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BULLETIN TECHNIQUE DE LA SUISSE ROMANDE 100e année 1" août 1974 N° 16

Analyse des réseaux d'énergie électrique
La Commission romande de formation universitaire continue des ingénieurs et des architectes

a organisé en collaboration avec la Chaire d'installations électriques de l'Ecole
polytechnique fédérale de Lausanne un cours de 3e cycle consacré à ce thème. Il se composait de
6 soirées, chacune consacrée à un problème typique, au cours de laquelle était montrée la
façon de le traiter par des méthodes numériques, le plus souvent à l'aide d'un ordinateur.

Le Bulletin technique publiera dans les mois à venir les textes de ce cours, qui a obtenu un
grand succès et intéressera certainement nombre d'ingénieurs n 'ayant pu assister au cours.
Nous excepterons de la publication l'introduction présentée le premier soir, qui visait à un
rappel de notions généralement connues. Chacun des textes peut être lu pour lui-même, de
sorte qu'il n'a pas paru nécessaire de les publier dans des numéros consécutifs. L'ensemble
du cours fera l'objet d'un tiré à part disponible au Centre d'étude des réseaux électriques à

l'EPFL.

Répartition des puissances dans un réseau électrique
en régime permanent
par A. GERMOND et H. B. PÜTTGEN, Lausanne

1. Description matricielle d'un réseau d'énergie
électrique

On exposera dans ce chapitre quelques procédés matriciels

plus particulièrement utilisés pour traiter les
problèmes des réseaux d'énergie électrique.

1.1 Définitions

Les réseaux d'énergie électrique comportent essentiellement

des lignes, des transformateurs et des jeux de barres.
Pour l'étude des régimes permanents, les lignes sont

représentées par un assemblage d'impédances.
Les transformateurs peuvent être représentés en faisant

intervenir soit des impédances mutuelles, soit des
transformateurs idéals et des impédances.

Un réseau peut donc être considéré comme un ensemble
de branches, reliées chacune à deux nœuds. Il est
éventuellement constitué de plusieurs réseaux partiels (c'est-
à-dire sans liaison métallique ; c'est le cas avec les
transformateurs idéals).

Si TV est le nombre de nœuds
B le nombre de branches

et S le nombre de réseaux partiels,

on peut définir pour chaque réseau partiel- N'(N'—l)
couples de nœuds et N'(N'-i) tensions {N' étant le
nombre de nœuds d'un réseau partiel). Ces tensions peuvent
être exprimées à l'aide de (N'—l) tensions indépendantes.

Pour le réseau total, il y a (N—S) tensions indépendantes.

Tout contour fermé que l'on peut former par une succession

de branches est une maille.
On démontre que l'on peut trouver B—N A S mailles

indépendantes.
Les descriptions matricielles de réseaux se basent sur

l'emploi des (N—S) tensions indépendantes (méthode
nodale) ou des (B—N+S) mailles indépendantes
(méthode des mailles).

Ces méthodes sont traitées en détail dans les références
[IL P]1.

1.2 Description des branches et des connexions

Le réseau est entièrement décrit par le contenu des
branches (exprimé par un schéma ou sous forme matricielle)

et par la façon dont celles-ci sont reliées :

Si nous admettons que les branches ne contiennent ni
source de tension, ni source de courant, le contenu des

branches sera décrit, par exemple, par la matrice des
impédances propres et mutuelles des éléments.

D'autre part, les connexions seront décrites par une
matrice d'incidence.

Prenons par exemple le réseau de la figure 1 et numérotons

ses nœuds et ses branches, en les orientant.

„(A)

3

(,)- -(3)
(5)

1 '(6) - (2)

Fig. 1

1.2.1 Matrice des impédances propres et mutuelles Z
L'élément Zy de cette matrice est l'impédance mutuelle

des branches (/') et (/') (l'impédance propre de la branche (/)
pour y /).

