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BULLETIN TECHNIQUE DE LA SUISSE ROMANDE

100° année 21 novembre 1974 N° 24

Communication de la chaire de statique et de résistance des matériaux de I'EPF-L,

Professeur M.-H. Derron

Contribution a I’étude des problemes géométriquement
non linéaires des structures élastiques

par JAROSLAV JIROUSEK, Lausanne

Lors de la parution de article du D" Jirousek sur le
« Calcul des ponts biais a poutres multiples sans entre-
toises » 1, nous exprimions I’espoir que la Chaire de statique
et de résistance des matériaux de I’Ecole polytechnique
fédérale de Lausanne, grdce aux forces et aux moyens qui
venaient de lui étre attribués, serait en mesure de développer
une activité accrue dans le domaine de la recherche. Cet
espoir n’a pas été dégu et nous sommes heureux de présenter
aujourd’hui une nouvelle étude conduite jusqu’a [’obtention
de résultats concrets dans 'un des domaines — un parmi
d’autres — explorés par M. Jirousek. De nombreux pro-
blémes, notamment ceux de stabilité, ne peuvent faire abs-
traction de la non-linéarité géométrique des déformations.
S’il est aujourd’hui possible de s’affranchir d’approximations
plus ou moins grossiéres et de proposer des méthodes de
calcul directes, c’est de toute évidence grdce a la présence

Avant-propos

Dans le cadre des travaux de recherche de la chaire dans le
domaine de la théorie non linéaire des structures, 'auteur a
développé, au cours de 'année 1972, un programme standard
(SNOLIN) pour la résolution de problémes impliquant des
systemes d’équations non linéaires. Ce programme, briévement
exposé en appendice a cet article, lui a permis d’aborder de
maniere trés simple un certain nombre de problémes concrets,
tels que le comportement postcritique des barres minces, les
effets du second ordre dans les arcs, la mise en précontrainte
et l'effet des charges de service dans les systemes de cibles
croisés de I’espace, etc., et de proposer des méthodes de calcul
directes. Les problemes étudiés ont été choisis parmi ceux que
Iingénieur staticien de la pratique ne pourrait souvent pas
résoudre, ou pour lesquels il ne disposait que de méthodes
longues et compliquées, tendant a saisir le comportement non
linéaire de la structure par une suite de pas linéarisés et de
corrections successives.

Le présent article se borne a traiter de la théorie des grands
déplacements des barres minces (théorie intéressante, notam-
ment, pour I’étude du comportement postcritique) et au calcul
des arcs selon la théorie du second ordre. Le calcul des systemes
de cables croisés de I'espace, qui constituent souvent la structure
porteuse des toitures de grande portée, fera I'objet d’une publi-
cation ultérieure.

L’étude faisant I'objet de cet article a été terminée en 1972,
mais il ne semble pas qu’elle ait pour autant perdu de son
actualité.

Théorie des grands déplacements des
barres minces

1. Hypothéses de travail et leurs conséquences

La théorie développée ci-aprés sera basée sur les hypo-
theses simplificatrices suivantes :

L Voir Bulletin technique de la Suisse romande n° 10, du
13 mai 1972.

2 Les chiffres entre crochets renvoient a la bibliographie en
fin d’article.

de l'ordinateur pour le calcul numérique. Encore faut-il faire
preuve d’une parfaite maitrise de [’outil mathématique.
Aprés une analyse remarquable de rigueur et de clarté,
lauteur a développé un programme de calcul appelé a rendre
certainement de grands services a de nombreux ingénieurs.
On objectera peut-étre que la théorie et les applications
exposées ci-aprés supposent tout de méme la validité de la
loi de Hooke, c’est-a-dire un comportement physiquement
linéaire de la matiére, alors que toutes les théories modernes
de calcul en phase de plasticité cherchent a donner une
image plus fidéle de la réalité physique. En fait, ce n’est
qu’un supplément de complications apporté au probleme et
il suffirait pour en tenir compte de s’inspirer des mémes
méthodes d’analyse. Ce pourrait étre le sujet de développe-
ments ultérieurs.
Prof. M.-H. DERRON.

— Les déplacements (fléches) sont grands, mais les défor-
mations spécifiques (dilatations &) restent petites.

— Les sections planes et perpendiculaires a I'axe de la
barre avant déformation restent planes et perpendicu-
laires a I’axe de la barre déformée.

