
Zeitschrift: Bulletin technique de la Suisse romande

Band: 99 (1973)

Heft: 15

Artikel: Répartition spatiale et prévision en temps de retour de facteurs
climatologiques en vue d'un dimensionnement des ouvrages
d'aménagement des eaux: application aux précipitations journalières
observées en Suisse romande

Autor: Musy, A.

DOI: https://doi.org/10.5169/seals-71690

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 26.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-71690
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


BULLETIN TECHNIQUE DE LA SUISSE ROMANDE 99* année 21 Juillet 1973 N° 15

Répartition spatiale et prévision en temps de retour
de facteurs climatologiques en vue d'un dimensionnement
des ouvrages d'aménagement des eaux
Application aux précipitations journalières observées en Suisse romande

par A. MUSY, ingénieur du Génie rural EPFL, assistant à l'Institut de Génie rural de l'EPFL

1. Introduction

Le dimensionnement d'ouvrages d'aménagement des

eaux doit répondre à certains critères de sécurité et d'économie.

Il nécessite donc un judicieux calcul préalable, faisant
intervenir des paramètres météorologiques souvent mal
connus.

La précision numérique sur l'estimation de ces paramètres

varie très fortement en fonction de la qualité des
observations. Trop souvent, hélas, le peu d'information, réso^5
tant d'une observation de trop courte durée ou trop
aléatoire, fausse singulièrement le calcul d'un ouvrage. L'ingénieur

projeteur se voit alors contraint d'augmenter la sécurité

de cet ouvrage, sann de se mettre à l'abri de toutes
défaillances techniques qu'il pourrait craindre en raison
du peu de données dont il disposait lors de l'établissement
de son projet.

Le modèle présenté dans cette étude tente d'améliorer
la qualité de ces paramètres climatologiques, notamment
pluviométriques, en utilisant le maximum possible
d'informations que l'on peut recueillir dans une région. Basé sur
l'analyse statistique des pluies journalières, ce modèle
permet de déterminer la précipitation maximale probable
à craindre, en un endroit quelconque situé à l'intérieur
d'un vaste périmètre d'observation.

La répartition spatiale de cette précipitation est réalisée

par interpolation linéaire, en fonction de Féloignement des

postes d'observationÄes paramètres statistiques représentant

les phénomènes climatologiques observés. Cette
manière de procéder peut paraître puérile aux yeux du
météorologue qui refuse, avec raison, de considérer une
variation linéaire dans l'espace de phénomènes climatologiques

d'allure très complexe.
Il faut rappeler cependant que le but de cette étude est

de préciser la valeur numérique de certains coefficients
indispensables à tous dimensionnements d'ouvrages
d'aménagement des eaux. Le modèle apporte donc à l'ingénieur
projeteur une aide substantielle quant à l'estimation de ces
paramètres qui exigerait en temps réel une observation de

trop longue durée.
Enfin, le modèle est basé sur une analyse stochastique

des phénomènes météorologiques.ËL'importance donnée
dans cette étude à la statistique mathématique et descriptive

peut étonner certains lecteurs sensibilisés par le caractère

continu de l'évolution de ces phénomènes. Rappelons
toutefois que seule l'analyse statistique permet une concentration

de données représentatives et le calcul de divers
facteurs probables en fonction des lois observées dans
le passé. De plus, elle offre la possibilité d'estimer l'erreur
de mesure ou de calcul que l'on peut craindre, notamment
sur la détermination de la précipitation maximale
probable de fréquence de retour connue.

2. Rappel de quelques définitions et formules de
base

2.1 Pluviométrie générale

Soit xt, la quantité de pluie tombée journellement en un
endroit donné. On parle de :

2.1.1 Module pluviométrique annuel (mensuel) : la hauteur

de la lame d'eau tombée annuellement (mensuellement)

en mm.

Pa Z-£= xt en mm

ou

1>P-m — 7 X{

i-1

(n.i.i)

(n.i.2)

1000
p,

2.1.2 Fraction pluviométrique mensuelle : le rapport entre
les modules annuels et mensuels en %„•

(H.1.3)

Cette dernière valeur nous permet, d'une part, de
comparer les stations climatologiques entre elles et, d'autre
part, de mieux définir les régimes pluviométriques locaux.

Toutefois, le degré de dépendance entre différentes
stations d'observation sera déterminé de manière plus précise
en analysant les corrélations que l'on peut observer entre
ces diverses stations.

2.1.3 Courbes isohiètes

Courbes d'égale pluviosité (annuelle, mensuelle, averse,
etc.) reportées sur une carte géographique.

2.1.4 Indice d'humidité

Rapport entre le module annuel et le module annuel

moyen calculé sur plusieurs années. La valeur de ce coefficient

nous donne une indication sur l'évolution générale de
la pluviosité d'une année par rapport aux précédentes.
Pour un climat humide, cet indice varie entre 0,6 et 1,6
et entre 0,4 et 2 pour les régions semi-arides.

2.1.5 Indice d'aridité
Proposé par de Martone, cet indice peut s'exprimer :
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— soit annuellement par :

Aa
Pa

T+ 10

nt par :

Am
12 • P

T+ 10

(II. 1.4)

(H. 1.5)

avec : Pa module pluviométrique annuel ;
T température moyenne annuelle en degré Cel¬

sius.

Ce coefficient essentiellement géographique permet de
déceler les zones nécessitant un apport d'eau. Ainsi, par
exemple, un indice d'aridité inférieur à 5 correspond à une
zone quasi désertique. Lorsqu'il est compris entre 5 et 20,
la région considérée doit être équipée pour une irrigation.
Pour des valeurs supérieures à 20, ce facteur indique que
les apports naturels d'eau suffisent à la croissance normale
de la végétation. Remarquons cependant que l'analyse de
cet indice d'aridité, calculé sur l'année, comporte certains
risques si l'on omet de prendre parallèlement en considération

les valeurs mensuelles de ce facteur : les variations
saisonnières peuvent influencer, quelquefois, très fortement

l'indice annuel.

2.2 Analyse des pluies

Soit t la durée d'une pluie. On définit par :

2.2.1 Intensité d'une pluie: la hauteur de la lame
d'eau H tombée sur une surface donnée par unité de
temps.

(II.2.1)

Cette intensité joue un rôle capital en hydrologie des
petits bassins. Elle définit complètement une précipitation
lorsque le débit de cette dernière est connu. Plusieurs
auteurs ont tenté de calculer cette intensité en fonction de
la durée de la pluie. La formulation généralement admise
est de la forme :

AhH
mm/h]At

a-t" (H.2.2)

avec : / intensité de la pluie en mm/h ;

t durée de la pluie en min ;

a, b constantes locales, dépendant généralement du
lieu (b < 0).

En Suisse, Burkli et Ziegler (1878) ont démontré que le
produit de cette intensité par la racine carrée de la durée de
la précipitation est constante, c'est-à-dire :

sft constante

La constante revêt un caractère local et varie selon le
lieu géographique de l'observation. Lors d'une étude sur
le ruissellement, cette relation nous permet de déterminer
le débit spécifique d'écoulement lorsque l'intensité critique
d'une pluie de durée connue égale précisément la durée de
ruissellement.

2.2.2 Lois générales —fréquence critique : les multiples
observations effectuées jusqu'à ce jour ont permis de
définir deux lois générales de la pluviosité. La première,
appelée couramment « loi de dispersion de la pluie dans
le temps » peut s'énoncer comme suffigs
— la fréquence d'apparition d'une pluie donnée est d'au¬

tant plus faible que son intensité est forte.
Quant à la deuxième, elle affirme que :

— la pluie de fréquence d'apparition! donnée a une inten¬
sité d'autant plus forte que sa durée est plus courte.

Lors d'un calcul de dimensionnement d'un ouvrage, il
convient de tenir compte d'une hauteur pluviométrique
donnée ayant une fréquence de retour connue. Cette
fréquence critique varie selon la séfurité que l'on veut donner
à l'ouvrage. Ainsi, choisir une fréquence de 10 ans, c'est
admettre que, une année sur dix, le système de drainage
sera peut-être submergé et ne répondra pas complètement
aux exigences fixées. Le choix de cette périodicité critique
dépend essentiellement des facteurs agro-économiques.
Plusieurs auteurs (De Montmorin, Talbot, Metcalt, Eddy,
etc.) proposent différentes formules pour déterminer
l'intensité critique d'une pluie ayant une fréquence au
dépassement donné. Ainsi, Talbot suggère :

(TI.2.3)

avec : t durée de la pluie en min ;

/ intensité de la pluie en mm/h ;

a,b constantes (cf. tableau 1).

Tableau 1

Fréquence i mm/h

6 mois
500

4+ T

1 an
830

5 +T

2 ans
1400

7+T

S ans
2100

9 + x

10 ans
2590

10 + T

20 ans
2850

10 + T

50 ans
3220

11 +T

80 ans
(d'après Besson)

7620

34+ t
Extrait de : « Assainissement agricole »,

de Poirée et Ollier.

Toutefois la relation de Talbot : (II.2.3) ne semble plus
convenir pour des durées de pluie dépassant 6 heures.
Montana propose alors :

(IT.2.4)

0,3 ^ b ^ 0,8
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Connaissant l'intensité de la pluie critique, on pourra
alors calculer le débit caractéristique du réseau de drainage

qc par la relation :

qe [1/s/ha] — (1
U,JD

-e) - i [mm/h] (11.2.5)

où : e coefficient d'évaporation.

2.3 Répartition spatiale de la pluie
Nous n'avons considéré jusqu'à présent que la pluie

ponctuelle, c'est-à-dire la quantité d'eau tombée en un
point précis. Lors d'une étude de projet, les données
météorologiques de la région intéressée doivent être extrapolées
à partir de stations provisoirement mises en place. D y a
lieu alors d'étudier la dispersion de la pluie dans l'espace
afin d'estimer la pluviosité moyenne du secteur en question.