Dans notre exemple, si les éléments (3) et (4) sont mutuellement

couplés, cette matrice aura l'allure suivante :

1 Les nombres entre crochets renvoient à la bibliographie
en fin d'article.
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z

m 0 0 0 0 0

0 z^ 0 0 0 0

0 0 z±33 ^34 0 0

0 0 ?43 ?44 0 0

0 0 0 0 ^5 0

0 0 0 0 0 Zy

1 +1 0 0 0 +1
1 0 -1 -1 0 0
0 0 0 +1 -1 0
0 -1 +1 0 + 1 0
0 0 0 0 0 -1

1.2.2 Matrices d'incidence
Matrice d'incidence nœuds-branches K

Cette matrice comporte TV lignes et B colonnes.
L'élément Kti vaut :

+ 1 si la branche / part du nœud i
— 1 si la branche j arrive au nœud ;

et 0 si la branche/ n'est pas reliée au nœud i

Dans notre exemple,

K

Si l'on appelle J_ le vecteur des courants injectés aux
nœuds 1 N et i_ le vecteur des courants circulant dans
les branches 1 B dans le sens convenu :

Comme la somme des vecteurs-lignes de cette matrice
est nulle, le rang A^est au maximum égal à (N— 1).

On appelle matrice d'incidence nœuds-branches réduite
la matrice C obtenue en supprimant une ligne de K.

Si 90 est le vecteur des tensions de branches et UA celui

des tensions des nœuds par rapport au nœud de référence
correspondant à la ligne supprimée dans K, on remarque
quefP= QUA.

D'autres matrices d'incidence sont utilisées :

les matrices d'incidence aux mailles (de rang B—N + S
puisqu'il y a B—N+ S mailles indépendantes) et les
matrices d'incidence aux coupes (de rang JV— 1).

1.3 Choix des variables

Le choix des variables indépendantes dépend de la
nature du problème à résoudre. Selon ce choix, les équations

du réseau peuvent être écrites par diverses méthodes,
qui font appel aux diverses matrices d'incidence mentionnées

(équations nodales, équations de mailles, des coupes).
Dans l'étude des réseaux d'énergie électrique, c'est

essentiellement le comportement du réseau vu de ses accès (ou
jeux de barres, en anglais : bus) qui nous intéresse et nous
choisissons comme variables indépendantes soit les (iV— 1)

courants injectés aux accès, soit les potentiels des (N—l)
accès (celui du Ne nœud est considéré comme nul).

Si IA est le vecteur des courants injectés aux accès,

UA le vecteur des tensions des accès par rapport au
nœud de référence,

nous désirons obtenir des équations du type

UA z. LA _A OU ÏaEa
suivant le problème à résoudre.

Nous allons indiquer des méthodes pour calculer YA

et ZA à partir des données, qui sont les éléments et les

connexions.

1.4 Matrice des admittances aux accès YA

Soient i le vecteur des courants de branches
^D le vecteur des tensions de branches

C la matrice d'incidence réduite nœuds-branches

Z la matrice des impédances propres et mutuelles

E

Dans chaque branche K sOk \ Zfc

donc *D_= Zi
par définition de C : 1A

et eD-

¦ ci
QUA

donc IA C Z1 SU C Z1 Ct UA

et Ia Ia Ea avec Ia CZf1 Q

Dans le cas particulier où les impédances mutuelles sont
absentes, Z est diagonale et le calcul de Z l immédiat.

On obtient si nécessaire ^ Ct UA

et ± Z1 Ct UA

1.5 Matrice des impédances aux accès ZA

Pour résoudre certains problèmes (courts-circuits, coefficients

de pertes) il est plus utile de choisir les composantes
de 1^ comme variables indépendantes. Il faudrait alors
écrire :

puis

et

— A _A

QUA
z-1 Ci UA

La matrice Z^ Y_J- s'obtient par inversion.

Il existe une autre méthode qui consiste à calculer ZA en
construisant le réseau branche après branche.

