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BULLETIN TECHNIQUE DE LA SUISSE ROMANDE

99¢ année 21 juillet 1973 N° 15

Répartition spatiale et prévision en temps de retour
de facteurs climatologiques en vue d’'un dimensionnement
des ouvrages d’aménagement des eaux

Application aux précipitations journaliéres observées en Suisse romande

par A. MUSY, ingénieur du Génie rural EPFL, assistant a I'Institut de Génie rural de I'EPFL

1. Introduction

Le dimensionnement d’ouvrages d’aménagement des
eaux doit répondre a certains critéres de sécurité et d’écono-
mie. Il nécessite donc un judicieux calcul préalable, faisant
intervenir des parameétres météorologiques souvent mal
connus.

La précision numérique sur 1’estimation de ces parame-
tres varie trés fortement en fonction de la qualité des obser-
vations. Trop souvent, hélas, le peu d’information, résul-
tant d’une observation de trop courte durée ou trop aléa-
toire, fausse singulierement le calcul d’un ouvrage. L’ingé-
nieur projeteur se voit alors contraint d’augmenter la sécu-
rité de cet ouvrage, afin de se mettre a 1’abri de toutes
défaillances techniques qu’il pourrait craindre en raison
du peu de données dont il disposait lors de 1’établissement
de son projet.

Le modéle présenté dans cette étude tente d’améliorer
la qualité de ces paramétres climatologiques, notamment
pluviométriques, en utilisant le maximum possible d’infor-
mations que I’on peut recueillir dans une région. Basé sur
I’analyse statistique des pluies journaliéres, ce modéele
permet de déterminer la précipitation maximale probable
a craindre, en un endroit quelconque situé a lintérieur
d’un vaste périmetre d’observation.

La répartition spatiale de cette précipitation est réalisée
par interpolation linéaire, en fonction de I’é¢loignement des
postes d’observation, des parametres statistiques représen-
tant les phénomenes climatologiques observés. Cette
maniére de procéder peut paraitre puérile aux yeux du
météorologue qui refuse, avec raison, de considérer une
variation linéaire dans I’espace de phénomeénes climatolo-
giques d’allure trés complexe.

Il faut rappeler cependant que le but de cette étude est
de préciser la valeur numérique de certains coefficients
indispensables a tous dimensionnements d’ouvrages d’amé-
nagement des eaux. Le modéle apporte donc a I'ingénieur
projeteur une aide substantielle quant a ’estimation de ces
parameétres qui exigerait en temps réel une observation de
trop longue durée.

Enfin, le modé¢le est basé sur une analyse stochastique
des phénomenes météorologiques. L’importance donnée
dans cette étude a la statistique mathématique et descrip-
tive peut étonner certains lecteurs sensibilisés par le carac-
tere continu de I’évolution de ces phénomeénes. Rappelons
toutefois que seule I’analyse statistique permet une concen-
tration de données représentatives et le calcul de divers
facteurs probables en fonction des lois observées dans
le passé. De plus, elle offre la possibilité d’estimer I’erreur
de mesure ou de calcul que I’on peut craindre, notamment
sur la détermination de la précipitation maximale pro-
bable de fréquence de retour connue.

2. Rappel de quelques définitions et formules de
base

2.1 Pluviométrie générale

Soit x;, la quantité de pluie tombée journellement en un
endroit donné. On parle de :

2.1.1 Module pluviométrigue anniel (mensuel) : la hau-
teur de la lame d’eau tombée annuellement (mensuelle-
ment) en mm.
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Py= Z x; en mm (I1.1.1)
i=1
30

P = Z X; en mm (IT.1.2)
i=1

2.1.2 Fraction pluviométrique mensuelle : le rapport entre
les modules annuels et mensuels en ©/q,.

P,
F, = =2 . 1000
P

m

(I0:1.3)

Cette derniére valeur nous permet, d’une part, de com-
parer les stations climatologiques entre elles et, d’autre
part, de mieux définir les régimes pluviométriques locaux.

Toutefois, le degré de dépendance entre différentes sta-
tions d’observation sera déterminé de maniére plus précise
en analysant les corrélations que I'on peut observer entre
ces diverses stations.

2.1.3 Courbes isohiétes

Courbes d’égale pluviosité (annuelle, mensuelle, averse,
etc.) reportées sur une carte géographique.

2.1.4 Indice d’humidité

Rapport entre le module annuel et le module annuel
moyen calculé sur plusieurs années. La valeur de ce coeffi-
cient nous donne une indication sur I’évolution générale de
la pluviosité d’une année par rapport aux précédentes.
Pour un climat humide, cet indice varie entre 0,6 et 1,6
et entre 0,4 et 2 pour les régions semi-arides.

2.1.5 Indice d’aridité
Proposé par de Martone, cet indice peut s’exprimer :
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— soit annuellement par :

Py
Ay = —= I1.1.4
“= TT 10 ( )
— soit mensuellement par :
A, — 12 Pu (1.1.5)
™ T+ 10 o

avec : P, = module pluviométrique annuel ;
T = température moyenne annuelle en degré Cel-
sius.

Ce coefficient essentiellement géographique permet de
déceler les zones nécessitant un apport d’eau. Ainsi, par
exemple, un indice d’aridité inférieur & 5 correspond a une
zone quasi désertique. Lorsqu’il est compris entre 5 et 20,
la région considérée doit étre équipée pour une irrigation.
Pour des valeurs supérieures a 20, ce facteur indique que
les apports naturels d’eau suffisent a la croissance normale
de la végétation. Remarquons cependant que I’analyse de
cet indice d’aridité, calculé sur I’'année, comporte certains
risques si I'on omet de prendre parallélement en considé-
ration les valeurs mensuelles de ce facteur : les variations
saisonniéres peuvent influencer, quelquefois, trés forte-
ment I'indice annuel.

2.2 Analyse des pluies
Soit 7 la durée d’une pluie. On définit par :

2.2.1 Intensité d’une pluie : la hauteur de la lame
d’eau ( H ) tombée sur une surface donnée par unité de
temps.

Ah
= [mm/h]

i =

i
— ar.z.1
T

Cette intensité joue un role capital en hydrologie des
petits bassins. Elle définit complétement une précipitation
lorsque le débit de cette derniére est connu. Plusieurs
auteurs ont tenté de calculer cette intensité en fonction de
la durée de la pluie. La formulation généralement admise
est de la forme :

i=a:t® (II.2.2)

avec: [ = intensité de la pluie en mm/h ;
t = durée de la pluie en min ;

a, b = constantes locales, dépendant généralement du
lieu (b < 0).

En Suisse, Burkli et Ziegler (1878) ont démontré que le
produit de cette intensité par la racine carrée de la durée de
la précipitation est constante, c’est-a-dire :

i \// = constante

La constante revét un caractére local et varie selon le
lieu géographique de I'observation. Lors d’une étude sur
le ruissellement, cette relation nous permet de déterminer
le débit spécifique d’écoulement lorsque intensité critique
d’une pluie de durée connue égale précisément la durée de
ruissellement.
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2.2.2  Lois générales — fréquence critique : les multiples
observations effectuées jusqu'a ce jour ont permis de
définir deux lois générales de la pluviosité. La premicére,
appelée couramment « loi de dispersion de la pluie dans
le temps » peut s’énoncer comme suit :

— la fréquence d’apparition d’une pluie donnée est d’au-
tant plus faible que son intensité est forte.
Quant a la deuxiéme, elle affirme que :
— la pluie de fréquence d’apparition donnée a une inten-
sité d’autant plus forte que sa durée est plus courte.

Lors d’un calcul de dimensionnement d’un ouvrage, il
convient de tenir compte d’une hauteur pluviométrique
donnée ayant une fréquence de retour connue. Cette fré-
quence critique varie selon la sécurité que I’'on veut donner
a I'ouvrage. Ainsi, choisir une fréquence de 10 ans, c’est
admettre que, une année sur dix, le systéme de drainage
sera peut-étre submergé et ne répondra pas complétement
aux exigences fixées. Le choix de cette périodicité critique
dépend essentiellement des facteurs agro-économiques.
Plusieurs auteurs (De Montmorin, Talbot, Metcalt, Eddy,
etc.) proposent différentes formules pour déterminer I'in-
tensité critique d’une pluie ayant une fréquence au dépas-
sement donné. Ainsi, Talbot suggére :

(II.2.3)

|

= durée de la pluie en min ;
i = intensité de la pluie en mm/h ;

avec: T
1
a, b = constantes (cf. tableau 1).

TABLEAU 1
Fréquence i mm/h
500
6 .
mois pipr
158 830
S5
1400
2
ans T e
2100
5 =
ans g
2590
10 ans 017
2850
20 ans 0+
32
50 ans 5230
11 +7
80 ans 7620
(d’aprés Besson) 34+ 7

Extrait de : « Assainissement agricole »,
de Poirée et Ollier.

Toutefois la relation de Talbot : (II.2.3) ne semble plus
convenir pour des durées de pluie dépassant 6 heures.
Montana propose alors :

(IT.2.4)




Connaissant l'intensité de la pluie critique, on pourra
alors calculer le débit caractéristique du réseau de drai-
nage g, par la relation :

g fs/hal = —— (1—¢) - i [mm/h]

Ir.2.5
0,36 ( )

ou: e = coefficient d’évaporation.

2.3 Répartition spatiale de la pluie

Nous n’avons considéré jusqu’'a présent que la pluie
ponctuelle, c’est-a-dire la quantité d’eau tombée en un
point précis. Lors d’une étude de projet, les données météo-
rologiques de la région intéressée doivent étre extrapolées
a partir de stations provisoirement mises en place. Il y a
lieu alors d’étudier la dispersion de la pluie dans I’espace
afin d’estimer la pluviosité moyenne du secteur en ques-
tion.

Si S correspond a la superficie totale du bassin versant
pour une période de récurrence donnée, on peut dire alors
que lintensité moyenne d’une pluie est d’autant plus
faible que S est plus grand. En conséquence, il convient
d’ajouter aux différentes formules établies, permettant de
calculer I'intensité de la pluie, un facteur correctif tenant
compte de cette dispersion de la précipitation dans I’es-
pace. Puppini a réadapté la formule de Talbot en intro-
duisant de nouveaux coefficients a’ et &', fonction de a, b
et S. Ainsi, on a:

S 2
S (I1.2..6)
"= b—0,014 (— km?
b b—0, <100> S en km

Les coefficients a et b de Talbot correspondant a des
fréquences de retour choisies sont donnés dans le tableau 1.
L’intensité d’une pluie dans une région déterminée se cal-
culera par :

’

i= - [mm/h] (I1.2.7)
T

3. Analyse statistique

3.1 Définition des paramétres

Les hauteurs pluviométriques journaliéres observées sur
un certain nombre d’années au droit d’une station météoro-
logique fixe constituent un fichier de mesures assez consi-
dérable. Le traitement global de cette information s’avére
particulierement fastidieux et cofteux. Il serait souhai-
table de condenser un peu cette information et de la rem-
placer par quelques caractéristiques bien choisies, a condi-
tion, toutefois, que ces derniéres représentent la série chro-
nologique de maniére quasi exhaustive.