Si SfËnTespond à la superficie totale du bassin versant

pour une période de récurrence donnée, on peut dire alors

que l'intensité moyenne d'une pluie est d'autant plus
faible que S est plus grand. En conséquence, il convient
d'ajouter aux différentes formules établies, permettant de

calculer l'intensité de la pluie, un facteur correctif tenant
compte de cette dispersion de la précipitation dans
l'espace. Puppini a réadapté la formule de Talbot en
introduisant de nouveaux coefficients a' et b', fonction de a, b

et S. Ainsi, on a :

(n.2.6)

Les coefficients a et b de Talbot correspondant à des

fréquences de retour choisies sont donnés dans le tableau 1.

L'intensité d'une pluie dans une région déterminée se
calculera par :

a a 1 -0,0841 + 0,007 1

\100/ \100/

b' 6-0,014 — | S en km2

mm/h (H.2.7)

3. Analyse statistique

3.1 Définition des paramètres
Les hauteurs pluviométriques journalières observées sur

un certain nombre d'années au droit d'une station météorologique

fixe constituent un fichier de mesures assez
considérable. Le traitement global de cette information s'avère
particulièrement fastidieux et coûteux. Il serait souhaitable

de condenser un peu cette information et de la
remplacer par quelques caractéristiques bien choisies, à condition,

toutefois, que ces dernières représentent la série
chronologique de manière quasi exhaustive.

La statistique descriptive s'adapte parfaitement à ce type
de problème. Elle définit certains paramètres types,
analysant fidèlement le phénomène à étudier.

Pour une étude de prévision en temps de retour, une
série d'observations peut être décrite statistiquement par
trois types de caractéristiques :

— la moyenne ou tendance centrale (Moyenne, Médiane,
Mode);

E

— la dispersion ou fluctuation autour de la moyenne
(écart type, variance, moments centrés, quantiles) ;

— les caractéristiques de forme des courbes de fréquence
des observations.
(Coefficients de Yule, Fischer, Pearson.)

Rappelons brièvement la définition des paramètres
fondamentaux :

3.1.1 La moyenne arithmétique :

(m.i.i)

où : N nombre total d'observation ;

X( hauteur de la précipitation journalière valeur
observée.

Cette valeur moyenne (valeur centrale) d'une telle série

chronologique varie avec la durée de l'observation et reste

peu sensible aux fluctuations des valeurs observées. Binnie
analysa les écarts du module annuel moyen considéré sur
un certain nombre d'années par rapport à ce même
paramètre calculé sur une longue période. Il trouva ainsi :

Tableau 2

Ecarts observés entre les modules pluviométriques moyens
calculés, suivant la longueur de la période de référence

utilisée

Nombre d'années
utilisées pour le calcul

du module moyen

Ecart en % de la moyenne
considérée par rapport à la

moyenne sur une
« longue période »

1

2
3

S

10
20
30

+
51,00
35,00
27,00
15,00
8,22
3,24
2,26

40,00
31,00
25,00
15,00
8,22
3,24
2,26

Extrait de : « Climatologie », de H. Grisollet.

On remarque, en analysant le tableau ci-dessus, que les
écarts obtenus par rapport à la moyenne « longue durée »
sont insignifiants à partir d'une période d'observation de
20 à 30 ans et que la variation de ceux-ci, pour une durée
plus grande, n'est plus significative. Aussi, l'Organisation
Météorologique Mondiale (OMM) a recommandé, au vu
de ces résultats, de considérer une période trentenaire
comme satisfaisante pour déterminer la moyenne des

précipitations d'une station.

3.1.2.1 L'écart type ou écart quadrique moyen :

(m. 1.2)

où

V «* • (xt-x)
i i

xt valeur observée ;

x valeur moyenne des mesures ;

N nombre d'observations ;

nt nombre de répétitions des xt.
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3.1.2.2 La variance

1 T^

i-1

3.1.2.3 Les moments centrés d'ordre r :

1 AT

(m. 1.3)

(m. 1.4)

(Remarquons que la variance n'est rien d'autre que le

moment centré de deuxième ordre.)
Cependant, la définition des moments par (HI. 1.4) n'est

valable que si l'on connaît l'ensemble de la population,
ce qui est rarement le cas. Aussi, est-il nécessaire d'estimer
ces moments avec un échantillon réduit de la population
totale. On parle alors de moments estimés d'une population,
ou de moments sans biais.

Ceux-ci se calculent par :

(m.1.5)

La division par (iV— 1) a pour effet de corriger l'erreur
systématique due au calcul des écarts par rapport à la

moyenne estimée et non vraie de la population.

3.1.2.4 L'intervalle de variation ou étendue (range) :

V "iiXi xff*r N—\ N-i

(in. 1.6)

L'analyse de cette caractéristique doit être effectuée avec
circonspection. En effet, ce coefficient peut nous donner
une idée fausse de la dispersion, si par hasard les valeurs
extrêmes sont douteuses. Par ailleurs, sa grandeur dépend
de la taille de la population car plus le nombre d'observa-
tions est important plus forte est la probabilité d'obtenir
des valeurs extraordinaires dans l'échantillon.

Afin de remédier à cet inconvénient, on définit volontiers
en climatologie les quantités ou fractiles. H s'agit là de
deux valeurs particulières de la variable observée telles que
le pourcentage inférieur à la plus petite de ces deux valeurs
soit égal au pourcentage des observations supérieures à

la plus grande. Les quantités les plus souvent calculés sont
les quartiles, les quin tiles, les déciles ou les perdiciles.

Ainsi, par exemple, parler du quartile inférieur Qlt c'est
déterminer Q\ de façon que le quart des observations

comporte des valeurs inférieures à Q%. Le quartile supérieur

ßg représente une valeur telle que le quart des
observations soit supérieur à cette dernière grandeur.

Uintervalle interquartile ou amplitude normale Qg—Qx

englobe alors le 50 % des observations.

3.1.2.5 Le coefficient de dispersion ou de variation :

C„
a
x

(m. 1.7)

avec a — écart type de l'échantillon
je moyenne de l'échantillon.

3.1.3.1 Les coefficients analysant la symétrie de la
courbe des fréquences observées.

— le coefficient de Yulle :

S
(63 -M) - {tf-QÙ
(Qs-M) + (M-QO

(m. 1.8)

où Qx quartile inférieur de la série observée ;

Qz quartile supérieur de la série observée ;
M médiane de la série observée ;

— le coefficient de Pearson :

m -Mo
(m. 1.9)

avec x moyenne empirique de l'échantillon ;

a — écart type de l'échantillon ;

M0 mode de l'échantillon ;

Sx varie entre — 1 et +1 ;

lorsque iSi 0, la symétrie est parfaite ;

— le coefficient de Fischer :

G 7i sfßi (in. 1.10)

avec ßx coefficient de Pearson
f4

a écart type des observations ;

Hz — moment centré du 3e ordre calculé à partir
des mesures.

Si : yx 0 : la symétrie de la courbe de répartition des

fréquences est parfaite ;

yx < 0 : la distribution observée s'étale vers les

petites valeurs ;

yx > 0 : la distribution observée s'échelonne vers
les valeurs plus grandes.

Le signe de yx est celui que l'on obtient par la différence
entre la moyenne et le mode (x—M0).

— Le coefficient Kelley :

Cx M-- (Dx~D9) On.i.ii)

où Dx premier décile de la série observée ;

Dg neuvième décile de la série observée ;

M médiane de l'échantillon.

3.1.3.2 Les coefficients' analysant l'aplatissement de la
courbe des fréquences observées :

— le coefficient de Pearson :

Ca (M
«f4 an. 1.12)
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Hl

avec a écart type de l'échantillon ;

ßi moment centré du quatrième ordre des

valeurs observées ;

le coefficient de Fischer :

OU-1.13)

Ces deux paramètres permettent d'analyser l'aplatissement

du diagramme de répartition des fréquences par
rapport à la courbe de distribution théorique de Gauss (courbe
de distribution normale ou courbe mésocurtique).

Si:

y2 0 : la distribution observée est aussi plate que la

(ß2 — 3) distribution normale de même moyenne x et de
même variance a2. N(x j o-2)

y2 > 0 : la distribution observée est plus pointue que la

(ßz > 3) N(x {a2). On parle alors de courbe leptocur-
tique.

y2 < 0 : la distribution observée est plus plate que la
(/?2 < 3) N(x { a2). La fonction obtenue est alors plati-

curtique.

— Le coefficient de Kelley :

Dissymétrie positive : i >o
(Sx > 0)

c„ - Di
on. i.i4)

où Qx quartile inférieur de la série observée ;

ß3 quartile supérieur de la série observée ;

Dx premier décile de la série observée ;

D9 neuvième décile de la série observée.

En résumé, si une courbe de fréquence observée correspond

à une gaussienne, la représentation graphique des
valeurs définies ci-dessus peut s'effectuer comme suit :

Symétrie : f 7i 0

Sx 0

courbe leptocurtique
(y2<0)

courbe platicurtique
(r2<o)'
(/Î2<3)

courbe mésocurtique
/W2<°>

Wz<

Pohl d Inflexion

quantité ou fractile
d'ordre a

Mo M X

Figure 2

Dissymétrie négative <0
(Sx < 0)

X=M=Mo

Figure 1

Figure 3

Dans la suite de notre étude, nous retiendrons comme
coefficient de symétrie et d'aplatissement les coefficients de
Fischer en raison d'une part de leurs importances, et d'autre
part de leur commodité d'utilisation.

4. Distribution statistique des pluies ponctuelles

4.1 Hypothèse de base

Pour que la statistique décrive fidèlement la complexité
d'un phénomène, il faudrait théoriquement analyser
l'ensemble de sa population.

Toutefois, en climatologie, cette dernière n'est jamais
connue, car les observations sont nécessairement limitées
dans le temps. On assimile donc les mesures à un échantillon

appartenant entièrement à une population fictive. Or,
la théorie de l'échantillonnage implique mie indépendance
totale entre les individus qui constituent précisément
l'échantillon. On suppose donc, a priori, que les observations

effectuées sont indépendantes entre elles.
Cette manière de procéder conduit nécessairement à des

hypothèses restrictives qui ne sont, hélas, pas toujours
vérifiées. C'est pourquoi Mous sommes contraints d'analyser

séparément les divers types de corrélations rencontrés
et de supputer l'influence qu'elles peuvent avoir sur le
résultat. Ainsi donc, nous devons tenir compte :

— Des liaisons interannuelles

De nombreux chercheurs (Brückner, Shaw) ont essayé
de déterminer les variations cycliques du module
pluviométrique annuel en fonction des fluctuations de l'activité
solaire. Les études entreprises sont très localisées et les
observations réalisées dans certaines régions décèlent
plusieurs zones dépourvues de synchronisme. Par ailleurs, la
méthode de calcul actuellement utilisée pour définir les
cycles et les périodes de récurrence peut entraîner des
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conclusions erronées en introduisant des périodicités
fictives (effets Stuski). Ainsi, et jusqu'à plus amples
renseignements, nous admettrons l'indépendance des observations

interannuelles entre elles.

