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BULLETIN TECHNIQUE DE LA SUISSE ROMANDE 100® année 31 janvier 1974 N° 3

Communications de la Chaire de la Mécanique de la Turbulence de I'EPFL et du groupe
de travail EPFL — Institut Suisse de Météorologie.

Théorie de la prévisibilité

par PIERRE RAVUSSIN, Lausanne

Avant-propos

Le calcul des probabilités est né d’un probléme de prévisibilité concernant une partie de jeu de dés
inachevée. On sait par la suite I’extension qu’il a prise et les succes de son application dans de trés nombreuix
domaines : assurances, théorie cinétique des gaz, mécaniques statistiques diverses, etc.

Les mouvements désordonnés, discontiniis, a évolution aléatoire, caractéristiques fondamentales des
écoulements turbulents ont conduit les hydrodynamiciens et aérodynamiciens a employer les méthodes
statistiques dans la mécanique de la turbulence. Mais, il importe de remarquer impérieusement que la suite
des mouvements tourbillonnaires n’est pas régie par un hasard pur, mais au contraire par un hasard 1ié
exprimable par des probabilités conditionnelles fechniquement traduites par les corrélations des grandeurs
aléatoires du fluide turbulent.

La Chaire de la Mécanique de la turbulence et le Groupe de travail EPFL-Institut suisse de météorologie
effectuent des travaux théoriques et pratiques en mécanique de la turbulence.

L’étude de M. P. Ravussin, collaborateur scientifique, s’insére dans cette recherche.

L’incomparable laboratoire qu’est I’atmosphére montre des turbulences de toutes échelles. C’est pour
cela que dans la préface a la présente étude, M. D* A. Junod, chef de la Division de météorologie appliquée
de IInstitut suisse de météorologie situe la « théorie de la prévisibilité » de P. Ravussin dans le contexte
des deux grandes méthodes de prévision utilisées par les météorologues.

1l serait intéressant d’en essayer ultérieurement la synthese, ou alors d’en dégager leurs caractéres de

complémentarité.
Professeur FRANGOIS BAATARD
Chaire de la Mécanique de la Turbulence
de I’Ecole polytechnique fédérale de Lausanne
Préface

On dit souvent, non sans quelque raison, que la météorologie tient tout autant d’un art que d’une science.
1l est de fait que, dans le domaine de la prévision du temps, le jugement du météorologiste intervient en
maintes phases de I’opération, en partant du choix d’un jeu caractéristiquie de données initiales a Iinterpré-
tation ultime d’une carte synoptique en termes de prévision régionale.

Cependant, au cours des derniéres décennies, des efforts considérables ont été déployés en vue de réduire
systématiquement la part subjective dans les procédures prévisionnelles, sans pour autant faire table rase
de 'expérience acquise. Le développement méthodologique s’est concentré dans deux catégories principales.
La premiere, celle de la prévision numérique du temps, met en jeu essentiellement des modeéles physico-
mathématiques de I’atmosphére, plus ou moins complexes mais volontairement simplifiés, reposant sur des
systemes d’équations hydrodynamiques qui ne peuvent étre résolus qu’a I’aide d’ordinateurs puissants. Le
résultat d’une telle prévision numérique s’exprime en répartitions spatiales a grande échelle d’éléments tels
que le vent, la pression, la température, et non en une description du temps futur en tel point particulier
de la surface terrestre.

Dans la deuxiéme catégorie de procédures prévisionnelles sont rangées diverses méthodes statistiques,
de complexité fort variable suivant la nature du matériel d’observations et le genre de technique utilisée.
On trouve ainsi dans cette catégorie des techniques simples comme la régression linéaire ou plus élaborées
comme lanalyse discriminante multiple. Bien qu’il n’y ait pas d’incompatibilité majeure entre les deux
catégories mentionnées — chacune d’elles s’appuyant sur des résultats acquis grdce a 'autre — il faut
constater que les recherches dans chacune de ces catégories se sont faites séparément, jusqu’ici.

En premiere analyse, la « Théorie de la prévisibilité » de P. Ravussin semble se rattacher a la catégorie
des méthodes statistiques car elle ne repose sur aucun modele physique particulier et fait intervenir des
schémas de calcul analogues a ceux de la statistique. Cependant, un examen plus attentif révéle que I auteur,
dépassant largement le cadre d’une nouvelle technique statistique, batit une théorie générale de la prévisibilité
des phénoménes aléatoires. A ceux-ci appartiennent les écoulements turbulents de I’atmosphére, milieu
d’élection des prévisionnistes. Il ne fait pas de doute que les météorologistes liront avec profit le présent
mémoire | ils y trouveront notamment une méthode pour « qualifier quantitativement » leurs prévisions.

ANDRE JUNOD
Chef de la Division de météorologie appliquée
de P'Institut suisse de météorologie
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1. Introduction

Geneése du concept aléatoire de la prévisibilité

Nous trouverons dans les pages qui suivent une théorie
nouvelle de la prévisibilité numérique dont les météorolo-
gistes francais Dedebant et Wehrlé ont pergu certains élé-
ments dans quelques-uns de leurs essais.