La statistique descriptive s’adapte parfaitement a ce type
de probléme. Elle définit certains paramétres types, ana-
lysant fidélement le phénoméne a étudier.

Pour une étude de prévision en temps de retour, une
série d’observations peut étre décrite statistiquement par
trois types de caractéristiques :

— la moyenne ou tendance centrale (Moyenne, Médiane,
Mode) ;

— la dispersion ou fluctuation autour de la moyenne
(écart type, variance, moments centrés, quantiles) ;

— les caractéristiques de forme des courbes de fréquence
des observations.
(Coefficients de Yule, Fischer, Pearson.)

Rappelons briévement la définition des paramétres fon-
damentaux :

3.1.1 La moyenne arithmétique :

_ 1\
XZ—in
N

=1

ou: N = nombre total d’observation ;

(III.1.1)

x; = hauteur de la précipitation journaliére = valeur
observée.

Cette valeur moyenne (valeur centrale) d’une telle série
chronologique varie avec la durée de ’observation et reste
peu sensible aux fluctuations des valeurs observées. Binnie
analysa les écarts du module annuel moyen considéré sur
un certain nombre d’années par rapport a ce méme para-
meétre calculé sur une longue période. Il trouva ainsi :

TABLEAU 2
Ecarts observés entre les modules pluviométriques moyens
calculés, suivant la longueur de la période de référence
utilisée

Ecart en % de la moyenne
considérée par rapport a la
moyenne sur une
« longue période »

Nombre d’années
utilisées pour le calcul
du module moyen

+ -
1 51,00 40,00
2 35,00 31,00
3 27,00 25,00
5 15,00 15,00
10 8,22 8,22
20 3,24 3,24
30 2,26 2,26

Extrait de : « Climatologie », de H. Grisollet.

On remarque, en analysant le tableau ci-dessus, que les
écarts obtenus par rapport a la moyenne « longue durée »
sont insignifiants a partir d’une période d’observation de
20 a 30 ans et que la variation de ceux-ci, pour une durée
plus grande, n’est plus significative. Aussi, I’Organisation
Météorologique Mondiale (OMM) a recommandé, au vu
de ces résultats, de considérer une période trentenaire
comme satisfaisante pour déterminer la moyenne des pré-
cipitations d’une station.

3.1.2.1 L’écart type ou écart quadrique moyen :

N
‘ Z n; - (x;—x)>?
O' E—

i=1
N

(II1.1.2)

ou : x; = valeur observée ;
x = valeur moyenne des mesures ;
N = nombre d’observations ;

n; = nombre de répétitions des x;.
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3.1.2.2 La variance :

2 1 v F\2
0% = Z 1y (X —%) (I1.1.3)
i=1

=|

3.1.2.3 Les moments centrés d’ordre r:

1 XN
N Y, =Xy (ITL.1.4)

=1

=

(Remarquons que la variance n’est rien d’autre que le
moment centré de deuxiéme ordre.)

Cependant, la définition des moments par (III.1.4) n’est
valable que si 'on connait I’ensemble de la population,
ce qui est rarement le cas. Aussi, est-il nécessaire d’estimer
ces moments avec un échantillon réduit de la population
totale. On parle alors de moments estimés d’une population,
ou de moments sans biais.

Ceux-ci se calculent par :

N
1 =
fr= = Z ny (x—%)" | (UL.1.5)

=1

La division par (N—1) a pour effet de corriger I'erreur
systématique due au calcul des écarts par rapport a la
moyenne estimée et non vraie de la population.

3.1.2.4 Lintervalle de variation ou étendue (range) :

W = Xmax —Xmin (III.1.6)

L’analyse de cette caractéristique doit étre effectuée avec
circonspection. En effet, ce coefficient peut nous donner
une idée fausse de la dispersion, si par hasard les valeurs
extrémes sont douteuses. Par ailleurs, sa grandeur dépend
de la taille de la population car plus le nombre d’observa-
tions est important plus forte est la probabilité d’obtenir
des valeurs extraordinaires dans I’échantillon.

Afin de remédier a cet inconvénient, on définit volontiers
en climatologie les quantiles ou fractiles. 11 s’agit la de
deux valeurs particuliéres de la variable observée telles que
le pourcentage inférieur a la plus petite de ces deux valeurs
soit égal au pourcentage des observations supérieures a
la plus grande. Les quantiles les plus souvent calculés sont
les quartiles, les quintiles, les déciles ou les perdiciles.

Ainsi, par exemple, parler du quartile inférieur Q,, c’est
déterminer Q; de fagon que le quart des observations
comporte des valeurs inférieures a Q;. Le quartile supé-
rieur Qg représente une valeur telle que le quart des obser-
vations soit supérieur a cette derniére grandeur.

Lintervalle interquartile ou amplitude normale Qz—Q;
englobe alors le 50 % des observations.

3.1.2.5 Le coefficient de dispersion ou de variation :

o
Ch=— (II1.1.7)
X

avec g = écart type de I’échantillon ;
x = moyenne de I’échantillon.
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3.1.3.1 Les coefficients analysant la symétrie de la
courbe des fréquences observées.

— le coefficient de Yulle :

(Q3—M) — (M—01)

§=0s—M) T M—0)

(III.1.8)

ou Q; = quartile inférieur de la série observée ;

03
M

quartile supérieur de la série observée ;

I

meédiane de la série observée ;

— le coefficient de Pearson :

Sy = ({IL1:.9)

avec x = moyenne empirique de 1’échantillon ;
o = écart type de I’échantillon ;
M, = mode de I’échantillon ;
S, varie entre —1 et +1;
lorsque S; = 0, la symétrie est parfaite ;

— le coefficient de Fischer :

Cs=y1=’;—§= /B, (I11.1.10)

2
avec ff; = coefficient de Pearson = liﬁ
o

o = écart type des observations ;

/t3 = moment centré du 3¢ ordre calculé a partir
des mesures.

Si: y; = 0: la symétrie de la courbe de répartition des
fréquences est parfaite ;

y1 < 0: la distribution observée s’étale vers les
petites valeurs ;

y; > 0: la distribution observée s’échelonne vers
les valeurs plus grandes.

Le signe de y; est celui que 'on obtient par la différence
entre la moyenne et le mode (x —M,).

— Le coefficient Kelley :

1
C1=M—E(D1-D9) (III.1.11)

ou D; = premier décile de la série observée ;
Dy = neuviéme décile de la série observée ;
M = médiane de I’échantillon.

3.1.3.2 Les coefficients analysant l’aplatissement de la
courbe des fréquences observées :

— le coefficient de Pearson :

Co=Po="— (I11.1.12)




I

avec g écart type de I’échantillon ;

My = moment centré du quatriéme ordre des
valeurs observées ;

— le coefficient de Fischer :

Ha

Ya=fa—3="~ (III.1.13)

Ces deux paramétres permettent d’analyser ’aplatisse-
ment du diagramme de répartition des fréquences par rap-
port a la courbe de distribution théorique de Gauss (courbe
de distribution normale ou courbe mésocurtique).

Si:

ye = 0: la distribution observée est aussi plate que la

(B, = 3) distribution normale de méme moyenne x et de
méme variance 2. N (x; 6°)

7o > 0: la distribution observée est plus pointue que la

(fs > 3) N (x;¢%. On parle alors de courbe leptocur-
tique.

v << 0: la distribution observée est plus plate que la

(f2 < 3) N (x;0?.La fonction obtenue est alors plati-
curtique.

— Le coefficient de Kelley :

1 03—-0

= . =2 =1
* T2 Dy—D;

(II1.1.14)

ou Q; = quartile inférieur de la série observée ;
Q3 = quartile supérieur de la série observée ;
D; = premier décile de la série observée ;
Dy = neuvieme décile de la série observée.

En résumé, si une courbe de fréquence observée corres-
pond a une gaussienne, la représentation graphique des
valeurs définies ci-dessus peut s’effectuer comme suit :

Symétrie : [y =0
Sl = 0

courbe leptocurtique
(¥2<0)
(B<3)

courbe mésocurtique
(72<0)

V]z<3)

Point d'inflexion

courbe platicurtique

(¥2<0)
(B2<3)

quantile ou fractile
d'ordre «

Figure 1

Dissymétrie positive : P1>0

(51 >0

b

Figure 2

(51 <0

Dissymétrie négative : { n<o0

<) EOPE S S S W

P S e
£ e e

Figure 3

Dans la suite de notre étude, nous retiendrons comme
coefficient de symétrie et d’aplatissement les coefficients de
Fischer en raison d’une part de leurs importances, et d’autre
part de leur commodité d’utilisation.

4. Distribution statistique des pluies ponctuelles

4.1 Hypothése de base

Pour que la statistique décrive fidelement la complexité
d’un phénomene, il faudrait théoriquement analyser ’en-
semble de sa population.

Toutefois, en climatologie, cette derniére n’est jamais
connue, car les observations sont nécessairement limitées
dans le temps. On assimile donc les mesures & un échantil-
lon appartenant entiérement a une population fictive. Or,
la théorie de I’échantillonnage implique une indépendance
totale entre les individus qui constituent précisément
I’échantillon. On suppose donc, a priori, que les observa-
tions effectuées sont indépendantes entre elles.

Cette maniére de procéder conduit nécessairement a des
hypothéses restrictives qui ne sont, hélas, pas toujours
vérifiées. C’est pourquoi nous sommes contraints d’ana-
lyser séparément les divers types de corrélations rencontrés
et de supputer I'influence qu’elles peuvent avoir sur le
résultat. Ainsi donc, nous devons tenir compte :

— Des liaisons interannuelles

De nombreux chercheurs (Briickner, Shaw) ont essayé
de déterminer les variations cycliques du module pluvio-
métrique annuel en fonction des fluctuations de I'activité
solaire. Les études entreprises sont trés localisées et les
observations réalisées dans certaines régions décelent plu-
sieurs zones dépourvues de synchronisme. Par ailleurs, la
méthode de calcul actuellement utilisée pour définir les
cycles et les périodes de récurrence peut entrainer des
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conclusions erronées en introduisant des périodicités fic-
tives (effets Stuski). Ainsi, et jusqu’a plus amples rensei-
gnements, nous admettrons I'indépendance des observa-
tions interannuelles entre elles.