— Des variations saisonnières

Selon le but que l'on se propose d'atteindre, l'analyse
statistique peut prendre en considération des précipitations
journalières ou des modules moyens annuels ou mensuels.
Dans le premier cas, la méthode de calcul doit tenir
compte de l'effet saisonnier sans quoi les résultats
pourraient être entachés de grosses erreurs.

En effet, choisir la hauteur de précipitation d'un jour
quelconque de l'année comme variable aléatoire, c'est
admettre que les observations réalisées pendant l'année
entière appartiennent toutes à la même population. Or,
cette affirmation est manifestement fausse, surtout
lorsqu'on essaie de constituer fictivement un échantillon
vraisemblable pour une période donnée en considérant cette
même population. Aussi, il est indispensable dans une telle
étude de décomposer l'échantillonnage mois par mois ou
saison par saison, si l'on veut prendre en considération
toutes les nuances du phénomène à étudier.

— De l'indépendance de la variable observée

Nous avons vu précédemment que la théorie de l'échantillon

est basée sur un critère d'indépendance entre les
individus de la population. Or, en climatologie, cette
indépendance est très discutable. En effet, nous ne pouvons
pas affirmer, a priori, que la précipitation d'une durée
quelconque n'a pas été influencée par divers phénomènes
météorologiques antérieurs ou postérieurs à l'observation.
En d'autres termes, il n'est guère possible dans notre cas

d'appliquer un schéma analogue à celui de Bernoulli, utilisé

en calcul de probabilité, où la composition de l'urne en
boules blanches et en boules noires reste invariable ; la
boule extraite après chaque tirage étant remise dans l'urne.

En réalité, des liaisons de toutes sortes, dépendantes de

l'évolution générale des conditions atmosphériques influencent

directement les précipitations. Différentes études
d'interactions ont été élaborées par plusieurs auteurs.
S'agissant de la Suisse, l'Institut National de Météorologie
recommande de prendre en considération, dans le calcul
statistique, une période antérieure ou postérieure à la
référence temporelle de base égale au tiers de cette dernière.
Ainsi, par exemple, si l'analyse statistique est effectuée

sur un intervalle de temps Tt (référence de base : un mois,
une saison, une année), si 7}_x représente le même intervalle

de temps précédent 7} et 7<+1, celui qui le suit
immédiatement, on tiendra compte dans le calcul des

valeurs correspondantes aux périodes : (7j_i)/3 + 7J +
+ (îi+i)/3. \

Fixons les idées en adoptant le mois d'avril comme
référence de base. Les jours à considérer pour le calcul seront
alors ceux d'avril naturellement plus les dix derniers jours
de mars et les dix premiers jours de mai, et ceci pour
chaque année d'observation.

Mathématiquement, ce principe revient à modifier un
peu le schéma de Bernoulli. Polya a imaginé qu'après
chaque tirage d'une boule, on remplace, dans l'urne, non
seulement la boule tirée (blanche ou noire), mais encore
en plus un certain nombre de fois fi de boules de la même
couleur que cette dernière ; soit au total fi + 1 boules
(remarquons que lorsque /x 0 on obtient le schéma de

Bernoulli). Par ce biais, l'indépendance successive n'est
plus réalisée ; au contraire, le fait de réintroduire dans
l'urne un nombre plus grand de boules d'une certaine cou¬

leur augmente la probatpité pour le tirage suivant de
retrouver une de ces boules. On simule en fait une sorte
de «contagion », phénomène que l'on remarque très souvent

en climatologie.

En résumé, nous admettons, dans la présente étude, les
hypothèses suivantes :

— liaisons interannuelles nulles ;

— découpage de la statistique par intervalle de

temps inférieur à l'année afin d'éviter l'effet
saisonnier ;

— interactions des périodes antérieures ou posté¬
rieures à l'intervalle d'observation calculées
selon la méthode préconisée par l'Institut National

Suisse de Météorologie, à savoir :

(r,_!)/3 + Tt + (7i+1)/3 T= période de
référence.

4.2 Distribution statistique des pluies journalières
Avant d'entreprendre tout calcul, il convient, en

premier lieu, de définir quantitativement la notion de pluie.
Au niveau de l'observation, cette distinction n'est pas
effectuée et la quantité d'eau mesurée peut aussi bien
provenir d'une précipitation que d'une condensation locale et
particulière ou d'une rosée.

La notion de pluie nulle est assez difficile à préciser et
reste malgré tout très subjective. Dans certains pays, on
ne prend en considération comme précipitation que les

mesures correspondant à des hauteurs d'eau supérieures à
0,1 mm. En ce qui nous concerne, nous admettons, à
l'instar de l'Institut National Suisse de Météorologie, un
niveau de définition de 0,3 mm d'eau (ou 3 dl/m2). Ce
seuil correspond à la hauteur d'eau maximale que l'on
peut observer dans un pluviographe par le simple effet de
la rosée, sans qu'il y ait pour autant une chute d'eau
proprement dite.

Rappelons encore que les calculs qui suivent portent sur
des observations journalières. On suppose donc que la
totalité des mesures prises en considération appartiennent
toutes à la même population. En conséquence, les
hypothèses restrictives ci-dessus doivent être appliquées dans
leur ensemble.

Nous allons en premier lieu déterminer le polygone de
fréquence à partir des observations réalisées. Ce graphique
se détermine comme suit :

Les données pluviométriques sont préalablement groupées

par classes de largeur choisie A. La fréquence observée

sera alors égale au rapport entre le nombre de précipitations

dénombrées dans la classe n° i et le nombre total
des jours de pluie.

Si : N nombre total des jours de pluie ;

% nombre de précipitations x\ telles que :

{x(} e AK l

alors :

av.2.1) "kf« 100
fréquence observée de la
classe K en %.

En représentant sur un graphique les fréquences ainsi
calculées en ordonnée et les largeurs de classe A en

324



abscisse, on obtiendra alors le diagramme des fréquences
observées.

L'allure générale de ce diagramme varie naturellement
avec l'intervalle de classe choisi. Un À trop grand fausserait

la ligne directrice de la courbe et atténuerait par
trop les valeurs extrêmes tandis qu'une largeur de classe

trop restreinte détaillerait exagérément le phénomène et
lui enlèverait son caractère « d'ensemble ». Dans les deux

cas, l'ajustement mathématique d'une courbe théorique
quelconque sur ce polygone des fréquences se révélerait
assez ardu. S turges a établi une règle empirique définissant

en fonction de l'effectif N des individus d'une série statistique,

le nombre minimum de classes en lesquelles on peut
grouper les observations sans trop perdre d'information.
Cette relation peut s'exprimer par :

10,k 1 + — logio N OV.2.2)

A
w

T

où : 7Y nombre total des observations.

Le calcul de la largeur de la classe optimale A découle
alors directement des formules (TV. 2.2) et On.1.6), à

savoir :

0V.2.3)

S'agissant de la répartition des fréquences des pluies
journalières, nous avons tenté plusieurs essais pour diverses

grandeurs de A (1,5 et 10 mm). Au vu des résultats obtenus,
nous pouvons conclure que :

lorsque A — 10 mm, la largeur choisie est trop grande; le
nombre nécessairement restreint de classes ne permet
pas, à quelques rares exceptions près, le calcul du test
d'ajustement d'une fonction théorique sur la distribution
observée ;

lorsque A 1 mm, le nombre effectif de classes dépasse

largement celui: déterminé par la règle de Sturges; la
classification est par conséquent trop détaillée;
l'information supplémentaire que l'on retire reste très minime
et nécessite un calcul laborieux ;

lorsque A 5 mm, soit pour les stations de plaine ou de

montagne, la correspondance entre le nombre de classes

déterminé par la formule de Sturges ou empiriquement
se révèle concluante.

Aussi retiendrons-nous cette largeur de classe A 5 mm
pom* nos calculs ultérieurs.

— la substitution du polygone des fréquences observées

par une fonction d'équation connue permet la simulation

du phénomène et peut présenter un intérêt certain
dans la prévision météorologique.

Toutefois, il faut considérer ce dernier point avec
circonspection ; les conditions d'ajustement doivent être, dans

ce cas, clairement définies et la représentativité de l'échantillon

appartenant à la même population doit faire l'objet
d'une étude approfondielËDe toute évidence, pour que
l'ajustement ait sa raison d'être, il faut que les observations

portent sur une période assez longue : la durée minimale
considérée dans cette étude est de 30 ans.

4.3.1 Critères et lois d'ajustement

Une distribution statistique à un seul caractère définit,
de manière générale, la correspondance existant entre les

modalités d'un aspect qualitatif (variable) et les fréquences
des phénomènes qui leur correspondent. On établit donc

une relation pour chaque individu d'une population ou
d'un échantillon représentatif, liant respectivement la
valeur numérique de celui-ci à sa fréquence d'apparition.
Il convient de distinguer ce type de distribution et les

distributions théoriques ou « loi de probabilité » pouvant
être utilisées pour représenter analytiquement le phénomène

observé.
S'agissant de l'ajustement numérique d'une courbe

théorique sur l'histogramme des fréquences observées,
l'asymétrie de la distribution statistique dirige notre choix dans

la « bibliothèque » des fonctions mathématiques à prendre
en considération. C'est la raison pour laquelle nous avons
tenté cet ajustement avec :

la distribution de K. Pearson, type m
» gamma incomplète
» négative exponentielle

Distributions
continues

»
»

normale
log-normale (loi de Gibrat
ou de Galton-Alister)

» de « renouvellement » (loi
des fuites)

» Gumbel

Distributions i la distribution de Poisson
discrètes l binomiale (ou de Bernoulli)

La liste de ces distributions statistiques théoriques ne
saurait être exhaustive. Cependant, le programme de calcul

établi permet d'introduire sans difficulté d'autres fonctions

si les conditions climatologiques l'exigent. On trouvera

en annexe un rappel de la formulation mathématique
de chacune de ces distributions.