Dés que I’on parle de prévision, on fait appel a la notion
de causalité (« causa efficiens » des Anciens). En remontant
a la haute antiquité, la constatation de liens célestes entre
certains phénomeénes terrestres, par exemple entre la posi-
tion du soleil sur le zodiaque et le déroulement des saisons,
aboutit a une application hative du principe de causalité.
On attribua une signification particuliére aux événements
célestes qui devaient déterminer l'avenir des hommes.
Ainsi naquit I’astrologie, qui avec ses lois aussi précises que
mal fondées, et ses affirmations fatalistes, contribua a intro-
duire le concept de nécessité absolue. L’interprétation mys-
tique et animiste du mouvement des astres conduisit les
philosophes antiques a la notion de cycle au bout duquel
tous les phénomenes doivent se reproduire d’une fagon
identique et dans le méme ordre. Ces concepts sont a ratta-
cher a une théorie cosmologique concevant l'univers issu
d’un « ceuf » initial et qui, aprés une période d’expansion
se recondenserait.

Historiquement parlant, ’application du concept de cau-
salité a la regle de cause a effet est relativement récente.
Actuellement, lorsque nous apprenons qu’une chose arrive,
nous présupposons toujours qu’'une chose a précédé, dont
la premiere découle selon une regle.

La physique de Newton, puis de Lagrange (mécanique
analytique) est ainsi congue que l’on peut calculer a
I’avance, a partir de I’état d’un systéme a un moment déter-
miné, le mouvement futur du systéme.

Le déterminisme est I’établissement de lois naturelles
fixes qui prédisent rigoureusement I’état futur d’un systéme
d’aprés I’état actuel. Ces lois sont celles de la physique
générale, qui régissent 1’évolution et les interactions de
I’énergie, au sens le plus général, dans I’espace-temps. Ces
lois sont celles par exemple du champ électromagnétique
de Maxwell ou de la théorie relativiste de la gravitation
d’Einstein.

La science atomique a développé des notions qui condui-
sent la physique générale a une impasse : c’est I'impossibi-
lit¢ du physicien de déterminer exactement les conditions
initiales. Cette difficulté a été partiellement soulevée en
faisant appel a I'idée d’un concours statistique de nombreux
petits processus isolés. Il en découle que 'on considére les
lois de la nature uniquement comme des lois statistiques.
Ces lois peuvent cependant conduire a des affirmations
d’'un degré de probabilité si €levé qu’il équivaut presque a
une certitude. Ce « presque » est la différence qui existe
entre une loi purement déterministe et une mécanique
aléatoire. Les lois statistiques signifient que 1’on ne connait
qu’incomplétement les systémes physiques dont il s’agit.
La physique quantique a d’ailleurs démontré qu’il n’était
pas possible de connaitre exactement les données d’'un
systétme a un instant fixé (principe d’incertitude d’Heisen-
berg). Les thermodynamiciens présupposent une connais-
sance incompléte du systéme physique qu’ils étudient. La
notion de température par exemple n’a pas de sens si I’'on
connait toutes les positions et toutes les vitesses des atomes
d’un gaz. Le concept de température caractérise un groupe
de systémes équivalents dont on connait en moyenne la
position et la vitesse des atomes.

Or, il existe dans la nature de nombreux phénoménes
que I’on ne connait qu’imparfaitement, soit que la loi qui
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les régit ne nous est pas entierement connue, soit que 1’on
n’en posséde pas toutes les données, soit encore que la
complexité du phénomeéne est telle qu’il ne nous est maté-
riellement pas possible de ’appréhender enti¢rement.

Tels sont par exemple les écoulements turbulents, les
phénomeénes météorologiques, etc.

Ces phénoménes ne sont pas prévisibles au sens classique
du terme, car I'on ne posséde pas toutes les données pour
résoudre le systéme d’équations qui les décrit : on ne peut
pas calculer a I’avance quel sera I’état du systéme a un
moment donné du futur.

L’approche classique de la prévision de tels phénoménes
consiste en I’établissement d’un modéle mathématique sim-
plifié dont la maille soit suffisamment lache pour que les
données incomplétes que I’on possede forment un systéme
qui puisse étre résolu.

On obtient ainsi une solution qui est I’évolution du
modele dans le futur.

Mais il n’est pas possible par cette méthode de dire quelle
est la probabilité que cette prévision se réalise, quelle est
la prévisibilité du phénomene étudie.

2. Mécanique aléatoire

La solution présentée dans ce travail fait appel a des
concepts statistiques. Le champ de dépendance de proba-
bilité du phénomene étudié¢, mesuré pratiquement par les
corrélations, est le concept de base de la mécanique
aléatoire.

Le relachement du champ de dépendance de probabilité
au cours du temps met en évidence la diffusion du milieu
et la dissipation de son énergie : le champ de corrélation
tend vers zéro.

La prévisibilité du phénoméne sera d’autant plus grande
que le reldchement du champ de dépendance de probabilité
est plus faible.

Aux limites, la mécanique aléatoire devient d’une part
une mécanique classique certaine a prévisibilité maximum ;
d’autre part, elle devient une mécanique statistique a pro-
babilités indépendantes lorsque la prévisibilité est minimum.
Entre ces limites, il y a autant de mécaniques aléatoires
qu’il existe de fonctions de connexion des probabilités.

3. Exemple des grandeurs aléatoires d'un
phénomeéne :

Prenons comme exemple un phénomeéne aléatoire transi-
toire (non stationnaire) : la diffusion d’une particule de
fluide, c’est-a-dire une particule aléatoire.

L’expérience est réalisée en prenant de fagon reproduc-
tible une poire en caoutchouc (fig. 1).

