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Le centre de glissement

par ROBERT MAILLART

Quand il s'agit des principes fondamentaux de la
Statique, sur lesquels tous les traités sont d'accord, nous
sommes habitués à les accepter sans les soumettre à un
examen critique.

En statique, la plus large place est faite à l'étude des

solides prismatiques (poutres, colonnes...) sollicités par
des forces extérieures. Le problème est réduit à la recherche
des tensions maxima d'une section normale qui équilibrent
ces actions extérieures. A cet effet, on a remplacé le
système des forces extérieures par les résultantes et les couples
de forces suivants [1] :

1° Une résultante F, appelée Veffort normal, dont la
direction est normale au plan de la section et qui passe par
son centre de gravité. L'effofejnormal fait travailler le
matériau à la compression simple ou à l'extension simple.

2° Une résultante V, appelée l'effort tranchant, située
dans le plan de la section et passant par son centre de

yavité. L'effort tranchant fait travailler le matériau au
glissement simple.

3° Un couple X, situé dans un plan Bterpendiculaire à
la section transversale et||bntenant l'axe du prisme. Ce
couple est appelé moment fléchissant : il fait travailler la
pièce à la flexion et tend à imprimer à la section un mouvement

de rotation autour d'un axe situé dans son plan et
passant par le centre de gravité.

4° Un couple T, situé dans le plan de la section et appelé
couple de torsion. Il fait travailler le matériau au genre de
glissement dit torsion et tend à imprimer à la section un
mouvement de rotation dans son plan.

H est évident que toute théorie n'a de valeur que pour
autant qu'elle est confirmée par l'expérience. Or nous
allons décrire une épreuve qui a donné des résultats
vraiment surprenants [2].

Un fer en f", profil normal allemand, a été chargé dans
l'axe passant par le centre de gravité de la manière
indiquée dans notre figure 1. Nous voyons que dans la partie
médiane B-C (B, C, points d'application de P) intervient
uniquement un moment fléchissant. Or, selon l'énoncé 3°,
on devrait y constater uniquement « un mouvement de
rotation de la section autour d'un axe situé dans son plan
et passant par le centre de gravité » (flexion régulière).

On s'est borné à mesurer les tensions en quatre points
Mi, M%, Mg, M4, de la section médiane, tous distants de
145 mm de l'axe neutre, lequel, pour des raisons évidentes,
se confond avec l'axe de symétrie. En calculant d'après la
théorie usuelle, les tensions en ces points, on trouve
—273 kg/cm2 (en compression) aux deux points

supérieurs Mi et Mi et +273 kg/cm2 (en extension) aux deux
points inférieurs M3 et M4.
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Le tableau suivant fait ressortir les différences entre les
tensions calculées et les tensions effectives observées :

J L

Tensions Tensions Différences
calculées observées
kg/cm2 kg/cm2 en kg/cm2 en pour cent

Mi -273 -518 245 89%
M2 -273 + 104 377 134 %

M3 +273 +456 183 66%
M4 +273 - 16 289 105 %
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Fig. 1.

Les diagrammes des tensions calculées et observées sont
reportés dans la figure 2. L'aire ombrée représente les
différences.

Nous voyons que ces différences sont fondamentales et
qu'elles ne peuvent être attribuées à des inexactitudes
d'observations. Force nous est donc d'admettre une divergence

essentielle entre la théorie et l'expérience. En vérité,
il n'y a pas de « rotation autour de l'axe horizontal » et
l'on chercherait en vain un autre axe de rotation, c'est-à-
dire un autre axe neutre correspondant aux tensions
observées.

L'auteur de ces essais, le professeur Bach, en tire la
conclusion que toute la théorie de la flexion, même celle
de la flexion simple, n'est applicable qu'aux poutres à
section symétrique et chargées dans un plan de symétrie.
Les profils asymétriques sont donc mis à l'index. Mais cette
mesure est-elle justifiée et la pratique doit-elle se contenter
de cette conclusion? Les fers en £, par exemple, sont
d'un emploi fréquent et commode, et leur suppression
rendrait difficiles nombre de solutions pratiques.