— Des variations saisonnieres

Selon le but que I’'on se propose d’atteindre, I’analyse
statistique peut prendre en considération des précipitations
journaliéres ou des modules moyens annuels ou mensuels.
Dans le premier cas, la méthode de calcul doit tenir
compte de ’effet saisonnier sans quoi les résultats pour-
raient étre entachés de grosses erreurs.

En effet, choisir la hauteur de précipitation d’un jour
quelconque de lannée comme variable aléatoire, c’est
admettre que les observations réalisées pendant I’année
entiére appartiennent toutes a la méme population. Or,
cette affirmation est manifestement fausse, surtout lors-
qu’on essaie de constituer fictivement un échantillon vrai-
semblable pour une période donnée en considérant cette
méme population. Aussi, il est indispensable dans une telle
étude de décomposer I’échantillonnage mois par mois ou
saison par saison, si I’on veut prendre en considération
toutes les nuances du phénoméne a étudier.

— De lindépendance de la variable observée

Nous avons vu précédemment que la théorie de I’échan-
tillon est basée sur un critére d’indépendance entre les
individus de la population. Or, en climatologie, cette indé-
pendance est treés discutable. En effet, nous ne pouvons
pas affirmer, a priori, que la précipitation d’une durée
quelconque n’a pas été influencée par divers phénomeénes
météorologiques antérieurs ou postérieurs a I’observation.
En d’autres termes, il n’est guére possible dans notre cas
d’appliquer un schéma analogue a celui de Bernoulli, uti-
lisé en calcul de probabilité, ot la composition de I'urne en
boules blanches et en boules noires reste invariable ; la
boule extraite aprés chaque tirage étant remise dans l'urne.

En réalité, des liaisons de toutes sortes, dépendantes de
I’évolution générale des conditions atmosphériques influen-
cent directement les précipitations. Différentes études
d’interactions ont été élaborées par plusieurs auteurs.
S’agissant de la Suisse, I'Institut National de Météorologie
recommande de prendre en considération, dans le calcul
statistique, une période antérieure ou postérieure a la réfé-
rence temporelle de base égale au tiers de cette derniére.
Ainsi, par exemple, si I’analyse statistique est effectuée
sur un intervalle de temps 7; (référence de base : un mois,
une saison, une année), si 7;_; représente le méme inter-
valle de temps précédent 7; et 7j;, celui qui le suit
immédiatement, on tiendra compte dans le calcul des
valeurs correspondantes aux périodes: (7;-1)/3 + T; +
+ (Ti10)/3.

Fixons les idées en adoptant le mois d’avril comme réfé-
rence de base. Les jours & considérer pour le calcul seront
alors ceux d’avril naturellement plus les dix derniers jours
de mars et les dix premiers jours de mai, et ceci pour
chaque année d’observation.

Mathématiquement, ce principe revient a modifier un
peu le schéma de Bernoulli. Polya a imaginé qu’apres
chaque tirage d’une boule, on remplace, dans I"'urne, non
seulement la boule tirée (blanche ou noire), mais encore
en plus un certain nombre de fois x de boules de la méme
couleur que cette dernié¢re; soit au total g -+ 1 boules
(remarquons que lorsque i = 0 on obtient le schéma de
Bernoulli). Par ce biais, I'indépendance successive n’est
plus réalisée ; au contraire, le fait de réintroduire dans
I'urne un nombre plus grand de boules d’une certaine cou-
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leur augmente la probabilité pour le tirage suivant de
retrouver une de ces boules. On simule en fait une sorte
de « contagion », phénoméne que ’on remarque trés sou-
vent en climatologie.

En résumé, nous admettons, dans la présente étude, les
hypothéses suivantes :

— liaisons interannuelles nulles ;

— découpage de la statistique par intervalle de
temps inférieur a I’année afin d’éviter 'effet sai-
sonnier ;

— interactions des périodes antérieures ou posté-
rieures a [lintervalle d’observation calculées
selon la méthode préconisée par I'Institut Natio-
nal Suisse de Météorologie, a savoir :

(Ti-1)/3 + T; + (Ti+1)/3 = T = période de
référence.

4.2 Distribution statistique des pluies journaliéres

Avant d’entreprendre tout calcul, il convient, en pre-
mier lieu, de définir quantitativement la notion de pluie.
Au niveau de l'observation, cette distinction n’est pas
effectuée et la quantité d’eau mesurée peut aussi bien pro-
venir d’une précipitation que d’une condensation locale et
particuliere ou d’une rosée.

La notion de pluie nulle est assez difficile a préciser et
reste malgré tout trés subjective. Dans certains pays, on
ne prend en considération comme précipitation que les
mesures correspondant a des hauteurs d’eau supérieures a
0,1 mm. En ce qui nous concerne, nous admettons, a
I'instar de I'Institut National Suisse de Météorologie, un
niveau de définition de 0,3 mm d’eau (ou 3 dl/m?). Ce
seuil correspond a la hauteur d’eau maximale que I’on
peut observer dans un pluviographe par le simple effet de
la rosée, sans qu’il y ait pour autant une chute d’eau pro-
prement dite.

Rappelons encore que les calculs qui suivent portent sur
des observations journaliéres. On suppose donc que la
totalité des mesures prises en considération appartiennent
toutes a la méme population. En conséquence, les hypo-
théses restrictives ci-dessus doivent étre appliquées dans
leur ensemble.

Nous allons en premier lieu déterminer le polygone de
fréquence a partir des observations réalisées. Ce graphique
se détermine comme suit :

Les données pluviométriques sont préalablement grou-
pées par classes de largeur choisie 4. La fréquence observée
sera alors égale au rapport entre le nombre de précipita-
tions dénombrées dans la classe n° i et le nombre total
des jours de pluie.

Si: N = nombre total des jours de pluie ;
n = nombre de précipitations x; telles que :

{xz}EAK;

alors :

ng fréquence observée de la

av.2.1 Jx = N 100 | (lasse Ken %.

En représentant sur un graphique les fréquences ainsi
calculées en ordonnée et les largeurs de classe A4 en



abscisse, on obtiendra alors le diagramme des fréquences
observées.

L’allure générale de ce diagramme varie naturellement
avec l'intervalle de classe choisi. Un A trop grand fausse-
rait la ligne directrice de la courbe et atténuerait par
trop les valeurs extrémes tandis qu’une largeur de classe
trop restreinte détaillerait exagérément le phénomeéne et
lui enléverait son caractére « d’ensemble ». Dans les deux
cas, lajustement mathématique d’une courbe théorique
quelconque sur ce polygone des fréquences se révélerait
assez ardu. Sturges a établi une régle empirique définissant
en fonction de Ieffectif N des individus d’une série statis-
tique, le nombre minimum de classes en lesquelles on peut
grouper les observations sans trop perdre d’information.
Cette relation peut s’exprimer par :

10
k=1+ glogloN Iv.2.2)

ou: N = nombre total des observations.

Le calcul de la largeur de la classe optimale 4 découle
alors directement des formules (IV.2.2) et (II.1.6), a
savoir :

(Iv.2.3)

S’agissant de la répartition des fréquences des pluies
journaliéres, nous avons tenté plusieurs essais pour diverses
grandeurs de 4 (1,5 et 10 mm). Au vu des résultats obtenus,
nous pouvons conclure que :

lorsque 4 = 10 mm, la largeur choisie est trop grande; le
nombre nécessairement restreint de classes ne permet
pas, & quelques rares exceptions prés, le calcul du test
d’ajustement d’une fonction théorique sur la distribution
observée ;

lorsque 4 = 1 mm, le nombre effectif de classes dépasse
largement celui déterminé par la régle de Sturges; la
classification est par conséquent trop détaillée; I'infor-
mation supplémentaire que ’on retire reste trés minime
et nécessite un calcul laborieux ;

lorsque 4 = 5 mm, soit pour les stations de plaine ou de
montagne, la correspondance entre le nombre de classes
déterminé par la formule de Sturges ou empiriquement
se révéle concluante.

Aussi retiendrons-nous cette largeur de classe 4 = 5 mm
pour nos calculs ultérieurs.

4.3 Ajustement d’une fonction théorique sur le polygone
des fréquences observées
La deuxiéme étape de calcul consiste & remplacer I’his-
togramme observé par une fonction continue mathéma-
tiquement définie. Les avantages de cette méthode sont
évidents :

— une seule courbe théorique permet la description géné-
rale d’'un phénoméne d’allure complexe ;

— la recherche d’une valeur spécifique correspondant a
une fréquence donnée se simplifie singuliérement ;

— le modéle mathématique permet une extrapolation dans
le temps ;

— la substitution du polygone des fréquences observées
par une fonction d’équation connue permet la simula-
tion du phénoméne et peut présenter un intérét certain
dans la prévision météorologique.

Toutefois, il faut considérer ce dernier point avec cir-
conspection ; les conditions d’ajustement doivent étre, dans
ce cas, clairement définies et la représentativité de 1’échan-
tillon appartenant a la méme population doit faire I’objet
d’une étude approfondie. De toute évidence, pour que
I’ajustement ait sa raison d’étre, il faut que les observations
portent sur une période assez longue : la durée minimale
considérée dans cette étude est de 30 ans.

4.3.1 Criteres et lois d’ajustement

Une distribution statistique & un seul caractére définit,
de maniére générale, la correspondance existant entre les
modalités d’un aspect qualitatif (variable) et les fréquences
des phénomeénes qui leur correspondent. On établit donc
une relation pour chaque individu d’une population ou
d’un échantillon représentatif, liant respectivement la
valeur numérique de celui-ci a sa fréquence d’apparition.
Il convient de distinguer ce type de distribution et les
distributions théoriques ou «loi de probabilité » pouvant
étre utilisées pour représenter analytiquement le phéno-
méne observé.