— Le matériau obéit a la loi de Hooke.

Etant donné que par définition les déplacements sont
grands, les conditions d’équilibre devront étre formulées
pour la barre déformée. Par ailleurs, dans les relations
géométriques liant les déformations aux déplacements, on
ne pourra pas admettre les simplifications usuelles de la
théorie des petits déplacements. Notamment, pour la
pente ¢ de la déformée, on ne pourra plus poser
p=singp=tgp= %} , ou w est la fleche de la barre,
et cos ¢ ne pourra plus étre remplacé par l'unité. Les
seules simplifications géométriques admises seront celles
qui découlent de I’hypothése des petites déformations &.
Ainsi, de facon générale, on admettra que :

¢ est négligeable par rapport a 1,
&% est négligeable par rapport a ¢.

2. Géométrie de la déformation d'une fibre de la
barre

Par opposition & la conception d’Euler [1]2, qui dans
son ¢tude des grandes fléches produites par le flambage des

X (?f“ RO, S
O RN
W L iy
A
Fig. la. — Conception Fig. 1b. — Conception
d’Euler. de Lagrange.
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barres minces associe les coordonnées orthogonales a I’axe
de la barre déformée (figure 1a), nous appliquerons la
conception de Lagrange, courante dans la théorie des
petits déplacements. Selon cette derniére (figure 1b), les
coordonnées du point A" aprés déformation sont exprimées
en fonction des coordonnées du point 4 avant déformation
et des trois composantes du déplacement u (x, y, z), v (x,
y, z) et w(x, y, z) suivant les axes des coordonnées.

Dans notre étude, ’axe x est confondu a ’axe de la barre
non déformée (axe qui relie les centres de gravité des sec-
tions), et nous admettons que la flexion s’opére unique-
ment dans le plan xz qui est un plan principal des sections
de la barre. o

La figure 2 montre un élément KL d’une fibre de la
barre avant et aprés la déformation. On cherche les expres-
sions de la dilatation ¢ et de la pente ¢ de I’élément en
fonction de déplacements ¥ = u (x, z) et w = w (x, z), sup-
posés relativement grands.

0
T_____——-——— T X,ul(x,z)
| 7

i X | dx |

i \K’ w W +dw

. 4

1 ﬁ&;
zZ,w(x,2) €)
u

u+du

Fig. 2. — Géométrie de la déformation d’une fibre de la barre.

a) Expression de la dilatation € en fonction des déplacements

Le développement selon x des déplacements u = u (x, z)
et w= w(x, z), en série de Taylor donne

u+du=u+ wde + u'dx®+ ...,
w—%—dw:w—l—w’dx—k%w”dxz—i— e

(les primes désignant les dérivées par rapport a x), d’ou
I’on trouve pour dx — 0:

du = u'dx et dw = w'dx.

La longueur de la fibre KL aprés déformation s’exprime
alors, d’aprés la figure 2 :

K'L' = \J(dx + du)? + (@w)? = dx \J1 + 2w’ + u® + w2,

d’ou la dilatation

, K'I'—KL
¢ = lim S —

= =\/1+2u’+u’2—i—w’2—l.
dx—>0

De la derniére équation, on tire :

e+ 1=\1+2u +u?+w?,
En élevant au carré, on a
1+2e+e2=14+2u +u?+ w?,

d’ou, en négligeant ¢* par rapport a ¢, 'expression appro-
chée suivante :

1l e, 1
e=u' + u?+ w?. (1)

Par ailleurs, aux points ou la pente ¢ est nulle (et par
conséquent w’ = 0) nous avons I’expression exacte de la
dilatation

e=u" si w=0, (1)
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b) Expression de la pente ¢ en fonction des déplacements

La pente ¢ de la fibre KL sera définie (figure 2) a partir
des fonctions trigonométriques

dw dx + du

7 =1
0dx(l+8)’ cos ¢ = lim

o i ax +au
sin ¢ = lim lim &t

dx —

En négligeant ¢ par rapport a 1 et avec dw = w'dx,
du = u’dx, on trouve :

sinp=w" et cosp=1+4u’ (2a, b)

Puisque cos ¢ = \/1—sin® @, on peut écrire également :
=y ®

14w = \J1—w?. (2¢)

