degré de connaissance augmente du passé jusqu'au
présent où il vaut 1, puis la connaissance « diffuse » dans
le futur et tend vers zéro (fig. 13).

Remarque 5

Le postulat reste d'autant plus vrai que la fonction est
plus prévisible.

En effet, à la limite, il est vrai pour tout t lorsque
K(t) constante 1

Théorème 2

Le postulat est vrai quel que soit At pour une classe
particulière de variables aléatoires dont les fonctions K
sont identiques, quelle que soit l'origine t0 à partir de
laquelle on les calcule (stationnarité en prévisibilité).

Si K(t0i~At) K(to2~At),

alors KQo—t) P (t0 + t)
quelque soient / et t0, en vertu des propriétés de permutation

de lignes et de colonne dans les déterminants (fig. 14).

P t„+tK(to-t)

PASSE to FUTUR

Définition 4

Le coefficient de prévisibilité IT est défini par la relation
suivante :

1 1 ÔP

n~ ~ pli
dt

d'où 77
1 -/

J : inconnexe (calculée à partir du présent vers le passé).

Remarque 6

17 a la. dimension de /.

77 ^ 0 car P =^ 0 et — < 0 (même démonstration quedt
pour R

En posant t0 0, on peut écrire :

t

_ l'idtP= e ¦' n
o

§3. Forme particulière

Si 77 770 cte, alors

P e n« et 770
dt

InJ

La dépendance de probabilité ne varie pas au cours du
temps, donc P ne dépend pas de l'origine t0 choisie.

Définition 5

La loi de dépendance de probabilité en chaîne de Markow
est un modèle particulier défini par

1 p p2... p
P 1 P
P~ P 1

R2 (nAt) d -P2r

Fig. 13

pn 1

avec t nAt At : période d'échantillonnage.

Théorème 3

Dans la loi en chaîne de Markow, l'inconnexe est égal
au coefficient de corrélation.

K2(t)

s/ï-7*fl
'

i
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TT./At

d'où K(t) p*"" et 77

donc p J.

Al
bip

Fig. 15. — Prévisibilité.

La loi de Markow suppose que le coefficient de prévisibilité

est constant. La loi ne tient compte que de l'influence
du passé proche sur le présent et ceci est une manière
particulière.

La figure 15 montre que la constante de prévisibilité
normalisée par rapport à la période d'échantillonnage AT
n'atteint des valeurs élevées que pour des valeurs élevées
de p.

La figure 16 montre la fonction prévisibilité pour diverses
valeurs de p.

Pi

Fig. 16

§4. Applications numériques

Diverses données météorologiques de l'année 1967

provenant de la station aérologique de Payerne ont été traitées

sur l'ordinateur du centre de calcul de l'EPFL.
Chaque série comprend 730 données correspondant aux

valeurs diurnes (midi) et nocturnes (minuit). Les résultats
ont été exprimés au moyen de graphiques.

La figure 17 représente les fonctions d'autocorrélation.
On constate que l'allure de la fonction d'autocorrélation

ne donne aucune indication quant à la prévisibilité du
phénomène.

En effet, des courbes d'autocorrélation très semblables

comme celle de la pression barométrique à la surface et de

la température de la tropopause, correspondent à des

phénomènes très différents au point de vue de la prévisibilité.

température à la surface

\) A V \) Vi lA f] î\ C) /\ f\ A A A

humidité du sol (val. sup)

J '\j\iv\j\j \ï\j\I\n a
' ^[y ¦

w v \
" v \;x w\xx A A !\ r/M \J V \J '\J \j \j\j: {¦( f] A A A A n

X *s

temperature de
la tropopause

hauteur de la tropopause

pression à la surface

humidité' du sol (val. inf.)