4.3 Ajustement d'une fonction théorique sur le polygone
des fréquences observées

La deuxième étape de calcul consiste à remplacer
l'histogramme observé par une fonction continue
mathématiquement définie. Les avantages de cette méthode sont
évidents :

— une seule courbe théorique permet la description géné¬

rale d'un phénomène d'allure complexe ;

— la recherche d'une valeur spécifique correspondant à

une fréquence donnée se simplifie singulièrement ;

— le modèle mathématique permet une extrapolation dans
le temps ;

4.4 Contrôle et test d'ajustement

Le choix de ces lois statistiques théoriques étant effectué,
il convient ensuite de tenter l'ajustement mathématique de

ces différentes courbes sur le polygone des fréquences
observées. Cette étape de calcul nécessite naturellement un
contrôle afin de déterminer la fonction offrant le maximum
de fidélité dans la représentation du phénomène observé.

En fait, il s'agit d'analyser la validité de l'hypothèse
suivante : « La distribution théorique choisie représente-
t-elle de manière suffisante le phénomène observé »

En ce qui nous concerne, on examinera si, de manière
générale, la distribution statistique correspond à peu près
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à une fonction mathématique choisie préalablement sans
analyser séparément les différents paramètres qui la
définissent. On parle alors d'une hypothèse non paramétrique.

Plusieurs tests d'hypothèses peuvent être pris en
considération. Nous avons retenu celui de Pearson ; test basé

sur la distribution de la variable aléatoire X2. Il peut se

présenter dans la forme suivante :
Soit une série d'observations réparties entre

différentes classes : Clt C2, CK et Ox, 02, Ok le nombre
d'individus par classe.

Soit Als A2, A%, les effectifs théoriques pour la
distribution ajustée. Alors, la quantité :

av.2.4)

est distribuée approximativement comme la variable
aléatoire X2 avec un nombre de degrés de liberté égal à :

0{-AZ Ai

v £-l-A (IV.2.5)

où k nombre maximal de classes ;
X nombre de paramètres nécessaires à l'ajustement

de la courbe théorique.

Rappelons brièvement la fonction de fréquence de la
variable aléatoire X2 :

^(X^dX2
—(x*y --i

¦e -X2 dX2

(2)»/2. r
(IV.2.6)

avec v nombre de degrés de liberté ;

/v\ vri - I fonction gamma de paramètre -
(cf. annexe 1)

Toutefois, lorsque les fréquences correspondantes à une
ou plusieurs classes sont très petites (événement rare),
l'hypothèse admise que la distribution de la variable P suit
une loi de X2 n'est plus valable. Aussi, est-il nécessaire

pour ces fréquences infimes de grouper plusieurs classes

aux effectifs restreints afin d'étudier la qualité de l'ajustement

entre les distributions théoriques et expérimentales.
Par ailleurs, pour ces échantillons de taille donnée, le

nombre de degrés de liberté est naturellement inférieur au
nombre de classes k. Cependant, si la largeur des classes A
est grande (donc k petit) et si un regroupement de classe
s'avère nécessaire pour le calcul du test de X2, la valeur
de v peut être nulle, voire négative. Il va sans dire que,
dans ce cas, le calcul du test ne peut être réalisé. Nous
remarquons par ce biais une influence directe du choix
de la largeur de classe A d'une série d'observations sur
l'ajustement d'une fonction de régression.

4.5 Résultats obtenus

Les calculs d'ajustement des fonctions de fréquence
théorique sur l'histogramme des observations ont été
conduits pour plusieurs stations, situées soit en plaine,

soit en zone de montagne. Les résultats obtenus permettent
de préciser la nature des équations théoriques et de
justifier ce choix. Plusieurs remarques peuvent être dégagées

de ces résultats :

— Le nombre d'années nécessaires à l'analyse statistique

d'une série d'observations pluviométriques est au
minimum de 30 ans. Une série plus courte conduirait
vraisemblablement à des résultats erronés. Remarquons
cependant que la précision des paramètres estimés à partir
d'observations réalisées augmente en fonction du nombre
de valeurs prises en considération (donc du nombre
d'années).

— Lorsque la variable aléatoire correspond à une hauteur

pluviométrique jourmlièresÉjpelconque, la période à
prendre en considération pour le calcul doit être inférieure
à l'année. On évite par ce moyen l'influence de l'effet
saisonnier sur l'ajustement mathématique de la fonction de

fréquence.

— Le calcul du diagramme des fréquences observées
(histogramme) doit être entrepris avec une largeur de
classe A de 5 mm. Un A trop grand rendrait très
problématique le test de l'ajustement d'une fonction théorique
sur la distribution statistique. Une largeur de classe
inférieure à cette borne de 5 mm développerait inutilement le
calcul sans améliorer notablement les résultats.

— Parmi les différentes fonctions de distribution
théorique choisies, les lois de K. Pearson 0>earson m et y
incomplète) et la distribution négative exponentielle décrivent

au mieux l'allure générale de la répartition des

fréquences observées pour les stations étudiées. Aussi, nous
retiendrons ces deux types de distributions théoriques pour
déterminer la précipitation maximale probable de temps de
retour connu.

— Le degré de l'ajustement d'une courbe théorique
testant la fidélité du modèle varie selon la période d'observation

et la situation géographique de la station considérée.

— Le contrôle de la qualité de cet ajustement est réalisé

par le test du X2 de Pearson. La probabilité de confiance
obtenue n'est certes pas toujours très élevée. Ceci provient
surtout du fait que le test du X2 tient peu compte des
valeurs observées correspondant à de faibles fréquences
en raison de la réunion des classes (cf. 4.4).

— L'analyse des coefficients de Fischer laisse entrevoir :

— une certaine asymétrie du diagramme de fréquence
(7i > 0) et un étalement de la distribution statistique
observée vers les grandes valeurs de la variable aléatoire

;

— un aplatissement négatif sensible ((y2 > 0), courbe lepto-
curtique) par rapport à la gaussienne de même moyenne
et de même écart type.

La mise en équation de l'histogramme observé facilite
considérablement le calcul d'un paramètre de là fonction
lorsque les autres sont connus. Ainsi, le calcul de la
précipitation maximale probable correspondant à une certaine
période de retour se détermine de la façon suivante :

— connaissant la moyenne 3c et les moments d'ordre 2
et 3 de la série statistique, on évalue numériquement
les paramètres correspondant aux lois de distribution
retenues O'earson, gamma, et négative exponentielle) ;

— on calcule ensuite la fréquence au dépassement pour
une période de retour choisie.

Si X temps de retour en année, la fréquence F sera
alors égale à :
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F(X) 1

X
OV.2.7)

Cependant, il y a lieu de tenir compte

d'une part, que le nombre de valeurs considéré (NV)
est plus grand que le nombre d'années (NA)

=> F* F (TV.2.8)

et d'autre part, que les mesures sont tronquées vers le bas.

OV.2.9)> F* e
<#-D

NA
NV X-i

(0 la fréquence vraie).

On tire alors, de (TV.2.7), OV.2.8), OV.2.9), la valeur
de 0 par :

OV.2.10)

— on détermine enfin la grandeur de la variable
correspondant à la fréquence .F (.y) à l'aide des équations
mathématiques des distributions retenues.

Cette dernière étape nécessite un calcul par itération.
En effet, nous devons déterminer la borne supérieure de

l'intégrale de la fonction de fréquence puisque l'on connaît
à la fc»l'équation de la courbe et la valeur numérique de

cette intégrale.
Développons ce calcul pour la distribution gamma. La

fonction de fréquence de cette loi est donnée par (cf.
annexe A 1) :

f(x) r(p)
e-^-xp~1dx

Sa fonction de distribution s'écrit alors :

A»
*t T*-1 dxF(X) r(p\ av.2.n)

Par OV.2.10), P F(X) est entièrement connu, n faut
alors déterminer X de façon Hue la valeur de l'intégrale
(IV.2.11) soit égale à P.

Plusieurs méthodes de résolution numérique peuvent
être prises en considération.

L'ensemble des calculs étant effectué par un ordinateur,
nous avons adopté une méthode itérative, rapidement
convergente pour la détermination de cette borne.
L'organigramme suivant en explique la marche à suivre :

A - approximation de départ

V-V+A

¦Xr.r p-1rp-' dr

IFiF(x)

nouvelle
approximation

Figure 4

CONTINUE

La valeur numérique de F étant très voisine de 1, nous
avons été contraint de transformer quelque peu l'équation
OV.2.11), ceci afin de pouvoir aisément calculer des

valeurs de la courbe F(X) dans sa partie asymptotique.
L'annexe 2 développe les calculs relatifs à la distribution
de Pearson in et gamma.

Afin de contrôler l'exactitude de nos conclusions
précédentes, à savoir que seules les lois de Pearson (gamma) et
la fonction négative exponentielle représentent valablement

la distribution statistique observée, nous avons
calculé, pour les différentes périodes de retour, les précipitations

probables correspondantes. Par la suite, nous avons
vérifié ces résultats en les comparant avec les observations
réalisées à la station de Lausanne (33 ans) et de Genève

(64 ans).
L'analyse des résultats obtenus montre une supériorité

évidente de la fonction de distribution de Pearson (gamma)

par rapport à la loi négative exponentielle dans la
représentativité du phénomène étudié.

Aussi, retiendrons-nous ce type de distribution dans la
suite de nos calculs, notamment pour déterminer la pluie
maximale probable de période de retour choisie. Relevons

encore que l'ajustement des paramètres de cette loi est

immédiat et ne dépend que de la moyenne, de l'écart type
(distribution gamma) et du moment de troisième ordre
(distribution Pearson TU) de la série de mesures (cf.
annexe Al).

