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BULLETIN TECHNIQUE DE LA SUISSE ROMANDE 100« année 21 novembre 1974 N° 24

Communication de la chaire de statique et de résistance des matériaux de l'EPF-L,
Professeur M.-H. Derron

Contribution à l'étude des problèmes géométriquement
non linéaires des structures élastiques
par JAROSLAV J1ROUSEK, Lausanne

Lors de la parution de Varticle du Dr Jirousek sur le
« Calcul des ponts biais à poutres multiples sans entretoises

» 1, nous exprimions Pespoir que la Chaire de statique
et de résistance des matériaux de VEcole polytechnique
fédérale de Lausanne, grâce aux forces et aux moyens qui
venaient de lui être attribués, serait en mesure de développer
une activité accrue dans le domaine de la recherche. Cet
espoir n'a pas été déçu et nous sommes heureux de présenter
aujourd'hui une nouvelle étude conduite jusqu'à l'obtention
de résultats concrets dans l'un des domaines — un parmi
d'autres — explorés par M. Jirousek. De nombreux
problèmes, notamment ceux de stabilité, ne peuvent faire
abstraction de la non-linéarité géométrique des déformations.
S'il est aujourd'hui possible de s'affranchir d'approximations
plus ou moins grossières et de proposer des méthodes de
calcul directes, c'est de toute évidence grâce à la présence

de l'ordinateur pour le calcul numérique. Encore faut-il faire
preuve d'une parfaite maîtrise de l'outil mathématique.
Après une analyse remarquable de rigueur et de clarté,
l'auteur a développé un programme de calcul appelé à rendre
certainement de grands services à de nombreux ingénieurs.
On objectera peut-être que la théorie et les applications
exposées ci-après supposent tout de même la validité de la
loi de Hooke, c'est-à-dire un comportement physiquement
linéaire de la matière, alors que toutes les théories modernes
de calcul en phase de plasticité cherchent à donner une
image plus fidèle de la réalité physique. En fait, ce n'est
qu'un supplément de complications apporté au problème et
Il suffirait pour en tenir compte de s'inspirer des mêmes
méthodes d'analyse. Ce pourrait être le sujet de développements

ultérieurs.
Prof. M.-H. Derron.

Avant-propos
Dans le cadre des travaux de recherche de la chaire dans le

domaine de la théorie non linéaire des structures, l'auteur a
développé, au cours de l'année 1972, un programme standard
(SNOLIN) pour la résolution de problèmes impliquant des
systèmes d'équations non linéaires. Ce programme, brièvement
exposé en appendice à cet article, lui a permis d'aborder de
manière très simple un certain nombre de problèmes concrets,
tels que le comportement postcritique des barres minces, les
effets du second ordre dans les arcs, la mise en précontrainte
et l'effet des charges de service dans les systèmes de câbles
croisés de l'espace, etc., et de proposer des méthodes de calcul
directes. Les problèmes étudiés ont été choisis parmi ceux que
l'ingénieur staticien de la pratique ne pourrait souvent pas
résoudre, ou pour lesquels il ne disposait que de méthodes
longues et compliquées, tendant à saisir le comportement non
linéaire de la structure par une suite de pas linéarisés et de
corrections successives.

Le présent article se borne à traiter de la théorie des grands
déplacements des barres minces (théorie intéressante, notamment,

pour l'étude du comportement postcritique) et au calcul
des arcs selon la théorie du second ordre. Le calcul des systèmes
de câbles croisés de l'espace, qui constituent souvent la structure
porteuse des toitures de grande portée, fera l'objet d'une
publication ultérieure.

L'étude faisant l'objet de cet article a été terminée en 1972,
mais il ne semble pas qu'elle ait pour autant perdu de son
actualité.

— Les déplacements (flèches) sont grands, mais les défor¬
mations spécifiques (dilatations e) restent petites.

— Les sections planes et perpendiculaires à l'axe de la
barre avant déformation restent planes et perpendiculaires

à l'axe de la barre déformée.

— Le matériau obéit à la loi de Hooke.