En observant les diagrammes des tensions, iL appert que
les deux ailes sont sollicitées d'une manière tout à fait
excentrique. A la flexion régulière vient se superposer un
fléchissement latéral et de sens contraire dans chaque aile.

Ce fléchissement est plus intense dans l'aile supérieure,
ce qui conduit à admettre un léger déplacement général
vers la gauche ; autrement dit, la section s'est déversée à
gauche. Cette constatation nous porte à croire que nous
sommes en présence d'un phénomène de torsion, bien que
la poutre soit chargée dans un plan contenant le centre de

gravité.
Devant l'incompatibilité manifeste entre la théorie exprimée

par l'énoncé 2° et l'expérience de Bach, on peut se
demander si la conception, selon laquelle il y a glissement
simple quand la résultante des actions tangentielles passe

par le centre de gravité de la section, est bien fondée, en
d'autres termes, si la résultante des efforts tranchants, en
cas d'absence de torsion, contient le centre de gravité. En
cherchant des éclaircissements dans les traités, on ne
trouve rien de précis à ce sujet. Il semble bien qu'en conférant

au centre de gravité un rôle important quant à l'équilibre

des efforts tranchants, on ait procédé en quelque
sorte par analogie avec l'alinéa 1°, qui a trait aux actions
normales. Ceci serait justifié, si l'on pouvait attribuer à
chaque élément de la section une part de l'effort tranchant
proportionnelle à l'aire de l'élément et dirigée parallèlement

à cet effort.
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H faut bien se rendre compte que « la tension de
glissement» n'est autre chose que la composantffpangentielle
de la tension maximum, tension qui a généralement une
direction oblique.

Aussi M. Résal dit-il très clairement [1] :

« Un corps ne saurait travailler à l'effort tranchant que
s'il travaille en même temps à la flexion », car « le moment
fléchissant ne peut être nul en deux sections successives

sans que l'effort tranchant soit également nul. »

dM= Vdx

Cette considération permet de se rendre compte de la
distribution des efforts tranchants dans la section. A cette
fin, on fait une coupe parallèlement à l'axe du prisme et on
envisage l'équilibre de l'une des deux parties de la tranche
du prisme limitée par les deux sections successives.

Cette étude n'est faite généralement que pour des profils
symétriques, en se bornant à des coupes parallèles à l'axe
neutre. Il va de soi que la résultante des tensions tangen-
tielles se trouve alors dans l'axe de symétrie et qu'elle
contient par conséquent le centre de gravité.

Mais nous pouvons appliquer la même méthode à des
sections de forme quelconque, et admettre des directions

obliques du plan de séparation des deux parties de la
tranche.

La résolution générale de ce genre de problème est
certainement très ardue. Par contre, lorsque la section est
composée de rectangles ou de trapèzes minces, il est
possible de résoudre assez exactement le problème qui s'énonce
ainsi:

Quelle est la position du point d'application Gv de V, telle

que le moment fléchissant dM Vdx ne soit accompagné
d'aucun phénomène de torsion

Considérons par exemple (fig. 2) la section d'un fer
en f" soumis à un effort tranchant vertical. Il y aura
absence de torsion — ceci pour des raisons de symétrie —
si les résultantes des tensions tangentiales des trois
rectangles composant la section, contiennent les centres
respectifs. Les actions tangentielles étant parallèles à la
périphérie, à proximité de celle-ci, on conçoit que pour
un rectangle mince leur résultante sera dirigée à peu près
dans le sens de la longueur du rectangle. Dans l'âme, les
tensions transversales sont donc dirigées verticalement et
leur résultante V est verticale aussi. Dans les ailes, par
contre, les tensions ont une direction sensiblement
horizontale et leurs résultantes sont deux forces H de même
grandeur. Pour déterminer la force H, agissant dans l'aile
séparée de l'âme par une coupe oblique o-o, il suffit de

constater que le moment fléchissant

dM= Vdx

engendre dans l'aile un effort normal moyen

do
dM

T
Vdx

T y,

où j» est la distance entre le centre de gravité C de l'aile
et l'axe de symétrie, et / le moment d'inertie total de la
section par rapport au même axe.

