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BULLETIN TECHNIQUE DE LA SUISSE ROMANDE

100° année

1 ao(t 1974 N-° 16

Analyse des réseaux d'énergie électrique

La Commission romande de formation universitaire continue des ingénieurs et des archi-
tectes a organisé en collaboration avec la Chaire d’installations électriques de I’Ecole poly-
technique fédérale de Lausanne un cours de 3¢ cycle consacré a ce théeme. Il se composait de
6 soirées, chacune consacrée a un probléeme typique, au cours de laquelle était montrée la
fagon de le traiter par des méthodes numériques, le plus souvent a l’aide d’un ordinateur.

Le Bulletin technique publiera dans les mois a venir les textes de ce cours, qui a obtenu un
grand succeés et intéressera certainement nombre d’ingénieurs n’ayant pu assister au cours.
Nous excepterons de la publication l'introduction présentée le premier soir, qui visait a un
rappel de notions généralement connues. Chacun des textes peut étre lu pour lui-méme, de
sorte qu’il n'a pas paru nécessaire de les publier dans des numéros consécutifs. L’ensemble
du cours fera I'objet d’un tiré a part disponible au Centre d’étude des réseaux électrigues a

I’EPFL.

Répartition des puissances dans un réseau électrique

en régime permanent

par A. GERMOND et H. B. PUTTGEN, Lausanne

1. Description matricielle d’'un réseau d’énergie
électrique

On exposera dans ce chapitre quelques procédés matri-
ciels plus particulierement utilisés pour traiter les pro-
blémes des réseaux d’énergie électrique.

1.1 Définitions

Les réseaux d’énergie électrique comportent essentielle-
ment des lignes, des transformateurs et des jeux de barres.

Pour I'étude des régimes permanents, les lignes sont
représentées par un assemblage d’impédances.

Les transformateurs peuvent étre représentés en faisant
intervenir soit des impédances mutuelles, soit des trans-
formateurs idéals et des impédances.

Un réseau peut donc étre considéré comme un ensemble
de branches, reliées chacune a deux nceuds. Il est éven-
tuellement constitué de plusieurs réseaux partiels (c’est-
a-dire sans liaison métallique ; c’est le cas avec les trans-
formateurs idéals).

Si N est le nombre de noeuds
B le nombre de branches
et S le nombre de réseaux partiels,

1
on peut définir pour chaque réseau partiel 3 N’(N’'—1)

couples de nceuds et N’(N’—1) tensions (N’ étant le
nombre de nceuds d’un réseau partiel). Ces tensions peuvent
étre exprimées a I'aide de (N’— 1) tensions indépendantes.

Pour le réseau total, il y a (N—S) tensions indépen-
dantes.

Tout contour fermé que I'on peut former par une succes-
sion de branches est une maille.

On démontre que I'on peut trouver B—N -+ S mailles
indépendantes.

Les descriptions matricielles de réseaux se basent sur
I’emploi des (N—S') tensions indépendantes (méthode
nodale) ou des (B—N -+ .S) mailles indépendantes
(méthode des mailles).

Ces méthodes sont traitées en détail dans les références

[, [2]%-

1.2 Description des branches et des connexions

Le réseau est enti€rement décrit par le contenu des
branches (exprimé par un schéma ou sous forme matri-
cielle) et par la fagon dont celles-ci sont reliées :

Si nous admettons que les branches ne contiennent ni
source de tension, ni source de courant, le contenu des
branches sera décrit, par exemple, par la matrice des impé-
dances propres et mutuelles des éléments.

Drautre part, les connexions seront décrites par une
matrice d’incidence.

Prenons par exemple le réseau de la figure 1 et numéro-
tons ses nceuds et ses branches, en les orientant.

3

(4) B

(1) (3) |

,T_ z_l_:l(; LJ_F_@
1

Fig. 1

1.2.1  Matrice des impédances propres et mutuelles Z

L élément Zl-, de cette matrice est I'impédance mutuelle
des branches (7) et (/) (I'impédance propre de la branche (7)
pour j = i).