Etant donné que par définition les déplacements sont
grands, les conditions d'équilibre devront être formulées
pour la barre déformée. Par ailleurs, dans les relations
géométriques liant les déformations aux déplacements, on
ne pourra pas admettre les simplifications usuelles de la
théorie des petits déplacements. Notamment, pour la
pente tp de la déformée, on ne pourra plus poser

dw
m sin <p tg © — où w est la flèche de la barre,

dx
et cos tp ne pourra plus être remplacé par l'unité. Les
seules simplifications géométriques admises seront celles
qui découlent de l'hypothèse des petites déformations s.
Ainsi, de façon générale, on admettra que :

e est négligeable par rapport à 1,

e2 est négligeable par rapport à £.

Théorie des grands déplacements des
barres minces

1. Hypothèses de travail et leurs conséquences

La théorie développée ci-après sera basée sur les
hypothèses simplificatrices suivantes :

1 Voir Bulletin technique de la Suisse romande n° 10, du
13 mai 1972.

2 Les chiffres entre crochets renvoient à la bibliographie en
fin d'article.

2. Géométrie de la déformation d'une fibre de la
barre

Par opposition à la conception d'Euler [1] 2, qui dans
son étude des grandes flèches produites par le flambage des

x,u— x
TZA

|. **M

' w.

lU

Fig. la. — Conception
d'Euler.

Fig. lb. — Conception
de Lagrange.
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barres minces associe les coordonnées orthogonales à l'axe
de la barre déformée (figure la), nous appliquerons la
conception de Lagrange, courante dans la théorie des

petits déplacements. Selon cette dernière (figure lb), les

coordonnées du point A' après déformation sont exprimées
en fonction des coordonnées du point A avant déformation
et des trois composantes du déplacement u (x, y, z), v (x,
y, z) et w (x, y, z) suivant les axes des coordonnées.

Dans notre étude, l'axe x est confondu à l'axe de la barre
non déformée (axe qui relie les centres de gravité des

sections), et nous admettons que la flexion s'opère uniquement

dans le plan xz qui est un plan principal des sections
de la barre.

La figure 2 montre un élément KL d'une fibre de la
barre avant et après la déformation. On cherche les expressions

de la dilatation e et de la pente tp de l'élément en
fonction de déplacements u u (x, z) et w w (x, z),
supposés relativement grands.

x,u(x,z)r
K' *

cf*
f£jU

W-t-dw

Z, w(x,z)
u

U +du

Fig. 2. — Géométrie de la déformation d'une fibre de la barre.

a) Expression de la dilatation e en fonction des déplacements

Le développement selon x des déplacements u u (x, z)
et w w (x, z), en série de Taylor donne

u + du u + u'dx + 2u"dx2 +
w + dw w + w'dx + 2^"dx2 +

(les primes désignant les dérivées par rapport à x), d'où
l'on trouve pour dx -> 0 :

du u'dx et dw w'dx

La longueur de la fibre KL après déformation s'exprime
alors, d'après la figure 2 :

K'L \J(dx + du)2 + {dwf dx\j\ + 2 «' + u'2

d'où la dilatation

K'L'-KL
e — hm

dx -> 0 KL
y/l + 2 u' + u'2 + w"1

De la dernière équation, on tire :

£ + 1 \Jl + 2 U' + II'2 + w'2

En élevant au carré, on a

2e I lu' + u'2 + w'2

d'où, en négligeant £2 par rapport à £, l'expression approchée

suivante :

£ U' + \u'2 + \w'2 (1)

Par ailleurs, aux points où la pente <p est nulle (et par
conséquent w' 0) nous avons l'expression exacte de la

dilatation
£ u' si w' 0 (1')

b) Expression de la pente (p en fonction des déplacements

La pente <p de la fibre KL sera définie (figure 2) à partir
des fonctions trigonométriques

sin tp lim
dx^0dx(l+s)

dw dx + du
cos <p lim

dx^0dx^ + e)

En négligeant s par rapport à 1 et avec dw w'dx,
du u'dx, on trouve :

sin tp w' et cos tp l + u' (2a, b)

Puisque cos <p — \/l—sin2^, on peut écrire également:

«. (2c)1 u'= v/ï

Aux points où la pente est nulle (et par conséquent w' 0),
nous connaissons les valeurs exactes

sin tp 0 et cos tp 1 si w' 0 (2a, b)'

3. Expression des efforts intérieurs de la barre en
fonction des déplacements de son axe

Dans l'alinéa précédent, les symboles u u (x, z),
w w(x, z) désignaient les composantes du déplacement
d'un point quelconque K de la barre. Dorénavant, on
désignera par u u (x), w w (x) les composantes du

déplacement (ou plus brièvement les déplacements) d'un
point de l'axe de la barre. Par ailleurs, on désignera par :

£0, er0 la dilatation et la contrainte normale de l'axe
de la barre

e, a la dilatation et la contrainte normale d'une
fibre quelconque de la barre

a) Expression de la contrainte normale a en fonction des

déplacements

D'après la figure 3, on peut écrire :

A'B' pdtp ptp'dx

K'L' (p~z dtp (p—z tp'dx

Sachant que A'B' (1 + £0) dx et K'L' (1 + e) dx, on
en tire

e e0—zç>'. (3)

x,ur
od!

Sa

dy - fd*

—1

ôd!

Fig. 3. Géométrie de la déformation d'un élément de la barre.
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En vertu des équations (1) et (2a), on peut poser

£0 u' + g
u'2 A 2

w'2 (3a)

<p arc sin w' (3b)

De la dernière relation, on tire encore, en dérivant par
rapport à x et avec y 1 — iv'2 \'l —sin2 tp cos tp :

w"d w
(p — arc sin w —

1-w'2 1 + u'
(3c)

££

Fig. 4. — Remplacement de l'effort normal N et de l'effort
tranchant T par les composantes H et V selon les axes x et z.

Finalement, en portant les expressions (3a) et (3c) dans
l'équation (3), la dilatation £ s'exprime en fonction des

déplacements par

1 /9 i
1 /9

2 U + 2 W +
1 + II'

Faisant usage de la loi de Hooke, on trouve pour la
contrainte normale a Ee engendrée par les déplacements
u u (x) et w w (x) la valeur

a E (u' + j A2 + 2 w'2) +
Ew"

1 + «'
(4)

Dans une section où la pente tp est nulle, nous avons une
expression exacte

a Eu' A Ew"z si tp «= 0 (4')

4. Conditions différentielles d'équilibre

La formulation des conditions différentielles d'équilibre
se simplifie si l'on remplace, dans une section de la barre
déformée, l'effort normal N et l'effort tranchant T, dont
la direction varie avec la pente tp de la déformée, par les
efforts H et V de direction fixe, parallèles respectivement à

l'axe x et à l'axe z. Les conditions d'équivalence statique
permettent de poser (figure 4) :

H N cos tp — Tsin tp

V vVsin tp + Tcos <p

En remplaçant sin tp et cos ç> par leurs valeurs (2a, b), on
obtient les composantes H et V en fonction des déplacements

de l'axe de la barre :

b) Expression de l'effort normal N et du moment fléchissant
M en fonction des déplacements

La convention de signes des efforts N et M est définie
dans la figure 4. En vertu des conditions d'équivalence
statique et compte tenu de (4), on peut écrire

N'-J"-
F

E(u + 2" 2+I >v'2) 1

F

AI t azdF

F

£(« s '+ 2" 2+\w
F

dF-
Ew"

rrv. zdF,

zdF-
Ew"

i - I z2dF.
u.

F

Sachant que le moment statique Su fzdF par rapport
F

à un axe passant par le centre de gravité de la section est
nul et que les intégrales fdF et J'z2dF représentent

F F
respectivement l'aire Fde la section et son moment d'inertie I
par rapport à l'axe y, on obtient les expressions suivantes :

N EF(u' + \u'2 + lw'2),

M- El
1 + u'

(5a)

(5b)

En outre, pour une section où la pente tp est nulle, nous
avons les expressions exactes

N ¦

M s

EFu'

-Elw"
si tp 0

(5a')

(5b')

On remarquera qu'en pratique, l'erreur commise en

appliquant les relations (4) ou (5) aux points de pente
nulle est négligeable. Pour simplifier les calculs, on se

contentera donc des formules uniques (4) et (5a, b).

