
Zeitschrift: Bulletin technique de la Suisse romande

Band: 99 (1973)

Heft: 11: SIA spécial, no 2, 1973

Artikel: Sur la méthode de Mayor en hyperstatique spatiale

Autor: Ansermet, A.

DOI: https://doi.org/10.5169/seals-71674

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 26.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-71674
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Sur la méthode de Mayor en hyperstatique spatiale

par A. ANSERMET, ingénieur professeur '

Introduction

Le calcul de systèmes statiques articulés et surdéterminés

évolue de façon spectaculaire ; citons à ce sujet la
publication n° 104 EPUL. A la base du calcul il y a la
méthode de Mayor soumise à l'Académie des sciences ;
cet eminent staticien a le premier choisi comme inconnues
les variations de coordonnées des nœuds, ce qui procure
une solution générale. Pour le calcul de réseaux électro-
télémétriques cette solution a aussi fait ses preuves.

Malheureusement le cours de ce professeur est épuisé et
l'édition ne sera pas renouvelée ; il paraît opportun de la
publier à nouveau. En attendant ces quelques lignes
furent rédigées car les droits de priorité de Mayor furent
parfois méconnus.

Dans ce vaste problème, traité plus à fond à Zurich et
outre Rhin, l'élément fondamental est le travail de
déformation ; pour un nœud, grâce à la solution de Mayor, on
a analytiquement une forme quadratique ternaire. La
notion d'ellipsoïde de déformation pour un nœud devient
aveuglante. C'est dire que la mesure de déformations
présente moins d'intérêt, surtout pour l'enseignement
supérieur. Quant aux systèmes articulés et statiquement
déterminés, ils se prêtent au calcul d'ellipsoïdes de
déformation des nœuds ; mais un élément est indéterminé : la
déformation quadratique moyenne. En d'autres termes
l'échelle manque mais ce n'est pas l'essentiel. Les poids
des barres a posteriori ne sont plus amplifiés comme quand
il y a surdétennination. De tels progrès furent réalisés

pour ces calculs que les mesures de déformations présentent
moins d'intérêt qu'autrefois.

Généralités

Le calcul de structures articulées est à certains égards
plus simple que celui de réseaux télémétriques ; la fixation
des poids donne lieu à moins de controverses car ces poids
sont proportionnels aux coefficients d'élasticité, aux
sections transversales des barres et aux inverses des longueurs
de celles-ci.

En outre une certaine symétrie est parfois réalisée ce qui
permet mieux d'éliminer partiellement ou totalement des
éléments non diagonaux des matrices de rigidité. Le choix
des axes joue un rôle.

Le choix des inconnues n'est plus guère sujet à des
controverses ; la supériorité de la méthode aux déforma-
tions (Verformungsgrössenverfahren) sur celle aux forces
(Kraftgrössenverfahren) n'est plus discutée. Enfin pour le
calcul des termes absolus des équations aux déformations
on rend le système déterminé (Grundsystem). Cette étape
des calculs est trop connue pour donner lieu à des commentaires.

On procédera souvent par voie semi-graphique. Le
calcul électronique a contribué à l'évolution qui s'est
manifestée pour ces calculs (voir [4]) ; mais tous les éléments
du problême ne s'y prêtent pas également bien (ellipsoïdes

1 A l'EPFL un prix Mayor fut créé pour rendre hommage
aux mérites de réminent professeur.

de déformation, poids des barres a posteriori, déformation
quadratique moyenne relative à l'unité de poids, etc.).

C'est la chaire desfetique de Lausanne qui présenta à
l'Académie des sciences (voir [1]) la solution sans formation

des dérivées de l'énergie avec représentation plane.
Divers périodiques, notamment le « Zeitschrift für Mathematik

und Physik » et le « Zeitschrift für angewandte
Mathematik und Mechanik » méconnurent cette priorité.

Avant de poursuivre développons les notations essentielles

sous forme générale donc sans indices :

/, j Longueurs des barres et sections transversales
de celles-ci

E Coefficients d'élasticité des barres

A Energie de déformation du système (Energie¬
aufwand) A [pvv] (voir [4])

v Variations de longueurs des barres (v mT)
a, b, c Coefficients directeurs des côtés du réseau et

des barres du système

Dx, Dy, Dz Variations de coordonnées des nœuds (solu¬
tion sans coupures)

dx, dy, dz Variations de coordonnées des nœuds (solu¬
tion avec coupures)

p, P Poids des barres respectivement a priori et
a posteriori

T, m Efforts axiaux (Stabkräfte) et modules des
barres (mT v)

Mr, Mi Matrices de rigidité et leurs inverses

Théoriquement les coefficients a, b, c n'ont pas
rigoureusement la même valeur selon que l'on fait des coupures
ou pas de coupures mais bien pratiquement.

Un cas concret, très simple, rendra tout le problème
plus clair.

Considérons un double-pylône (9 barres, 3 surabondantes),

six inconnues (variations de coordonnées des

nœuds). Faisons application de la solution classique tant
en ce qui concerne les réseaux télémétriques et les systèmes
articulés, surdéterminés. On pourrait réaliser la forme
sphérique pour les ellipsoïdes de déformation des nœuds
en modifiant un peu les poids des barres et éventuellement
la structure.

L'ellipsoïde dit moyen est obtenu en fonction de la
déformation quadratique moyenne relative à l'unité de
poids. Les poids a posteriori des barres présentent de
l'intérêt et donnent lieu à un contrôle bienvenu la somme
des p/P.