On a créé une particule aléatoire qui va diffuser dans
I’espace-temps et dont 1’énergie va se dissiper.

Fig. 1



Supposons que cette particule aléatoire ne nous est

connue que par la composante ;(t) du vecteur vitesse en
un point fixe P de I’espace.

La particule aléatoire est alors définie par une fonction
aléatoire x (t) représentative du phénomeéne.

Chaque fois que I'on presse sur la poire, on crée une
réalisation 2; (¢) de la fonction aléatoire x (z).

On dit aussi que @; () est une valeur de la fonction aléa-
toire x (¢). j est la numérotation de la réalisation.

2; (¢) est une fonction réelle du temps 7.

La fonction aléatoire x () est représentée par I’ensemble
des réalisations possibles x; (¢) (fig. 2).

Considérons ce qui se passe a un instant donné 1, :
x = x (¢,) est une variable aléatoire.

X (ty) = Ua;j (t,)

Soit k le nombre de réalisations x; (#;) possible (j = 1,

. k).

Supposons que 1’on ait trouvé k; fois la valeur de ay,
ky fois la valeur as, etc., k, fois la valeur a, avec
k=k1+k2+ e Ll 5
parexemple: Iy = @5 = . Ln = Ty, = @

Dl = Lpyte = w.. = Tp g5, = G,

Alors p; = ky/k est la probabilité que la variable aléa-
toire x,, ait une réalisation = de valeur a;.

Alors

i=e
X = Z Di q; est la valeur moyenne
t=1

ou moment de premier ordre de la
variable aléatoire X,.

En généralisant on obtient

_/\7: ijil'j

en passant au cas continu

“+0o0

X(t) = f@ &) p (x/t) dv

s
— 00

C’est la valeur moyenne de la fonction aléatoire X au
temps 7, ou moment au premier ordre au temps .
C’est une intégrale au sens de Lebesgue (fig. 3).

4. Mesure et échelle d’observation

La mesure est I’élément clef de toute étude scientifique.

Dans I’hypothése déterministe, la mesure permet de com-
parer le phénomeéne étudié avec le modéle physique. Dans
le cas aléatoire, c’est de la mesure que I’on tirera le champ
de dépendance de probabilité caractéristique du phéno-
mene.

Dans les phénomeénes naturels, on n’a en général accés
qu’a une seule réalisation ;.

Soit X" (¢) la mesure d’un phénomeéne aléatoire repré-
sentable par la fonction aléatoire x (1).

Revenons a I’exemple : pour effectuer la mesure, nous
sommes obligés d’introduire un capteur qui occupe un
volume d’épreuve A4V autour du point P et dont la cons-
tante de temps vaut A¢ (fig. 4).

A:I;1 j=
\,\ |
R
tl.l
Lo
j=2
/\ f
£ gt
2 J=3
/ t
tu
U:nj (1] = Xt
Fig. 2
I
o b o //\/
W N
;

Fig. 3

Fig. 4
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Soit X7 () la j° mesure au point P

Xy (P, 1) = x; (P, t)dV dt (en négligeant
les erreurs de

mesure)

1
AVAt

V=4V t—-dt

C’est la moyenne spacio-temporelle, autour du point P,
vers linstant ¢, de la j¢ réalisation d’une fonction aléatoire
spacio-temporelle x (P, ) dont x () est une des compo-
santes. Par définition X; (P, t) # x (t) au point P sauf
éventuellement pour certaines valeurs particuliéres de P
et de 7.

+oo
Cat xi(t) =fx(t)p(x/t) dx: c’est la moyenne « a tra-

—00

vers le processus» de toutes les réalisations x; possibles : :

Ty = 1, ek,

Par contre, X (¢) est la moyenne «le long du processus »
non seulement d’une réalisation particuliere x; () de x (#)
(j = n), mais aussi d’un certain nombre de réalisations par-
ticulieres @; (P, 1) (j = 1, ... n) autour du point P d’un
certain nombre de fonctions aléatoires x (P, 7).

On posera de maniére générale

x (1) = X; () + xj (1)

I. Espace aléatoire

§1. Introduction

La mécanique aléatoire est basée sur un élément appelé
variable aléatoire, dont nous avons vu une définition par-
ticuliére précédemment. Nous allons généraliser sa défini-
tion et en rappeler les propriétés.

§ 2. Variable aléatoire
Définition

On appelle variable aléatoire X un ensemble d’éléments @,
appelés valeurs ou réalisations de la variable aléatoire.

n est la numérotation de la réalisation

n=1,0.5.n

Les x, sont souvent les composantes d’un vecteur. On
les notera alors @,,;; par exemple i =1, ... 4 vecteur
spatio-temporel.

Alors : en un point P de I’espace et au temps ¢ il existe

n valeurs x,, définissant une variable aléatoire X en ce point
et a cet instant.

§3. Champ de dépendance de probabilité
Définition 1

On appelle densité de probabilité p (x,) la fréquence rela-
tive d’apparition de la valeur «,, de la variable aléatoire X.

kn,

P (flf.”) o _/;

k, : nombre de réalisations identiques a x,,
k : nombre total de réalisations de X
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ou
x (t) : fonction aléatoire du temps
X; (¢): mesure de la réalisation j
xj (t): terme complémentaire

Posons x=x+4+x
=ttt
X, x": valeurs moyennes

x’, x* 2 valeurs purement aléatoires
Par définition X" = X~

Alors x)=X; @)+ x; ()
X — %0
Ce qui précéde entraine I’énoncé des théorémes sui-
vants :

Théoréme 1

Une mesure X ; (¢) d’une réalisation d’une fonction aléa-
toire x (¢) est en général différente de la valeur moyenne de
cette fonction.

