Zeitschrift: Bulletin technique de la Suisse romande

Band: 99 (1973)

Heft: 10: L'autoroute du Léman et ses ouvrages

Artikel: Les ponts et estacades de la Cornallaz

Autor: Vuillemin, J.-P.

DOI: https://doi.org/10.5169/seals-71669

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 19.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Les ponts et estacades de la Cornallaz

par J.-P. VUILLEMIN, ingénieur EPFL — Realini & Bader, ingénieurs civils S.A.

Situation

Dans la partie située au NE du village d'Epesses, l'autoroute longe à l'amont la ligne CFF de Berne et pénètre, en même temps que la voie, dans les tunnels qui traversent la colline du Flonzaley (tunnel de Chexbres pour les CFF).

Juste avant l'entrée des tunnels, le tracé de l'autoroute passe au-dessus du petit vallon de la Cornallaz, qui fut depuis des siècles le théâtre de nombreux mouvements de terrain. C'est le franchissement de ce glissement qui fit l'objet d'un mandat d'études entre deux bureaux d'ingénieurs. Le nôtre, en collaboration avec le bureau de géotechnique de MM. Ott et Blondel, fut chargé de l'étude d'un ouvrage en béton précontraint, un autre bureau établissant un projet de construction mixte acier-béton.

A l'issue de la soumission, le projet en béton précontraint, plus économique, fut retenu. Dès lors, le bureau de construction des autoroutes nous confia l'étude d'exécution des ponts de la Cornallaz; par la suite, ce mandat s'étendit aux estacades qui précèdent les ponts.

Historique du projet

En 1968, année du concours, seul le glissement proprement dit de la Cornallaz devait être franchi par un pont.

Les culées de ce pont pouvaient être implantées en bordure du glissement, sur les molasses considérées comme stables et de bonne qualité. Côté Lausanne, on accédait à l'ouvrage par un remblai de l'ordre de 6 m de hauteur. Les rapports géotechniques basés sur les sondages effectués à l'époque démontraient que cette solution était satisfaisante.

Au début de 1969 les experts demandèrent que l'on allonge les ponts côté Lausanne, afin de ne pas surcharger les bords du glissement avec les remblais d'accès. Notre bureau proposa l'exécution de culées évidées qui, tout en étant moins onéreuses qu'un pont allongé, avaient le même effet du point de vue de la stabilité des roches.

13.00 3.00 55 5.90 55 3.00

Fig. 1. — Coupe transversale type des estacades.

Au cours de l'année 1970, alors que le pont amont venait d'être terminé, l'expérience faite et l'amélioration des connaissances du sous-sol imposèrent une modification du projet général. Les grands remblais d'accès risquaient de compromettre la stabilité du coteau et seul un ouvrage d'art fondé en profondeur pouvait être toléré. C'est ainsi que l'on dut prolonger les ponts par des estacades. Forcés par les événements on ne put donc éviter cette succession d'ouvrages composée d'une estacade de 65 m, d'une culée évidée de 15 m et d'un pont de 122 m.

Conditions géologiques

Du point de vue morphologique le site de la Cornallaz se singularise par un grand glacis de pente régulière et de direction NNW-SSE, bordé au NE par une falaise rocheuse de 100 à 150 m de hauteur. Le glacis est composé d'une alternance de bancs de grès, de marnogrès et de marnes fortement fissurés dont le pendage est de l'ordre de 11° vers le SE. La falaise, constituée par une succession de couches dures et tendres, subit une érosion assez intense. Les roches écroulées de la falaise s'accumulent sur le haut du glacis en le surchargeant. Ces masses ont alors tendance à glisser vers le bas en entraînant les couches sur une profondeur variable. En temps ordinaire ce mouvement est extrêmement lent. Au cours du trajet qui les amène dans la partie inférieure les blocs de grès et de marnes subissent, par hydratation, une profonde altération qui les transforme peu à peu

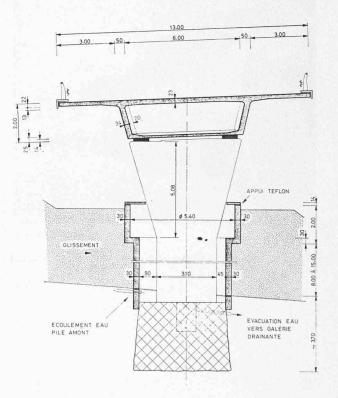


Fig. 2. — Coupe transversale des ponts.