S’agissant de I’ajustement numérique d’une courbe théo-
rique sur I’histogramme des fréquences observées, I’asy-
métrie de la distribution statistique dirige notre choix dans
la « bibliothéque » des fonctions mathématiques & prendre
en considération. Cest la raison pour laquelle nous avons
tenté cet ajustement avec :

la distribution de K. Pearson, type III
» gamma incompléte
» négative exponentielle
e ) » normale
CDOIISIE-;?::SIODS » log-normale (loi.de Gibrat
ou de Galton-Alister)
» de « renouvellement » (loi
des fuites)
» Gumbel
Distributions [ la distribution de Poisson
discretes { » binomiale (ou de Bernoulli)

La liste de ces distributions statistiques théoriques ne
saurait étre exhaustive. Cependant, le programme de cal-
cul établi permet d’introduire sans difficulté d’autres fonc-
tions si les conditions climatologiques I’exigent. On trou-
vera en annexe un rappel de la formulation mathématique
de chacune de ces distributions.

4.4 Contréle et test d’ajustement

Le choix de ces lois statistiques théoriques étant effectué,
il convient ensuite de tenter ’ajustement mathématique de
ces différentes courbes sur le polygone des fréquences
observées. Cette étape de calcul nécessite naturellement un
contrdle afin de déterminer la fonction offrant le maximum
de fidélité dans la représentation du phénoméne observé.

En fait, il s’agit d’analyser la validit¢ de I’hypothése
suivante : « La distribution théorique choisie représente-
t-elle de maniére suffisante le phénomene observé ? »

En ce qui nous concerne, on examinera si, de maniére
générale, la distribution statistique correspond a peu prés
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a une fonction mathématique choisie préalablement sans
analyser séparément les différents paramétres qui la défi-
nissent. On parle alors d’une hypothése non paramétrique.

Plusieurs tests d’hypothéses peuvent étre pris en consi-
dération. Nous avons retenu celui de Pearson ; test basé
sur la distribution de la variable aléatoire X2. Il peut se
présenter dans la forme suivante :

Soit une série d’observations réparties entre diffé-
rentes classes : Cy, Co, ... Cxget O, Os, ... Ok le nombre
d’individus par classe.

Soit Ay, As, ... Ag, les effectifs théoriques pour la
distribution ajustée. Alors, la quantité :

K
Op—Hj
=§ Iv.2.
p L4 ( 4)

est distribuée approximativement comme la variable aléa-
toire X2 avec un nombre de degrés de liberté égal a :

v=k—1-1 Iv.2.5)

ou k = nombre maximal de classes ;

A = nombre de paramétres nécessaires a I’ajustement
de la courbe théorique.

Rappelons brievement la fonction de fréquence de la
variable aléatoire X2 :

1 _];(Xz) L
K (X3 dXe= ——— .0 ~ X2

nf2 X
(]

avec v = nombre de degrés de liberté ;

Iv.2.6)

5 5 v
Ir <— = fonction gamma de parametrei

(cf. annexe 1)

Toutefois, lorsque les fréquences correspondantes a une
ou plusieurs classes sont trés petites (événement rare),
I’hypothese admise que la distribution de la variable P suit
une loi de X2 n’est plus valable. Aussi, est-il nécessaire
pour ces fréquences infimes de grouper plusieurs classes
aux effectifs restreints afin d’étudier la qualité de I’ajuste-
ment entre les distributions théoriques et expérimentales.

Par ailleurs, pour ces échantillons de taille donnée, le
nombre de degrés de liberté est naturellement inférieur au
nombre de classes k. Cependant, si la largeur des classes A4
est grande (donc k petit) et si un regroupement de classe
s’aveére nécessaire pour le calcul du test de X2, la valeur
de v peut étre nulle, voire négative. Il va sans dire que,
dans ce cas, le calcul du test ne peut étre réalisé. Nous
remarquons par ce biais une influence directe du choix
de la largeur de classe A d’une série d’observations sur
’ajustement d’une fonction de régression.

4.5 Résultats obtenus

Les calculs d’ajustement des fonctions de fréquence
théorique sur I’histogramme des observations ont été
conduits pour plusieurs stations, situées soit en plaine,

326

soit en zone de montagne. Les résultats obtenus permettent
de préciser la nature des équations théoriques et de
justifier ce choix. Plusieurs remarques peuvent étre déga-
gées de ces résultats :

— Le nombre d’années nécessaires a I’analyse statis-
tique d’une série d’observations pluviométriques est au
minimum de 30 ans. Une série plus courte conduirait
vraisemblablement & des résultats erronés. Remarquons
cependant que la précision des paramétres estimés a partir
d’observations réalisées augmente en fonction du nombre
de valeurs prises en considération (donc du nombre d’an-

nées).

— Lorsque la variable aléatoire correspond a une hau-
teur pluviométrique journaliére quelconque, la période a
prendre en considération pour le calcul doit étre inférieure
a Iannée. On évite par ce moyen I'influence de I'effet sai-
sonnier sur l’ajustement mathématique de la fonction de
fréquence.

— Le calcul du diagramme des fréquences observées
(histogramme) doit étre entrepris avec une largeur de
classe 4 de 5 mm. Un 4 trop grand rendrait trés problé-
matique le test de I’ajustement d’une fonction théorique
sur la distribution statistique. Une largeur de classe infé-
rieure a cette borne de 5 mm développerait inutilement le
calcul sans améliorer notablement les résultats.

— Parmi les différentes fonctions de distribution théo-
rique choisies, les lois de K. Pearson (Pearson III et y
incomplete) et la distribution négative exponentielle décri-
vent au mieux l'allure générale de la répartition des fré-
quences observées pour les stations étudiées. Aussi, nous
retiendrons ces deux types de distributions théoriques pour
déterminer la précipitation maximale probable de temps de
retour connu.

— Le degré de I’'ajustement d’une courbe théorique tes-
tant la fidélité du modele varie selon la période d’observa-
tion et la situation géographique de la station considérée.

— Le contrdle de la qualité de cet ajustement est réalisé
par le test du X de Pearson. La probabilité de confiance
obtenue n’est certes pas toujours trés élevée. Ceci provient
surtout du fait que le test du X2 tient peu compte des
valeurs observées correspondant & de faibles fréquences
en raison de la réunion des classes (cf. 4.4).

— L’analyse des coefficients de Fischer laisse entrevoir :

— une certaine asymétrie du diagramme de fréquence
(y1 > 0) et un étalement de la distribution statistique
observée vers les grandes valeurs de la variable aléa-
toire ;

— un aplatissement négatif sensible ((y, > 0), courbe lepto-
curtique) par rapport a la gaussienne de méme moyenne
et de méme écart type.

La mise en équation de I’histogramme observé facilite
considérablement le calcul d’'un paramétre de la fonction
lorsque les autres sont connus. Ainsi, le calcul de la préci-
pitation maximale probable correspondant & une certaine
période de retour se détermine de la fagon suivante :

— connaissant la moyenne x et les moments d’ordre 2
et 3 de la série statistique, on évalue numériquement
les paramétres correspondant aux lois de distribution
retenues (Pearson, gamma, et négative exponentielle);

— on calcule ensuite la fréquence au dépassement pour
une période de retour choisie.

Si X = temps de retour en année, la fréquence F sera
alors égale a :



1
F(X)=1—X, av.2.7)

Cependant, il y a lieu de tenir compte

d’une part, que le nombre de valeurs considéré (NV)
est plus grand que le nombre d’années (NA)

NV

=5 || px_ ¥ (IV.2.8)

et d’autre part, que les mesures sont tronquées vers le bas.

=> | ps = 07 (IV.2.9)

(@ = la fréquence vraie).
On tire alors, de (IV.2.7), IV.2.8), IV.2.9), la valeur
de @ par:

Iv.2.
NV X—1 ( 10

Q5=1—N—A-ln<X>

— on détermine enfin la grandeur de la variable cor-
respondant a la fréquence F(X) a l'aide des équations
mathématiques des distributions retenues.

Cette derniére étape nécessite un calcul par itération.
En effet, nous devons déterminer la borne supérieure de
I’intégrale de la fonction de fréquence puisque I’on connait
3 la fois ’équation de la courbe et la valeur numérique de
cette intégrale.

Développons ce calcul pour la distribution gamma. La
fonction de fréquence de cette loi est donnée par (cf.
annexe A 1):

D

A
f(x)—r—(;)'

ez . xP71 dx

Sa fonction de distribution s’écrit alors :

F(X) = };p / e~4t P71
I'(p),

0

(IV.2.11)

Par (IV.2.10), P = F (X) est entiéerement connu. Il faut
alors déterminer X de fagon que la valeur de l'intégrale
(IV.2.11) soit égale a P.

Plusieurs méthodes de résolution numérique peuvent
étre prises en considération.

L’ensemble des calculs étant effectué par un ordinateur,
nous avons adopté une méthode itérative, rapidement
convergente pour la détermination de cette borne. L’orga-
nigramme suivant en explique la marche a suivre :

V=A A = approximation de départ
1
AP u AT
(S SAT ., Pty
= '£ e T T
V=V+A
nouvelle

approximation

CONTINUE

Figure 4

La valeur numérique de F étant trés voisine de 1, nous
avons été contraint de transformer quelque peu I’équation
(IV.2.11), ceci afin de pouvoir aisément calculer des
valeurs de la courbe F(X) dans sa partie asymptotique.
L’annexe 2 développe les calculs relatifs a la distribution
de Pearson III et gamma.

Afin de controler I’exactitude de nos conclusions précé-
dentes, a savoir que seules les lois de Pearson (gamma) et
la fonction négative exponentielle représentent valable-
ment la distribution statistique observée, nous avons
calculé, pour les différentes périodes de retour, les précipi-
tations probables correspondantes. Par la suite, nous avons
vérifié ces résultats en les comparant avec les observations
réalisées a la station de Lausanne (33 ans) et de Geneve
(64 ans).

L’analyse des résultats obtenus montre une supériorité
évidente de la fonction de distribution de Pearson (gamma)
par rapport a la loi négative exponentielle dans la repré-
sentativité du phénomeéne étudié.

Aussi, retiendrons-nous ce type de distribution dans la
suite de nos calculs, notamment pour déterminer la pluie
maximale probable de période de retour choisie. Relevons
encore que l’ajustement des parameétres de cette loi est
immédiat et ne dépend que de la moyenne, de I’écart type
(distribution gamma) et du moment de troisiéme ordre
(distribution Pearson III) de la série de mesures (cf.
annexe A 1).