2. Calcul des répartitions de puissance en régime
permanent dans un réseau en régime symétrique
(load-flow)

2.1 Formulation du problème

Soit un réseau triphasé fonctionnant en régime
symétrique et comportant TV accès (jeux de barres). Nous
définissons quatre variables en chaque accès K : le module UK
et l'argument 0K de la tension, ainsi que la puissance
triphasée active PK et réactive QK consommée ou produite
par l'accès. UK est la tension simple de la première phase

multipliée par \ 3.
La topologie et les paramètres du réseau (caractéristiques

des lignes, des transformateurs) sont connus. Les données
du problème sont les consommations (ou productions) de
puissances active et réactive en certains accès et un certain
nombre de tensions avec leur argument. Il s'agit de calculer
quelles doivent être les autres tensions (en module et
argument) et les autres puissances actives et réactives pour
satisfaire ces données. Le nombre des données et des
inconnues doit être compatible. (On ne donne jamais plus
de (N—ï) puissances, sinon cela signifierait que l'on
impose les pertes dans le réseau.)

Ceci calculé, on peut déterminer la circulation des
puissances dans les lignes et les transformateurs, ainsi que
d'autres variables auxiliaires : courants aux extrémités des

lignes, courants soutirés aux accès.
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Ainsi formulé, le problème offre deux cas extrêmes :

a) On donne toutes les tensions (en module et argument),
on considère toutes les puissances comme inconnues.
Ce problème est facile à résoudre car il est linéaire. Il
suffit de calculer la matrice des admittances aux accès

YA, puis les courants aux accès IA et enfin les puissances

active et réactive en chaque accès.

b) On donne une tension et un argument (au nœud bilan),
ainsi que (N— 1) puissances actives et (N— 1) puissances
réactives. On demande de calculer toutes les autres
tensions. Les puissances actives et réactives étant des

expressions quadratiques des tensions, le problème
revient à résoudre un système d'équations algébriques

non linéaires.

2.2 Expression des puissances consommées ou produites en

fonction des tensions aux accès

On exprimera les courants aux accès en fonction des

tensions aux accès, puis ces puissances seront calculées

pour chaque accès.

On utilise la matrice des admittances aux accès pour
calculer les courants aux accès.

2.2.1 Représentation des transformateurs

Chaque transformateur sera représenté par un
transformateur semi-idéal, soit un transformateur idéal avec

son impédance de court-circuit (on peut encore y ajouter
si besoin est, une impédance transversale) (fig. 2).

¦ pq
i

Z"— ce

PC^-i^ }

lUp
1

ri
Fig. 2. — Transformateur semi-idéal.

Le rapport des tensions à vide est

u„
Up

Un
eJ \&po &qo) N„

Ce rapport est complexe lorsqu'il s'agit d'un transformateur

déphaseur (les phases des deux tensions à vide étant ap
et aq).

Les équations de ce quadripole s'écrivent :

y pq
ty™ avec «s»*« {/„-£/„-* \N

'V,

et I'M [M (=2
- - \m

* Désignant la quantité complexe conjuguée.

2.2.2 Matrice d'incidence nœuds-branches généralisées K
Lorsqu'on utilise ce modèle de transformateur, on

généralise la matrice d'incidence nœuds-branches de la façon
suivante :

Nous orientons systématiquement les courants dans les

transformateurs de sorte qu'ils entrent du côté où figure
l'impédance, et l'élément À,7 de cette matrice vaut :

+ 1 si le transformateur /' « part » du nœud / (a son impé¬
dance de court-circuit du côté i

—iij * si le transformateur/' aboutit au nœud i,

0 si le transformateur y n'est pas relié au nœud /',

n} représente le rapport complexe des tensions à vide

(la tension du numérateur du côté où figure
l'impédance),

et l'on écrira IA — C i_,

C étant la matrice obtenue en biffant une ligne de K,

puis s» Q * • Va,

^L CZACt*UA,
donc YA C Z-i Ct *

où Z est la matrice des impédances propres, dans laquelle

figure pour la branche pq l'impédance de court-circuit
Z p«

Si les rapports de transformation sont réels, la matrice Y^
demeure symétrique.

Exemple : (fig. 3)

<3D (D

Nr.N2

<x> (2)

Ni:N3

0)

1

Fig. 3. — Tronçon de réseau comportant 2 transformateurs de

rapports Ni/N% et N-^/Nß différents (complexes si les

transformateurs sont déphaseurs).