H= N{\ + u')-Tw'
V Nw' + T(ï + «').

(6a)

(6b)

Considérons maintenant un élément infinitésimal de la
barre déformée (figure 5). La projection des forces selon
les axes x et z et les moments dans le plan xz permettent
de poser :

dH -hdx

dM ¦¦

dV —pdx

-mdx—Hdw + V{dx + du)

où h h (x) et p p (x) sont les composantes horizontale

et verticale de la charge répartie et où m m (x)
représente des couples de forces répartis le long de l'axe
de la barre. Sachant que dH H'dx, dV V'dx, dM'

r
Pd

max

bd

d w

H+dH

M+dM

dx+du V+dV

Fig. 5. — Efforts internes et forces extérieures agissant sur un
élément de la barre déformée.
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M'dx, du u'dx, dw w'dx, où les primes désignent
les dérivées par rapport à x, les conditions différentielles
d'équilibre s'écrivent après simplification

H' -h
V' -p,

M'= -m-Hw' + V{\ ~ u')

(7a)

(7b)

(7c)

La troisième condition d'équilibre peut encore être mise

sous la forme connue dans la théorie classique des poutres
comme théorème Schwedler :

M' (7C)

En effet, avec w' sin <p et 1 + u' — cos tp, l'expression
—Hw' + Vil + u' —Hsin (p A F cos <p représente la
somme des projections perpendiculaires à l'axe de la barre
déformée, donc l'effort tranchant.

5. Equations différentielles de la ligne élastique

Les équations différentielles de la ligne élastique
s'obtiennent en exprimant les conditions d'équilibre en fonction

des déplacements.
Avec (7c'), on peut éliminer des équations (6a, b) l'effort

tranchant, et exprimer ainsi les efforts H et V en fonction
de l'effort normal ./V et du moment fléchissant M :

H= N{\ + u")-(M' + m) w' (8a)

V Nw' + (M' + m) (1 + u') (8b)

Etant donné les relations (5a, b), on peut maintenant
exprimer H et V en fonction des déplacements u et w :

H= EF(u' +

El

+ i vv'2)(l Au')

V EF(u'

2

''—m

w') w' -

El
1

(1 + u')

(9a)

(9b)

Si les efforts H et V sont connus d'avance, les relations
(9a, b) constituent déjà les équations différentielles de la

ligne élastique. Dans le cas contraire, on peut substituer
(9a, b) dans les deux premières conditions d'équilibre (7a)
et (7b) et l'on trouve les équations générales de la ligne
élastique :

[EF(u'+ \u'2+ \w'2)(l +«')]' +
w"

El

2

¦m
1 + u'j

\EF(ti' + 2
u'2 + 2 lv'2) w' ]'-

0,

El
1 + u

(1 + u') } +P-0.

(10a)

(10b)

Dans certains cas particuliers, ces équations générales

peuvent être remplacées par des équations plus simples

(voir par exemple le cas traité au paragraphe 6).

6. Résolution des équations différentielles de la

ligne élastique et calcul des efforts internes

Les équations différentielles de la ligne élastique étant

non linéaires, leur résolution n'est en général possible qu'à

w
iiuiiuiniu/iumu; : A,Jll

Fig. 6. — Exemple pour la formulation des conditions aux
limites dans la théorie des grands déplacements.

l'aide de méthodes numériques approchées (telle que la
méthode des différences finies, par exemple) en prenant en
considération les conditions aux limites. Dans le cas des

équations générales (10a, b), il faut formuler en tout six
conditions aux limites (les équations étant du quatrième
ordre en w et du deuxième ordre en u). Pour la barre de la
figure 6, on pose par exemple, en tenant compte des

relations (2) et (5' :

Pour x 0 // 0,

w 0,

<p sin tp 0 —> w' 0,

N -P-* EF-tt' + P= 0.

Pour x 1 : w 0,

M 0- 0.

Une fois trouvés les déplacements u et w, les efforts
internes N et M s'obtiennent à partir des relations (5a, b).
L'effort tranchant T peut être calculé, au besoin, à l'aide
de la condition d'équilibre (7c'

7. Application numérique

Trouver la ligne élastique et le moment d'encastrement
de la console (figure 7) soumise à une force postcritique
P > Per, où Pcr est la force critique d'Euler. Utiliser la
méthode des différences finies.