5. Répartition spatiale de la pluviométrie

5.1 Homogénéisation des observations

Les caractéristiques météorologiques d'une région peuvent

être déterminées à partir des observations climatologiques

de plusieurs stations de référence environnantes.
Cependant, avant d'analyser ces différentes séries d'observations,

il convient de s'assurer d'une certaine unité dans
les séries statistiques enregistrées. En d'autres termes, il est
nécessaire de définir quelques critères de comparaison au
niveau des mesures et de corriger, s'il y a lieu, certaines
d'entre elles, afin de rendre possible une extrapolation
spatiale. On réalise ainsi une homogénéisation des
observations.

Cette correction est souvent nécessaire si l'on considère
de longues séries de mesures. Il est en effet assez rare de

trouver dans une région déterminée plusieurs stations de

base où les observations ont été entreprises sur la même

période.
Plusieurs méthodes peuvent être utilisées pour tester

l'homogénéité d'une série statistique. En météorologie, on
emploie fréquemment la méthode des différences pour la
température et la pression ou encore celle des quotients
pour les précipitations et l'insolation. On emploie également

un procédé graphique, donnant immédiatement un
résultat provisoire quant à l'homogénéité entre deux
stations (méthode des doubles cumuls, écarts cumulés,

moyenne mobile, corrélation, etc.). Enfin, une série de tests
basés sur certains paramètres statistiques permet de
déterminer directement les correspondances effectives entre deux

populations observées (test d'Helmert, d'Abbe, de Wilks,
de Wilcoxcœ de Conrad, etc.). Nous ne les développerons

pas dans cette étude en raison de leur diversité et nous
renvoyons le lecteur intéressé aux ouvrages spécialisés cités

en annexe bibliographique.
La statistique descriptive nous permet également d'analyser

la dépendance existant entre deux séries chronolo-
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giques. Introduite par Fischer, cette méthode est basée sur
l'étude de la dispersion, par le biais des variances, des
distributions calculées. Toutefois, son emploi est conditionné
par une hypothèse importante qui n'est malheureusement
pas toujours vérifiée en pratique, à savoir :

— les séries d'observations doivent être normalement
distribuées.

Pour la pluviométrie, nous avons vu que cette hypothèse
est très restrictive, étant donné que seuls les modules
annuels ou mensuels obéissent à peu près à ce type de
distribution. Ainsi, nous n'appliquerons pas cette méthode
dans cette étude et nous la réserverons pour analyser
d'autres paramètres climatologiques tels que température,
humidité, etc.

S'agissant de la longueur de la période d'observation,
l'homogénéisation entre stations peut se réaliser par
plusieurs procédés, tous basés sur les corrélations calculées
entre les différentes stations. Cependant, avant
d'entreprendre un tel calcul, il convient de s'assurer de son utilité,
car il ne s'avère pas toujours indispensable suivant le but
recherché.

En ce qui nous concerne, nous aimerions déterminer la
pluie maximale probable de fréquence de retour connue ;
grandeur fonction de la précipitation journalière observée
sur un certain nombre d'années. La durée des observations
effectuées doit être supérieure à un minimum acceptable
(<20 ans), sans quoi le peu d'information résultante
fausserait par trop les résultats. Aussi, dans ce cas précis, il est
inutile de corriger les séries observées pour homogénéiser

la période de mesures.
En effet, le calcul de cette précipitation remarquable

n'est fonction que de la moyenne et des moments du second
et du troisième ordre de la série statistique et de la loi de
distribution retenue. Or, ces trois paramètres estimés
initialement à partir d'un certain nombre d'individus constituant

l'échantillon varient faiblement pour une augmenta-
tion sensible de ce dernier. Ainsi donc, il suffit de ne prendre
en considération que les stations où la longueur de la
période d'observation correspond à un minimum fixé, en
excluant d'emblée toutes les stations n'obéissant pas à ce
critère. Rappelons également que la précision des
paramètres estimés augmente en fonction du nombre d'années
prises en considération.

En revanche, si l'on désire obtenir un réseau de courbes
isohyètes dans une certaine région, il est alors souhaitable
d'utiliser au maximum toutes les informations disponibles.
Dans ce cas, l'homogénéisation entre stations s'avère
nécessaire, voire indispensable.

5.2 Répartition spatiale

Noulpi'avons considéré dans nos calculs précédents que
des prêlapitations ponctuelles. Cependant, lors d'une étude
de dimensionnement d'un ouvrage, l'ingénieur-projeteur
doit connaître la répartition moyenne de cette pluviométrie
sur une surface S donnée.

Cette pluviosité moyenne peut se calculer à partir de la
relation :

(V.2.1)

où p hauteur pluviométrique ponctuelle sur ds

p hauteur pluviométrique moyenne sur S.

ds-«

dx-dy

dy

Figure 5

Pratiquement, le calcul de cette double intégrale peut
s'approximer par plusieurs méthodes tenant compte du
nombre d'appareils de mesures et de leur répartition
géographique sur la surface étudiée.

La détermination de p peut s'effectuer par exemple soit
par :

— une double intégration du réseau d'isohyètes de la sur¬
face considérée par planimétrage ;

— en moyennant les hauteurs pluviométriques mesurées;
dans ce cas, la répartition des appareils doit être le
plus uniforme possible ;

— en moyennant pondéralement les précipitations, si le
répartition des pluviomètres n'est pas homogène; le
coefficient de poids dépend alors directement des
surfaces de Thiessen ou encore du relief, de l'allure de
l'averse, etc.

Enfin, d'autres méthodes peuvent être encore utilisées
pour définir la pluviosité moyenne d'un bassin. Aux USA,
plusieurs bureaux appliquent la théorie basée sur la relation

surface/hauteur de fréquence ; théorie élaborée à partir
de celle des « stations-années ». Les résultats obtenus par
cette méthode ne concordent pas toujours.

En France, la méthodologie diffère encore. Celle-ci est
basée sur la recherche de la pluie moyenne sur une surface
donnée de même probabilité que celle tombée en un point
arbitraire appartenant à cette surface. On définit ainsi un
coefficient d'abattement :

K
A m
~P~

égal au rapport entre la pluie moyenne sur une surface
donnée et la pluie ponctuelle de même fréquence. En
considérant K et P comme deux variables aléatoires distribuées

selon certaines lois de probabilité, la valeur de Pm
sera égale au produit de deux variables aléatoires. Le
couple (K, P) est distribué selon une certaine loi, dépendante

des lois marginales de JsTet P et de la nature du degré
de liaison entre ces deux paramètres. Cette méthode
suppose que la distribution statistique de K et de P soit
indépendante du lieu.

Toutes ces techniques de calcul présentent des avantages
et des inconvénients. La précision obtenue sur les résultats
est quelquefois sujette à discussion. C'est pourquoi nous
ne nous attarderons pas sur ce chapitre et nous y reviendrons

plus loin, en développant une autre méthode de
calcul à la fois plus simple et plus efficace.

5.3 Variation en fonction de l'altitude
Dans nos calculs précédents, nous n'avons jamais tenu

compte, de manière explicite, de l'altitude de la station
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d'observation. Ce paramètre n'est certes pas négligeable et
influence directement les facteurs climatologiques, a
fortiori pluviométriques.

Plusieurs auteurs ont tenté d'établir diverses formules
liant fonctionnellement la hauteur pluviométrique à l'altitude.

H s'agit en général de relations empiriques, établies
à partir d'observations locales. C'est la raison pour laquelle
il faut être très circonspect dans l'emploi de ces formules ;

les paramètres observés étant souvent liés à la géographie,
donc peu sujets à une extrapolation valable. Il convient
alors, dans la mesure du possible, de vérifier ces relations
théoriques notamment en réajustant les coefficients pour
la zone étudiée.

Les mesures entreprises décèlent une augmentation de
la pluviosité en fonction de l'altitude jusqu'à un certain
optimum appelé optimum pluvial. Benevent a montré par
exemple que cet optimum se situait aux environs de :

— 2000 m dans les Préalpes,

— 2500 m dans les massifs centraux alpins,

— 2500-3000 m dans les hautes régions alpestres.

Par ailleurs, Serra a montré que lorsque les stations
pluviométriques sont soumises simultanément à l'influence des
mêmes fronts pluvieux, les précipitations croissent
linéairement avec l'altitude. Le gradient trouvé en France est
de 55 m par 100 m de dénivelé. Primault a obtenu des
résultats similaires en Suisse, notamment dans la région
du Jura vaudois. Les droites calculées sont présentées en
annexe 4. Remarquons que le modèle proposé permettra
de vérifier cette linéarité en choisissant judicieusement les
stations à étudier.

6. Triangulation spatiale «climatologique»

6.1 Principe de calcul

6.1.1 Méthodologie
En consultant une carte géographique à petite échelle,

on recense les stations météorologiques où les observations
de divers facteurs climatologiques s'effectuent régulièrement

depuis une certaine durée. Après avoir signalé ces
stations de base sur une carte ad hoc, on réunit graphiquement

ces points par des droites. On forme ainsi une chaîne
de triangles élémentaires.

Stations de base

Figure 6

Au droit de chaque station de base, on calcule :

— les différents paramètres statistiques pour chaque série
d'observations ;

— le polygone des fréquences observées ;

— l'ajustement sur ce polygone d'une distribution statis¬
tique théorique ;

— les paramètres d'ajustement qui correspondent à la
distribution théorique retenue.

On localise par la suite la région à étudier à l'intérieur
d'un triangle formé par trois stations de base ayant le
même type de distribution statistique. On interpole
linéairement à l'intérieur de ce triangle les paramètres d'ajustement

de cette fonction mathématique. Fort de ces
nouveaux coefficients, on calcule enfin, à l'aide de la distribution

théorique retenue, la hauteur pluviométrique de
fréquence au dépassement choisi correspondant à une période
de retour donnée.

6.1.2 Hypothèses

La méthode proposée nécessite cependant les hypothèses
suivantes :

— La série de mesures pour chaque station de base est
homogène. Par ailleurs, la période d'observations doit
être supérieure à un minimum d'années (>20 ans).

— A l'intérieur d'un triangle choisi, on suppose Fisotro-
pisme de la pluie, c'est-à-dire un type de répartition
statistique identique en chaque point du terrain. Seuls
les coefficients de cette distribution statistique varient
linéairement en fonction de la position plane du point
considéré. Cette hypothèse est d'autant plus vérifiée
que la surface du triangle est petite.