En représentant chaque transformateur par un
transformateur semi-idéal et en tenant compte de l'impédance
transversale pour le transformateur 1-3, on obtient le

schéma de la figure 4.

(1)

(2)

(A)

I

~T^L
(3)

Fig. 4. — Représentation du réseau de la figure 3 avec des

transformateurs semi-idéals.

C

0
TVjX*

^3
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2.2.3 Expression des puissances

Les puissances active et réactive consommées au nœud k
s'écrivent :

Pk + iQu

d'où

-U I*AAk L Ak

¦P*+JQt=U*M.i_ AU ' ZAlc

et comme L Ia-Ua

-PuAjQu^Umk-Y^lAu-UAx

TV étant le nombre d'accès.

Si l'on se reporte à la méthode de calcul de YA, on constate

que YAlcl 0 si les accès k et / ne sont pas reliés
directement par une branche, et s'il n'y a pas de couplage
mutuel entre lignes.

Donc, en se souvenant que UAl UAl-ei&l

-Pk+JQk=IAkk-Ukk'u Ak- L lAkiUAkUAl(cos(0t-0k)-

+/sin (0,-0*))
où 2j représente la somme sur les accès reliés à k par

l-^k
une branche ou un couplage mutuel.

Donc P -Pe\IAkkU2Ak+ LlAklUAkUuE
(cos (0,-0*)+/sin (0,-0*))

et Qk /,„ IAkk U2Ak A J] Iau U.Ak UM
I J**

(cos (0,-0*) h/sin(0, 0*))

(D

2.3 Calcul des tensions complexes inconnues

Le problème posé sous 2.1 revient à résoudre un système
de L équations du type (I) avec L inconnues parmi les
UA et 0.

Nous allons exposer ici la méthode qui est généralement
utilisée. Celle de Newton-Raphson. Citons deux autres
méthodes moins fréquemment employées : celle de Fletcher-
Powell et celle de Baumann.

2.3.1 Méthode de Newton-Raphson

Si nous désignons par UAl0 UALo et 0lo 0Lo
des tensions et arguments choisis arbitrairement, nous
pouvons calculer par (1) les puissances Pk0 et Qk0 qui
correspondent en chaque accès à cet état du réseau.

Nous remplaçons alors aux nœuds où les puissances P
et Q sont fixées l'expression des Pk et Qk par les expressions
approchées suivantes, où

AU, UAl-UAl0
A0,= 0,-0,o

Pk=Pko+y, S) a&i
l 0&l ' 0

dPiy, ~\ au.
(2)

?m-Qko

dPA .dPA .dQk
d0i)o ' 3Ui). ' d0i)o

L dQk

du.
AU,

dQk

dU
sont les dérivées partielles de Pk et Qk par rapport à Ut
et 0i. Elles dépendent des tensions et des angles 0 et sont
calculées pour UAl0 ¦ ¦ ¦ UALo et &l0 0La.

En posant Pk-Pk0 APk

et Qk-Qk0 AQk

et en écrivant (2) sous forme matricielle, on obtient

AP \ I Ji h\ i A0
(3)

AQ I \ h h ' \ AUA '
¦ lAQ \ou I 1 est le vecteur des arguments et tensions inconnus

et I _ j celui des écarts avec les valeurs fixées, donc connu.

Les sous-matrices Jlt J-2, J3, JA du jacobien / ont pour
éléments les dérivées partielles des puissances actives et
réactives par rapport aux arguments et aux modules des
tensions.

La résolution du système linéaire (3) fournit les vecteurs

A0 et AUa

On recommence tout le processus en remplaçant

UAo par UAo + AUA
et 0O par 0„ -i- A0

jusqu'au moment où chaque APk et chaque AQk est
inférieur à une marge de précision qu'on s'est fixée.

Les tensions UA et les angles 0 obtenus à cette itération
sont les solutions du problème posé.

On calcule ensuite facilement toutes les variables
auxiliaires telles que courant et puissances dans chaque ligne
ou transformateur, pertes.