1. Equations différentielles du problème

Au lieu d'appliquer les équations différentielles (9a, b)
(avec H —P et V 0), on peut obtenir des équations
encore plus simples, dans le cas particulier, à partir des

conditions suivantes :

M -P[w(l)-w] N=-Pœs<p.
En utilisant les relations (2b, c) et (5a, b), on trouve après
simplification les équations différentielles suivantes :

El.F

P>f?r

Fig. 7. — Comportement post-critique d'une console mince,
étudiée dans l'alinéa 7.
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w" P

V/l-w'2 EI (Ha)

u'+ lu'2 + lw'2+ — v 1-h>'2 0 (11b)

Les conditions aux limites sont en même temps

w (0) 0 w' (0) 0 u (0) 0 (1 le)

On remarquera que l'emploi de la relation (2c) a permis
de rendre la première équation différentielle indépendante
de la seconde.

2. Modification des équations différentielles pour le calcul
à l'ordinateur

Pour l'étude sur ordinateur, on a avantage à introduire
les déplacements relatifs

w u
W= j et U= - (12a)

L'analyse des équations (lia, b) montre que la solution
dépend alors seulement de deux paramètres sans dimensions

:

P Al2 P 1

a SA —i" IF/ et *¦= •Pcr n El t

En introduisant une coordonnée relative

x

Fl2
(12b)

(12c)

et en tenant compte que (...)'= —(...)= —(...),
on peut poser : *

dW \d2W
W' - ~rrr DX{W) w" T-^ D2(W)

dç 1V " / rfç2

dU
(12d)

On obtient alors pour W et U les équations différentielles
suivantes :

Z>a(0O/Vl-DÏW + a m [W-W(Ç= 1)] 0, (13a)

Di(tO+ïrf(tO + s^>î(»0 + J(|)-Vl-/)ï(»F) 0, (13b)

avec les conditions aux limites

{W)i=0 0 [^1 (WQ]{ o 0 (t/){-o 0 ¦ (13c)

3. Expressions approchées des dérivées au moyen des diffé¬

rences finies

On désignera (figure 8) par des chiffres arabes {k 0,1,
2 les points pivots et par des chiffres romains (K I,
II, III les centres des sous-intervalles AS,. Pour expri-

IL
U

K

k
i j2 k =0,1,2

K// S K 1,1,111

Fig. 8. — Désignation des points-pivots ct des centres des sous-
intervalles dans les expressions aux différences finies.

mer les dérivées première et seconde, on utilisera les

expressions classiques basées sur un polynôme d'interpolation

du deuxième degré. Soit/ /(c) une fonction de £,
alors les dérivées première et seconde en un point pivot k
auront pour expression :

df\
<%)*:

dY\

Ï2ç (fn-ft-ù- ïjç -1 1

— TAAfi (^*-i—2/j. +A-+0 '
l

(M?
1 -2 1

(14a)

(14b)

Par ailleurs, au centre du sous-intervalle k — 1, k, nous
avons encore

dÇJK AS, AS,
-1 1 (14c)

4. Plan de la solution par la méthode des différences finies

Pour assurer une précision suffisante du calcul approché
par la méthode des différences finies, le domaine de validité

des équations différentielles (13a, b) sera divisé en dix
sous-intervalles de longueur AS, Vio selon la figure 9.
Les inconnues du problème sont alors les déplacements
relatifs U et W aux points pivots. En utilisant les expressions

(14), on remplacera désormais ^ par
En appliquant la première et la troisième des conditions

aux limites (13c), on a tout de suite : W0 U0 0. La
deuxième condition exprimée à l'aide de l'expression
approchée de la dérivée première (14a) donne :

[Di(0Ok=o 2Ââ (Wi~W-à ° ' d'où w-i W* '

En tenant compte de ces conditions, les inconnues qui
restent (figure 9) sont les déplacements relatifs transversaux
W\t Wi W10 et longitudinaux U\, Uo i/10. Pour
les déterminer, on remplacera dans les expressions (12d)
des fonctions Dx (U), Dx {W) et D2 {W), les dérivées
premières et secondes par rapport à S, par leurs expressions

approchées (14a, b, c) et l'on écrira :

l'équation (13a) en k 0 à 9

(10 équations pour W\ à fFio),

l'équation (13b) en K I à X
(10 équations pour Ux à U10).