Aux points ol la pente est nulle (et par conséquent w’ = 0),
nous connaissons les valeurs exactes

sinp=0 et cosp=1 si w=0. (2a,b)

3. Expression des efforts intérieurs de la barre en
fonction des déplacements de son axe

Dans l'alinéa précédent, les symboles u = u(x, z),
w = w (x, z) désignaient les composantes du déplacement
d’un point quelconque K de la barre. Dorénavant, on
désignera par u = u(x), w= w(x) les composantes du
déplacement (ou plus briévement les déplacements) d’un
point de I’axe de la barre. Par ailleurs, on désignera par :

&0, Op ... la dilatation et la contrainte normale de ’axe
de la barre
g, o ... la dilatation et la contrainte normale d'une

fibre quelconque de la barre

a) Expression de la contrainte normale o en fonction des
déplacements

D’apreés la figure 3, on peut écrire :
A'B' = pdp = pg'dx ,
KL = (p—z)dp = (p—z) ¢'dx .
Sachant que A'B’ = (1 + gy)dx et K'L’ = (1 + &) dx, on

en tire
&= g—z¢’. 3)

dy = @'dx

Fig. 3. — Géométrie de la déformation d’un élément de la barre.




En vertu des équations (1) et (2a), on peut poser
go=u' + su+ sw?, (3a)
@ = arcsin w’ . (3b)

De la derniére relation, on tire encore, en dérivant par

rapport a x et avec \'1—w? = \/1—sin>¢p = cos ¢ :

” ”

w

= . 3
Ji—w? 1+ &

¢’ = — arcsin w’ =
dx

Finalement, en portant les expressions (3a) et (3c) dans
I’équation (3), la dilatation & s’exprime en fonction des
déplacements par

”

w

1 9 1 )9
e=u +Zu*+ sw*+
2 2 1+ o

Z .

Faisant usage de la loi de Hooke, on trouve pour la
contrainte normale ¢ = E¢ engendrée par les déplacements
u=u(x)etw= wi(x) la valeur

Ewl/

o=E@W +3u%+iw?+ oz, )
1+ u

Dans une section ou la pente ¢ est nulle, nous avons une
expression exacte

c=Eu + Ewz si p=0. 4)

b) Expression de I’effort normal N et du moment fléchissant
M en fonction des déplacements

La convention de signes des efforts N et M est définie
dans la figure 4. En vertu des conditions d’équivalence
statique et compte tenu de (4), on peut écrire

A o Ew [
N = / GdF = E(u' + 2 u + w?) /a’F— v - /zc/F,
T, 1+ u,

),
F P F

ol

-2 - Ew' [
M= /UzdF: EW +3u?+ %w'z)/zdF~ 4 r - /zzdF.
u
F

P F

Sachant que le moment statique S, = [zdF par rapport
r

a un axe passant par le centre de gravité de la section est
nul et que les intégrales [dF et [z2dF représentent
F F

respectivement I’aire Fde la section et son moment d’inertie I
par rapport a ’axe y, on obtient les expressions suivantes :

N = EF + éu'z + .lgw’z), (5a)

W ”

M = —EI
1+ u

(5b)

En outre, pour une section ou la pente ¢ est nulle, nous
avons les expressions exactes

N = EFu’, ) (5a%)
” S1 (/) - 0 2 ’
M= —EIw", (5b")

On remarquera qu’en pratique, ’erreur commise en
appliquant les relations (4) ou (5) aux points de pente
nulle est négligeable. Pour simplifier les calculs, on se
contentera donc des formules uniques (4) et (5a, b).

Fig. 4. — Remplacement de l'effort normal N et de I’effort
tranchant 7" par les composantes H et V selon les axes x et z.

4. Conditions différentielles d’équilibre

La formulation des conditions différentielles d’équilibre
se simplifie si I’on remplace, dans une section de la barre
déformée, I'effort normal N et I’effort tranchant 7', dont
la direction varie avec la pente ¢ de la déformée, par les
efforts H et V' de direction fixe, paralléles respectivement a
I’axe x et a I’axe z. Les conditions d’équivalence statique
permettent de poser (figure 4) :

H= Ncos¢p — Tsing,
V= Nsing + Tcosg.