L'effort normal dans l'aile de surface A

A-da
Vdx

A-y

doit être équilibré par une force égale mais de signe
contraire appliquée en o-o, soit à la distance s, et par un
couple

H- dx — A-do-s,
ce qui nous donne

VH= - ¦ A-s-y.

En établissant maintenant les conditions d'équilibre par
rapport au centre de l'âme, nous obtenons

V-e — 2H-y' — • A-s-y-y

et
2A

e — • s-y-y

La position de V excluant toute torsion est déterminée,
si outre A, Jet y nous connaissons s et y'. Ces deux valeurs
dépendent de la répartition des tensions dans la section o-o,
répartition qui n'est guère uniforme. Les tensions sont
certainement plus grandes à la face intérieure, ce qui
semble indiquer une direction de H correspondant plutôt
à la diagonale qu'à la ligne médiane de l'aile. Mais, en
tous cas, l'inexactitude qui pourrait résulter de cette
évaluation n'influencera pas le résultat d'une manière essentielle.
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Ces vues ayant été exposées par l'auteur dans quelques
notes antérieures [3, 4, 5], la Commission technique de
l'Association des constructeurs suisses de ponts et
charpentes métalliques a fait procéder à un essai [6] qui a
pleinement confirmé ce qui précède. En effet, en chargeant
un fer |— de 20 cm de hauteur en deux points symétriques
par rapport aux appuis, les anomalies que présentait
l'essai de Bach disparaissaient complètement lorsqu'on
appliquait la charge en dehors du profil, à une distance
e 22 mm du centre de l'âme.

Si l'effort tranchant V a une direction oblique, il devra
toujours, pour que le moment de torsion soit nul, passer
par le point Gv situé sur l'axe de symétrie et distant de e.
Car nous pouvons décomposer l'effort oblique V en deux
composantes, l'une verticale, l'autre située dans l'axe de
symétrie.

Cette dernière composante ne produira aucune torsion,
et pour qu'il en soit de même de la force oblique, il faut
que la composante verticale agisse à une distance e de
l'âme.

Il en découle que le point Gv est un point fixe, dépendant
uniquement de la forme de la section. Ce point a une
certaine analogie avec le centre de gravité ou « centre des
tensions normales uniformément réparties » G„ ; nous
l'appellerons le centre de glissement. Si la distance de ce
centre à l'effort tranchant V, au lieu d'être nulle, accuse
une valeur a, il faudra tenir compte du moment de
torsion T V • a.

Il est évident que toute aire plane, régulière ou irrégulière,

possède un tel point fixe. La détermination de ce
point est plus ou moins aisée.

L'énoncé 2°, qui se trouve dans tous les traités, est donc
inexact et doit être corrigé de la manière suivante :

« 2° Une résultante V, située dans le plan de la section
et passant par le centre de glissement. L'effort tranchant
fait travailler le matériau au glissement simple. »

L'énoncé ainsi corrigé étant valable pour des sections
de forme quelconque, on pourra donc, contrairement à
l'opinion de Bach, appliquer aux profils asymétriques les
règles générales de la théorie de la flexion. Nous avons
constaté qu'il se manifeste de la torsion quand l'effort
tranchant est appliqué au centre de gravité de la section
d'un profil en f. Si l'énoncé 4° était valable sans restrictions,

aucune altération de la « flexion régulière » ne serait
possible. Il ne se produirait donc pas d'autres tensions
normales, mais uniquement un « genre de glissement » dit
torsion. Ce genre de glissement se distingue du glissement
simple en ce que le sens des tensions tangentielles sur les
deux faces est opposé, tandis qu'il est le même dans le cas
du glissement simple. Mais il s'agit là de tensions tangentielles,

tandis que l'essai de Bach dénote la présence de
tensions normales élevées, étrangères à la flexion régulière.