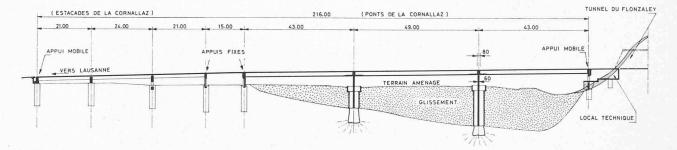


Fig. 3. — Coupe longitudinale des ouvrages.

en une masse plus ou moins homogène où ne subsistent qu'occasionnellement des noyaux de grès.

Des mouvements brusques ont dû se produire périodiquement au cours de l'histoire, le dernier en date étant celui de 1950. Dans la zone des ponts, les masses en mouvement se sont déplacées sur plus de 25 m.

En 1968, la connaissance des caractéristiques des sols situés hors du glissement était faible. Seuls quelques sondages avaient été exécutés et ne permettaient pas de prévoir que l'on rencontrerait des roches fissurées de très mauvaise qualité.

Ponts de la Cornallaz

Superstructure

La superstruture est une section classique en forme de caisson. L'inclinaison des parois du caisson, qui n'entraînait qu'une faible plus-value de coffrage, fut choisie pour des raisons esthétiques.

La précontrainte longitudinale est continue. Elle est composée de deux fois 6 câbles Freyssinet de 238 t chacun. La mise en tension a été exécutée en deux étapes, les câbles étant tirés aux deux extrémités.

Le bétonnage de la superstructure s'est effectué en trois étapes, les trois travées étant bétonnées à la suite les unes des autres. Le bétonnage de chaque travée fut lui, exécuté en deux étapes, la dalle inférieure et les parois du caisson, puis la dalle du tablier.

Palées médianes

Le bourrelet frontal du glissement a plus de 120 m de largeur à l'endroit où l'autoroute doit le franchir. Un pont d'une seule portée aurait évidemment permis d'éviter des fondations complexes. Un tel ouvrage était beaucoup trop onéreux. Pour des raisons économiques on dut implanter deux piles dans le glissement.

La fondation d'un ouvrage dans une masse de terrains instables et de mauvaise qualité impose trois mesures :

- reporter les charges en profondeur sur des sols stables et de bonne qualité,
- protéger les piles pour éviter qu'elles ne soient sollicitées par les masses en mouvement,
- assainir suffisamment le glissement pour pouvoir garantir que ses mouvements ne seront plus jamais brusques et importants.

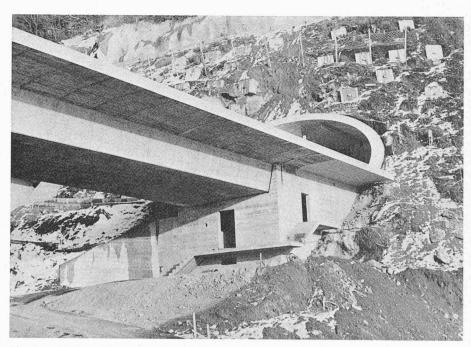


Fig. 4. — Culée évidée aménagée en bâtiment de service pour les tunnels du Flonzaley.