On obtiendra alors un système de 10 équations ordinaires
mais non linéaires pour les inconnues W1 à Ww et un
système semblable de 10 équations non linéaires pour les
inconnues Ux à Uia.

5. Utilisation du programme SNOLIN et résultats de calcul

Pour résoudre un système d'équations non linéaires, on
utilisera le programme SNOLIN. Avant de poursuivre, le
lecteur est prié de se familiariser avec la description de ce

4-rio- — ^—i—o—i—o—t—o—i—o—r—o—i—ô—p-ô—!—Ö—r—o i otxjknriifcffmitzt» :r
W( 0 W, W2 W} IV„ 1V5 W( w, «/, w9 W/,o

- 0 U, Uz U} U, Us Uc U7 U8 U, U,0

Fig. 9. — Subdivision du domaine de validité des équations
différentielles (13) pour l'application de la méthode des
différences finies.
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programme, donné dans l'appendice A. Pour définir le
système d'équations non linéaires que l'on désire résoudre
et pour calculer le moment d'encastrement de la barre, il
faut rédiger un sous-programme FORTRAN appelé
FORMFF. Ce sous-programme est donné dans l'appendice

B.
En prenant pour les paramètres a et /. les valeurs

particulières, on peut étudier leur influence sur le comportement
post-critique de la barre. Dans l'appendice B sont montrés
les résultats que l'on a par exemple obtenus en posant
a 1,15 et X 1000. On voit que les déplacements de

l'extrémité libre de la barre provoqués par une charge P
dépassant de 15 % la force critique d'Euler sont alors :

w (x /) 0,597 /, u (x / -0,263 /

Le moment d'encastrement vaut en même temps

M0= -0,687 Pcr-l,

où P„ n2 EI/4 l2 est la force critique d'Euler.

6. Restriction

Pour les valeurs de P dépassant fortement la force
critique d'Euler Pcr et où en certains points de la déformée la

pente tp est proche de 90 la solution approchée basée sur
les équations (lia, b) peut échouer. Puisque dans ces cas
la dérivée première w' peut dépasser l'unité, l'expression

\/l — w'2 peut conduire à une racine imaginaire. Ce défaut,
conséquence du fait que l'on néglige £ par rapport à 1, aurait
pu être évité si l'on n'avait pas utilisé la relation (2c)
et remplacé dans l'expression (5b) (1 Au') par

\1— w'2. On aurait alors perdu l'avantage d'avoir une
première équation indépendante de la seconde, avantage
dont on n'a finalement pas profité pour ne pas compliquer
la programmation, mais qui pourrait avoir une certaine

importance économique (temps de calcul), si le nombre
d'équations non linéaires était beaucoup plus élevé.

8. Remarques

La méthode développée dans les paragraphes précédents
trouvera son application surtout dans les cas plus compliqués
que le simple problème de la figure 7. Les équations générales
(10a, b) permettent notamment de tenir compte de la variation
de section et de prendre en considération des conditions
quelconques aux limites et une répartition quelconque de la charge.
Puisque la solution tient compte des déformations dues à l'effort
normal TV, elle peut s'appliquer également aux cas où les conditions

d'appui (les deux extrémités fixées longitudinalement)
rendent hyperstatique la composante H des efforts internes de la
barre.

Les relations fondamentales de la méthode ont été développées
en admettant que les déformations spécifiques e sont négligeables
par rapport à l'unité. Cette restriction peut être levée et l'on
obtient, en suivant un raisonnement analogue, des relations
qui s'appliquent non seulement aux grands déplacements mais
aussi aux grandes déformations. Cette possibilité n'a pas été
envisagée, du fait que les matériaux courants ne peuvent
supporter élastiquement que de faibles déformations.