En remplagant sin ¢ et cos ¢ par leurs valeurs (2a, b), on
obtient les composantes H et ¥ en fonction des déplace-
ments de ’axe de la barre :

H=N0+u")—Tw", (6a)
V=Nw+T0+u"). (6b)

Considérons maintenant un élément infinitésimal de la
barre déformée (figure 5). La projection des forces selon

les axes x et z et les moments dans le plan xz permettent
de poser :

dH = —hdx ,
dV = —pdx ,
dM = —mdx—Hdw + V (dx + du) ,

ou h= h(x) et p= p(x) sont les composantes horizon-
tale et verticale de la charge répartie et ol m = m (x)
représente des couples de forces répartis le long de I’axe
de la barre. Sachant que dH = H'dx, dV = V'dx, dM =

dx+du

Fig. 5. — Efforts internes et forces extérieures agissant sur un
€élément de la barre déformée.
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= M'dx, du = u'dx, dw = w’dx, ou les primes désignent
les dérivées par rapport a x, les conditions différentielles
d’équilibre s’écrivent aprés simplification

H = —h, (7a)
V' =-p, (7b)
M =—-—m—Hw + V(A +u"). (7¢c)

La troisiéme condition d’équilibre peut encore étre mise
sous la forme connue dans la théorie classique des poutres
comme théoréme Schwedler :

M =—-m-+T. (7¢")

En effet, avec w' =sin ¢ et 1 + u’ = cos ¢, I'expression
—Hw + V(1 +u")= —Hsin ¢ + Vcos ¢ représente la
somme des projections perpendiculaires a I’axe de la barre
déformée, donc I’effort tranchant.

5. Equations différentielles de la ligne élastique

Les équations différentielles de la ligne élastique s’ob-
tiennent en exprimant les conditions d’équilibre en fonc-
tion des déplacements.

Avec (7¢’), on peut éliminer des équations (6a, b) Ieffort
tranchant, et exprimer ainsi les efforts H et J en fonction
de I’effort normal N et du moment fléchissant M :

H=N+u)—M +mw, (8a)
V=Nw-+WM-+mUA+u). (8b)

Etant donné les relations (5a,b), on peut maintenant
exprimer H et V en fonction des déplacements u et w :

H=EF@ +3u?+ 3w+ u)+

+ [<E11 i ,> ’~m} w, (9a)
u

V = EF(u + glau’z + %w’) w —

N KEII f”,> '—m] (A+u).  (©Ob)

Si les efforts H et ¥ sont connus d’avance, les relations
(9a, b) constituent déja les équations différentielles de la
ligne élastique. Dans le cas contraire, on peut substituer
(9a, b) dans les deux premiéres conditions d’équilibre (7a)
et (7b) et P'on trouve les équations générales de la ligne
élastique :

[EF + su?+ :w?) (A +u)l +

+ {[(Ell fu,> '—m:l w’} 4 =10, (10a)

[EF (' + 302+ 5w w' ' —

W” ’ ’ ' pr—
. {[(Ell n ”,> fm] 1+ u )} +p=0. (10b)

Dans certains cas particuliers, ces équations générales
peuvent étre remplacées par des équations plus simples
(voir par exemple le cas traité au paragraphe 6).

6. Résolution des équations différentielles de la
ligne élastique et calcul des efforts internes

Les équations différentielles de la ligne élastique étant
non linéaires, leur résolution n’est en général possible qu’a
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___________ = _‘”_,S__

u
P | - ——
[ O e 1 T
W -

Fig. 6. — Exemple pour la formulation des conditions aux
limites dans la théorie des grands déplacements.

l’aide de méthodes numériques approchées (telle que la
méthode des différences finies, par exemple) en prenant en
considération les conditions aux limites. Dans le cas des
équations générales (10a, b), il faut formuler en tout six
conditions aux limites (les équations étant du quatriéme
ordre en w et du deuxiéme ordre en ). Pour la barre de la
figure 6, on pose par exemple, en tenant compte des
relations (2) et (57):

Pour x=.0:u =0,
w =0,
¢ =sinpg=0-—>w =0,
N =—P—EF.u + P=0.

Pourx=1/: w =0,
M=0->w =0.

Une fois trouvés les déplacements u et w, les efforts
internes N et M s’obtiennent a partir des relations (5a, b).
L’effort tranchant 7 peut étre calculé, au besoin, a I'aide
de la condition d’équilibre (7¢”).