2.3.2 Résolution du système linéarisé

A chaque itération, il faut résoudre le système linéaire

Jt J-2 \ i A0 \ i AP \
J* AU, AQ

Les éléments des matrices Jlt J-,, Ja, J4 ne sont pas constants

mais à recalculer à chaque itération (ils sont fonction
des UA et 0).
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De par la nature physique du problème (chaque accès

n'est pas relié directement à tous les autres, mais à quelques-
uns seulement), les matrices J1, J2, J3 et J4 comportent
beaucoup d'éléments nuls, on dit que la matrice J est très

creuse.
Pour gagner du temps de calcul et de la place en mémoire,

la méthode utilisée pour résoudre ce système doit tenir
compte de cette propriété. Plusieurs méthodes peuvent
ainsi être mentionnées.

— Gauss-Seidel. Cette méthode a l'avantage d'être très

rapide et de ne demander que peu de place de mémoire
à l'ordinateur. Elle peut, par contre, poser des
problèmes de convergence dans certains cas.

— L'inversion de la matrice Jacobienne /. Elle est lente

et peu indiquée pour une matrice de la taille de celle

qui nous intéresse. Cette méthode ne permet pas de

tenir compte du fait que / est très creuse.

— L'élimination des variables. (Méthode de Gauss. On
transformera le système en un système triangulaire.) Si

de plus on tient compte de la présence des coefficients
nuls, et qu'on ordonne les lignes successives du système

en conséquence, on réduit fortement l'encombrement
en mémoire et le temps de calcul. C'est la méthode dite
d'élimination ordonnée des variables. Cette dernière
méthode semble être la plus puissante [3].

On peut également réduire dans certains cas la
complexité du système à résoudre en ne tenant compte que des

coefficients de Ji et Jit ce qui revient à dire que l'on néglige
l'effet des accroissements de tensions sur les puissances
actives, respectivement l'effet des accroissements d'angle
sur les puissances réactives. Cette méthode nécessite un
plus grand nombre d'itérations.

2.4 Description et utilisation d'un programme de calcul
écrit à la Chaire d'installations électriques de l'EPFL

Nous avons mis au point, sur la base de la méthode de

Newton, un programme de calcul de répartition des

puissances.

2.4.1 Organigramme sommaire du programme de calcul
de répartition des puissances « ORACLE»
(voir ci-contre)

Remarque : les unités utilisées peuvent être quelconques,
mais compatibles, par exemple : V, A, WeX Q, ou kV, kA,
MfVet Q ou encore kV, A, kfVet kQ.

Le programme a été conçu de façon à pouvoir étudier
un certain nombre de modifications dans l'emploi de la
méthode exposée, et a été, par la suite, développé pour
tenir compte de conditions supplémentaires telles que le

réglage des tensions au moyen des transformateurs à

gradins par exemple [4].
L'une des variantes permet de traiter 400 nœuds et

800 lignes.

3. Emploi pratique d'un load-flow

L'application d'un programme de load-flow à un réseau

réel pose quelques problèmes que nous allons exposer ici :

3. 1 Les données

Les données nécessaires sont les suivantes :

— La topologie du réseau à étudier doit être connue. Ceci

est facile, un simple schéma unifilaire du réseau suffit.

Les impédances R, X, — doivent être connues avec
coC

précision. Ce point est le plus délicat. Afin de disposer
des données exactes, la tendance actuelle veut que l'on
mesure les impédances avant la mise en service d'une
ligne nouvelle. Le problème reste entier pour les lignes
anciennes pour lesquelles une telle mesure est délicate

vu les problèmes d'exploitation qu'elle peut poser. On

peut alors calculer ces impédances ; toutefois de tels

calculs sont assez laborieux car il faut connaître la
géométrie de la ligne, la forme des pylônes, la section
des conducteurs, la permutation éventuelle des lignes,
entre autres. Signalons que des programmes de calcul
spécialisés pour le calcul des constantes de ligne ont été

mis au point.