5. Répartition spatiale de ia pluviométrie

5.1 Homogénéisation des observations

Les caractéristiques météorologiques d’une région peu-
vent étre déterminées a partir des observations climatolo-
giques de plusieurs stations de référence environnantes.
Cependant, avant d’analyser ces différentes séries d’obser-
vations, il convient de s’assurer d’une certaine unité dans
les séries statistiques enregistrées. En d’autres termes, il est
nécessaire de définir quelques critéres de comparaison au
niveau des mesures et de corriger, s’il y a lieu, certaines
d’entre elles, afin de rendre possible une extrapolation
spatiale. On réalise ainsi une homogénéisation des obser-
vations.

Cette correction est souvent nécessaire si I’on considére
de longues séries de mesures. Il est en effet assez rare de
trouver dans une région déterminée plusieurs stations de
base ou les observations ont été entreprises sur la méme
période.

Plusieurs méthodes peuvent étre utilisées pour tester
I’homogénéité d’une série statistique. En météorologie, on
emploie fréquemment la méthode des différences pour la
température et la pression ou encore celle des quotients
pour les précipitations et I'insolation. On emploie égale-
ment un procédé graphique, donnant immédiatement un
résultat provisoire quant a I’homogénéité entre deux sta-
tions (méthode des doubles cumuls, écarts cumulés,
moyenne mobile, corrélation, etc.). Enfin, une série de tests
basés sur certains paramétres statistiques permet de déter-
miner directement les correspondances effectives entre deux
populations observées (test d’Helmert, d’Abbe, de Wilks,
de Wilcoxon, de Conrad, etc.). Nous ne les développerons
pas dans cette étude en raison de leur diversité et nous
renvoyons le lecteur intéressé aux ouvrages spécialisés cités
en annexe bibliographique.

La statistique descriptive nous permet également d’ana-
lyser la dépendance existant entre deux séries chronolo-
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giques. Introduite par Fischer, cette méthode est basée sur
I’étude de la dispersion, par le biais des variances, des dis-
tributions calculées. Toutefois, son emploi est conditionné
par une hypothése importante qui n’est malheureusement
pas toujours vérifiée en pratique, a savoir :

— les séries d’observations doivent étre normalement
distribuées.

Pour la pluviométrie, nous avons vu que cette hypothése
est trés restrictive, étant donné que seuls les modules
annuels ou mensuels obéissent & peu prés a ce type de
distribution. Ainsi, nous n’appliquerons pas cette méthode
dans cette étude et nous la réserverons pour analyser
d’autres paramétres climatologiques tels que température,
humidité, etc.

S’agissant de la longueur de la période d’observation,
I’homogénéisation entre stations peut se réaliser par plu-
sieurs procédés, tous basés sur les corrélations calculées
entre les différentes stations. Cependant, avant d’entre-
prendre un tel calcul, il convient de s’assurer de son utilité,
car il ne s’avére pas toujours indispensable suivant le but
recherché.

En ce qui nous concerne, nous aimerions déterminer la
pluie maximale probable de fréquence de retour connue ;
grandeur fonction de la précipitation journaliére observée
sur un certain nombre d’années. La durée des observations
effectuées doit étre supérieure & un minimum acceptable
(<20 ans), sans quoi le peu d’information résultante faus-
serait par trop les résultats. Aussi, dans ce cas précis, il est
inutile de corriger les séries observées pour homogé-
néiser la période de mesures.

En effet, le calcul de cette précipitation remarquable
n’est fonction que de la moyenne et des moments du second
et du troisieme ordre de la série statistique et de la loi de
distribution retenue. Or, ces trois paramétres estimés ini-
tialement a partir d’'un certain nombre d’individus consti-
tuant I’échantillon varient faiblement pour une augmenta-
tion sensible de ce dernier. Ainsi donc, il suffit de ne prendre
en considération que les stations ou la longueur de la
période d’observation correspond & un minimum fixé, en
excluant d’emblée toutes les stations n’obéissant pas a ce
critere. Rappelons également que la précision des para-
metres estimés augmente en fonction du nombre d’années
prises en considération.

En revanche, si I’'on désire obtenir un réseau de courbes
isohyetes dans une certaine région, il est alors souhaitable
d’utiliser au maximum toutes les informations disponibles.
Dans ce cas, I’homogénéisation entre stations s’avére
nécessaire, voire indispensable.

5.2 Répartition spatiale

Nous n’avons considéré dans nos calculs précédents que
des précipitations ponctuelles. Cependant, lors d’une étude
de dimensionnement d’un ouvrage, I'ingénieur-projeteur
doit connaitre la répartition moyenne de cette pluviométrie
sur une surface S donnée.

Cette pluviosité moyenne peut se calculer a partir de la
relation :

(v.2.1)

[®

g

B s .dx-d

P [[pdrear
8§

hauteur pluviométrique ponctuelle sur ds

I

ou p
p = hauteur pluviométrique moyenne sur S.

I
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ds S
dy
dx

Figure 5

Pratiquement, le calcul de cette double intégrale peut
s’approximer par plusieurs méthodes tenant compte du
nombre d’appareils de mesures et de leur répartition géo-
graphique sur la surface étudiée.

La détermination de p peut s’effectuer par exemple soit
par:

— une double intégration du réseau d’isohyétes de la sur-
face considérée par planimétrage ;

— en moyennant les hauteurs pluviométriques mesurées;
dans ce cas, la répartition des appareils doit étre le
plus uniforme possible ;

— en moyennant pondéralement les précipitations, si le
répartition des pluviomeétres n’est pas homogene ; le
coefficient de poids dépend alors directement des sur-
faces de Thiessen ou encore du relief, de I'allure de
I’averse, etc.

Enfin, d’autres méthodes peuvent étre encore utilisées
pour définir la pluviosité moyenne d’un bassin. Aux USA,
plusieurs bureaux appliquent la théorie basée sur la rela-
tion surface/hauteur de fréquence ; théorie élaborée a partir
de celle des « stations-années ». Les résultats obtenus par
cette méthode ne concordent pas toujours.

En France, la méthodologie différe encore. Celle-ci est
basée sur la recherche de la pluie moyenne sur une surface
donnée de méme probabilité que celle tombée en un point
arbitraire appartenant a cette surface. On définit ainsi un
coefficient d’abattement :

PTIZ-
K=o
P

égal au rapport entre la pluie moyenne sur une surface
donnée et la pluie ponctuelle de méme fréquence. En
considérant K et P comme deux variables aléatoires distri-
buées selon certaines lois de probabilité, la valeur de P,,
sera égale au produit de deux variables aléatoires. Le
couple (K, P) est distribué selon une certaine loi, dépen-
dante des lois marginales de K et P et de la nature du degré
de liaison entre ces deux paramétres. Cette méthode sup-
pose que la distribution statistique de K et de P soit
indépendante du lieu.

Toutes ces techniques de calcul présentent des avantages
et des inconvénients. La précision obtenue sur les résultats
est quelquefois sujette a discussion. C’est pourquoi nous
ne nous attarderons pas sur ce chapitre et nous y revien-
drons plus loin, en développant une autre méthode de
calcul a la fois plus simple et plus efficace.

5.3 Variation en fonction de 'altitude

Dans nos calculs précédents, nous n’avons jamais tenu
compte, de maniere explicite, de I'altitude de la station



d’observation. Ce paramétre n’est certes pas négligeable et
influence directement les facteurs climatologiques, a for-
tiori pluviométriques.

Plusieurs auteurs ont tenté d’établir diverses formules
liant fonctionnellement la hauteur pluviométrique a I’alti-
tude. Il s’agit en général de relations empiriques, établies
a partir d’observations locales. C’est la raison pour laquelle
il faut étre tres circonspect dans I’emploi de ces formules ;
les parameétres observés étant souvent liés a la géographie,
donc peu sujets a une extrapolation valable. Il convient
alors, dans la mesure du possible, de vérifier ces relations
théoriques notamment en réajustant les coefficients pour
la zone étudiée.

Les mesures entreprises décélent une augmentation de
la pluviosité en fonction de I'altitude jusqu’a un certain
optimum appelé optimum pluvial. Benevent a montré par
exemple que cet optimum se situait aux environs de :

— 2000 m dans les Préalpes,
— 2500 m dans les massifs centraux alpins,
— 2500-3000 m dans les hautes régions alpestres.

Par ailleurs, Serra a montré que lorsque les stations plu-
viométriques sont soumises simultanément a I'influence des
mémes fronts pluvieux, les précipitations croissent /inéai-
rement avec l'altitude. Le gradient trouvé en France est
de 55 m par 100 m de dénivelé. Primault a obtenu des
résultats similaires en Suisse, notamment dans la région
du Jura vaudois. Les droites calculées sont présentées en
annexe 4. Remarquons que le modéle proposé permettra
de vérifier cette linéarité en choisissant judicieusement les
stations a étudier.

6. Triangulation spatiale « climatologique »

6.1 Principe de calcul

6.1.1 Méthodologie

En consultant une carte géographique a petite échelle,
on recense les stations météorologiques ou les observations
de divers facteurs climatologiques s’effectuent réguliére-
ment depuis une certaine durée. Aprés avoir signalé ces
stations de base sur une carte ad hoc, on réunit graphique-
ment ces points par des droites. On forme ainsi une chaine
de triangles élémentaires.

Stations de base

Figure 6

Au droit de chaque station de base, on calcule :

— les différents paramétres statistiques pour chaque série
d’observations ;

— le polygone des fréquences observées ;

— l’ajustement sur ce polygone d’une distribution statis-
tique théorique ;

— les paramétres d’ajustement qui correspondent a la
distribution théorique retenue.

On localise par la suite la région a étudier a l'intérieur
d’un triangle formé par trois stations de base ayant le
méme type de distribution statistique. On interpole linéai-
rement a 'intérieur de ce triangle les paramétres d’ajuste-
ment de cette fonction mathématique. Fort de ces nou-
veaux coefficients, on calcule enfin, a I’aide de la distribu-
tion théorique retenue, la hauteur pluviométrique de fré-
quence au dépassement choisi correspondant & une période
de retour donnée.

6.1.2 Hypotheses

La méthode proposée nécessite cependant les hypothéses
suivantes :

— La série de mesures pour chaque station de base est
homogeéne. Par ailleurs, la période d’observations doit
étre supérieure a un minimum d’années (> 20 ans).

— A Tintérieur d’un triangle choisi, on suppose I’isotro-
pisme de la pluie, c’est-a-dire un type de répartition
statistique identique en chaque point du terrain. Seuls
les coefficients de cette distribution statistique varient
linéairement en fonction de la position plane du point
considéré. Cette hypothése est d’autant plus vérifiée
que la surface du triangle est petite.