7. Application numérique

Trouver la ligne élastique et le moment d’encastrement
de la console (figure 7) soumise a une force postcritique
P > P, ou P, est la force critique d’Euler. Utiliser la
méthode des différences finies.

1. Equations différentielles du probléme

Au lieu d’appliquer les équations différentielles (9a, b)
(avec H = —P et V= 0), on peut obtenir des équations
encore plus simples, dans le cas particulier, a partir des
conditions suivantes :

M= —P[w({)—w], N= —Pcosgp.

En utilisant les relations (2b, ¢) et (5a, b), on trouve apres
simplification les équations différentielles suivantes :

1 X
2 EL,F o i
X L
S ) | P>R,
: |
Fig. 7. — Comportement post-critique d’une console mince,

étudiée dans I'alinéa 7.



”

W
+ — @)]=0, (11a)
\1¥w E[[w W

sy L e 1 e L 2
5 s — \1—w?=0. 11b
w+su+zw +EF\ w (11b)

Les conditions aux limites sont en méme temps

w(0) =0, w (0)=0, u(0)=0. (llc)

On remarquera que ’emploi de la relation (2¢) a permis
de rendre la premiére équation différentielle indépendante
de la seconde.

2. Modification des équations différentielles pour le calcul
a lordinateur

Pour I’étude sur ordinateur, on a avantage a introduire
les déplacements relatifs

W:‘7 et U= 2. (122)

L’analyse des équations (l1la, b) montre que la solution
dépend alors seulement de deux paramétres sans dimen-
sions :

P 4P P / 7
= =l o b = e
s =) SRl \/1 - (12h)

(= 70 (12¢)
, 1d
et en tenant compte que (...)" = -~ (...) = 7?(...),
on peut poser : G
dw 1d*W
w =S Dyw), wi= S Dy (W),
dc 7 dc®
dU
"= — =D;(U). 12d
u dé 1(U) ( )

On obtient alors pour W et U les équations différentielles
suivantes :

Do(W)/\/l—Dl(W)+a< > [W—W(E=1)]=0, (13a)

Dy(U) + le(U) +2D1(W)+ 5 <§>~ \'/1 VD?(W):O, (13b)

avec les conditions aux limites

(W)e—og=0, [Dy(M]eco=0, (U)e—q=0. (13¢)

3. Expressions approchées des dérivées au moyen des diffe-
rences finies

On désignera (figure 8) par des chiffres arabes (k =0, 1,
..) les points pivots et par des chiffres romains (K = I,
IT, TIT .. .) les centres des sous-intervalles A¢. Pour expri-

R
l _o_._of‘;.__f‘f_- ke @ 2
K+I i
L ot _L K=II0..
Fig. 8. — Désignation des points-pivots et des centres des sous-

intervalles dans les expressions aux différences finies.

mer les dérivées premiére et seconde, on utilisera les
expressions classiques basées sur un polyndome d’interpo-
lation du deuxiéme degré. Soit /= f (&) une fonction de &,
alors les dérivées premiére et seconde en un point pivot k
auront pour expression :

df 1 & =] —

<(TCV>IL at 2AE (Frer1—fe-0) = Z—A_C ‘—ll l 1| ], (14a)
d*f

( > _(AC) a2/ tfo) = 2 )2\ 1 [-2] 1] (14b)

Par ailleurs, au centre du sous-intervalle k—1, k, nous
avons encore

df 1 1 ——
<F5>A ZT (fe—Sfr) = f fll 1 ‘ (14¢)

4. Plan de la solution par la méthode des différences finies

Pour assurer une précision suffisante du calcul approché
par la méthode des différences finies, le domaine de vali-
dité des équations différentielles (13a, b) sera divisé en dix
sous-intervalles de longueur A¢ = /4, selon la figure 9.
Les inconnues du probléme sont alors les déplacements
relatifs U et W aux points pivots. En utilisant les expres-
sions (14), on remplacera désormais =~ par =.

En appliquant la premiére et la troisiéme des conditions
aux limites (13c), on a tout de suite: Wy, = U, = 0. La
deuxiéme condition exprimée a I'aide de I’expression
approchée de la dérivée premiére (14a) donne :

[Dy (W)]e=o =

(Wy—W_) =0, dou W_;=W;.