Dans notre exemple, si les éléments (3) et (4) sont mutuel-
lement couplés, cette matrice aura I’allure suivante :

1 Les nombres entre crochets renvoient a la bibliographie
en fin d’article.
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1.2.2  Matrices d’incidence
Matrice d’incidence neeuds-branches K

Cette matrice comporte N lignes et B colonnes.
L’élément K;; vaut :

+1 si la branche j part du neeud i
—1 si la branche j arrive au nceud 7
et 0 sila branche j n’est pas reliée au nceud 7

Dans notre exemple,
41 1 0 0 0 +1
—1 0o -1 -1 0 0
K = 0 0 0 +1 -1 0
0 —-1 41 0 1 0
0 0 0 0 0o -1

Si I'on appelle I le vecteur des courants injectés aux

nceuds 1 ... N et i le vecteur des courants circulant dans
les branches 1 ... B dans le sens convenu :
I-Ki

Comme la somme des vecteurs-lignes de cette matrice
est nulle, le rang K est au maximum égal a (N—1).

On appelle matrice d’incidence nceuds-branches réduite
la matrice C obtenue en supprimant une ligne de K.

Si % est le vecteur des tensions de branches et U, celui
des tensions des nceuds par rapport au nceud de référence
correspondant a la ligne supprimée dans K, on remarque
que W = C,U,.

Drautres matrices d’incidence sont utilisées :

les matrices d’incidence aux mailles (de rang B—N + §

puisqu’il y a B—N + S mailles indépendantes) et les

matrices d’incidence aux coupes (de rang N—1).

1.3 Choix des variables

Le choix des variables indépendantes dépend de la
nature du probléme a résoudre. Selon ce choix, les équa-
tions du réseau peuvent étre écrites par diverses méthodes,
qui font appel aux diverses matrices d’incidence mention-
nées (équations nodales, équations de mailles, des coupes).

Dans I’étude des réseaux d’énergie électrique, c’est essen-
tiellement le comportement du réseau vu de ses accés (ou
jeux de barres, en anglais : bus) qui nous intéresse et nous
choisissons comme variables indépendantes soit les (N—1)
courants injectés aux acces, soit les potentiels des (N—1)
acces (celui du Ne nceud est considéré comme nul).

Si I, est le vecteur des courants injectés aux acces,

U, le vecteur des tensions des accés par rapport au
neeud de référence,
nous désirons obtenir des équations du type
Up=2,14, o I,=Y, U,
suivant le probléme a résoudre.

Nous allons indiquer des méthodes pour calculer Y,

et Z, a partir des données, qui sont les éléments et les

connexions.
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1.4  Matrice des admittances aux accés Y,

Soient i le vecteur des courants de branches
Y le vecteur des tensions de branches
C la matrice d’incidence réduite nceuds-branches
Z la matrice des impédances propres et mutuelles

B
Dans chaque branche K ?k = Z Zy-
donc WV = Z i 3.
par définitionde C: I, = C i
et 2 =G Uy
donc I, =CZil®=cCz'CU,
et Iy=Y,U, avec Y, = CZ' G

Dans le cas particulier ou les impédances mutuelles sont
absentes, Z est diagonale et le calcul de Z~! immédiat.

On obtient si nécessaire &) = C, Uy

et i=2"1GU,

1.5 Matrice des impédances aux accés gA

Pour résoudre certains problémes (courts-circuits, coeffi-
cients de pertes) il est plus utile de choisir les composantes
de I, comme variables indépendantes. Il faudrait alors
écrire :

gA = ZZI {A
puis N =C Uy
et i =Z27¢GU,

La matrice Z, = Y ! s’obtient par inversion.
11 existe une autre méthode qui consiste a calculer Z, en
construisant le réseau branche aprés branche.

2. Calcul des répartitions de puissance en régime
permanent dans un réseau en régime symétrique
(load-flow)

2.1 Formulation du probléme

Soit un réseau triphasé fonctionnant en régime symé-
trique et comportant N acces (jeux de barres). Nous défi-
nissons quatre variables en chaque accés K : le module Uy
et I'argument @ de la tension, ainsi que la puissance tri-
phasée active Pg et réactive Qg consommée ou produite
par l'acceés. Uy est la tension simple de la premiére phase
multipliée par \,/ 3.