Théoréme 2

La partie purement aléatoire x’; (t) du terme complé-
mentaire de la mesure d’une réalisation quelconque x; ()
est égal & la partie purement aléatoire x’ (¢) de la fonction
aléatoire elle-méme.

AV et At définissent [’échelle d’observation ou « I’étage »
observé d’un phénomeéne aléatoire.

Considérons maintenant deux variables aléatoires X et
X? (par exemple en deux points de I’espace-temps) définies

par des paires a}, a3 de valeurs.

Définition 2
On appelle densité de probabilité composée p (v}, x2) la
fréquence relative d’apparition de la paire

k?ll,
/\’10

p ("vl}u ‘T';;)l) =

On écrit aussi p (v}, n @2).
k,, : nombre de réalisations de paires identiques a la
paire =%, z2
ks : nombre total de réalisations de paires de X! et X>

Définition 3

On appelle densité de probabilité conditionnelle p (x)/x2)
le rapport des fréquences relatives d’apparitions des paires
xt, z2 et de la valeur 22 ;
avec x2 = a2
alors

p ('l' }! '1“;"1 = p (J:nlly".’l‘;.);’
: p(a})

Définition 4
On appelle densité de probabilité totale p (v} v k) la
grandeur définie par

p@huan) =p @y +p@n) —p @y, 23)



Définition fondamentale

Le champ de dépendance de probabilité ou champ de
probabilit¢ composé (par exemple dans I’espace spatio-
temporel) est défini au moyen de ’ensemble des variables
aléatoires X© dans cet espace par I’ensemble des couples
2, aP des réalisations de ces variables.

Remarque 1

Lorsque les réalisations d’une variable aléatoire ont plu-
sieurs composantes, on peut écrire :
p (Tnl) =R (-T'nl NZTpy ... N ~75ni)
alors

1 22 NG 1 2 1l .2 -2
V4 ('Tni ﬂln‘) T2 (‘Tnx nl’na n... ”l'n‘ n‘?“'n1 LY s a’nt)

La probabilité composée d’une paire de valeurs est égale
a la probabilité composée des composantes de ces valeurs.

On écrira X=X, ... X))

les X; étant eux-mémes des variables aléatoires.

Remarque 2

On dit que deux variables aléatoires sont indépendantes
si et seulement si
p@ha)=p@Eh). p@d
pour tout 2! et pour tout 2?2 ;

alors p@x® = p@E@H

pour tout 2! et pour tout a2,

Remarque 3

On considére souvent les variables aléatoires X (X, . ..
X;) pour des valeurs particuliéres x; d’'une ou de plusieurs
composantes X; (j == i).

On parle alors de fonctions aléatoires

X(X1, .o Xiy Ty, - 3) (k+j=1)
les @; sont appelés alors des parameétres.
On écrira @ (g1, ... ;) comme fonction paramétre.

La probabilité des réalisations @, ... x; pour les valeurs

Zpy41, - .. @; est une probabilité conditionnelle.

p (@1, ... ¥p/Tpr ... ;) est la probabilité d’avoir les
valeurs @ ... x; lorsque les valeurs @,y ... 2; ont été
réalisées.

Il n’est donc pas possible, si ce n’est par une convention
d’écriture, de distinguer une fonction aléatoire d’un para-
métre, d’une variable aléatoire a deux dimensions.

X (29) <—> X (X1, Xo)

Remarque 4

Les mesures ne permettent d’obtenir que les probabilités
conditionnelles p (xy ... ay/t) probabilités au temps t.

Définition 5
On appelle moment du 1°¢* ordre ou moyenne, les relations

+0o0 ;vgo
1) /\7,-=/‘.../.’Y‘i[)(.??l...f(‘j){[.l‘l...(l'(l‘]- i=1;...7J

Définition 6

On appelle moment du 2¢ ordre ou moyenne quadratique

+o0 +00
2 X X = / /:zfi;z‘kp(xl Seirydxy i dy
o o =l
—o0 —o0
le—=1 00
Remarque 5
+o0 +00
Sachant que p (x;) = / /p(:cl ST ids kA

les relations 1) et 2) s’écrivent :

4+
/\_’,,- — /. x; p () dx; moment du 1€ ordre
sy
tee
5(—1? = / @2 p () dx; moment du 2¢ ordre
PSS
300 rhoo
X X; = ,/ [ x; @ p (4, ¥;) dv; dx; moment composé du
S bt 2¢ ordre

La densité de probabilité composée n’intervient que dans
le moment composé du 2¢ ordre.

Remarque fondamentale

Le moment composé du 2¢ ordre étant une grandeur réelle,
nous avons la un moyen de mesure de I’état de champ de
dépendance de probabilité.

Définition 7
Nous appelons coefficient de corrélation le moment com-
posé du 2¢ ordre normalisé.