2Aé

En tenant compte de ces conditions, les inconnues qui
restent (figure 9) sont les déplacements relatifs transversaux
Wi, Ws ... Wi et longitudinaux U,, Us ... U, Pour
les déterminer, on remplacera dans les expressions (12d)
des fonctions D, (U), Dy (W) et Dy (W), les dérivées
premiéres et secondes par rapport a ¢ par leurs expres-
sions approchées (14a, b, ¢) et I’on écrira :

I’équation (13a) en k =02a9
(10 équations pour Wi a W),
I’équation (13b)en K =T1a X
(10 équations pour U; a Uyy).
On obtiendra alors un systéme de 10 équations ordinaires
mais non linéaires pour les inconnues W; a Wi, et un

systeme semblable de 10 équations non linéaires pour les
inconnues U; a Uy,.

5. Utilisation du programme SNOLIN et résultats de calcul

Pour résoudre un systéme d’équations non linéaires, on
utilisera le programme SNOLIN. Avant de poursuivre, le
lecteur est prié de se familiariser avec la description de ce

=4 0 1 2 3 4 3 0
o-——a—v—o—q—o—ﬁ}—-o—,—o—,—ngTZTgTo—i—o
! I I 4 b
I
)

I

W, 00 W, W W W, We W Wy Wy W W
0 U, U Uy U, Ug U U Ug Ug Up

Fig. 9. — Subdivision du domaine de validit¢ des équations
différentielles (13) pour I'application de la méthode des diffé-
rences finies.
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programme, donné dans I’appendice A. Pour définir le
systeme d’équations non linéaires que ’on désire résoudre
et pour calculer le moment d’encastrement de la barre, il
faut rédiger un sous-programme FORTRAN appelé
FORMFF. Ce sous-programme est donné dans I'appen-
dice B.

En prenant pour les paramétres o et / les valeurs parti-
culiéres, on peut étudier leur influence sur le comportement
post-critique de la barre. Dans I’'appendice B sont montrés
les résultats que I’on a par exemple obtenus en posant
o= 1,15 et 1 = 1000. On voit que les déplacements de
I’extrémité libre de la barre provoqués par une charge P
dépassant de 15 % la force critique d’Euler sont alors :

wx=10)=0,5971, u(x=1)= —0,2631.

Le moment d’encastrement vaut en méme temps

My = —0,687 P, -1,

\

ou P, = m? EI/4 I? est la force critique d’Euler.

6. Restriction

Pour les valeurs de P dépassant fortement la force cri-
tique d’Euler P,, et ou en certains points de la déformée la
pente ¢ est proche de 90°, la solution approchée basée sur
les équations (11a, b) peut échouer. Puisque dans ces cas
la dérivée premicre w’ peut dépasser 1'unité, 1’expression
/1 —w’2 peut conduire a une racine imaginaire. Ce défaut,
conséquence du fait que I’on néglige ¢ par rapport a 1, aurait
pu étre évité si 1'on n’avait pas utilis¢é la relation (2c)
et remplacé dans IDexpression (5b) (1 + #’) par

\/l—w’z. On aurait alors perdu l’avantage d’avoir une

premiére équation indépendante de la seconde, avantage
dont on n’a finalement pas profité pour ne pas compliquer
la programmation, mais qui pourrait avoir une certaine

importance économique (temps de calcul), si le nombre
d’équations non linéaires était beaucoup plus élevé.

8. Remarques

La méthode développée dans les paragraphes précédents
trouvera son application surtout dans les cas plus compliqués
que le simple probléme de la figure 7. Les équations générales
(10a, b) permettent notamment de tenir compte de la variation
de section et de prendre en considération des conditions quel-
conques aux limites et une répartition quelconque de la charge.
Puisque la solution tient compte des déformations dues a I’effort
normal N, elle peut s’appliquer également aux cas ol les condi-
tions d’appui (les deux extrémités fixées longitudinalement)
rendent hyperstatique la composante H des efforts internes de la
barre.

Les relations fondamentales de la méthode ont été développées
en admettant que les déformations spécifiques ¢ sont négligeables
par rapport a 'unité. Cette restriction peut étre levée et ’on
obtient, en suivant un raisonnement analogue, des relations
qui s’appliquent non seulement aux grands déplacements mais
aussi aux grandes déformations. Cette possibilité n’a pas été
envisagée, du fait que les matériaux courants ne peuvent sup-
porter ¢lastiquement que de faibles déformations.