D'où proviennent ces tensions supplémentaires
Rappelons-nous que la théorie de la torsion se borne

généralement à traiter le cas simple, où deux moments de
torsion de sens inverse agissent aux deux extrémités d'un
prisme. Mais c'est là un cas spécial qui ne se rencontre
guère en pratique, car en général le couple de torsion n'a
pas la même valeur dans toutes les parties du prisme
considéré. On paraît admettre qu'il suffit de considérer
indépendamment chaque partie à couple constant. Pour
démontrer l'inexactitude de cette conception, nous avons
représenté (fig. 3 et 4) deux prismes dont les deux moitiés
sont sollicitées à la torsion, en sens inverse l'une de l'autre.
Nous avons indiqué, en les exagérant, les déformations
que subiraient les deux moitiés supposées séparées. Ces

\ 1

1
mm

Fig. 3.

Fie. 4.

dernières sont soumises chacune à la torsion simple, sans
sollicitation normale, puisque les sections successives
subissent des déformations uniformes. Mais les sections
médianes m-m et m'-m' ne concordent pas du tout, et le
fait qu'elles doivent être identiques implique nécessairement

la présence d'efforts normaux, dont le sens et
l'intensité peuvent Éjre appréciés à vue d'œil. Il s'agit d'un
fléchissement latéral (fig. 4) des ailes semblable à celui
que nous venons de constater dans l'expérience de
Bach.

L'énoncé 4° doit-il donc être modifié à son tour Afin
de ne pas être conduit à envisager cette nécessité on peut
avancer qu'il s'agit là d'efforts locaux et évoquer le principe

de Saint-Venant, suivant lequel ces efforts ne
sauraient influencer la poutre sur toute son étendue. Mais si
le principe est applicable à une poutre à section pleine,
l'essai de Bach montre qu'il n'en est plus ainsi quand les
deux zones de la section, sur lesquelles agissent les deux
couples, ne sont que faiblement reliées entre elles. Dans
l'essai de Bach, la source des perturbations est située aux
points fi et C (points d'application de P), où un segment
déformé de la poutre se trouve juxtaposé à un segment
exempt de torsion. Or les tensions normales ont été mesurées

au milieu de la poutre, c'est-à-dire à une grande
distance de ces points. Puisque ces tensions sont très élevées,
on est forcé d'admettre qu'elles ne disparaîtraient pas
entièrement, même en allongeant la partie médiane de la
poutre.

Il est donc certain qu'en pareils cas l'énoncé 4° n'est
plus valable.

Remarquons encore que les tensions normales provoquées

par le couple de torsion dépassent sensiblement
celles dues au moment fléchissant pourtant quinze fois
plus grand Il semble donc désirable d'être à même de
déterminer les tensions normales supplémentaires dues
au couple de torsion.

Pour certains profils simples on peut employer la
méthode suivante, basée sur les formules usuelles de la
déformation angulaire en cas de torsion simple.

Considérons, par exemple, le figure 1 en admettant que
deux couples de torsion T de même sens agissent en B
et C, ce qui a lieu quand le plan de la charge Kne contient
pas le centre de glissement. Deux couples de sens inverse
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Fig. A. — Pont sur le Rhin antérieur à Tavanasa (GR), construit
en 1905, détruit en 1927 par les blocs de rocher entraînés par la
crue d'un torrent.
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Fig. B. — .Ponr sur /e Ka/ Tschiel, près de Donath (Andeer, GR), construit en 1925.
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Fig. C. — Pont-rail sur la Birse à Liesberg (accès à la fabrique de ciment), construit en 1935 (photo prise lors de l'épreuve de charge).
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agissant en A et D (points d'appui de la poutre) devront
rétablir l'équilibre. Quelles sont les tensions normales dans
les différents points M de la section médiane

