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Sur la méthode de Mayor en hyperstatique spatiale

par A. ANSERMET, ingénieur professeur’

Introduction

Le calcul de systemes statiques articulés et surdéter-
minés évolue de fagon spectaculaire ; citons a ce sujet la
publication n°® 104 EPUL. A la base du calcul il y a la
méthode de Mayor soumise a I’Académie des sciences ;
cet éminent staticien a le premier choisi comme inconnues
les variations de coordonnées des nceuds, ce qui procure
une solution générale. Pour le calcul de réseaux électro-
télémétriques cette solution a aussi fait ses preuves.

Malheureusement le cours de ce professeur est épuisé et
I’édition ne sera pas renouvelée ; il parait opportun de la
publier a nouveau. En attendant ces quelques lignes
furent rédigées car les droits de priorité de Mayor furent
parfois méconnus.

Dans ce vaste probléeme, traité plus a fond a Zurich et
outre Rhin, I’élément fondamental est le travail de défor-
mation ; pour un nceud, grice a la solution de Mayor, on
a analytiquement une forme quadratique ternaire. La
notion d’ellipsoide de déformation pour un nceud devient
aveuglante. C’est dire que la mesure de déformations
présente moins d’intérét, surtout pour [I’enseignement
supérieur. Quant aux systémes articulés et statiquement
déterminés, ils se prétent au calcul d’ellipsoides de défor-
mation des nceuds ; mais un élément est indéterminé : la
déformation quadratique moyenne. En d’autres termes
I’échelle manque mais ce n’est pas I’essentiel. Les poids
des barres a posteriori ne sont plus amplifiés comme quand
il y a surdétermination. De tels progrés furent réalisés
pour ces calculs que les mesures de déformations présentent
moins d’intérét qu’autrefois.

Généralités

Le calcul de structures articulées est a certains égards
plus simple que celui de réseaux télémétriques ; la fixation
des poids donne lieu a moins de controverses car ces poids
sont proportionnels aux coefficients d’élasticité, aux sec-
tions transversales des barres et aux inverses des longueurs
de celles-ci.

En outre une certaine symétrie est parfois réalisée ce qui
permet mieux d’¢liminer partiellement ou totalement des
¢léments non diagonaux des matrices de rigidité. Le choix
des axes joue un role.

Le choix des inconnues n’est plus guére sujet a des
controverses ; la supériorité de la méthode aux déforma-
tions (Verformungsgrossenverfahren) sur celle aux forces
(Kraftgrossenverfahren) n’est plus discutée. Enfin pour le
calcul des termes absolus des équations aux déformations
on rend le systeme déterminé (Grundsystem). Cette étape
des calculs est trop connue pour donner lieu & des commen-
taires. On procédera souvent par voie semi-graphique. Le
calcul électronique a contribué a I’évolution qui s’est
manifestée pour ces calculs (voir [4]); mais tous les éléments
du probléme ne s’y prétent pas également bien (ellipsoides

LA EPFL un prix Mayor fut créé pour rendre hommage
aux mérites de I’éminent professeur.
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de déformation, poids des barres a posteriori, déformation
quadratique moyenne relative a I'unité de poids, etc.).

C’est la chaire de statique de Lausanne qui présenta a
I’Académie des sciences (voir [1]) la solution sans forma-
tion des dérivées de I’énergie avec représentation plane.
Divers périodiques, notamment le « Zeitschrift fiir Mathe-
matik und Physik » et le « Zeitschrift fiir angewandte
Mathematik und Mechanik » méconnurent cette priorité.

Avant de poursuivre développons les notations essen-
tielles sous forme générale donc sans indices :

I, s Longueurs des barres et sections transversales
de celles-ci

E Coefficients d’élasticité des barres

A Energie de déformation du systéme (Energie-
aufwand) 4 = [pvv] (voir [4])

v Variations de longueurs des barres (v = mT)

a, b, c Coeflicients directeurs des cotés du réseau et

des barres du systéme

Dx, Dy, Dz Variations de coordonnées des nceuds (solu-
tion sans coupures)

dx, dy, dz Variations de coordonnées des nceuds (solu-
tion avec coupures)

p, P Poids des barres respectivement a priori et
a posteriori

T, m Efforts axiaux (Stabkrifte) et modules des
barres (mT = v)

Mr, Mi Matrices de rigidité et leurs inverses

Théoriquement les coefficients a, b, ¢ ... n’ont pas rigou-
reusement la méme valeur selon que ’on fait des coupures
ou pas de coupures mais bien pratiquement.

Un cas concret, trés simple, rendra tout le probléme
plus clair.

Considérons un double-pylone (9 barres, 3 surabon-
dantes), six inconnues (variations de coordonnées des
nceuds). Faisons application de la solution classique tant
en ce qui concerne les réseaux télémétriques et les systémes
articulés, surdéterminés. On pourrait réaliser la forme
sphérique pour les ellipsoides de déformation des nceuds
en modifiant un peu les poids des barres et éventuellement
la structure.

L’ellipsoide dit moyen est obtenu en fonction de la
déformation quadratique moyenne relative a I'unité de
poids. Les poids a posteriori des barres présentent de
I'intérét et donnent lieu a un controdle bienvenu la somme
des p/P.