G-XX-X)_ XX-X
57 0; 0;

X

o B e
VX —Xp(x3 —Xy)

avec

T

o= VX2 — X; = g, écart type

iel

Définition 8
Une variable aléatoire peut étre représentée par un vec-

A1
teur aléatoire X qui est défini dans I’espace aléatoire par sa
norme || X ||

avec [ xlE=< X|x> = X2

Le vecteur aléatoire représente dans [’espace aléatoire
l’état physique d’un phénoméne physique pour des valeurs
particuliéres des paramétres x;.

+ 00
X = / THpi(@ /T m)dx

[
=00

Le vecteur aléatoire peut étre décomposé en un vecteur
5
= —
certain X et un vecteur purement aléatoire X’ orthogonal
au premier.

On doit donc avoir || X 2= [| X |12 + [| X”|I2
3
avec || Xl =X= / 2D (wfmy oy dx

3
— 00
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ﬁl

‘|

d’ou Xl = VX2—X% = ¢ écart type (fig. 5)

Fig. 5

Définition 9

La dépendance de probabilité entre les deux états Xi et Xo
du phénoméne physique sera représenté dans ’espace aléa-
toire par I’angle o que forment les composantes aléatoires

__>I _)/ e = , ’
X7 et X, des vecteurs Xi et Xs, les composantes réelles étant
1 2
portées par la droite réelle.
Considérons la variable aléatoire X pour une valeur
différente des parameétres a;, noté Xs.
La mesure de cet angle est donnée par (fig. 6) :

cos oys = p1a  coefficient de corrélation

Or
. XX
COS Qg = ——
B xgI nxgll

= = ——
dou X X; = X1 Xy — X1 Xo  produit scalaire.

Définition 10

n variables aléatoires X; (i = 1, ... n) définissent un
espace aléatoire a n + 1 dimensions, au plus, composé de
la droite réelle, orthogonale a un espace purement aléatoire
a n dimension, au plus.

Il. Prévisibilité d’'une fonction
aléatoire le long d’'une trajectoire

§1. Trajectoire dans l'espace des paramétres
Définition 1

Les paramétres x; . ..
dans I’espace euclidien.

On suppose donc que les paramétres forment un systeme
linéairement indépendant d’ordre ;.

Il est alors impossible de trouver ; nombres X;, non
tous nuls tels que

z; forment une base orthogonale

—> =5 —
al.'l?l“l‘dga:g’\“ —{—otjxj:O

1l existe une base orthogonale telle que

o — = =
=o'z + 2%z, + ... + xTx,
L

avec o, = (21,0, ... 0)
-

&oi= (0, Zg;, : .-\ 0)

2y = (0,0, ...m)
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aléatoire

droite
réelle

Fig. 6

Remarque 6

Le champ de dépendance de probabilité du phénomeéne phy-
sique w’apparait plus dans I’espace aléatoire que sous la forme
intrinséque des moments du 1°T et du 2¢ ordre.

Remarque 7
Si la dépendance de probabilité est maximum, p = 1 —

- =

o = 0: les deux vecteurs X7 et X, sont confondus. S’il
n’y a pas de dépendances de probabilité entre les états
/Yl et X2,

alorssz,a:%

— —

Les vecteurs X| et X sont perpendiculaires.
Espace aléatoire des probabilités indépendant, champ
de corrélation nul.

Remarque 8

L’espace aléatoire satisfait aux conditions de I’espace de
Hilbert.

Soit § une courbe réguliére dans I’espace des parametres
x; d’équation.

ot = 2 (1)

ou 7(1‘1, 22, ... 27 avec r’ () # 0 (fig. 7)

Alors il existe en tout point de S un repére naturel tan-
gent

dr="r’(f) dt

= =y —> D
de composante ey, ez, ... e;, vecteurs unitaires.

Nous pouvons alors introduire sur cette courbe une
métrique ds avec

ds® = gy; dat da?
et

8ij = €i ¢



Fig. 7

Définition 2

Soit sur la courbe S un point P appelé présent corres-
pondant a la valeur #,. Nous appellerons futur la demi-
courbe définie par

2
/ds>0

P

F : point du futur

Alors
A
PF = / V gy dat da
to
Définition 3
Nous appellerons passé la demi-courbe définie par
P
/ 1a’s =0
a

A : point du passé

§2. Mesure du relachement du champ de
dépendance de probabilité

=i

Soit une suite de vecteurs aléatoires X; représentant les
états successifs d’un phénoméne physique le long de la
trajectoire S.

Si le phénoméne est suffisamment cohérent, les X:
définissent un espace de Hilbert a i + 1 dimensions, dans
lequel le champ de dépendance de probabilité est repré-
senté par tous les coefficients de corrélation.

i=1,...k
Py Xo X .k

Définition 1

La dépendance de probabilité d’un vecteur aléatoire par
rapport aux vecteurs précédents est donnée par un coefficient
de corrélation multiple R

T
X3
B %
Us /
A3 ‘X’Q
*23
oL L=
13 ng : S : ?1'
T 2___,_ "—‘—»‘
a
Fig. 8
1 Pij
déterminant des p;
2 ij
e L d’ordre k
Pji 1

R est la mesure d’hypervolume a & dimensions formé sur
TGS A . =
la base unitaire purement aléatoire u;

9I '_>/
% X/ X

avec e
XN T o

En passant a la limite, on obtient la fonction ressem-
blance R (t) du phénoméne aléatoire le long de la trajec-
toire S (1).