La topologie et les paramétres du réseau (caractéristiques
des lignes, des transformateurs) sont connus. Les données
du probléme sont les consommations (ou productions) de
puissances active et réactive en certains accés et un certain
nombre de tensions avec leur argument. Il s’agit de calculer
quelles doivent étre les autres tensions (en module et argu-
ment) et les autres puissances actives et réactives pour
satisfaire ces données. Le nombre des données et des
inconnues doit étre compatible. (On ne donne jamais plus
de (N—1) puissances, sinon cela signifierait que I'on
impose les pertes dans le réseau.)

Ceci calculé, on peut déterminer la circulation des puis-
sances dans les lignes et les transformateurs, ainsi que
d’autres variables auxiliaires : courants aux extrémités des
lignes, courants soutirés aux acces.




Ainsi formulé, le probléme offre deux cas extrémes :

a) On donne toutes les tensions (en module et argument),
on considére toutes les puissances comme inconnues.
Ce probléme est facile 4 résoudre car il est linéaire. Il
suffit de calculer la matrice des admittances aux acces
Y, puis les courants aux accés I, et enfin les puissances
active et réactive en chaque acces.

b) On donne une tension et un argument (au newud bilan),
ainsi que (N— 1) puissances actives et (N—1) puissances
réactives. On demande de calculer toutes les autres
tensions. Les puissances actives et réactives étant des
expressions quadratiques des tensions, le probléme
revient a résoudre un systéme d’équations algébriques
non linéaires.

2.2 Expression des puissances consommées ou produites en
fonction des tensions aux accés

On exprimera les courants aux accés en fonction des
tensions aux accés, puis ces puissances seront calculées
pour chaque acces.

On utilise la matrice des admittances aux accés pour
calculer les courants aux acces.

2.2.1 Représentation des transformateurs

Chaque transformateur sera représenté par un trans-
formateur semi-idéal, soit un transformateur idéal avec
son impédance de court-circuit (on peut encore y ajouter
si besoin est, une impédance transversale) (fig. 2).

Fig. 2. — Transformateur semi-idéal.

Le rapport des tensions a vide est :

gpo - Upo j (C( o ) o Np
= 771 € o~ “go) — F7°
gqo UGO r ! ]l[q

Ce rapport est complexe lorsqu’il s’agit d’un transforma-
teur déphaseur (les phases des deux tensions a vide étant a,,
et ay).

Les équations de ce quadripdle s’écrivent :

Pl = 1 P avec V¥ = U,— U, (El’>

chpq M — LD

—a
AN\ #
et (P9 — (P4 (:1_7)
- —_ }_Vq
* Désignant la quantité complexe conjuguée.

2.2.2 Matrice d’incidence newuds-branches généralisées K

Lorsqu’on utilise ce modéle de transformateur, on géné-
ralise la matrice d’incidence nceuds-branches de la fagon
suivante :

Nous orientons systématiquement les courants dans les
transformateurs de sorte qu’ils entrent du coté ou figure
I'impédance, et I’élément k;; de cette matrice vaut :

41  siletransformateur j « part » du nceud 7 (a son impé-
dance de court-circuit du coté i),

—n; * si le transformateur j aboutit au neeud 7,

0 si le transformateur j n’est pas relié¢ au neeud 7,

n; représente le rapport complexe des tensions a vide
(la tension du numérateur du coté ou figure I'impé-
dance),

et I'on écrira I, = C I,
C étant la matrice obtenue en biffant une ligne de K,
pUiS 6) = Ct* . HA’
etl,=CZ1C*U,,
donc Y, =C 271 C, %,
ou Z est la matrice des impédances propres, dans laquelle
figure pour la branche pg l'impédance de court-circuit
Z e,
—cc
Si les rapports de transformation sont réels, la matrice ¥,

demeure symétrique.
Exemple : (fig. 3)

(1)

(2) +
3
1

Fig. 3. — Trongon de réseau comportant 2 transformateurs de
rapports N;/N, et N;/N; différents (complexes si les trans-
formateurs sont déphaseurs).

(3)

Nq:Nj

En représentant chaque transformateur par un trans-
formateur semi-idéal et en tenant compte de I'impédance
transversale pour le transformateur 1-3, on obtient le
schéma de la figure 4.

iy (

)
——] }-
71 i
@| |z%
1

(

B

N ——
|—
w

iz [¥)

2)
——] 1}

iL Z\a E g
zﬂ .(A)

Fig. 4. — Représentation du réseau de la figure 3 avec des
transformateurs semi-idéals.