— La variation d'un paramètre climatologique, tel que
la pluviométrie ou la température en fonction de l'altitude

n'est pas explicite. On en tient compte implicitement

dans le calcul lors de l'interpolation linéaire des
divers coefficients d'ajustement.

La première hypothèse est très facilement verifiable par
un calcul préalable. Quant à la troisième, la méthode
proposée ne fait pas intervenir explicitement l'altitude de la
station calculée ; les paramètres des stations de base étant
nécessairement fonction de la cote géographique du lieu
d'observation.

6.1.3 Aperçu théorique
Soit : Si ; S] ; «S* les stations de base de coordonnées

planes (x{ ; y{) ; (x, ; y}) ; (xk ; yk) délimitant le triangle
/, /', k à l'intérieur duquel nous voulons calculer en un
point P de coordonnées planes x, y la hauteur pluviométrique

probable P correspondant à une fréquence au
dépassement F.

A chaque station de base S, les calculs effectués à partir
des observations réalisées ont montré que le type de
distribution théorique ajustée sur l'histogramme des fréquences
comportait 2 à 3 paramètres (jp|| a ; fis). Nous avons ainsi
les correspondances :

S( (x( ; yù

S) (xj ; y})

Sie (x*, ; yh)

-*• nuiati; fts( ou : zit

->¦ m} ; o~j ; ß$ ou : zit

mk;ok; fisk ou : zkt„

n= 1,2, 3

Il faut alors calculer en un point P (x, y) les grandeurs
ntp o~p et fi3p par interpolation linéaire à partir des
paramètres liés aux trois stations de base Sn (n 1,3).
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En chaque point Sn(n 1,3) de coordonnées xn ; yn on
reporte sur un axe OZ perpendiculaire au plan OXY la
grandeur zn du paramètre calculé en S„. Nous trouvons
ainsi trois nouveaux sommets S„(n 1,3) formant un
plan n' :

xt
X]
Xt

yt
é
yk

yt Zi

xn yk Zk

En explicitant (TV.2.2) par rapport à z, on obtient :

S'i(Xj;yj;zj)

S'kUkJykiZk)

S'îUiiV»"I w
Zn ZP I 'J

"Y

Si(xl»

SiUi;y

P(x;y)
fi ^s»Sk(xk:yJk*"k"k

byax

Figure 7

(VI.1.3)

Il suffit alors de remplacer les valeurs x et y par celles
de xp et yv dans 0V.2S pour calculer zv. On réalise
ainsi l'intersection du planîi' et de la droite D. La valeur zP
obtenue par :

(VI. 1.4)

correspond alors à la cote du point P, c'est-à-dire à la
valeur du paramètre interpolé à partir des mi, mj et mk.

Le calcul de av et jj.% est analogue à celui de mv, à

condition toutefois de faire correspondre aux zit respectivement

les ai et les /z3i des stations de base choisies.
Les valeurs des paramètres mp, o~v et ß3p étant définies,

il ne nous reste plus qu'à déterminer à partir de ces
grandeurs la hauteur pluviométrique probable P correspondant

à une fréquence au dépassement F (cf. chap. 4, § 4.5).

1 1

Zp n axp + byv

On cherche ensuite dans cet espace tridimensionnel
l'équation du plan %' passant par les trois points S\ ; S'j ;
S'k. Enfin, il reste à calculer l'intersection de la droite D

passant par le point P et parallèle à l'axe OZ avec ce

plan %'. La cote ainsi obtenue zv (distance entre les

plans n et n' en P) correspond à la valeur du paramètre
interpolé.

Les calculs se présentent de la manière suivante :

— pour l'estimation de mP :

à Si (xt ; y() il correspond la valeur mt
S] (xj ; yf)
sk (xk ; yk)

m,
mk

L'équation du plan passant par les points S't, S'j, S',,, de

coordonnées : (xt ; y{ mù ; (xj ; yj
(Xk \yk\Zk mk) s'écrit alors :

x y z i
xt yt z, 1

x, yj z, 1

yk zk 1Xk

m}) ;

(VI. 1.1)

Le calcul de ce déterminant, la réduction des termes
effectuée, nous amène à l'équation du plan cherché, équation

de la forme :

by + cz + d 0 (VI. 1.2)

où a, b, c, d correspondent aux mineurs des termes de la
première ligne du déterminant, à savoir :

yi Zi i
yi zi l
yk ftâr 1

b
xt

Xk

Zi

zi
Zk

1

6.1.4 Remarques

Cette méthode paraît à première vue longue et compliquée.

Toutefois, si l'on rationalise le calcul, celui-ci se

simplifie singulièrement. En premier lieu, il convient de
déterminer les caractéristiques statistiques d'une série de

mesures, le polygone des fréquences observées
(histogramme) et l'ajustement d'une distribution théorique de

fréquence sur ce polygone.
Cette suite d'opérations ne peut se réaliser qu'à l'aide

d'un ordinateur de moyenne à grande capacité, car les
séries statistiques constituent un fichier énorme de mesures,
surtout lorsque la période d'observation est de longue
durée (^= 60 ans).

Ces différentes grandeurs étant déterminées une seule

fois, il ne reste plus qu'à interpoler, sur le triangle choisi,
les paramètres désirés. Le calcul d'un déterminant du
quatrième ordre peut très bien s'effectuer manuellement ou
automatiquement à l'aide d'une machine de table.

Enfin, la dernière étape nous amène au calcul de la borne
supérieure d'une intégrale définie correspondant à une
fonction de fréquence donnée. Là encore, ce calcul peut se

réaliser soit à la main par tâtonnement avec une table,
soit à l'aide d'un petit calculateur (type Hewlett-Packard,
Olivetti Wang, etc.).

En résumé, si l'on connaît la valeur numérique des
paramètres statistiques inhérents à chaque poste d'observation,
le calcul de la précipitation maximale probable nécessite
deux types d'opérations arithmétiques :

— le calcul d'un déterminant d'ordre 2, 3 ou 4 ;

— la recherche d'une borne d'intégrale.

Remarquons encore que, pour respecter l'hypothèse
d'homogénéité ou d'isotropisme, il n'est pas toujours
possible de délimiter la zone étudiée dans un triangle de
base. Cependant, la méthode de calcul proposée s'adapte
très bien à d'autres types de polygones qui peuvent
dégénérer en une droite ou en un point.
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6.2 Sensibilité du modèle

La méthode que nous venons de décrire doit être
nécessairement contrôlée et vérifiée. En premier lieu, nous
devons nous assurer que le calcul de cette précipitation
remarquable soit correctement effectué.

Il suffit, à l'intérieur d'un triangle délimité par trois
points de base, de déterminer la valeur effective d'un
paramètre pour une des trois stations de base, considérée cette
fois-ci comme inconnue. Ceci revient à poser :

P(x;y) Si (xt ; yt) (VI.2.1)

La valeur du paramètre zp zt ainsi déterminée doit
alors correspondre, aux erreurs d'arrondi près, au paramètre
calculé à partir des observations.

E est nécessaire, par la suite, de connaître la fiabilité du
modèle, c'est-à-dire la confiance qu'on peut lui accorder

quant aux résultats. On parle alors de sensibilité du modèle,
variant naturellement en fonction de l'éloignement des

sommets du triangle et des conditions topographiques de

la zone considérée (donc en fonction de l'isotropisme
supposé).

Le contrôle de cette sensibilité est simple. Il suffit de

considérer, à l'intérieur d'un triangle choisi, une station
de base où des observations de longue durée ont été

conduites, comme point inconnu. On détermine ainsi, par
le calcul et pour cette station, la hauteur de la précipitation
maximale à craindre correspondant à une période de récurrence

donnée. Nous serons donc en possession de deux
valeurs de cette précipitation exceptionnelle, l'une
déterminée par le modèle théorique, l'autre observée et contrôlée

sur le terrain. L'analyse des écarts entre ces deux gran-
deurs permettra justement d'accepter ou de rejeter les
stations prises en considération dans le modèle et d'établir un
réseau de triangulation optimale pour l'estimation de ce

paramètre.
D convient enfin de préciser l'écart toléré entre la valeur

de cette précipitation ainsi calculée et sa valeur réelle. Nous
devons donc déterminer l'intervalle de confiance A de

cette grandeur.
En supposant la loi théorique de répartition des

fréquences connue, la vraie valeur x (T) correspondant à un
temps de retour T se calcule par :

x(T) -S-0(T) (VI.2.2)

où : x* moyenne vraie de la loi théorique retenue ;

S écart type vrai de la loi théorique retenue
.177* •— V/*a t

0 (T) facteur de fréquence de la distribution consi¬

dérée ;

T — temps de retour choisi en année.

Nous devons alors calculer l'écart type à de cette vraie
valeur x (T). En considérant les lois « gamma » et Pearson

III, le facteur (É (T) s'exprime par :

<P(T)
u (T) - u

Ou
(VI.2.3)

avec : u (T) variable réduite de la distribution consi¬
dérée ;

m moyenne de la variable réduite ;

ou écart type de la variable réduite.

Ainsi, pour la loi « gamma », on obtient (cf. annexes A 1

et A 2) :

x0 paramètre de
position
(x0 peut être nul)

(VL.2A)\ p =0-Cv

Cv coefficient de
variation
(cf. m. 1.7)

Pour la loi de Pearson ni (cf. annexes A 1 et A 2) :

M0= mode de l'échan¬
tillon

Cs coefficient de
symétrie
(cf. m. 1.10)

4-Cf

u(T)
x—

p

x0

u k
1

— 2X

~'jk 9a

<Tu v/I
1

c2

x
a

x-Mu(T)

p-\ 4-Ç?
2 C

4-C?

(VI.2.5)

2C, a

Les facteurs de fréquences pour ces deux lois s'écrivent
alors :

pour la loi « gamma » :

* CO «IP • cv
c„

(VI.2.6)

pour la loi de Pearson ni :

4-Ç? „ C.
(VI. 2.7)

Ainsi, la valeur x (T) calculée pour ces deux lois
s'exprime par :

x (T) x* + S ¦ 0 (T, O (VI.2.8)

L'écart type gX(t> de x (T) se détermine alors en
calculant l'expression :

â% <7?
X

/aary 1| ©!+ 2

fs +

+ 2//u m 2H dH
dfi*

-r-2/luGUg ;ms)
dH
dfii

dH
dfis

+ 2pt§m mjpg
dH
dfis

(VI.2.9)

avec : H x* + 0 (T, C.) • v7*a 1

Hi moment d'ordre / de la distribution choisie ;

Ha covariance des paramètres considérés.