20

V

Fig. 17. — Autocorrélation.
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Fig. 18. — K Connaissance.

température à la surface

pression à la surface

hauteur à la tropopause

température à la tropopause

humidité au sol

température à la surface

pression à la surface

hauteur de la tropopause

X7-~~-

température à la tropopause

humidité du sol

suite de nombres aléatoires

20

Fig. 19 — J Inconnexe.
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AP (jours)

10-- temperature c la surface

pression a la surface

hauteur de la tropopause

température de la tropopause

dh-

humidité d la surface

percture de la tropopause

10

Fig. 20. — P Prévisibilité.

On remarque une fluctuation de la fonction d'autocorrélation

correspondant aux valeurs diurnes et nocturnes. Cette
fluctuation peut être très faible (température de la
tropopause), faible (température au sol) ou, au contraire, très
prononcée (humidité au sol) suivant la nature du phénomène

mesuré.
La figure 18 représente les fonctions connaissances. Elles

décroissent d'autant plus lentement que le phénomène est

plus prévisible, que les dépendances de probabilité sont
plus grandes. On constate que la température donne encore
une valeur non négligeable après un mois. Au contraire,
les mesures faites dans la tropopause et encore plus, les

mesures d'humidité au sol donnent une fonction connaissance

qui décroît très rapidement.
La figure 19 montre l'inconnexe.
On constate que l'inconnexe est grosso modo une constante

même pour des phénomènes aussi peu prévisibles que
les mesures dans la tropopause. Ce n'est que pour les

mesures d'humidité et les calculs faits avec une suite de
nombres aléatoires que l'inconnexe devient une fonction
nettement croissante.

La figure 20 représente la fonction prévisibilité. Cette
fonction est grosso modo une constante pour la plupart des

phénomènes mesurés, ce qui veut dire qu'ils peuvent être
représentés par la théorie en chaîne de Markow. Mais, par
contre, la température au sol a une fonction prévisibilité
nettement différente. La loi de dépendance de probabilité
de cette grandeur est différente et plus compliquée que
celle des autres grandeurs physiques mesurées.

Conclusion

Les calculs effectués avec des grandeurs naturelles
montrent que la température peut être assimilée à peu près
à un modèle de Markow, en variations diurnes et
nocturnes près, tandis que la pression au sol est un phénomène
de nature totalement différente.

Pour chaque type de phénomène aléatoire, on trouvera
des familles de courbes différentes, représentatives de la
diffusion du champ de dépendance de probabilité.

III. Prévision
d'une fonction aléatoire

§1. Conditions d'établissement d'une prévision
Le phénomène physique représenté par la fonction aléatoire

x (t) nous est connu par les mesures X* (t).
S'il s'agit d'une expérience (cf. fig. 1), il est possible

d'obtenir les moments de divers ordres « à travers le
phénomène ».

Dans l'exemple de la figure 1, nous avons une série de

mesures :

alors XUt) 1,

j
Moment d'ordre n X"" (t) - V X]" (t)

i
Moment le long du phénomène

X' (t) X" (f + At) - V Xi (t) X* (t + At

J

S'il s'agit d'un phénomène naturel, nous n'avons droit
souvent qu'à une seule réalisation Xy (/), donc à une seule

mesure X[ (t).
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Dans ce cas, pour pouvoir effectuer la prévision, il faut
au moins supposer que la fonction aléatoire est station-
naire dans un intervalle de temps Aty,
avec Aty <C At2

At2 : durée de la mesure.
En vertu du principe ergodique, il est alors possible de

remplacer les moyennes « à travers le processus » par les

moyennes « le long du processus » dans l'intervalle Aty.
Ainsi

1

X*»(t') — X*n(t)dt
AtyJ

t-At!
t

X* (t')X' (t' + A?) -A / X*(t)X*(t + At)dt
Aty J

t-At,

t— Aty t^t'l^t
On appelle alors

Pt.At —
X* (t) X* (t + At)-X\t)-X* (t + At)

V [X*2 (t)-X* (tf\ [X*2 (t + At)-X* (t + Atf\
la fonction d'autocorrélation (le long du phénomène).

Remarque 1

Pt,At> calculé à partir du présent vers le passé, sert à

déterminer la fonction prévisibilité.