Y=

w ——
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Nl
1 — fv— 0
N
C¥ = 1 &
G o -
0 1 —1
1 0 0
zez 0 0 0
7. = 0 zZ® 0 0
F 0 0 zZ®o
0 0 o0 Zzw
y2 0 0 0
71 _ 0 ya 0 0
= 0 0 8 0
0 0 0
Y12yl y1a _yt2 ( ) (N )yl3
N, N,
r Ny \* N
et Y= (_172) yl2 ZS‘H’IQ(]V — 23
g Nl i 1
<_N ) y13 _ZZ3 ﬁ 213 + Z23
Ay

2.2.3  Expression des puissances
Les puissances active et réactive consommeées au nceud k
s’écrivent :
Py +jOr = — Uy I*
d'ou — Py Ok = Uk gy Ly
et comme I, =Y,.U,

N
— P+ jOr = U*,, . Z Y
=1

N étant le nombre d’acces.

SiI'on se reporte a la méthode de calcul de Y, on cons-
tate que Y, = 0 si les accés k et / ne sont pas reliés
directement par une branche, et s’il n’y a pas de couplage
mutuel entre lignes.

Donc, en se souvenant que Uy, = Uy, -/

_Pk‘l'ij:X,ugk' UzA/c+ ZZAm Uar Uy (cos(@,—0O,)+
=

+ jsin (@,—0,))

ou représente la somme sur les accés reliés a k par

17k
une branche ou un couplage mutuel.

Donc P, = —R, { Yo UPa + Z Y Uai Uny

17k
(cos (0,—0Oy) + jsin (O,—6Oy)) }
(1

et Oy = Im{ Y Ui + Z Y i U Uy
17k

(cos (@,—0y) + jsin (O,—6O;)) }

2.3 Calcul des tensions complexes inconnues

Le probléme posé sous 2. 1 revient a résoudre un systéme
de L équations du type (1) avec L inconnues parmi les
Uyet 6.
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Nous allons exposer ici la méthode qui est généralement
utilisée. Celle de Newton-Raphson. Citons deux autres
méthodes moins fréquemment employées : celle de Fletcher-
Powell et celle de Baumann.

2.3.1 Méthode de Newton-Raphson

Si nous désignons par Uy, ... Uy, et Oy, ... Of,
des tensions et arguments choisis arbitrairement, nous
pouvons calculer par (1) les puissances Py, et Qy, qui cor-
respondent en chaque accés a cet état du réseau.

Nous remplagons alors aux nceuds ou les puissances P
et O sont fixées I'expression des P; et Q. par les expressions
approchées suivantes, ou

AUL = UAl*UAlO

AO[ — QL—QM
Py, JIP;
Po— Pryt Z 991)0 40, + Z TU,) v,
o an> anc
Or = Qo + : 70, 0491+ ZaU)oAUl
ore) 120 ,204) 201
(795 0,9Ul o’agl o,(yUl 0

sont les dérivées partielles de P, et Q) par rapport a U,
et O,. Elles dépendent des tensions et des angles @ et sont
calculées pour Uyy, ... Ugz, €t O ... Opp.

En posant Pk_Pko = APL
et Qp—Qro = 40y

et en écrivant (2) sous forme matricielle, on obtient

L AP J1 Ja 40
b il Ui d 8
40 . J3 Jy ! AU,

. (460 : .
ou (AU est le vecteur des arguments et tensions inconnus
A
‘AP . , ;
et ( A0 celui des écarts avec les valeurs fixées, donc connu.

Les sous-matrices Jy, J3, J3, J4 du jacobien J ont pour
€léments les dérivées partielles des puissances actives et
réactives par rapport aux arguments et aux modules des
tensions.

La résolution du systéme linéaire (3) fournit les vecteurs

40 et AUA

On recommence tout le processus en remplagant

Uao par Uy, + AUy
et @, par @, + 46O

jusqu’au moment out chaque 4P; et chaque AQ;. est infé-
rieur a une marge de précision qu’on s’est fixée.