— La variation d’un paramétre climatologique, tel que
la pluviométrie ou la température en fonction de I'alti-
tude n’est pas explicite. On en tient compte implicite-
ment dans le calcul lors de I'interpolation linéaire des
divers coefficients d’ajustement.

La premiere hypothése est trés facilement vérifiable par
un calcul préalable. Quant a la troisiéme, la méthode pro-
posée ne fait pas intervenir explicitement I’altitude de la
station calculée ; les paramétres des stations de base étant
nécessairement fonction de la cote géographique du lieu
d’observation.

6.1.3  Apergu théorique

Soit: S;; S;; Sk les stations de base de coordonnées
planes (x;; ¥); (x;5 ¥ 5 (xx; yp) délimitant le triangle
i, j, k a lintérieur duquel nous voulons calculer en un
point P de coordonnées planes x, y la hauteur pluviomé-
trique probable P correspondant a une fréquence au
dépassement F.

A chaque station de base S, les calculs effectués a partir
des observations réalisées ont montré que le type de distri-
bution théorique ajustée sur I’histogramme des fréquences
comportait 2 a 3 paramétres (m ; g ; f3). Nous avons ainsi
les correspondances :

Si (xi3 1) > M 05 [, OULZi g,
Sy (X559 > my;; 0y /13j ou: z ,
Si (x5 Yi) > Mg ; O 5 Ky, OU: Zgp

n=1,2,3
Il faut alors calculer en un point P (x, ») les grandeurs

my, , 0, et [y, par interpolation linéaire a partir des para-
metres liés aux trois stations de base S, (n = 1, 3).
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En chaque point S,, (n = 1, 3) de coordonnées x, ; ¥, on
reporte sur un axe OZ perpendiculaire au plan OXY la
grandeur z, du parameétre calculé en S,. Nous trouvons
ainsi trois nouveaux sommets S, (n = 1,3) formant un
plan 7" :

St (x5

Si(xisyi)

Figure 7

On cherche ensuite dans cet espace tridimensionnel
I’équation du plan 7’ passant par les trois points S ; S} ;
S;.. Enfin, il reste a calculer Iintersection de la droite D
passant par le point P et parallele a 'axe OZ avec ce
plan 7’. La cote ainsi obtenue z, (distance entre les
plans 7 et 7’ en P) correspond a la valeur du paramétre
interpolé.

Les calculs se présentent de la maniére suivante :

— pour Iestimation de my, :

a S; (x;; ¥;) il correspond la valeur m;
Sj (Xj 5 }’j) » » m;
Si (X5 Yie) » » ny

L’équation du plan passant par les points S;, S;, Sy de
coordonnées : (x;; yi5 zi=my; (X35 y;5 z;=my);
(X ; Y& 5 zr = my) s’écrit alors :

X% 2 1
onoa 1 (VI.1.1)
x4 1
Xe Ve ozZr 1

Le calcul de ce déterminant, la réduction des termes
effectuée, nous amene a 1’équation du plan cherché, équa-
tion de la forme :

ax +by+cz+d=0 (VI.1.2)

ou a, b, ¢, d correspondent aux mineurs des termes de la
premiére ligne du déterminant, a savoir :

vy zi 1 x oz 1
a= |y z 1 b=—|x z 1
e zw 1 Xp Zp |
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xi ¥ 1 Xi Vi Zi
C=\| X3 Yy 1 d= — X; Vi oz
X Yie 1 Xk Ve Zk

En explicitant (IV.2.2) par rapport a z, on obtient :

1
z:—g{ax—i—by—i—d} VILL:3)
c

Il suffit alors de remplacer les valeurs x et y par celles
de x, et y, dans (IV.2.3) pour calculer z,. On réalise
ainsi I'intersection du plan 7’ et de la droite D. La valeur z,
obtenue par :

Zp = —

(VI.1.4)

o | =

{axp+byp+d}

correspond alors a la cote du point P, c’est-a-dire a la
valeur du parametre interpolé a partir des m; , m; et my.
Le calcul de g, et Hs, est analogue a celui de m,, a

condition toutefois de faire correspondre aux z;, respecti-
vement les g; et les ug; des stations de base choisies.

Les valeurs des parameétres m,,, g, et us, étant définies,
il ne nous reste plus qu’a déterminer a partir de ces gran-
deurs la hauteur pluviométrique probable P correspon-
dant a une fréquence au dépassement F (cf. chap. 4, §4.5).

6.1.4 Remarques

Cette méthode parait a premiére vue longue et compli-
quée. Toutefois, si 'on rationalise le calcul, celui-ci se
simplifie singuliérement. En premier lieu, il convient de
déterminer les caractéristiques statistiques d’une série de
mesures, le polygone des fréquences observées (histo-
gramme) et I’ajustement d’une distribution théorique de
fréquence sur ce polygone.

Cette suite d’opérations ne peut se réaliser qu’'a l'aide
d’un ordinateur de moyenne a grande capacité, car les
séries statistiques constituent un fichier énorme de mesures,
surtout lorsque la période d’observation est de longue
durée (= 60 ans).

Ces différentes grandeurs étant déterminées une seule
fois, il ne reste plus qu’a interpoler, sur le triangle choisi,
les parameétres désirés. Le calcul d’un déterminant du
quatrieme ordre peut trés bien s’effectuer manuellement ou
automatiquement a I’aide d’une machine de table.

Enfin, la derniére étape nous ameéne au calcul de la borne
supérieure d’une intégrale définie correspondant a une
fonction de fréquence donnée. La encore, ce calcul peut se
réaliser soit a la main par tdtonnement avec une table,
soit & I'aide d’un petit calculateur (type Hewlett-Packard,
Olivetti, Wang, etc.).

En résumé, si I’on connait la valeur numérique des para-
meétres statistiques inhérents a chaque poste d’observation,
le calcul de la précipitation maximale probable nécessite
deux types d’opérations arithmétiques :

— le calcul d’un déterminant d’ordre 2, 3 ou 4 ;
— la recherche d'une borne d’intégrale.

Remarquons encore que, pour respecter I’hypothese
d’homogénéité ou d’isotropisme, il n’est pas toujours
possible de délimiter la zone étudiée dans un triangle de
base. Cependant, la méthode de calcul proposée s’adapte
trés bien a d’autres types de polygones qui peuvent dégé-
nérer en une droite ou en un point.



6.2 Sensibilité du modeéle

La méthode que nous venons de décrire doit étre néces-
sairement controlée et vérifiée. En premier lieu, nous
devons nous assurer que le calcul de cette précipitation
remarquable soit correctement effectué.

1l suffit, a l'intérieur d’un triangle délimité par trois
points de base, de déterminer la valeur effective d’un para-
meétre pour une des trois stations de base, considérée cette
fois-ci comme inconnue. Ceci revient a poser :

P(x;y) =S (x5 ») (VI.2.1)

La valeur du paramétre z, = z; ainsi déterminée doit
alors correspondre, aux erreurs d’arrondi pres, au parametre
calculé a partir des observations.

11 est nécessaire, par la suite, de connaitre la fiabilité du
modéle, c’est-a-dire la confiance qu’on peut lui accorder
quant aux résultats. On parle alors de sensibilité du modele,
variant naturellement en fonction de I’éloignement des
sommets du triangle et des conditions topographiques de
la zone considérée (donc en fonction de I’isotropisme
supposé).

Le contrdle de cette sensibilité est simple. Il suffit de
considérer, a l'intérieur d’un triangle choisi, une station
de base ou des observations de longue durée ont été
conduites, comme point inconnu. On détermine ainsi, par
le calcul et pour cette station, la hauteur de la précipitation
maximale & craindre correspondant a une période de récur-
rence donnée. Nous serons donc en possession de deux
valeurs de cette précipitation exceptionnelle, 1'une déter-
minée par le modéle théorique, I'autre observée et controlée
sur le terrain. L’analyse des écarts entre ces deux gran-
deurs permettra justement d’accepter ou de rejeter les sta-
tions prises en considération dans le modele et d’établir un
réseau de triangulation optimale pour I’estimation de ce
parametre.

Il convient enfin de préciser I’écart toléré entre la valeur
de cette précipitation ainsi calculée et sa valeur réelle. Nous
devons donc déterminer l'intervalle de confiance 4 de
cette grandeur.

En supposant la loi théorique de répartition des fré-
quences connue, la vraie valeur x (7') correspondant a un
temps de retour 7 se calcule par :

x () =x*4S+D(T)

(VI.2.2)

ol : x* = moyenne vraie de la loi théorique retenue ;
S = écart type vrai de la loi théorique retenue =
=
@ (T) = facteur de fréquence de la distribution consi-
dérée ;

T = temps de retour choisi en année.

Nous devons alors calculer I'écart type ¢ de cette vraie
valeur x (7). En considérant les lois « gamma » et Pear-
son III, le facteur @ (7)) s’exprime par :

P s P (V1.2.3)

u

avec: u (T) = variable réduite de la distribution consi-
dérée ;
u = moyenne de la variable réduite ;
o, = €écart type de la variable réduite.

Ainsi, pour la loi « gamma », on obtient (cf. annexes A 1
et A2):

ou :( xp = paramétre de
u(T) = X—Xo position

(x, peut étre nul)
2

=S § =0-Cy

C, = coefficient de
variation

(cf. III.1.7)

=

(VI.2.4)

Q

\
(a[ &)

ol =

trg = = e
u b sz)

SHR

Pour la loi de Pearson IIT (cf. annexes A 1 et A 2):

M,y= mode de I’échan-
tillon

—-M ou:
wlpy= 0

{ c? C, = coefficient de
= —— =" (VI.2.5) symétrie
p—1 4—C; (cf. III.1.10)
2.Ce 4—C2
— - a’

Ou= 3" c? ¢ =9c

Les facteurs de fréquences pour ces deux lois s’écrivent
alors :

— pour la loi « gamma » :

1
D (T) = u(T)-C,,—F (VI.2.6)
.
— pour la loi de Pearson III :
4—C?2 C.
D (T) = g o i) — = (VI.2.7)

Ainsi, la valeur x (T) calculée pour ces deux lois s’ex-
prime par :

x(T)=x*+S5.-D(T, Cy (VI.2.8)

Lécart type G,cp) de x (7) se détermine alors en cal-
culant I'expression :

e JOHY o [OHN . féHN |
On = Ozx <ﬁ> T Ou, Iits T Oy dus)

JH JH JH JH

2 xX*; Uo) =— - 2 o Us) + c—
+ 2y, (x ,U_)ax* il + 2ty (a5 i3) T 1

) JH JH
2 ® 3 s B
+ 2 pyy (%5 ug) o s

(VI.2.9)

avec: H = x* + @ (T, Cy)- Vo ;
1; = moment d’ordre / de la distribution choisie ;
1 = covariance des paramétres considérés.