0 = R = 1 en vertu des propriétés de I’espace vectoriel
aléatoire (inégalité de Schwarz) ;

en outre, R décroit lorsque 7 croit, car pour chaque
augmentation infinitésimale dz de 7,

on multiplie R par un terme 0 = I =1

ou I' = cos f3, cosinus de I'angle que forme le nouveau
vecteur # avec la normale a I’hypervolume précédent. De
plus, a l'origine :

R=pn=1 (fig. 8)

R (t) est donc une fonction monotone, décroissante,
bornée.

Rl = 1
1
5 e ——————.
Ry = 1P| _ V1 — p?, = sin oy = S surface
P12 1
1
2
L p1a pis
Ry3= | p12 1 Pos3 = V volume
P13 pas 1

Ry = \/ (1—p%y) + (1—pi3) + (1 —p3s) —2 (1 —p1a P13 pas)
R
2 —cos
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normale

Fig. 9. — Hypervolume du passé.

Remarque 1

R = cte = 1 signifie que les dépendances de probabilité
sont nulles : i/ »’y a aucune liaison entre les différents états
du phénomene le long de la trajectoire S (fig. 9).

Si le k®me vecteur est situé dans le futur immédiat, on
peut représenter 1’espace aléatoire par la figure ci-dessous.

Définition 2
On appelle Inconnexe J la mesure du champ de dépen-
dance de probabilité.
J=sin f
(co +1)

d’ou ’
Pij

JEP=1—cos® f=1—

(oc0)

{ Pij
Remarque
J = 1si et seulement si | p;; [+ =0

car | py 10D =] p,; [

alors  p; oy =1 i=1,... 04+1 et [=0.

En ce point, la dépendance de probabilité est maximum.
J est défini sur un élément ds de la courbe S. En effet,
on peut écrire sans autre

I Pij , (t+dt)

J = 1
|/)if 52

Théoreme 1

J (1) est une fonction monotone bornée de bornes 0 et 1
(fig. 10)

0=J=1
AT | pyy | €Ha0 = | . | ® et
0=lpy|®™ =1
Définition 3

On appelle fonction connaissance K (t) la fonction duale
de la fonction ressemblance R (1).

- =
Soit  X°, X* deux vecteurs de ’espace aléatoire
>

X% le vecteur correspondant de I’espace dual.

- -

Ue.Ut | =:cosa

- ——

Ue Utt = cos.o*

avec cos at = \/ 1 — cos? o = sin
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5 t
f—
Fig. 10
== . .
U = vecteur unitaire.
Alors
1 Cos oy 1 V1—pE
K2 = —
cos o 1 V1—p2 1

K (1) est une fonction monotone, décroissante, bornée, de
bornes 0 et 1. Car

=

0 =cosaf =1

Remarque 3

K varie d’autant plus lentement que la dépendance de
probabilité est grande (fig. 11).

En effet, p=lety1—p%=0.
Pour chaque augmentation df de 7, on multiplie K par
un terme ~ 1 =4 =1 avec cos fi* = 4.

L’inconnexe se calcule alors par

_ K(@+d)  (m
=—F0 cos (5 ,6‘)

d’ou

p -

(SIS}
|
=

Fig. 11. — Hypervolume dual du passé.
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o debut des mesures

Fig. 12

a) phénoméne ayant une forte dépendance de probabilité;
b) phénoméne ayant une dépendance de probabilité plus faible ;

c) phénomeéne n’ayant aucune dépendance de probabilité avec
le passé lontain.

Calculons K a partir du présent P vers le passé.

La fonction K mesure la connaissance que I'on a du phé-
nomene au cours du temps, celle-ci étant normalisée a 1
au présent (fig. 12).

Postulat de prévisibilité

Le degré de prévisibilité du futur proche est égal a [’in-
fluence du passé proche sur le présent, c’est-a-dire a son
degré de connaissance.

P (At + ty) = K (tg—A1)

Remarque 4

Le degré de connaissance augmente du passé jusqu’au
présent ou il vaut 1, puis la connaissance « diffuse » dans
le futur et tend vers zéro (fig. 13).

Remarque 5

Le postulat reste d’autant plus vrai que la fonction est
plus prévisible.
En effet, a la limite, il est vrai pour tout 7 lorsque
K (1) = constante = 1

Théoréme 2

Le postulat est vrai quel que soit Az pour une classe
particuliére de variables aléatoires dont les fonctions K
sont identiques, quelle que soit I'origine 7, a partir de
laquelle on les calcule (stationnarité en prévisibilité).

Si K(t01~Ar) = K(r02~At),

alors K (tg—1t) = P (ty + 1)
quelque soient 7 et 7y, en vertu des propriétés de permuta-
tion de lignes et de colonne dans les déterminants (fig. 14).

PASSE to FUTUR

Fig. 13

t

2

Définition 4
Le coefficient de prévisibilité IT est défini par la relation
suivante :

1< 18P
II POt
dt
doi = =
ou 7 7 oS

J : inconnexe (calculée a partir du présent vers le passé).

Remarque 6
[T a la dimension de 7.

oP :
Il = 0car P =0 et 5t < 0 (méme démonstration que
pour R).
En posant 7, = 0, on peut écrire :
&
L dat

P=e—-/ n
0

§ 3. Forme particuliére

Si IT = I, = cte, alors

_;;_t ﬁ
PZE o etn(]:_/”‘,

La dépendance de probabilité ne varie pas au cours du
temps, donc P ne dépend pas de I’origine #, choisie.