Les tensions Uy, et les angles @ obtenus a cette itération
sont les solutions du probléme posé.

On calcule ensuite facilement toutes les variables auxi-
liaires telles que courant et puissances dans chaque ligne
ou transformateur, pertes.

2.3.2 Résolution du systéme linéarisé

A chaque itération, il faut résoudre le systéme linéaire

o G J=l )

VU AU, 4Q

Les éléments des matrices Jy, Jo, J3, J4 ne sont pas cons-
tants mais a recalculer a chaque itération (ils sont fonction
des Uy et O).




De par la nature physique du probléme (chaque accés
n’est pas relié directement a tous les autres, mais a quelques-
uns seulement), les matrices Jy, J5, J3 et J; comportent
beaucoup d’éléments nuls, on dit que la matrice J est tres
creuse.

Pour gagner du temps de calcul et de la place en mémoire,
la méthode utilisée pour résoudre ce systéme doit tenir
compte de cette propriété. Plusieurs méthodes peuvent
ainsi étre mentionnées.

— Gauss-Seidel. Cette méthode a l'avantage d’étre tres
rapide et de ne demander que peu de place de mémoire
a l'ordinateur. Elle peut, par contre, poser des pro-
blémes de convergence dans certains cas.

— L’inversion de la matrice Jacobienne J. Elle est lente
et peu indiquée pour une matrice de la taille de celle
qui nous intéresse. Cette méthode ne permet pas de
tenir compte du fait que J est trés creuse.

— L’élimination des variables. (Méthode de Gauss. On
transformera le systéme en un systéme triangulaire.) Si
de plus on tient compte de la présence des coefficients
nuls, et qu’on ordonne les lignes successives du systéme
en conséquence, on réduit fortement I’'encombrement
en mémoire et le temps de calcul. C’est la méthode dite
d’élimination ordonnée des variables. Cette derniere
méthode semble étre la plus puissante [3].

On peut également réduire dans certains cas la com-
plexité du systéme a résoudre en ne tenant compte que des
coefficients de J; et J4, ce qui revient a dire que 1’on néglige
I’effet des accroissements de tensions sur les puissances
actives, respectivement I'effet des accroissements d’angle
sur les puissances réactives. Cette méthode nécessite un
plus grand nombre d’itérations.

2.4 Description et utilisation d’un programme de calcul
écrit a la Chaire d’installations électriques de I'EPFL

Nous avons mis au point, sur la base de la méthode de
Newton, un programme de calcul de répartition des puis-
sances.

2.4.1 Organigramme sommaire du programme de calcul
de répartition des puissances « ORACLE »
(voir ci-contre)

Remarque : les unités utilisées peuvent étre quelconques,
mais compatibles, par exemple : V, A, Wet Q, oukV, kA,
MW et Q ou encore kV, A, kW et kS2.

Le programme a été congu de fagon a pouvoir étudier
un certain nombre de modifications dans I'emploi de la
méthode exposée, et a été, par la suite, développé pour
tenir compte de conditions supplémentaires telles que le
réglage des tensions au moyen des transformateurs a
gradins par exemple [4].

L’une des variantes permet de traiter 400 nceuds et
800 lignes.

3. Emploi pratique d'un load-flow

L’application d’un programme de load-flow a un réseau
réel pose quelques problémes que nous allons exposer ici :

3.1 Les données

Les données nécessaires sont les suivantes :
— La topologie du réseau a étudier doit étre connue. Ceci
est facile, un simple schéma unifilaire du réseau suffit.

. 1 . 5
— Les impédances R, X, oC doivent étre connues avec
w

précision. Ce point est le plus délicat. Afin de disposer
des données exactes, la tendance actuelle veut que 1’on
mesure les impédances avant la mise en service d’une
ligne nouvelle. Le probléme reste entier pour les lignes
anciennes pour lesquelles une telle mesure est délicate
vu les problémes d’exploitation qu’elle peut poser. On
peut alors calculer ces impédances ; toutefois de tels
calculs sont assez laborieux car il faut connaitre la
géométrie de la ligne, la forme des pylones, la section
des conducteurs, la permutation éventuelle des lignes,
entre autres. Signalons que des programmes de calcul
spécialisés pour le calcul des constantes de ligne ont été
mis au point.