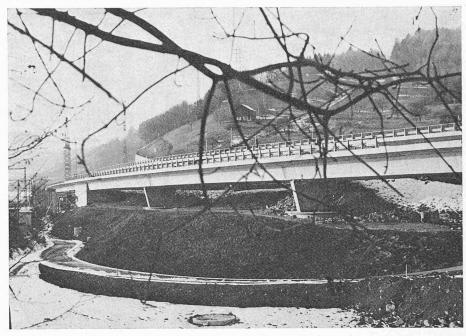


Fig. 5. — Vue d'ensemble des estacades et ponts de la Cornallaz.

De gauche à droite : estacade, culée évidée, pont.

La solution retenue consiste à passer au travers des masses instables au moyen d'un puits en béton de 5 m de diamètre, exécuté par tranches de 2 m. Le blindage s'arrête au niveau du plan du glissement, sans s'ancrer dans le terrain stable. La palée située au centre du puits est encastrée dans la roche saine par l'intermédiaire d'un massif de béton. Cette palée est parfaitement indépendante du blindage. Un vide de 90 cm la sépare du blindage et permet à celui-ci de se déplacer sans porter préjudice à sa stabilité. En cas de mouvement du glissement le blindage sera entraîné et le vide diminuera. Si un jour le vide devenait trop faible, il faudrait alors démolir une partie du blindage et recréer l'espace vide. On peut espérer que les assainisse-

ments seront assez efficaces pour que la fréquence des réfections éventuelles soit de l'ordre de la durée de vie des ouvrages.

Il est prévu d'implanter tout un système de points de repère afin de déceler les moindres mouvements du glissement.

Lors de l'exécution du massif d'encastrement des piles on découvrit dans les molasses de nombreuses fissures ouvertes de plus de 3 cm de largeur. Ces vides nécessitèrent une injection de la zone directement située sous le massif de fondation.

Afin d'éviter que les eaux d'infiltration ne remplissent les puits et ne risquent de mettre en charge le plan de glisse-

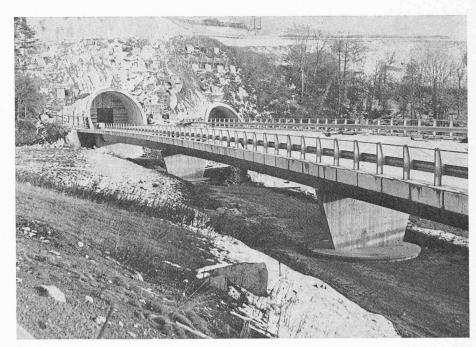


Fig. 6. — Vue du pont amont de la Cornallaz.

ment, les quatre puits sont reliés par des tubes qui furent forés depuis le fond de la fouille. L'eau ainsi collectée est évacuée vers le système général d'assainissement.

Culées

Les culées sont situées hors du glissement, à l'ouest sur de la molasse en faible pente, à l'est sur les flancs du Flonzaley, directement avant les portails des tunnels.

Afin de ne pas modifier l'équilibre des couches superficielles du terrain, chaque culée est fondée en profondeur sur quatre pieux pleins. Ces pieux ont été exécutés à la main par tranches de 1,50 m, de la manière suivante : on excave un trou circulaire de 1,50 m de profondeur puis on bétonne contre terre, en guise de blindage, 20 cm de béton non armé. On passe alors à l'excavation de l'étape suivante, que l'on blinde et ainsi de suite, jusqu'à ce que l'on rencontre une roche de qualité suffisante pour assurer la fondation du pieux. On remplit alors l'intérieur du puits avec du béton, armé dans la partie supérieure.

En modifiant légèrement les dimensions nécessitées par des considérations purement statiques on a créé, dans la culée aval côté Vevey, un véritable bâtiment mis à la disposition des services techniques des tunnels du Flonzaley. La culée abrite ainsi une sous-station, les tableaux de commande de l'électricité et de la ventilation, un groupe diesel et des batteries de secours.

Estacades de la Cornallaz

Superstructure

La section de la superstructure se compose de deux poutres d'épaisseur et de hauteur constantes, sans dalle de compression sur appuis et sans entretoises en travées.