Admettons pour un instant que le prisme ne soit pas
à même de supporter des tensions longitudinales, ou, ce

qui revient au même, que son module d'élasticité soit nul,
tandis que le module de glissement subsiste. Le prisme se

déformera alors comme s'il était coupé en B et C, et l'on
pourra calculer le déplacement horizontal fi des points M
au moyen des formules usuelles pour la détermination de

l'angle de torsion simple.
Supposons ensuite que le matériau constituant le prisme

n'offre aucune résistance au glissement, mais résiste

uniquement aux efforts longitudinaux et déterminons de

nouveau le déplacement f2 des quatre points M, après avoir
décomposé le couple en deux forces horizontales, égales et
de seolpbontraire, agissant l'une sur la moitié supérieure
et l'autre sur la moitié inférieure de la poutre. Cette opération

présente une certaine complication du fait que les deux
ailes ne peuvent fléchir librement en sens inverse l'une de

l'autre, reliées qu'elles sont par l'âme. Néanmoins on
arrivera assez facilement à un résultat satisfaisant [3].

Mais, puisque le matériau résiste aussi bien aux actions
normales qu'aux actions transversales, il s'ensuivra une
inflexion horizontale / déterminée par la relation

2 1

7~Â
i
I

L'inflexion / étant déterminée, on pourra en déduire la

valeur des tensions normales supplémentaires.
Cette méthode quelque peu priming», appliquée à l'essai

de Bach, a donné de bons résultats [3]. On obtient
naturellement les mêmes valeurs pour Mx et Ms que pour M%

et M4, tandis qu'en réalité ces valeurs diffèrent quelque

peu pour l'essai, vu que, par l'effet de lffiBorsion, la direction

de V n'est plus strictement parallèle à l'âme.
En partant du même principe, nous pourrons aussi

déterminer les tensions tangentielles dues au couple de

torsion. Ce couple sera équilibré d'une part par des

tensions de glissement simple et de l'autre par des tensions
de glissement de torsion. Pour évaluer ces torsions, nous

partirons de la courbe d'inflexion latérale / F(x) dont
la dérivée nous fournit immédiatement l'angle de torsion
dans chaque section, ce qui nous permettra de calculer les

tensions tangentielles selon les formules usuelles.

Une fois les tensions normales et tangentielles ainsi
déterminées, on pourra en déduire les tensions maximales.

D est clair que la pratique ne peut pas s'accommoder de

ce genre de calculs.

Des tensions longitudinales supplémentaires seront donc
toujours à craindre dans le cas d'une poutre isolée. Par

contre, en présence d'une série de poutres parallèles, nous
n'aurons, pour éviter un surcroît notable de tensions, qu'à
les entretoiser convenablement. L'angle de torsion ne

pourra alors dépasser une certaine valeur en rapport avec
la rigidité des entretoises.

Comme conclusion pratique, on peut dire qu'il faut
éviter d'employer des poutres isolées, sauf à réduire
considérablement le travail admissible, afin de conserver une

marge suffisante en vue des effets de la torsion. Cette
réserve concerne indistinctement les profils symétriques ou
asymétriques. Considérons, par exemple, un profil J ; il
est évident qu'une répartition inégale des surcharges peut

provoquer des tensions supplémentaires du même ordre de

grandeur que celles trouvées dans l'essai décrit plus haut
sur un profil en T.

Nous devons conclure que Pentretoisement, considéré
souvent comme mesure d'ordre purement pratique, est

parfaitemefifijustifié au point de vue théorique, si l'on veut
réaliser le degré de sécurité que le calcul ordinaire est censé

nous garantir.
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p. 4J||l5 (1925) (mémoire présenté le 11 février 1924 à la
section genevoise de la SIA).

— Note sur les ponts voûtés en Suisse. 1er Congrès international
du béton et du béton armé, Liège, 1930, 7 p.

— Théorie des dalles à champignon — Discussion, rapport
final, 1er Congrès AIPC, Paris, 1932, p. 197-208.

— Ponts-voûtes en béton armé — De leur développement et de

quelques constructions spéciales exécutées en Suisse.
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