Remarque 2

On ne peut pas sans autre effectuer les calculs de p sur
une mesure X* (t), car il existe le plus souvent une fonction
certaine sous-jacente dont la moyenne « à travers le
processus » est différente de la moyenne « le long du processus

», sinon on remplacerait la fonction certaine par une
fonction aléatoire stationnaire dont les moments sont
égaux aux moyennes de la fonction certaine le long du
paramètre t et dont la dépendance de probabilité est égale
à la fonction d'autocorrélation de la fonction certaine ; or,
par définition, p 1 pour une fonction certaine.

Exemples

f(t) : fonction certaine
x : fonction aléatoire

xemp

fit)
le 1

sin (cur + (p)

X
1

2%

In

I sin (cot

0

Y2
1

~
2%

2k

/ sin2 (c

cp)d9 0 où 0 cat

¦n j,

2n-fn

Fig. 21. — Composante d'ordre n.

on a :

7XO=/(0 sin (cot+tp) x (0 0

f2 (0=/2(0 sin2 (cot+tp) x2it)
1

2~

p[fit)] i \/t, At p [x (t)] cos co-At x/t

Exemple 2

fit) e*

p e At

Fit)
X

\/t,At

x=0
W) e->

Exemple 3

fit) at + b

x ±00 1

-5 \ si a =£ 0
x2 -J- CO J

P=\
Dans le cas de la droite certaine, la fonction

d'autocorrélation est identique à la fonction de corrélation.

§2. Fonction prévision

Soit X* (t) une mesure dans laquelle on a éliminé toutes
les fonctions certaines. Souvent on soustraira la droite
certaine obtenue par la méthode des moindres carrés et

certaines fonctions périodiques de période Aty <C At2.
(Variations journalières saisonnières, etc.)

La fonction prévision p (t) est une fonction certaine qui
prolonge la mesure A'* (0 dans le futur.

X* (t0) p (t0) t0 présent

et
dX* (Q dp(tQ)

dt dt

Pi, A t —
f(t)f(t + At)

nAXO • PU + At)

— / sin (ojt + tp) ¦ sin [co (t + At) + m]d9 cos co. At
71 J

o

pour /
n
2

2 k n k : entier

Remarque 1

La fonction p (t) est bornée puisqu'il s'agit d'un phénomène

physique, mais non forcément nulle à l'oo.
dp it)

Nous ferons donc la prévision sur la pente/)' (/) —^—.

De plus, nous imposerons p' (°o) 0.

On retrouvera la fonction p (t) par intégration, connaissant

la condition initiale :

p (t0) X* (t0)
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Remarque 2

L'influence des fluctuations de X* (t) sur le présent est
d'autant plus faible que l'on est plus loin dans le passé et
que le phénomène est peu prévisible, car alors la dépendance

de probabilité est faible.
Nous calculerons la fonction prévision en décomposant

7y* (t\
la dérivée de la mesure —= multipliée par la fonction

dt
connaissance, en série de Fourier. On tient compte ainsi
de l'influence plus ou moins forte du passé sur le présent.

c- - X /ti 'o J

ti
Cdx*

K(t)e-'mo"1 dt

présent

début de la mesure
X
X
n : entier positif (ou indice)

2n
C0o pulsation fondamentale.

C'n est la valeur moyenne sur l'intervalle de mesure
t0—ti de pulsation d'ordre /;.

Du présent vers le futur, les coefficients de la série de
Fourier deviennent

c;*= ne; il *'<¦"-»•>

avec C;= Il C'nU e' <»'«

Pour calculer la fonction prévision, il faut pondérer les
coefficients C% d'un terme F(t) diminuant avec /

Fit) (ti-to)P(t)

k(t)dt

On obtient/» (t) par intégration, sachant que

„ v dX' (t0)
P (to)

et

Conclusion

dt

p (to) X* (to)

La fonction prévision p (t) permet de prolonger une
mesure X* (t) dans le futur. La fonction prévisibilité P (t)
permet de dire avec quelle probabilité la prévision risque
de se réaliser.
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