Ainsi, en développant les calculs, on obtient :

— pour la loi « gamma » (deux paramètres, —? fo 0)
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(1 + K (T) ¦ Cv)XlT)

dK(T)+ -(1 + Œ). \K(T)+CV dC

dK (T) u (T) du
+ CV—- +ou

dC dC„ 2 C

t ra)

(VI.2.10)

u étant solution de : f 1 (X-l g-t dt

A
C2

pour la loi de Pearsen IH :

*^£ V 4 + 3C? „ \(l+ g—!«f + aiCtJ +

+ ^5C|+15C|+4)«l +

+ 3C|a2 + 3CS (2 + C2) tXx«2
-¦

(VI. 2.11)

«1
3 „ du 8

-«Q- - C*
2 <Ä7S Cs

a2
u 1 du 2

2 + 2CsdCs + ~C2

(VI.2.12)

« étant défini ci-dessus.

Les formules se compliquent singulièrement en raison de
la dépendance de 0 (T) par rapport à Ce. S'agissant de la
loi de Pearson HI, Kaczmarek a tabulé le facteur

multiplicatif de — pour certaines périodes de retour :

N il trouve

xm~ 77'
A2 (T,CS) (VI.2.13)

où A (TxCa) est donné dans le tableau ci-après :

% 0,1 1,0 5,0 10 25 50

\ T
1000 100 20 10 4 2

0,0 4,370 2,626 1,689 1,380 1,122 1,065
0,2 4,930 2,995 1,883 1,504 1,171 1,072
0,4 5,693 3,440 2,095 1,631 1,217 1,088
0,6 6,629 3,948 2,317 1,753 1,265 1,111
0,8 7,731 4,514 2,548 1,872 1,314 1,143
1,0 8,985 5,124 2,779 1,986 1,371 1,189
1,2 10,402 5,779 3,012 2,097 1,429 1,245
1,4 11,990 6,469 3,240 2,199 1,509 1,311
1,6 13,754 7,185 3,459 2,295 1,590 1,380
1,8 15,704 7,912 3,667 2,390 1,685 1,439
2,0 17,839 8,640 3,857 2,486 1,784 1,492
2,2 20,170 9,358 4,031 2,586 1,886 1,523
2,4 22,730 10,043 4,186 2,669 1,997 1,509
2,6 25,528 10,685 4,317 2,838 2,065 1,446
2,8 28,542 11,273 4,439 2,992 2,092 1,330
3,0 31,858 11,782 4,544 3,194 2,126 1,094

A(T,CS)

L'écart type b de la valeur calculée x(T) étant ainsi
connue, il ne nous reste plus qu'à déterminer l'intervalle
de confiance A pour une certaine probacwrté x % de cette
grandeur. On trouve ainsi :

pour une probabilité à 50 % :A2 0,6.âtm
80% : A2=l,28.â2x(T)
95% : A2 2.a\(T)
99% *2 -2 i.2

(VI.2.14)

intervalle de confiance de la valeur calculée.

6.3 GéftéValîsattbn du processus de-calcul

Nous n'avons considéré jusqu'à présent que la hauftur
pluviométrique journalière comme observation météorologique.

La méthode présentée peut aisément s'extrapoler
à d'autres paramètres, notamment pour les modules
pluviométriques mensuels ou annuels, ou pour d'autres
facteurs climatologiques. Si le calcul de la pluviosité moyenne
journalière intervient directement dans le dimensionnement

d'un ouvrage, l'influence de l'évapotranspiration
(ETp), par exemple, doit être également pris en considération.

Or, ce facteur est fonction de la température
moyenne, de l'humidité relative moyenne et de l'insolation
solaire ou rayonnement circum global.

A l'instar de la pluviométrie, toutes ces grandeurs sont
ponctuelles. La valeur numérique de l'ETp dans un
périmètre donné peut alors être déterminée par une interpolation

linéaire similaire à celle appliquée à la pluviométrie.
Cependant, il n'est pas nécessaire cette fois-ci de rechercher

l'allure des courbes de distribution de tous ces
paramètres. Nous n'avons besoin que des valeurs moyennes
mensuelles de température, d'humidité et d'insolation pour
calculer l'ETp. Aussi, la statistique ne portera que sur
l'évapotranspiration déterminée à chaque station de base,
paramètre défini à partir d'autres facteurs climatologiques
également mesurés au droit de ces mêmes stations.

Nous voyons dès lors que la méthode présentée peut être
facilement généralisée, sans augmenter pour autant le
volume des calculs. D suffira alors d'associer à chacune
des stations de base le plus grand nombre possible de
paramètres observés. On constituera ainsi une « banque de
données » ou un fichier numérique pour chaque station
que l'on pourra consulter aisément lors d'un dimensionnement

d'un ouvrage.

7. Analyse des résultats et conclusion
Nous avons pris en considération, dans nos divers

calculs, les observations inhérentes à 27 stations de base
réparties en Suisse romande (cf. annexe 3). La longueur
de la période de mesure varie selon les stations entre 30
et 68 ans.

A chaque poste d'observation, nous avons déterminé
les paramètres statistiques caractéristiques et les distributions

représentant au mieux les séries chronologiques
observées. S'agissant de la répartition des fréquences des
pluies journalières, la loi théorique de distribution retenue
est celle de gamma à deux ou trois paramètres (rappelons
que la distribution de Pearson m est identique à la loi
gamma à trois paramètres). L'ajustement de cette courbe
théorique a été effectuée sur un histogramme déterminé à
partir d'une largeur de classe de 5 mm.
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Le principe de la «triangulation spatiale climatologique»

a été testé avec succès en plusieurs endroits du
réseau. Cependant, les calculs relatifs à la détermination
d'une configuration optimale de stations de base n'ont pas
été exécutés en raison du volume considérable de calculs
numériques que cette analyse exige.

En ce qui concerne la précipitation maximale probable,
les écarts obtenus entre les valeurs observées et calculées
restent très rninimes et varient en fonction des stations de
base choisies. Une meilleure estimation quant au choix de
ces stations pourrait être envisagée en effectuant des
corrélations simples, voire même multiples entre chaque poste
d'observation. L'analyse du coefficient de corrélation
totale permettrait alors d'éliminer les stations présentant
peu d'iniérêt dans l'estimation de ce paramètre.

Ce modèle mathématique peut être adapté à d'autres
facteurs climatologiques (température, humidité,
evaporation, etc.). U est à la base d'un modèle plus général,
simulant les divers processus d'écoulement de l'eau
superficielle et souterraine. Dans ce contexte, il permet d'estimer
le volume d'eau de pluie que le sol devra éliminer soit par
ruissellement, soit par drainage. Aussi, la précision avec
laquelle il détermine cette grandeur est amplement
suffisante comparativement à d'autres facteurs très complexes
pris en considération dans une telle étude. Cependant,
nous osons affirmer que l'application de la présente
méthodologie, notamment dans la détermination de la
pluie maximale probable, offre une plus grande fiabilité
dans les résultats que toutes autres méthodes numériques
classiques. Un simple calcul d'erreur confirmerait ces
assertions.

«s
a-x («2 + 3)8

4 (4a3—3<Xi) (2a2—3^—6)

Ainsi, lorsque ots oo, c'est-à-dire lorsque 2a2 3<Xi +
+ 6, nous obtenons la fonction de fréquence de la IIIe loi
de Pearson.

(A. 1.3)f(x) c 1 + 1 • e dx

a
4

ccx
-1

4IBs«

b
a fh
2 fh

c
aa+l

b- e»-r(t'+1)

(A. 1.4)

r(a + 1) n'est rien d'autre que la fonction gamma de
première espèce, à savoir :

oof (A. 1.5)
r(p)= / e~x-xp-1dx

J
0 P>0

Annexe 1

Rappel de la formulation mathématique des distri¬
butions considérées

L'ajustement des paramètres de cette distribution se déduit
immédiatement de (A. 1.4).

A. Distributions continues

1. La distribution de K. Pearson

Pearson a déterminé différentes lois qui se déduisent
toutes de l'équation différentielle suivante :

(A. 1.1)

où f(x) représente la fonction de densité de probabilité ;

a, b0, bx, b2 étant des paramètres.
En intégrant (A. 1.1), on trouve :

1

m
df(x)

dx
x + a

b0 + bxx + b2x2

2. La distribution gamma incomplète

La densité de probabilité de cette distribution se calcule
par :

r(p) (A.1.6)

F(p) est donné par (A. 1.5).

La moyenne x et l'écart type a sont liés aux paramètres X
et p de la façon suivante :

r dz
É>0 + ÔrT + b2X

f(x)

(A. 1.2)
2 P

J?

Les douze lois de Pearson se déterminent alors pour
certaines valeurs particulières des coefficients suivants :

«i

tt2 1? Ca
M2

(cf. m. î.io)

(cf. in.iAï

Ainsi, l'ajustement de ces paramètres se déduit immédiatement,

à savoir :

(A.1.7)

xx
a2

x
p —s

CT"
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3. La distribution négative exponentielle

pour : 0 f= x ^ oo
f(x) X • e-^dx

(A. 1.8)

avec X constante positive.

Les caractéristiques de cette fonction de densité se
calculent par :

1

*̂, °'693

Ainsi, l'ajustement des paramètres s'effectue à l'aide de la
relation :

X
1 /l 1

2\3c 2xc
(A. 1.9)

4. La distribution normale

IIX — X\2
u I dxf(x)

CX \J2n
(A. 1.10)

avec : x moyenne de l'échantillon ;

a — écart type de l'échantillon.

de fuites des joints dans les conduites de gaz. Son application

en pluviométrie a été réalisée, en France, au Laboratoire

national de l'Hydraulique avec succès. Son équation,
déterminée à partir de la théorie du renouvellement,
s'exprime par :

f(z) e 1 PZ-sJ^-z-Ix
Ip-t-z

dz (A. 1.12)

où : Ix fonction de Bessel modifiée de première espèce ;

avec :

(A. 1.13)

t étant la période au cours de laquelle la pluie totale a été
enregistrée.