Définition 5
La loi de dépendance de probabilité en chaine de Markow
est un modele particulier défini par

[10p phiee p®
p1 p
P o1
R? (ndt) = = (1—pH"
{l;ﬁ. ) 1

avec t = nAt At : période d’échantillonnage.

Théoréme 3

Dans la loi en chaine de Markow, I'inconnexe est égal
au coefficient de corrélation.

1 Vi

K2(t) =

V"]—p2n 1
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4
don K@) = ptlat et [T = — 25
Inp

Fig. 15. — Prévisibilité.

donc p = J.

La loi de Markow suppose que le coefficient de prévisi-
bilité est constant. La loi ne tient compte que de I’influence
du passé proche sur le présent et ceci est une maniére parti-
culiére.

La figure 15 montre que la constante de prévisibilité
normalisée par rapport a la période d’échantillonnage AT
n’atteint des valeurs élevées que pour des valeurs élevées
de p.

La figure 16 montre la fonction prévisibilité pour diverses
valeurs de p.

§ 4. Applications numériques

Diverses données météorologiques de I’année 1967 pro-
venant de la station aérologique de Payerne ont été traitées
sur I'ordinateur du centre de calcul de 'EPFL.

Chaque série comprend 730 données correspondant aux
valeurs diurnes (midi) et nocturnes (minuit). Les résultats
ont été exprimés au moyen de graphiques.

La figure 17 représente les fonctions d’autocorrélation.

On constate que I'allure de la fonction d’autocorrélation
ne donne aucune indication quant a la prévisibilit¢ du
phénomeéne.

En effet, des courbes d’autocorrélation trés semblables

A S T e SR
" \,-l SV \J \J |/ .\J/ \' ﬁ :,r*.) /.”\ /"1. I/T,\ /\ ./\.

comme celle de la pression barométrique a la surface et de
la température de la tropopause, correspondent a des phé-
noménes trés différents au point de vue de la prévisibilité.

tempeérature d la surface

o
Ve N e e
VY NS \\/‘ Ul\/\

humidité du sol (val. sup)

température de
la tropopause
hauteur de la tropopause

pression d la surface

Fig. 17. — Autocorrélation.

62




température a la surface
pression d la surface

hauteur a la tropopause
température d@ la tropopause

humidité au sot

Fig. 18. — K Connaissance.

20

température d la surface

pression d la surface

hauteur de la tropopause

numiditd du sol

suite de nombres aléatoires

Fig. 19 — J Inconnexe.
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temperature d la surface

/£ —_—
i ; - B = )
| pression ad la surface
5+
hauteur de la tropopause humidite d la surface
température de la tropopause temperature de la tropopause
| | o i
0 10 20

Fig. 20. — P Prévisibilité.

On remarque une fluctuation de la fonction d’autocorréla-
tion correspondant aux valeurs diurnes et nocturnes. Cette
fluctuation peut étre tres faible (température de la tropo-
pause), faible (température au sol) ou, au contraire, trés
prononcée (humidité au sol) suivant la nature du phéno-
meéne mesuré.

La figure 18 représente les fonctions connaissances. Elles
décroissent d’autant plus lentement que le phénomeéne est
plus prévisible, que les dépendances de probabilité sont
plus grandes. On constate que la température donne encore
une valeur non négligeable aprés un mois. Au contraire,
les mesures faites dans la tropopause et encore plus, les
mesures d’humidité au sol donnent une fonction connais-
sance qui décroit trés rapidement.

La figure 19 montre I'inconnexe.

On constate que I'inconnexe est grosso modo une cons-
tante méme pour des phénoménes aussi peu prévisibles que
les mesures dans la tropopause. Ce n’est que pour les
mesures d’humidité et les calculs faits avec une suite de
nombres aléatoires que I'inconnexe devient une fonction
nettement croissante.

I1l. Prévision
d’une fonction aléatoire

§1. Conditions d’établissement d’une prévision

Le phénoméne physique représenté par la fonction aléa-
toire x (¢) nous est connu par les mesures X * (7).

S’il s’agit d’une expérience (cf. fig. 1), il est possible
d’obtenir les moments de divers ordres « a travers le phé-
nomene ».

Dans 'exemple de la figure 1, nous avons une série de
mesures :

alors X (D) f= 1 s J
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La figure 20 représente la fonction prévisibilité. Cette
fonction est grosso modo une constante pour la plupart des
phénomeénes mesurés, ce qui veut dire qu’ils peuvent étre
représentés par la théorie en chaine de Markow. Mais, par
contre, la température au sol a une fonction prévisibilité
nettement différente. La loi de dépendance de probabilité
de cette grandeur est différente et plus compliquée que
celle des autres grandeurs physiques mesurées.

Conclusion

Les calculs effectués avec des grandeurs naturelles
montrent que la température peut étre assimilée a peu pres
a un modéle de Markow, en variations diurnes et noc-
turnes pres, tandis que la pression au sol est un phénoméne
de nature totalement différente.

Pour chaque type de phénomeéne aléatoire, on trouvera
des familles de courbes différentes, représentatives de la
diffusion du champ de dépendance de probabilité.