— Les caractéristiques des transformateurs (impédances
de court-circuit, rapport de transformation, caracté-
ristiques des gradins s’il y a lieu et éventuellement le
déphasage fixe ou réglable) sont aisément tirés des
procés-verbaux d’essais, pour autant qu’ils existent.

— Les puissances consommées en chaque nceud posent
également un probléme. Il faut ici savoir si 'on veut
calculer un état de faible ou forte charge, en hiver ou
en été. Si I’on désire effectuer un calcul prévisionnel de

lecture des données :
nombre d’accés et de branches
précision exigée

lecture des données : acces
nom, numéro, coordonnées, P, Q, U, @
(données ou valeurs pour la 17 itération)

\

lecture des données : branches
origine, extrémité, impédances longitudi-
nale et transversale, rapport a vide et
déphasage a vide pour les transformateurs

I

impression des données

I

calcul des puissances actives et réactives
—| aux acces et des écarts avec les données

calcul des dérivées partielles (matrice J)

|

test sur les écarts des puissances >
=8 L N\ <e¢

A A | résolution du systéme calcul des échanges de
linéaire (3 méthodes a puissances et impression
choix) d’ou nouvelles des résultats (évt. perfo-
valeurs des tensions ration de cartes pour le
complexes dessin au plotter)

|

lecture de variantes par rapport au réseau
initial (lignes coupées, ajoutées, para-
meétres ou variables modifiés)

fin
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quelques années en avance, il faut savoir prédire les
charges, ce qui est trés délicat et demande des statis-
tiques trés shres.

— Les puissances produites posent des problémes iden-
tiques aux consommations mais demandent en plus,
pour les calculs prévisionnels, un plan précis d’implan-
tation de nouvelles centrales.

— 1l faut enfin s’assurer que I’ensemble de ces données se
référe a un méme moment donné.

3.2  Choix du neud bilan

Pour un calcul de load-flow, on a vu qu’il faut généra-
lement choisir un neeud qui ait une tension rigide et une
réserve de puissance infinie, c’est le nceud-bilan. Dans le
cas d’un réseau de distribution, par exemple, qui n’est
connecté qu’en un seul point a un réseau de tension supé-
rieure, le bilan sera bien localisé s’il se trouve a ce point
d’interconnexion.

Pour des réseaux interconnectés en plusieurs points avec
d’autres réseaux, le choix du nceud-bilan est délicat. On
peut cependant dire que généralement il sera situé en un
point d’interconnexion.

L’emplacement du nceud-bilan et de la valeur de la
tension en ce nceud influent directement les résultats d’un
calcul de load-flow. Dans certains cas délicats, il peut étre
nécessaire de faire plusieurs calculs, pour un méme réseau,
mais avec des valeurs différentes de la tension au nceud-
bilan, voire de changer la localisation de ce dernier.

3.3 Choix des données et des inconnues

On sait que pour un load-flow concernant N nceuds, il
faut 2 N données et 2 N inconnues, vu qu’a chaque nceud
on peut attacher quatre variables qui sont P, Q, Uet @
liés par 2 N équations.

Pour le neeud bilan on impose U et @, donc P et Q sont
obtenus comme résultat.

Pour les nceuds consommateurs, on impose P et Q,
donc U et @ sont obtenus comme résultat.

Pour les nceuds producteurs et les points d’interconnec-
tion, on donne soit P et Q ou P et U; on obtient alors
comme résultat U et O respectivement Q et .

Les autres combinaisons des quatre variables n’offrent
pas d’intérét pratique.

3.4 Définition des frontiéres

En Europe continentale, I’ensemble du réseau d’énergie
€lectrique est interconnecté. Ceci entraine que pour I'étude
d’un réseau intégré a ce réseau européen, il faut tenir
compte de I'’ensemble du réseau interconnecté si I’on veut
étre tout a fait rigoureux. Or ceci est pratiquement impos-
sible a faire, d’ou le probléme de la définition d’une fron-
tiere entre le réseau étudié et les réseaux voisins. Une
méthode consiste a remplacer chaque réseau voisin par un
schéma simplifié. Mais la mise au point de ce schéma sim-
plifié nécessite la connaissance de la topologie et de I'état
de charge des réseaux voisins.