Les valeurs d'ajustement des paramètres p et /i sont très
facilement calculées à partir de (A. 1.13). On obtiendra
ainsi :

x
p-/u

o~
fi-p

2x
p ar

a2
Hf 2x*

(A. 1.14)

5. La loi log-normale (loi de Gibrat ou encore de Galton-
Alister)

Cette distribution est analogue à la loi normale lorsque
l'on prend en considération le logarithme de la variable
aléatoire (x > 0). En utilisant les logarithmes décimaux,
cette loi peut s'écrire par :

l /logiow — x/lQg10W
logro (e)

f(x) • e dx
tj*\j2n

(A. 1.11)

avec : x* E [logioC*.)] espérance mathématique du lo¬

garithme de la variable aléatoire

;

o3* V[logxo(x)] variance du logarithme de la
variable aléatoire.

Là encore, l'ajustement des paramètres x et a sur les
caractéristiques de la distribution théorique considérée s'effectue
sans changement préalable de variables. Cependant, il faut
prendre garde au fait que :

£Dogioto]#log10 (£[*])
il en va de même pour l'écart type.

6. La loi des «fuites » (du renouvellement)

Cette loi peu connue tire son nom de son utilisation, car
elle décrit de manière assez fidèle la distribution des débits

7. La distribution de Gumbel
11 s'agit là d'une loi particulière, appelée loi des extrêmes

décrivant l'allure d'une courbe de fréquence définie à partir
des valeurs minimales ou maximales d'un échantillon.

Sa densité de probabilité s'écrit par :

x + a

1 -î±î.e ^
f(x) - • e c dx

c

(A. 1.15)

ù :

s/6

c=_.ff
a E- c—x

(A. 1.16)

'.Distributions dise

La loi de Poisson

E

rètes

consta
0,5772

nte d'Euler
157...

f(x) | Prob (X x) e*- —
XI

(A.1.17)

où : X constante positive.

334



Les caractéristiques principales de cette distribution se

présentent comme suit :

x X

a2= X

X-l < M0 < X

M0 mode

L'ajustement du paramètre X s'effectue à l'aide de la relation

:

x + CT'

(A. 1.18)

La détermination de la valeur de la fonction f(x) nécessite
un calcul par récurrence.

Pour 0 ^ x t= 24 on utilise l'équation :

f(x) er*-.Xx

Pour x ^ 25 on procède par récurrence, à savoir :

f(x) --f(x-l)X

9. La loi binominale (ou de Bernoulli)

(A. 1.19)
n\f(r\ Cx nx nn~x — n1 nn~xJ\x) «-m -p • q .P H

x (n—x)

avec : p + q 1

x n-p
a2 n-p-q np(l —p)

L'ajustement des paramètres sur cette distribution est réalisé

par :

X2
n —

-CT2x
X

P
n

q 1--P

(A. 1.20)

La recherche de la borne x de cette intégrale pour une
valeur particulière de F(x) pose certain problème numérique

lorsque F(x) est très grand (0,9-0,999). Le calcul de
la fonction inverse n'est plus aussi aisé à effectuer dans la
partie asymptotique de la courbe, car les divers processus
d'analyse classique ne s'appliquent plus en raison d'instabilité

numérique. Aussi sommes-nous contraints de
développer certains calculs afin de transformer quelque peu
l'équation de cette fonction pour la rendre numériquement
intégrable.

Dans l'équation (A. 2.1), la variable p. n'est rien d'autre
que la variable réduite de la distribution gamma, à savoir :

x — Xo

P
(A.2.2)

En considérant x0 — 0 (paramètre de position nul —>-

loi à 2 paramètres), les moments de cette distribution
s'expriment par :

(A.2.3)

X y P

a - p- \Jy

fts 2y ¦P3

On peut alors écrire :

\fy.p

y.p yy
et:

_ fis ^ 2-y-ps JCs
a3 ps-f/2 '

sjy

De (A.2.3), on tire :

X CT a"
p= er • c„ —

y \y x
d'où :

x x x x x x 1

P X p X G-Cv X C%

En résumé, on obtient :

Annexe 2

Quelques considérations sur les lois de Pearson III
et gamma incomplète

A. Distribution « gamma » (deux paramètres)
La fonction de distribution de cette loi s'écrit :

ou encore :

avec :

F(xx) / „, A* dx
.' r(p)
0

y p
u X x —> du Xdx

(A. 1.6)

(A.2.1)

1

m
cs- 2C„

x x 1

P v /"'S

(A.2.4)

Si a _, A.2.1 s'écrit en tenant compte de A.2.4:
r(y)

/¦G r-x x_ i
F(xx) dxe x

x-C (A.2.5)

Posons

d'où, pour :

x
3c

x xx -*¦ yx
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et (A.2.5) devient:

F(yù a / y>-1 -

1 V-1 —Mr 1

C2 C-
dy

En effectuant un nouveau changement de variable :

tl — % • —y_

cl 'V -~ wv

on trouve :

F(tx) oc / ty-te-'dt
o

Mais :

et:

00 *

|g F(xx) « /fr* £ (-1)* _ </r

1+2

F(*i) a- J] / (-l)4--^j
1=0

(A.2.6)

En intégrant A.2.6, on obtient :

P -F(*1) aJ](-l)*
/>¦+*

(y + /)•/!

p a- /? • V (-1)< 1—1 Ai i\(y + i (A.2.7)

1

r(y
1 P

y ff2

Xx 1

'l x

(A.2.8)

Connaissant P (cf. chap. 4.3), les formules (A.2.7) et
(A.2.8) permettent alors de déterminer la valeur de xt
par itération. Le développement de la série e~% est arrêté
dès que :

<10"
iHy + i)

B. Distribution de Pearson III
La fonction de fréquence de cette distribution s'écrit :

(A.2.9)/O0 Po-e a • 11 H \ -dy

e-c.cc+i
P —u r(C+l)-a
y x—M0 M0

(A.2.10)
mode de
la série.

La loi est donc à 3 paramètres (M0, C, a).

Considérons la fonction de fréquence en variable réduite
de la distribution gamma :

/(*) -F71 uT~1 e~" du
r(y) (A.2.11)=(A.2.1)

avec :

x—Xo
u ; x0 7e 0

P

(Remarquons que la loi gamma est également à trois
paramètres : y, Xo, p.)

Effectuons le changement de variable suivant

(A.2.12)

y C+1
p a/C

x0 — M0 —a

(A.2.11) s'écrit alors:

/(")
1

r(c+i) u° •e_u du

En tenant compte de (A.2.2), on peut écrire :

1 (x-Xo\e -J^-. 1

/(*)' e p • — dxr(c+i) v p J p
1 fx-(M0-a)\e *-"*»-"> C

—- • — ¦——— I ¦ e a/c — dx
r(C-r-l) V «IC J a

Mais de (A.2.10) on a :

y x—M0

d'où :

1 h + a\e _ltt? CS/W=r(cTr)(^c)-co/c-7^

T(C+1) M al a

1

r(C+l)\ a

v v "o
1 +— • C+1 • e" • e~ ¦dx
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et finalement : Ainsi :

e-C.CC+l I y
r(c + 1) • a \ a

cy
e a dx (A.2.13) pour Cs 2CV, la loi de Pearson HI se réduit à une

loi gamma à deux paramètres.

On remarque dès lors que l'équation (A.2.13) n'est rien
d'autre que la fonction de fréquence de la distribution de
Pearscffi type in (cf. (A.2.9), (A.2.10)).

Aussi, on en déduit que :

La distribution gamma à trois paramètres
(y> x0, p) est strictement identique à la
distribution de Pearson, type HI, lorsque :

y C+l
p a\C
Xo — Mo—a

(A.2.14)

La loi de Pearson est donc un cas particulier de la
distribution gamma incomplète. En considérant (A. 1.4), on
trouve :

(A.2.15)

Le mode M0 de la variable réduite de Pearson HI

est égal à :

4
C

C2 -1
C P-s C

a CT <•»
2 fH 2

Ma x—au u ¦
<r-C.

(A.2.16)

Les paramètres relatifs à la distribution Pearson m et
gamma se déduisent donc à partir de (A. 2.15) et (A. 2.16),
à savoir :

y
4
C2

p i a-Ct
2

Xo
_ 2ct
x

c.

(A.2.17)

C,= Ms

os

Si Xo — 0, on trouve de (A.2.17) :

x - 2<7

c.
0

c, 2
a
x

--2CV (A.2.18)

A l'instar de la distribution gamma, le calcul numérique

de la fonction inverse de la distribution de Pearson m
n'est pas très aisé à effectuer pour de grandes valeurs de
l'intégrale (0,9—0,999). Nous sommes donc contraints
d'adapter l'équation de la fonction de fréquence de cette
distribution à ce calcul.

Nous avons démontré (A.2.14) que lorsque :

y c+i
p =a\C
Xo M0—a

la fonction de distribution de la loi de Pearson m pouvait
s'écrire :

F(xx) »r1. e~a du
F(y)

(A.2.20) (A.2.1)

avec :

X—Xo

Or, cette équation peut également se mettre sous la forme
suivante (cf. Annexe 2,) :

1
°°ÜÄ1 tv

(y + 0
(A.2.21)==(A.2.7)

H suffit donc, pour la loi de Pearson m, de calculer
y, p et x0 par (A.2.12) avec :

4
C

C5 -1
C Ms

a
2 o*

Mo 3c — ajC

(A.2.22)

et:

avec:

r(y) A-i i (y + i
(A.2.23)

T
Xx—Xo
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Annexe 3 : Triangulation spatiale climatologique.

Meteorologische und Regenmess - Stationen der Schweiz 1969/70

Reproduit avec l'autorisation du Service topographique fédéral du 3.7.73.
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Annexe 4: Températures en fonction de l'altitude. Moyenne 1931-1960.

Extrait de : Etude méso-climatique du canton de Vaud, de B. Primault.
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