Les caractéristiques des transformateurs (impédances
de court-circuit, rapport de transformation,
caractéristiques des gradins s'il y a lieu et éventuellement le

déphasage fixe ou réglable) sont aisément tirés des

procès-verbaux d'essais, pour autant qu'ils existent.

Les puissances consommées en chaque nœud posent
également un problème. Il faut ici savoir si l'on veut
calculer un état de faible ou forte charge, en hiver ou
en été. Si l'on désire effectuer un calcul prévisionnel de

lecture des données :

nombre d'accès et de branches
précision exigée

I

lecture des données : accès

nom, numéro, coordonnées, P, Q, U, 0
(données ou valeurs pour la lre itération)

lecture des données : branches
origine, extrémité, impédances longitudinale

et transversale, rapport à vide et
déphasage à vide pour les transformateurs

I

impression des données

calcul des puissances actives et réactives
aux accès et des écarts avec les données

calcul des dérivées partielles (matrice J)

test sur les écarts des puissances

> £

résolution du système
linéaire (3 méthodes à

choix) d'où nouvelles
valeurs des tensions

complexes

calcul des échanges de
puissances et impression
des résultats (évt.
perforation de cartes pour le

dessin au plotter)

lecture de variantes par rapport au réseau
initial (lignes coupées, ajoutées,
paramètres ou variables modifiés)

fin

327



quelques années en avance, il faut savoir prédire les
charges, ce qui est très délicat et demande des
statistiques très sûres.

— Les puissances produites posent des problèmes iden¬
tiques aux consommations mais demandent en plus,
pour les calculs prévisionnels, un plan précis d'implantation

de nouvelles centrales.

— Il faut enfin s'assurer que l'ensemble de ces données se
réfère à un même moment donné.

3.2 Choix du nœud bilan

Pour un calcul de load-flow, on a vu qu'il faut généralement

choisir un nœud qui ait une tension rigide et une
réserve de puissance infinie, c'est le nœud-bilan. Dans le
cas d'un réseau de distribution, par exemple, qui n'est
connecté qu'en un seul point à un réseau de tension
supérieure, le bilan sera bien localisé s'il se trouve à ce point
d'interconnexion.

Pour des réseaux interconnectés en plusieurs points avec
d'autres réseaux, le choix du nœud-bilan est délicat. On
peut cependant dire que généralement il sera situé en un
point d'interconnexion.

L'emplacement du nœud-bilan et de la valeur de la
tension en ce nœud influent directement les résultats d'un
calcul de load-flow. Dans certains cas délicats, il peut être
nécessaire de faire plusieurs calculs, pour un même réseau,
mais avec des valeurs différentes de la tension au nœud-
bilan, voire de changer la localisation de ce dernier.

3.3 Choix des données et des inconnues

On sait que pour un load-flow concernant TV nœuds, il
faut 2 TV données ct 2 N inconnues, vu qu'à chaque nœud
on peut attacher quatre variables qui sont P, Q, U et 0
liés par 2 TV équations.

Pour le nœud bilan on impose U et 0, donc P et Q sont
obtenus comme résultat.

Pour les nœuds consommateurs, on impose P et Q,
donc U et 0 sont obtenus comme résultat.

Pour les nœuds producteurs et les points d'interconnec-
tion, on donne soit P et Q ou P et U ; on obtient alors
comme résultat U et 0 respectivement Q ct 0.

Les autres combinaisons des quatre variables n'offrent
pas d'intérêt pratique.

3.4 Définition des frontières

En Europe continentale, l'ensemble du réseau d'énergie
électrique est interconnecté. Ceci entraîne que pour l'étude
d'un réseau intégré à ce réseau européen, il faut tenir
compte de l'ensemble du réseau interconnecté si l'on veut
être tout à fait rigoureux. Or ceci est pratiquement impossible

à faire, d'où le problème de la définition d'une frontière

entre le réseau étudié et les réseaux voisins. Une
méthode consiste à remplacer chaque réseau voisin par un
schéma simplifié. Mais la mise au point de ce schéma
simplifié nécessite la connaissance de la topologie et de l'état
de charge des réseaux voisins.