Le probléme des frontiéres ne permet pas de solution
universelle pour tous les réseaux. Il faut étudier le pro-
bleme de cas en cas, de fagon & mettre en évidence ou se
trouvent les points sensibles qui influencent fortement le
résultat de I’étude en cours.

3.5 Précision de calcul

Les parametres et les données disponibles pour un
calcul de load-flow ne sont généralement connues qu’avec
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une précision de 1'ordre de 10 %. On désire parfois faire
des vérifications des résultats de calcul en les comparant
avec des résultats de mesures afin de s’assurer que le
modele employé est bon. Il convient donc de choisir une
précision de calcul de I'ordre du pourcent (un ordre de
grandeur meilleur), afin d’étre stir du fait que tout écart
entre le modele et la réalité ne peut provenir que des deux
faits suivants :

— erreurs dans le modéle,
— erreurs dans les mesures.

3.6 Capacité de calcul des load-flow

A T’heure actuelle, les plus grands load-flow connus ont
une capacité de calcul leur permettant de traiter un réseau
comprenant environ 500 nceuds et 1000 lignes et transfor-
mateurs ; c’est notamment le cas du load-flow écrit par la
Bonneville Power Administration (BPA) des USA, qui est
un des plus puissants et des plus performants parmi les
programmes de load-flow connus [3].

3.7 Mode d’entrées-sorties des programmes de load-flow

3.7.1 Les entrées

Les entrées sont constituées par des fichiers sur support
cartes, ruban perforé, bande magnétique ou encore disque
magnétique. A chaque consommateur, & chaque produc-
teur et a chaque ligne ou transformateur sont ainsi attachés
un certain nombre de données, numéros, noms, puissances,
tensions nominales, tensions limites, impédances des
lignes et transformateurs, rapports de transformation,
charges admissibles.

3.7.2 Les sorties
Les sorties peuvent étre obtenues sous plusieurs formes :

— Un listing sur lequel sont inscrits les résultats. Ce listing
est trés fastidieux a dépouiller, vu que le schéma du
réseau n’'est pas imprimé.
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Fig. 5. — Schéma d’un réseau et résultats d’un calcul de répar-
tition des puissances, dessinés par une table tragante.
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Fig. 6. — Schéma et résultats d’un calcul de répartition repré-
sentés par une imprimante.

Fig. 7. — Ecran graphique.
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Fig. 8. — Schéma et résultats de calcul, obtenus avec un écran
graphique.

— Un schéma du réseau tracé sur un plotter ou une
imprimante rapide avec les résultats essentiels imprimés
sur la méme sortie. Cette forme de sortie est trés facile
a lire et a dépouiller, mais elle est trés lente (fig. 5 et 6).

— Sur un écran graphique. Cette console de visualisation,
constituée d’une matrice d’au moins 108 points éclai-
rables a volonté, est la seule qui permette un véritable
dialogue entre 'ingénieur effectuant I’étude et le modéle
numérique traitant I’étude en cours (fig. 7 et 8).

3.8 Convergence

Lralgorithme de Newton-Raphson, appliqué au calcul
des réseaux d’énergie électrique, peut présenter des diffi-
cultés de convergence d’une part et, d’autre part, il peut
converger vers des solutions qui sont physiquement irréa-
lisables. Certains de ces problémes sont encore mal connus
de nos jours et font encore 1’objet de recherches [6]. On
peut toutefois dire que si ’on n’introduit pas des lignes qui
ont des différences d’impédances dépassant un rapport de
I’'ordre de 1 a 100 et si I’on utilise la solution permanente
du réseau a vide, comme approximation de départ pour
les itérations de Newton, on obtient alors généralement
une convergence rapide vers la solution stable du load-
flow.

Pratiquement, cela signifie que si dans un réseau on a
deux lignes, dont I'une fait 100 km de long et I’autre
100 m, il convient de réunir, en un seul nceud, les deux
neceuds reliés par la ligne de 100 m. D’autre part, la valeur
nominale de la tension est une approximation initiale géné-
ralement satisfaisante, pour les nceuds ou la tension n’est
pas imposée.
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