Pour un nœud libre posons A constant : ce ne peut être
qu'un ellipsoïde. Dans ce cas concret on a

[pav] m 0, [pbv] 0 [pc'v] 0

Double pylône à trois barres surabondantes

(9 équations et 6 inconnues car il y a 2 nœuds libres)
Le tableau des coefficients des équations aux déformations

est :
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Barres ab c a' b' c' P
1-2 ||||557 + 0,575 + 0,60 1

1-3 +0,557 - 0,575 + 0,60 ?y/^
1-4 -0,557 - 0,575 + 0,60 1

1-5 -0,557 + 0,575 + 0,60 1

1-6 + 1,00 0 0 - 1,00 0 0 0,6
6-7 + 0,557 + 0,575 + 0,60 1

6-8 + 0,557 -- 0,575 + 0,60 1

6-9 - 0,557 -- 0,575 + 0,60 1

6-10 - 0,557 + 0,575 -h 0,60 1

Ces chiffres permettent de se rendre compte de la structure.

Les poids p interviennent toujours par leurs valeurs
relatives. Les coefficients de poids des inconnues sont
ßn» ß22 ••• ßee pour les quadratiques et ßla, Q13 ß56
pour les non quadratiques. (Calcul par centre électronique
EPFL.)

La formation des matrices est immédiate

Mr

1,84 0

1,32
0
0

1,44

-0,60
0

0

1,84 o
o
o
o 0

0
0
0

symétrique 1,32 0

1,44

"0,610 0
0,758

0
0

0,694

+0,20
0

0

0,610

0
0
0
0

0
0
0
0

symétrique 0,758 0

0,694

Mi

La première des 36 équations aux coefficients de poids,
par exemple est :

l,84xßu-0,60ß14

et la quatrième :

1,84x0,610-0,60x0,20= 1

-0,60 ßu + 1,84 ßM
(calculs faits à la règle)

-0,60x0,61 + 1,84x0,20 0

Poids a posteriori P : De suite on voit que pour 8 barres
on obtient la même valeur de P :

0,557 x 0,610+0,575 x 0,758+0,60 x0,694R 0,69

et pour la barre 1—6 :

1

P
(somme p/P 6) (voir [3], p. 68)

0,610+0,610-2x0,20 0,82

Les longueurs des axes principaux des ellipsoïdes de
déformation sont proportionnelles à :

v'0,610 : \/0,758 : v/o,694 0,78 : 0,87 : 0,83

pour les deux nœuds 1 et 6, valeurs favorables.

Le problème peut revêtir une forme plus générale si,
par exemple, certains nœuds sont astreints à se déplacer
sur des surfaces. A la condition du minimum s'ajoutent
des équations liant les inconnues. Une solution usuelle
(voir [3]) consiste à fractionner le calcul (zweistufige) ;

admettons des poids p 1 pour simplifier
[w] minimum [v'v'j + [v'V] le terme non quadratique

[v'v"] étant nul. Cette solution permet de mieux
réaliser le rôle joué par les équations ce qui ne serait pas

le cas si on avait procédé par voie d'élimination préalable
d'inconnues.

Solution sans coupure de barres ni formation de
dérivées de l'énergie

A certains égards elle est remarquable mais était peu
utilisée par les praticiens car elle donnait lieu, en général,
à un nombre élevé d'inconnues et d'équations. Grâce aux
calculatrices électroniques elle est devenue moderne.
Aux 6 variations de coordonnées (Dx, Dy des nœuds
viennent s'ajouter les 9 efforts axiaux T dans les barres.
En tout lîSiconnues déterminées grâce aux 9 équations
aux déformations des barres et aux 6 équations d'équilibre
(3 par nœud libre) qui sont linéaires.

Dans le calcul classique on avait v adx + bdy +
+ c dz + /, le terme absolu / étant obtenu après coupure
de barres surabondantes. En admettant les a, b, c...
pratiquement les mêmes l'équation devient :

mT a Dx + b Dy + c Dz

Dans son mémoire présenté à l'Académie des sciences
B. Mayor a encore ajouté les équations relatives aux
nœuds fixes et celles exprimant que certains nœuds sont
astreints à se déplacer sur des surfaces.

En outre cette solution se prête bien à une représentation
plane de la structure spatiale : au point de vue des
mathématiques pures cela revient à changer les variables. Pour
chaque nœud au lieu de trois variations de coordonnées
on n'en a plus que deux et une rotation comme 3e inconnue.
Une telle représentation plane fut appliquée notamment
au calcul de la coupole du Reichstag (thèse Yung).

Pour une valeur déterminée de la rotation on a, dans le
plan, une ellipse de déformation. L'épure de statique
graphique fournit les déformations ; si le calcul graphique
est spatial c'est moins simple.

En conclusion on peut dire que l'analogie existant entre
les réseaux télémétriques et certains systèmes hypersta-
tiques a permis de réaliser de grands progrès. La solution
de Mayor, reprise dans la publication EPUL n° 104, est
la plus générale grâce au choix des inconnues. Elle se prête
au calcul complet des déformations comme il convient
dans l'enseignement supérieur. Pour ce problème la mesure
de déformations est à déconseiller ; c'est par des calculs
que l'on réalise la condition du minimum d'une part et
une forme pas trop défavorable pour les ellipsoïdes de
déformation des nœuds d'autre part. Par la méthode
des moindres carrés ces calculs sont un jeu.
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