Le problème des frontières ne permet pas de solution
universelle pour tous les réseaux. Il faut étudier le
problème de cas en cas, de façon à mettre en évidence où se

trouvent les points sensibles qui influencent fortement le
résultat de l'étude en cours.

3 .5 Précision de calcul

Les paramètres et les données disponibles pour un
calcul de load-flow ne sont généralement connues qu'avec

une précision de l'ordre de 10 %. On désire parfois faire
des vérifications des résultats de calcul en les comparant
avec des résultats de mesures afin de s'assurer que le
modèle employé est bon. Il convient donc de choisir une
précision de calcul de l'ordre du pourcent (un ordre de
grandeur meilleur), afin d'être sûr du fait que tout écart
entre le modèle et la réalité ne peut provenir que des deux
faits suivants :

— erreurs dans le modèle,

— erreurs dans les mesures.

3.6 Capacité de calcul des load-flow

A l'heure actuelle, les plus grands load-flow connus ont
une capacité de calcul leur permettant de traiter un réseau
comprenant environ 500 nœuds et 1000 lignes et transformateurs

; c'est notamment le cas du load-flow écrit par la
Bonneville Power Administration (BPA) des USA, qui est
un des plus puissants et des plus performants parmi les

programmes de load-flow connus [3].

3.7 Mode d'entrées-sorties des programmes de load-flow

3.7.1 Les entrées

Les entrées sont constituées par des fichiers sur support
cartes, ruban perforé, bande magnétique ou encore disque
magnétique. A chaque consommateur, à chaque producteur

et à chaque ligne ou transformateur sont ainsi attachés
un certain nombre de données, numéros, noms, puissances,
tensions nominales, tensions limites, impédances des
lignes et transformateurs, rapports de transformation,
charges admissibles.

3.7.2 Les sorties

Les sorties peuvent être obtenues sous plusieurs formes :

— Un listing sur lequel sont inscrits les résultats. Ce listing
est très fastidieux à dépouiller, vu que le schéma du
réseau n'est pas imprimé.
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Fig. 5. — Schéma d'un réseau et résultats d'un calcul de répartition

des puissances, dessinés par une table traçante.
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Fig. 6. — Schéma et résultats d'un calcul de répartition
représentés par une imprimante.
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Fig. 7. — Ecran graphique.
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— Un schéma du réseau tracé sur un plotter ou une
imprimante rapide avec les résultats essentiels imprimés
sur la même sortie. Cette forme de sortie est très facile
à lire et à dépouiller, mais elle est très lente (fig. 5 et 6).

— Sur un écran graphique. Cette console de visualisation,
constituée d'une matrice d'au moins 106 points éclai-
rables à volonté, est la seule qui permette un véritable
dialogue entre l'ingénieur effectuant l'étude et le modèle
numérique traitant l'étude en cours (fig. 7 et 8).

3.8 Convergence

L'algorithme de Newton-Raphson, appliqué au calcul
des réseaux d'énergie électrique, peut présenter des
difficultés de convergence d'une part et, d'autre part, il peut
converger vers des solutions qui sont physiquement
irréalisables. Certains de ces problèmes sont encore mal connus
de nos jours et font encore l'objet de recherches [6]. On
peut toutefois dire que si l'on n'introduit pas des lignes qui
ont des différences d'impédances dépassant un rapport de

l'ordre de 1 à 100 et si l'on utilise la solution permanente
du réseau à vide, comme approximation de départ pour
les itérations de Newton, on obtient alors généralement
une convergence rapide vers la solution stable du load-
flow.

Pratiquement, cela signifie que si dans un réseau on a
deux lignes, dont l'une fait 100 km de long et l'autre
100 m, il convient de réunir, en un seul nœud, les deux
nœuds reliés par la ligne de 100 m. D'autre part, la valeur
nominale de la tension est une approximation initiale
généralement satisfaisante, pour les nœuds où la tension n'est

pas imposée.
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N.B. Le prochain article de cette série paraîtra dans le Bulletin

technique de la Suisse romande N° 23 du 7 novembre 1974.
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