Pour un nceud libre posons A constant : ce ne peut étre
qu’un ellipsoide. Dans ce cas concret on a

[pav] = 0, [pbv] =0 ..... [pc'vl =0

Double pyléne a trois barres surabondantes

(9 équations et 6 inconnues car il y a 2 nceuds libres)
Le tableau des coefficients des équations aux déforma-
tions est :



Barres a b e a b’ ¢’ p
1-2  +0,557 + 0,575 + 0,60 1
1-3 40,557 — 0,575 + 0,60 1
1-4 —0,557 — 0,575 + 0,60 1
1-5 —0,557 + 0,575 + 0,60 1
1-6  +1,00 0 0 —1,00 0 0 0,6
6-7 + 0,557 + 0,575 + 0,60 1
6-8 + 0,557 — 0,575 + 0,60 1
6-9 — 0,557 — 0,575 + 0,60 1
6-10 — 0,557 + 0,575 + 0,60 1

Ces chiffres permettent de se rendre compte de la struc-
ture. Les poids p interviennent toujours par leurs valeurs
relatives. Les coefficients de poids des inconnues sont
011, Qs ... Qg pour les quadratiques et Q1o, Qi3 ... Os
pour les non quadratiques. (Calcul par centre électronique
EPFL.)

La formation des matrices est immédiate

(1,84 0 0 —0,60 0, 0 |
1,32 0 0 0 0
Mr = 1,44 0 0 0
1,84 0 0
symétrique 1,32 0

1,44

0,610 0 0 +0,20 0 0 |
0,758 0 0 0 0
Mi= 0,694 0 0 0
0,610 0 0
symétrique 0,758 0

0,694

La premiére des 36 équations aux coefficients de poids,
par exemple est :

1,84 04, —0,60 Q14 = 1,84 0,610—0,60x0,20 = 1

et la quatriéme :

—0,60 Oy; + 1,84 014, = —0,60x0,61 + 1,84x0,20 = 0
(calculs faits a la régle)

Poids a posteriori P : De suite on voit que pour 8 barres
on obtient la méme valeur de P:
| 2

5 = 0,357 % 0,610-+-0,575 % 0,758+0,60 %0,694 — 0,69

et pour la barre 1—6:

1
P = 0,610+40,610—2x% 0,20 = 0,82
(somme p/P = 6) (voir [3], p. 68)

Les longueurs des axes principaux des ellipsoides de
déformation sont proportionnelles a :

V0,610 : /0,758 : /0,694 = 0,78 : 0,87 : 0,83
pour les deux nceuds 1 et 6, valeurs favorables.

Le probléeme peut revétir une forme plus générale si,
par exemple, certains nceuds sont astreints a se déplacer
sur des surfaces. A la condition du minimum s’ajoutent
des équations liant les inconnues. Une solution usuelle
(voir [3]) consiste a fractionner le calcul (zweistufige) ;
admettons des poids p = 1 pour simplifier
[vv] = minimum = [v'v’] 4 [v”v”] le terme non quadra-
tique [v'v”] étant nul. Cette solution permet de mieux
réaliser le role joué par les équations ce qui ne serait pas

le cas si on avait procédé par voie d’élimination préalable
d’inconnues.

Solution sans coupure de barres ni formation de
dérivées de I'énergie

A certains égards elle est remarquable mais était peu
utilisée par les praticiens car elle donnait lieu, en général,
a un nombre élevé d’inconnues et d’équations. Grace aux
calculatrices ¢électroniques elle est devenue moderne.
Aux 6 variations de coordonnées (Dx, Dy ...) des nceuds
viennent s’ajouter les 9 efforts axiaux 7" dans les barres.
En tout 15 inconnues déterminées grice aux 9 équations
aux déformations des barres et aux 6 équations d’équilibre
(3 par nceud libre) qui sont linéaires.

Dans le calcul classique on avait v = adx + bdy +
+ cdz + f, le terme absolu f étant obtenu aprés coupure
de barres surabondantes. En admettant les a, b, c ...
pratiquement les mémes I’équation devient :

mT =aDx + bDy+ ¢ Dz

Dans son mémoire présenté a I’Académie des sciences
B. Mayor a encore ajouté les équations relatives aux
nceuds fixes et celles exprimant que certains nceuds sont
astreints a se déplacer sur des surfaces.

En outre cette solution se préte bien a une représentation
plane de la structure spatiale : au point de vue des mathé-
matiques pures cela revient a changer les variables. Pour
chaque nceud au lieu de trois variations de coordonnées
onn’en a plus que deux et une rotation comme 3¢ inconnue.
Une telle représentation plane fut appliquée notamment
au calcul de la coupole du Reichstag (thése Yung).

Pour une valeur déterminée de la rotation on a, dans le
plan, une ellipse de déformation. L’épure de statique
graphique fournit les déformations ; si le calcul graphique
est spatial c’est moins simple.

En conclusion on peut dire que I’analogie existant entre
les réseaux télémétriques et certains systémes hypersta-
tiques a permis de réaliser de grands progrés. La solution
de Mayor, reprise dans la publication EPUL n° 104, est
la plus générale grace au choix des inconnues. Elle se préte
au calcul complet des déformations comme il convient
dans I'enseignement supérieur. Pour ce probléme la mesure
de déformations est a déconseiller ; c’est par des calculs
que I'on réalise la condition du minimum d’une part et
une forme pas trop défavorable pour les ellipsoides de
déformation des nceuds d’autre part. Par la méthode
des moindres carrés ces calculs sont un jeu.
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