J
XrO==-Yxr®

1

| =

— Moment d’ordre n

~

— Moment le long du phénoméne

i
X OX G40 — - Z X: () X3 ¢+ 4D
J 1

S’il s’agit d’'un phénoméne naturel, nous n’avons droit
souvent qu’a une seule réalisation a; (¢), donc a une seule
mesure X7 (7).



Dans ce cas, pour pouvoir effectuer la prévision, il faut
au moins supposer que la fonction aléatoire est station-
naire dans un intervalle de temps A#,
avec At K Aty

Aty : durée de la mesure.

En vertu du principe ergodique, il est alors possible de
remplacer les moyennes « a travers le processus » par les
moyennes « le long du processus » dans Iintervalle At.

Ainsi

t
EISat e S 1 s
X*n (t/) —_ I‘ / X n (t) dl
%—2161
£

* * 1 * *

X" ()X (t’+At)=Z / X ()X (t+ At)dt
s

t-At,

avec
t—At, =t' =t

On appelle alors :

X" O)X (t+4)—X"()- X" (¢t + 4¢t)
VIxXTo—x @] [x2 ¢ + d—x" ¢ + 41)']

Pt,at =

la fonction d’autocorrélation (le long du phénomene).

Remarque 1

Pi,40> calculé a partir du présent vers le passé, sert a
déterminer la fonction prévisibilité.
Remarque 2

On ne peut pas sans autre effectuer les calculs de p sur
une mesure X (¢), car il existe le plus souvent une fonction
certaine sous-jacente dont la moyenne « a travers le pro-
cessus » est différente de la moyenne « le long du proces-
sus », sinon on remplacerait la fonction certaine par une
fonction aléatoire stationnaire dont les moments sont
égaux aux moyennes de la fonction certaine le long du
parametre ¢ et dont la dépendance de probabilité est égale
a la fonction d’autocorrélation de la fonction certaine ; or,
par définition, p = 1 pour une fonction certaine.

Exemples

f(t): fonction certaine

x (¢) : fonction aléatoire
Exemple 1

f(t) = sin (wt + p)

2
— 517—[ /sin(wt+¢)d0=0 ou 0 = wt
0

2n

1
X2 e [sinz(a)t+(/;)d0=

o

_ Jofet+an
VI - f3+ Ar)
2

1
& /.sin(wt + @) - sin [w (1 + At) + ¢l d 0 = cos w. At

1
2

Prat

/A
pour t = 7 +2km k : entier

X

ti : ts

Fig. 21. — Composante d’ordre n.

on a:
FO=f@) =sin(@t+9)  x@E=0
£2@) =2(@) = sin® (0t + @) x2(t):%

pLf@)]=1 i, At px ()] =cos w-At yt

Exemple 2
f@)=c¢?

x=0 X=0

@) =et

p=e4 i
fre)y=e? p=1 1, At

Exemple 3
f@)=at+5b

m|><I

ziz}sia¢0

X
p=1

Dans le cas de la droite certaine, la fonction d’auto-
corrélation est identique a la fonction de corrélation.

§ 2. Fonction prévision

Soit X* (¢) une mesure dans laquelle on a €liminé toutes
les fonctions certaines. Souvent on soustraira la droite
certaine obtenue par la méthode des moindres carrés et
certaines fonctions périodiques de période Af; < Ats.
(Variations journaliéres saisonniéres, etc.)

La fonction prévision p (t) est une fonction certaine qui
prolonge la mesure X (¢) dans le futur.
X*(ty) = p(ty) toprésent

IX" (1) 12 d p(to)
at ot

et

Remarque 1
La fonction p (¢) est bornée puisqu’il s’agit d’un phéno-
méne physique, mais non forcément nulle a I’co.

Ip (1)
at

Nous ferons donc la prévision sur la pente p” (¢) =

De plus, nous imposerons p’ () = 0.
On retrouvera la fonction p (#) par intégration, connais-
sant la condition initiale :
P (t) = X" (to)
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Remarque 2

L’influence des fluctuations de X~ (¢) sur le présent est
d’autant plus faible que ’on est plus loin dans le passé et
que le phénomeéne est peu prévisible, car alors la dépen-
dance de probabilité est faible.

Nous calculerons la fonction prévision en décomposant
IXT (1)
ot
connaissance, en série de Fourier. On tient compte ainsi
de Jinfluence plus ou moins forte du passé sur le présent.

la dérivée de la mesure multipliée par la fonction

ti()
) 1 [ ox*
e /

=, = —— K (t) e Inoot gy
ti—ty ] Ot
to
ty : présent
t; : début de la mesure
n : entier positif (ou indice)

Wy = pulsation fondamentale.

ti—1

C;, est la valeur moyenne sur lintervalle de mesure
to—t; de pulsation d’ordre n.

Du présent vers le futur, les coefficients de la série de
Fourier deviennent

Ccr =11yl el @n-ow
avec n=1l Cpll &l on

Pour calculer la fonction prévision, il faut pondérer les
coefficients C; d’un terme F () diminuant avec ¢

Ft) = (’i;fO)P(t)

_f'k(t)dt

to

d’oui la dérivée de la fonction prévision

+00
PO=F@© ) el
—o0

On obtient p (¢) par intégration, sachant que

o IX* (1)
p'(t)) = T
et
p (1)) = X™ (to)
Conclusion

La fonction prévision p (z) permet de prolonger une
mesure X * (¢) dans le futur. La fonction prévisibilité P ()
permet de dire avec quelle probabilité la prévision risque
de se réaliser.
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