Si l'on remplace la loi de Hooke par une relation contrainte-
déformation non linéaire, a =f(é), on peut obtenir, pour une
fonction f(s) donnée, les relations particulières permettant de
traiter les problèmes qui sont non linéaires non seulement
géométriquement mais également physiquement.

En transformant les équations différentielles non linéaires d'un
problème en un système d'équations non linéaires mais
ordinaires, on a utilisé, dans l'exemple traité au paragraphe précédent,

les expressions classiques de la méthode des différences
finies. Au lieu de ces expressions simples qui correspondent à

un polynôme d'interpolation du second degré, on peut également

utiliser des expressions plus précises basées sur les
polynômes d'interpolation de degré plus élevé. De telles expressions
basées sur des polynômes jusqu'au sixième degré inclus sont
répertoriées dans la publication [3], pages IV-23 à IV-28. Leur
application conduit à une économie appréciable du temps de
calcul puisque l'on peut utiliser, sans affecter défavorablement
la précision, des sous-intervalles beaucoup plus grands, ce qui
conduit à résoudre un nombre moins élevé d'équations non
linéaires. (à suivre)

ESPOIRS ET LIMITES DES SOURCES D'ÉNERGIE PRIMAIRES
NON CONVENTIONNELLES

Sous ce titre, l'ASE 1 a organisé, en commun avec l'UCS 2

et avec la Convention des Sociétés nationales d'électriciens de

l'Europe occidentale, deux journées d'information les 11 et
12 octobre 1974 à l'EPF à Lausanne. Environ 250 participants
ont témoigné d'un intérêt très vif pour ces questions et ont
animé une discussion nourrie.

En guise de préface à ces journées d'information, le Bulletin
technique a publié, dans le numéro 20 du 29 septembre 1974, un
article du professeur J.-J. Morf, sur les ressources mondiales
de puissance et d'énergie.

Le Bulletin technique a le plaisir de publier ci-après l'allocution

du Dr h.c. A. W. Roth, vice-président de l'ASE, le tableau
énergétique mondial que le professeur J.-J. Morf, président des

journées, a présenté avec M. M. Roux pour introduire les deux
journées, les résumés des conférences et l'essai de synthèse qui
a clos les débats.

Par convention plus ou moins tacite entre les gouvernements
et les grands producteurs d'énergie, les besoins énergétiques du
monde sont actuellement couverts par les combustibles fossiles,
les ressources hydrauliques et la fission de l'uranium. En prévision

de l'épuisement probable du pétrole et du gaz naturel, il
était intéressant d'examiner les possibilités de recourir à des

sources primaires d'énergie moins conventionnelles, soit en
retournant à des formes classiques comme l'énergie du vent cl
du soleil ou à des formes nouvelles comme la fusion.

Un tirage à part du texte intégral de toutes les conférences et
des discussions très nourries qui ont animé ces journées peut

1 Association suisse des électriciens.
2 Union des centrales suisses d'électricité.

être obtenu au Secrétariat administratif de l'ASE, case postale,
8034 Zurich, au prix de Fr. 40.— (Fr. 20.— pour les membres
d'une société d'électriciens).

W. Peter.

Allocution de M. A. W. Roth, Dr. h.c, vice-président
de l'Association suisse des électriciens

Monsieur le Président, Mesdames, Messieurs,

En tant que représentant de l'Association suisse des

électriciens, au nom de l'Union suisse des centrales
électriques et au nom également de la Convention des Sociétés
nationales d'électriciens de l'Europe occidentale, j'ai l'honneur

d'ouvrir les journées d'information auxquelles vous

avez bien voulu assister.
Je ne voudrais pas empiéter sur les domaines des éminents

spécialistes qui traiteront les aspects techniques des questions
que nous nous posons tous, mais j'essayerai de situer ces

travaux souvent méconnus, parfois aussi surestimés, dans

un cadre général.
La démarche de l'homme dans l'univers terrestre est

caractérisée par une émancipation croissante vis-à-vis de

son entourage naturel. Par sa faculté de travail intelligent,
il s'est libéré des sujétions du comportement instinctif,
caractéristiques de la nature animale. Une donnée fonda-
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