Si I'on remplace la loi de Hooke par une relation contrainte-
déformation non linéaire, ¢ = f(¢), on peut obtenir, pour une
fonction f(¢) donnée, les relations particuliéres permettant de
traiter les problémes qui sont non linéaires non seulement géo-
métriquement mais également physiquement.

En transformant les équations différentielles non linéaires d’un
probléme en un systéme d’équations non linéaires mais ordi-
naires, on a utilisé, dans I’exemple traité au paragraphe précé-
dent, les expressions classiques de la méthode des différences
finies. Au lieu de ces expressions simples qui correspondent a
un polynéme d’interpolation du second degré, on peut égale-
ment utiliser des expressions plus précises basées sur les poly-
nomes d’interpolation de degré plus élevé. De telles expressions
basées sur des polyndmes jusqu’au sixieme degré inclus sont
répertoriées dans la publication [3], pages 1V-23 a IV-28. Leur
application conduit a une économie appréciable du temps de
calcul puisque I'on peut utiliser, sans affecter défavorablement
la précision, des sous-intervalles beaucoup plus grands, ce qui
conduit a résoudre un nombre moins élevé d’équations non
linéaires. (a suivre)

ESPOIRS ET LIMITES DES SOURCES D’ENERGIE PRIMAIRES

NON CONVENTIONNELLES

Sous ce titre, 'ASE 1 a organisé, en commun avec I"'UCS 2
et avec la Convention des Sociétés nationales d’électriciens de
I’Europe occidentale, deux journées d’information les 11 et
12 octobre 1974 a ’EPF a Lausanne. Environ 250 participants
ont témoigné d’un intérét trés vif pour ces questions et ont
animé une discussion nourrie.

En guise de préface a ces journées d’information, le Bulletin
technique a publié, dans le numéro 20 du 29 septembre 1974, un
article du professeur J.-J. Morf, sur les ressources mondiales
de puissance et d’énergie.

Le Bulletin technique a le plaisir de publier ci-apres I'allocu-
tion du Dr h.c. A. W. Roth, vice-président de I’ASE, le tableau
énergétique mondial que le professeur J.-J. Morf, président des
journées, a présenté avec M. M. Roux pour introduire les deux
journées, les résumés des conférences et I’essai de synthése qui
a clos les débats.

Par convention plus ou moins tacite entre les gouvernements
et les grands producteurs d’énergie, les besoins énergétiques du
monde sont actuellement couverts par les combustibles fossiles,
les ressources hydrauliques et la fission de I'uranium. En prévi-
sion de I’épuisement probable du pétrole et du gaz naturel, il
était intéressant d’examiner les possibilités de recourir a des
sources primaires d’énergic moins conventionnelles, soit en
retournant a des formes classiques comme I’énergie du vent et
du soleil ou a des formes nouvelles comme la fusion.

Un tirage a part du texte intégral de toutes les conférences et
des discussions trés nourries qui ont animé ces journées peut

1 Association suisse des électriciens.
2 Union des centrales suisses d’électricité.

476

étre obtenu au Secrétariat administratif de I’ASE, case postale,
8034 Zurich, au prix de Fr. 40.— (Fr. 20.— pour les membres
d’une société d’électriciens).

W. PETER.

Allocution de M. A. W. Roth, Dr. h.c., vice-prési-
dent de I’Association suisse des électriciens

Monsieur le Président, Mesdames, Messieurs,

En tant que représentant de |'Association suisse des
électriciens, au nom de [|'Union suisse des centrales élec-
triques et au nom également de la Convention des Sociétés
nationales d’électriciens de I’Europe occidentale, j’ai I'hon-
neur d’ouvrir les journées d’information auxquelles vous
avez bien voulu assister.

Je ne voudrais pas empiéter sur les domaines des éminents
spécialistes qui traiteront les aspects techniques des questions
que nous nous posons tous, mais j'essayerai de situer ces
travaux souvent méconnus, parfois aussi surestimés, dans
un cadre général.

La démarche de [’homme dans ['univers terrestre est
caractérisée par une émancipation croissante vis-a-vis de
son entourage naturel. Par sa faculté de travail intelligent,
il s'est libéré des sujétions du comportement instinctif,
caractéristiques de la nature animale. Une donnée fonda-
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