Ainsi, en développant les calculs, on obtient :
— pour la loi « gamma » (deux parameétres, — iz = 0)
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. a®
Uf:(T) = N [(1 + K(T)-C,)? +

(VI.2.10)
| dK (T)\
| 2y .
+ 20 4+ 6D <K(T)—|—Cv = H
. dK(T) _u(T) | . du | 1
o ac, 2 vdc, ' 2C2
étant solution de : (1 1 ! gﬂ le-tdt
u u Hl— =)= —+ - -1 o
s ( T) " TO) / ‘
0
L1
- =

— pour la loi de Pearson III :

A 5[/, 4+ 3C?
6XT) = %[(1 + e ale> +

3
o <sc;1 + 15C2+ 4>zx§ + (VI.2.11)
+ 3C2%05 + 3G, (2 + Ci)alag]
avec: , . 3 C2 du 8
= —1 —_ = —— == =
g L T 7 N
(V1.2.12)
u n 1 c du 4 2
Og = = + = o =
S22 7%dc,  C?

u étant défini ci-dessus.

Les formules se compliquent singuliérement en raison de
la dépendance de @ (7)) par rapport a C,. S’agissant de la

loi de Pearson III, Kaczmarek a tabulé le facteur multi-
2

e ag . s .
plicatif de N pour certaines périodes de retour : il trouve

ainsi :

n o
Ga(r) = 5 - [/F (T,Cs)] (VI.2.13)

ou A (T;Cy) est donné dans le tableau ci-apreés :

% 0,1 1,0 5,0 10 25 50

1000 100 20 10 4 2

y
~

4,370 2,626 1,689 1,380 1,122 1,065
4,930 2,995 1,883 1,504 1,171 1,072
5,693 3,440 2,095 1,631 1,217 1,088

A 6,629 3,948 2,317 1,753 1,265 1,111 |A(T,Cy)
s 7,731 4,514 2,548 1,872 1,314 1,143
8,985 5,124 2,779 1,986 1,371 1,189

10,402 5,779 3,012 2,097 1,429 1,245
11,990 6,469 3,240 2,199 1,509 1,311
13,754 7,185 3,459 2,295 1,590 1,380
15,704 7,912 3,667 2,390 1,685 1,439
17,839 8,640 3,857 2,486 1,784 1,492
20,170 9,358 4,031 2,586 1,886 1,523
22,730 10,043 4,186 2,669 1,997 1,509
25,528 10,685 4,317 2,838 2,065 1,446
28,542 11,273 4,439 2,992 2,092 1,330
31,858 11,782 4,544 3,194 2,126 1,094

WM ——m—m——O0 0000
CROANANPARNOOARNOXTADLND
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Lécart type ¢ de la valeur calculée x,p, étant ainsi
connue, il ne nous reste plus qu’a déterminer I'intervalle
de confiance A pour une certaine probabilité x % de cette
grandeur. On trouve ainsi :

pour une probabilité 2 50 % : 4% = 0,6.62 .,
80 % : A° = 1,28.62 1,
95% : A% =2.52 4,
99 % : A% = 3.52 .,

(VI.2.14)

A = intervalle de confiance de la valeur calculée.

6.3 Généralisation du processus de calcul

Nous n’avons considéré jusqu’a présent que la hauteur
pluviométrique journaliére comme observation météoro-
logique. La méthode présentée peut aisément s’extrapoler
a d’autres paramétres, notamment pour les modules plu-
viométriques mensuels ou annuels, ou pour d’autres fac-
teurs climatologiques. Si le calcul de la pluviosité moyenne
journaliére intervient directement dans le dimensionne-
ment d’un ouvrage, l'influence de I’évapotranspiration
(ETp), par exemple, doit étre également pris en considé-
ration. Or, ce facteur est fonction de la température
moyenne, de ’humidité relative moyenne et de I’insolation
solaire ou rayonnement circum global.

A Tinstar de la pluviométrie, toutes ces grandeurs sont
ponctuelles. La valeur numérique de 'ETp dans un péri-
meétre donné peut alors étre déterminée par une interpo-
lation linéaire similaire & celle appliquée a la pluviométrie.

Cependant, il n’est pas nécessaire cette fois-ci de recher-
cher I'allure des courbes de distribution de tous ces para-
metres. Nous n’avons besoin que des valeurs moyennes
mensuelles de température, d’humidité et d’insolation pour
calculer PETp. Aussi, la statistique ne portera que sur
I’évapotranspiration déterminée a chaque station de base,
paramétre défini a partir d’autres facteurs climatologiques
également mesurés au droit de ces mémes stations.

Nous voyons des lors que la méthode présentée peut étre
facilement généralisée, sans augmenter pour autant le
volume des calculs. Il suffira alors d’associer a chacune
des stations de base le plus grand nombre possible de
parametres observés. On constituera ainsi une « banque de
données » ou un fichier numérique pour chaque station
que I’on pourra consulter aisément lors d’un dimensionne-
ment d’un ouvrage.

7. Analyse des résultats et conclusion

Nous avons pris en considération, dans nos divers cal-
culs, les observations inhérentes a 27 stations de base
réparties en Suisse romande (cf. annexe 3). La longueur
de la période de mesure varie selon les stations entre 30
et 68 ans.

A chaque poste d’observation, nous avons déterminé
les parameétres statistiques caractéristiques et les distribu-
tions représentant au mieux les séries chronologiques
observées. S’agissant de la répartition des fréquences des
pluies journaliéres, la loi théorique de distribution retenue
est celle de gamma a deux ou trois paramétres (rappelons
que la distribution de Pearson III est identique a la loi
gamma a trois paramétres). L’ajustement de cette courbe
théorique a été effectuée sur un histogramme déterminé a
partir d’'une largeur de classe de 5 mm.



Le principe de la «triangulation spatiale climatolo-
gique » a été testé avec succés en plusieurs endroits du
réseau. Cependant, les calculs relatifs a la détermination
d’une configuration optimale de stations de base n’ont pas
¢été exécutés en raison du volume considérable de calculs
numériques que cette analyse exige.

En ce qui concerne la précipitation maximale probable,
les écarts obtenus entre les valeurs observées et calculées
restent trés minimes et varient en fonction des stations de
base choisies. Une meilleure estimation quant au choix de
ces stations pourrait étre envisagée en effectuant des corré-
lations simples, voire méme multiples entre chaque poste
d’observation. L’analyse du coefficient de corrélation
totale permettrait alors d’éliminer les stations présentant
peu d’intérét dans I'estimation de ce paramétre.

Ce modele mathématique peut étre adapté a d’autres
facteurs climatologiques (température, humidité, évapo-
ration, etc.). Il est a la base d’'un modeéle plus général,
simulant les divers processus d’écoulement de 1’eau super-
ficielle et souterraine. Dans ce contexte, il permet d’estimer
le volume d’eau de pluie que le sol devra éliminer soit par
ruissellement, soit par drainage. Aussi, la précision avec
laquelle il détermine cette grandeur est amplement suffi-
sante comparativement a d’autres facteurs trés complexes
pris en considération dans une telle étude. Cependant,
nous osons affirmer que I’application de la présente
méthodologie, notamment dans la détermination de la
pluie maximale probable, offre une plus grande fiabilité
dans les résultats que toutes autres méthodes numériques
classiques. Un simple calcul d’erreur confirmerait ces
assertions.

ANNEXE 1

Rappel de la formulation mathématique des distri-
butions considérées

A. Distributions continues

1. La distribution de K. Pearson

Pearson a déterminé différentes lois qui se déduisent
toutes de I’équation différentielle suivante :

1 df (x) i X+ a
()  dx by + byx + box®

(A.1.1)

ou f(x) représente la fonction de densité de probabilité ;
a, by, by, by étant des paramétres.
En intégrant (A.1.1), on trouve :

/ v+.a i
J bot byt + b2 " | (ALD)

f@=e¢

Les douze lois de Pearson se déterminent alors pour
certaines valeurs particuliéres des coefficients suivants:

13

ot =—3 = C? (cf. 1IT.1.10)
a

ag=tt = 2 (cf. 111.1.12)
13

> o (o + 3)
4 (4o —301) (2010—30; —6)

0Ol3

Ainsi, lorsque o3 = oo, c’est-a-dire lorsque 205 = 307 +
+ 6, nous obtenons la fonction de fréquence de la III¢ loi
de Pearson.

. ==
f(x)zc<1_|_%> e Uax (A.1.3)
avec:
DL
a—al —Cg
g2 il (A.1.4)
2 e
aa+1
c=b-e“-F(a+1)

I'(a+ 1) n’est rien d’autre que la fonction gamma de
premiére espéce, a Savoir :

% (A.1.5)

F(p)=fe‘z-x1"1 dx
¥ p>0

L’ajustement des paramétres de cette distribution se déduit
immédiatement de (A.1.4).

2. La distribution gamma incompléte

La densité de probabilité de cette distribution se calcule
par :

e —Ax X -1

Sk g B
o) AP . dx

f(x) = (A.1.6)

I'(p) est donné par (A.1.5).

La moyenne X et ’écart type ¢ sont liés aux parametres A
et p de la fagon suivante :

=1
I
Sl

[&]

==

Ainsi, 'ajustement de ces paramétres se déduit immédia-
tement, a savoir :

Q| =

(A.1.7)

‘1
[

>
I
&l
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3. La distribution négative exponentielle

pour:0 = x = oo

(A.1.8)

f(x) = A.edx

avec A = constante positive.

Les caractéristiques de cette fonction de densité se cal-
culent par :

.
x= -

A

1
(72=Z§

0,693
M= "

A

Ainsi, 'ajustement des parameétres s’effectue a I'aide de la
relation :

(A.1.9)

4. La distribution normale

T—Z\2
(T>dx (A.1.10)

(SIS

1 p—
f(x)=;ﬁ'@

avec: x = moyenne de 1’échantillon ;
o

I

écart type de I’échantillon.

5. La loi log-normale (loi de Gibrat ou encore de Galton-
Alister)

Cette distribution est analogue a la loi normale lorsque
I’'on prend en considération le logarithme de la variable
aléatoire (x > 0). En utilisant les logarithmes décimaux,
cette loi peut s’écrire par :

log; ((2) — E‘)z

log;o (e) 1 — :
10 . e 2 ( o dx

% a*\/Zz '

f(x) =

(A.1.11)

avec: x* = E [log;o(x)] espérance mathématique du lo-
garithme de la variable aléa-
toire ;
0%* = V [logyo(x)] variance du logarithme de la
variable aléatoire.

La encore, I’ajustement des paramétres x et ¢ sur les carac-
téristiques de la distribution théorique considérée s’effectue
sans changement préalable de variables. Cependant, il faut
prendre garde au fait que :

E [logo(x)] # logo (E [x])

il en va de méme pour I’écart type.

6. La loi des « fuites » (du renouvellement)

Cette loi peu connue tire son nom de son utilisation, car
elle décrit de maniére assez fidele la distribution des débits
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de fuites des joints dans les conduites de gaz. Son applica-
tion en pluviométrie a été réalisée, en France, au Labora-
toire national de I’'Hydraulique avec succés. Son équation,
déterminée a partir de la théorie du renouvellement,
s’exprime par :

f@)=e # \/ﬂ_z 11[2\/ m ]dz

ou: I, = fonction de Bessel modifiée de premiére espéce ;
avec :

(A.1.12)

(A.1.13)

t étant la période au cours de laquelle la pluie totale a été
enregistrée.

Les valeurs d’ajustement des parametres p et u sont trés
facilement calculées a partir de (A.1.13). On obtiendra
ainsi :

2%
e
(A.1.14)
0.2
s

7. La distribution de Gumbel

Il s’agit 1a d’une loi particuliére, appelée loi des extrémes
décrivant I’allure d’une courbe de fréquence définie a par-
tir des valeurs minimales ou maximales d’un échantillon.
Sa densité de probabilité s’écrit par :

X +a
x+a -
fR=t.e7F ¢ " g [WL11D
c
ou:
_ Ve
7 (A.1.16)
a=E.c—X

E = constante d’Euler
=:0,5772157...

B. Distributions discrétes

8. La loi de Poisson

£(x) = Prob (X = x) = e 2

5| @

ou : A = constante positive.



Les caractéristiques principales de cette distribution se
présentent comme suit :
X =4
o%i= ]

A—l< My< 4

M,y = mode

L’ajustement du paramétre A s’effectue a I'aide de la rela-
tion :

(A.1.18)

La détermination de la valeur de la fonction f(x) nécessite
un calcul par récurrence.

Pour 0 = x = 24 on utilise I’équation :
f(x) =e2. )%

Pour x = 25 on procéde par récurrence, a savoir :
A
fx) = S « flx=1)

9. La loi binominale (ou de Bernoulli)

1
fx)=C;-p*-q" " = ks g [(A.1.19)

x!(n—x)!

avec: p+qg=1
X = n-p
o®=n-p-q=mnp(1—p)

L’ajustement des paramétres sur cette distribution est réa-
lisé par :

}2
nN—= =
x —o?
x (A.1.20)
p=—
n
g=1=p

ANNEXE 2

Quelques considérations sur les lois de Pearson Ill
et gamma incompléte

A. Distribution « gamma» (deux paramétres)
La fonction de distribution de cette loi s’écrit :

!
*e—Ax . xP~1

Fx)=/—~ P dx A.1.6
(o ‘ ) ( )
0
ou encore :
et L oD
Fx)=| —————-d A.2.1
= [T | @2
avece @

¥ =P
u=Alx — du= ldx

La recherche de la borne x de cette intégrale pour une
valeur particuliére de F(x) pose certain probléme numé-
rique lorsque F(x) est tres grand (0,9-0,999). Le calcul de
la fonction inverse n’est plus aussi aisé a effectuer dans la
partie asymptotique de la courbe, car les divers processus
d’analyse classique ne s’appliquent plus en raison d’insta-
bilité numérique. Aussi sommes-nous contraints de déve-
lopper certains calculs afin de transformer quelque peu
I’équation de cette fonction pour la rendre numériquement
intégrable.

Dans I’équation (A.2.1), la variable u n’est rien d’autre
que la variable réduite de la distribution gamma, a savoir :

X — X

p

n= (A.2.2)

En considérant x, = 0 (paramétre de position nul —-
loi a 2 paramétres), les moments de cette distribution
s’expriment par :

X=1y-p
o=p-\/y (A.2.3)
Uz =2y-p?
On peut alors écrire :
s Vy-p 1
v T Tt T e =
X yep Wy
el
Hs  2-y-p8 1
Ce= — = — =2.—
s 0_3 ps },3/.. \/?
De (A.2.3), on tire:
x o o>
pP=—=—F=0C= —
Y Wy x
d’ou :
X %I x == 1
p X p X 0-¢, X C
En résumé, on obtient :
1
C = —F—
" Vy
C,=2C, (A.2.4)
X X 1
pE . C
; 1 oo Lz
Si oo = -——,A.2.1s%crit en tenant compte de A.2.4:
I"(y)
zy
’ % s SRR T 1
F(xl)z/oc<§~—o> ce z°TT._——_dx (A.2.5)
. % G5 x-Cs
0
Posons :
X
y ==
x
d’ou, pour:
X1
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et (A.2.5) devient :

Y1

8 1
F = o7 (9 i) R |
() a' f b <CE> e c ly

0

e%|‘§

En effectuant un nouveau changement de variable :

y n _x 1
l= === —,
cc il e ¥ c
on trouve :
tl
F(t)=u« f tr-1et dt
0
Mais :
[ee)
ti
et = Y (—1F
il
=0
et

28

~

) i
Ft)=F(x) =« / trLos Z (-—l)i;—' dt

0 1—0

o) b 145
o I
— F(x1)=oz-2 /‘(—l)l- ——di
Y !
0

(A.2.6)
T
En intégrant A.2.6, on obtient :
0 b
| 17+i
P=F(x) =« -1 —
() ;()w+mn
0
— P=o-t. Pt A.2.7
L ;( )i!(y-I—i) ( )
avec :
o 1
I'(y
1 x?2
y=@= 5 (A.2.8)
v
X1 1
tl == ? ——%

Connaissant P (cf. chap. 4.3), les formules (A.2.7) et
(A.2.8) permettent alors de déterminer la valeur de x;
par itération. Le développement de la série e est arrété
deés que:

i <107
iyt )
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B. Distribution de Pearson III
La fonction de fréquence de cette distribution s’écrit :

- 1Y y\¢
mhmwa«ugyw(um
avec :
e C.Ccct+l

o=t
¢ P(E+1)a (A.2.10)
y=x—M, M, = mode de
la série.

La loi est donc a 3 parametres (M, C, a).

Considérons la fonction de fréquence en variable réduite
de la distribution gamma :

F ) = wletdu | (A2.1D)=(A.2.1)

I"(y)

avec :

X—Xp
U=

; X070

(Remarquons que la loi gamma est également a trois para-
metres : y, Xo, p.)

Effectuons le changement de variable suivant

y =C+1
p =alC (A.2.12)

Xo= My—a

(A.2.11) s’écrit alors :

1

O=re+

u¢-e ¥ du

En tenant compte de (A.2.2), on peut écrire :

L1 iy =0
fm_rw+n<p> o

1 x—(MO——a) c _z—(nlg—a) C J
= . . a o— dx
T(C+D alC & RE I

Mais de (A.2.10) on a :
y = x—M,
d’ou :

fx) =

1 y+ap pe C
. . a/C « — dx
rc+1m alC a

1 y\° LY G
=1 L) C%ae il dy
I'C+D < +a> ° §

1 (142 . cn T ey
r'c+1 a ait



et finalement :

—~C . (et ¢ cy
) =L<1 3 1) e dx

I'c+1)-a a @219

On remarque dés lors que 1’équation (A.2.13) n’est rien
d’autre que la fonction de fréquence de la distribution de
Pearson, type III (cf. (A.2.9), (A.2.10)).

Aussi, on en déduit que :

La distribution gamma a trois parametres
(7, X0, p) est strictement identique a la distri-
bution de Pearson, type III, lorsque :

y =C+1 (A.2.14)
p =alC
Xo = Mg—a

La loi de Pearson est donc un cas particulier de la distri-
bution gamma incompléte. En considérant (A.1.4), on
trouve :

e EAE B

= —

G (A.2.15)
C H = a'+C;

aqa = — « — = — .
Ly ] i

Le mode M, de la variable réduite de Pearson III

X—MO , 3
u= est égal a:
a

g-Cs

5 (A.2.16)

M():}'—aazl_l—

Les paramétres relatifs a la distribution Pearson III et
gamma se déduisent donc a partir de (A.2.15) et (A.2.16),
a savoir :

_ 4
y - (jg
~C
e ‘72 g (A.2.17)
= ' 2o
Xg=X— —
0 C.
avec :
¢, =5
g3
Si xo = 0, on trouve de (A.2.17):
o 2,
P
8
g
— C, =2 = = 2:C, (A.2.18)
x

Ainsi :

pour Cs; = 2C,, la loi de Pearson III se réduit a une
loi gamma a deux parametres.

A Tlinstar de la distribution gamma, le calcul numé-
rique de la fonction inverse de la distribution de Pearson IIT
n’est pas tres aisé a effectuer pour de grandes valeurs de
Iintégrale (0,9—0,999). Nous sommes donc contraints
d’adapter 1’équation de la fonction de fréquence de cette
distribution a ce calcul.

Nous avons démontré (A.2.14) que lorsque :

y =C+1
p =alC
Xo = j\lb —a

la fonction de distribution de la loi de Pearson III pouvait
s’écrire :

Z1

F(x;) =f1,—1(y5 cur e % du

0

(A.2.200=(A.2.1)

avec ©

Or, cette équation peut également se mettre sous la forme
suivante (cf. Annexe 2,) :

Ty+i

1 v ; "
F(xl)—m.;(—l) ToTs [A2=@2)

Il suffit donc, pour la loi de Pearson III, de calculer
Y, p et xo par (A.2.12) avec:

4
C (A.2.22)
R S
M():}_(Z/C
1 - . i
et: F(x)= ———"- (1) —— (A.2.23)
YT iZO ity +9)
avec :
X1 —Xo
T=
p
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ANNEXE 3: Triangulation spatiale climatologique.

Meteorologische und Begenmess -Stahonen der Schweiz

Reprodult avec l'autorisation du Service topographique fédéral du 3.7.73.
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ANNEXE 4 : Températures en fonction de I'altitude. Moyenne 1931-1960.
Extrait de: Etude méso-climatique du canton de Vaud, de B. PRIMAULT.
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