Pour ne pas changer le sens des moments principaux dans la dalle chaussée, celle-ci n'est pas liée aux entretoises. Cette conception épurée de la superstructure permit de simplifier au maximum les travaux de coffrage et de ferraillage. Le porte-à-faux du tablier est un peu grand pour un pont à deux poutres. Mais pour des raisons esthétiques nous avons tenu à garder le même porte-à-faux que celui des ponts et des culées de la Cornallaz.

Précontrainte

La précontrainte longitudinale est continue. Elle est composée de deux fois trois câbles Freyssinet de 199 t. Avec la section choisie, dont l'axe neutre est très près de la fibre supérieure, un tracé parabolique classique des câbles est très peu favorable. Il entraîne en effet des moments parasitaires importants.

On pourrait compenser ces moments par une élévation des appuis intermédiaires, mais cette opération est délicate et son efficacité est aléatoire. Nous avons, par la mise au net spécialement à cet effet d'un programme électronique d'optimalisation de la position des câbles, déterminé un tracé tout à fait particulier, qui n'entraîne que peu de moments parasitaires. La forme du câblage, liée aux ressources du dimensionnement en précontrainte partielle, a permis de réaliser une précontrainte efficace et économique.

Appuis

L'appui du tablier est réalisé par des cadres fondés sur des pieux pleins d'un diamètre de 2,0 m. Ces pieux ont été réalisés de la même manière que ceux des culées des ponts. Pour la plupart d'entre eux la roche saine n'a pas été trouvée, les pieux sont « flottants » dans des marnes désagrégées et fortement fissurées. Un espace libre de 20 cm a été aménagé à côté des appareils d'appui. Cette marge devrait permettre en cas de mouvement d'une fondation de riper le tablier sans qu'il ne sorte des cadres d'appuis.

Culées

Les culées côté Vevey constituent les points fixes des estacades. Afin d'éviter une succession de joints désagréable pour l'usager, les dalles chaussée sont bétonnées en continuité avec les dalles des culées, sans joints.

Adresse de l'auteur : J.-P. Vuillemin, ingénieur EPFL Realini & Bader, ingénieurs civils SA 1203 Genève

Murs ancrés dans le secteur Lanciau-Crau Coulet

par P. AMSLER, ingénieur au Bureau J.-C. Ott, ingénieur conseil, Genève

1. Situation

Entre les ponts de la Bahyse et les ponts de la Cornallaz (km 16.900 à km 18.100), tronçon où elle longe à l'amont les voies CFF de la ligne Lausanne-Berne, l'autoroute N 9 est accrochée à flanc de coteau dans un terrain dont l'instabilité permanente est bien connue depuis fort longtemps : glissement des Luges près d'Epesses, toujours en mouvement, éboulement du vallon de la Cornallaz en 1951.

Les constructeurs de la ligne de chemins de fer en firent déjà l'expérience. Depuis, les CFF ont procédé à de nombreux travaux d'entretien et de renforcement des murs.

La plupart des ouvrages construits dans le secteur ont subi au cours des temps des déformations importantes, (tassements des voies et des ouvrages d'art, déjettement et fissuration des murs de soutènement et des murs de vignes etc...). Au début de notre étude, nous savions donc déjà que le tronçon d'autoroute à étudier allait poser des problèmes de stabilité délicats, que la présence des voies CFF à l'aval allait encore compliquer.

Dans le secteur en question, l'autoroute coupe une suite de vallons et de crêts formés par une série d'éperons molassiques. Le tracé et le profil en long de l'autoroute, arrêtés par le bureau de construction des autoroutes en fonction d'ouvrages de raccordements et pour des raisons de topographie générale, nécessitent la création d'une succession quasi ininterrompue d'ouvrages d'art. La figure 1 donne un aperçu de ces ouvrages sur le tronçon étudié. Les murs de soutènement ancrés décrits plus particulièrement dans cet article sont numérotés de 1 à 6 dans l'ordre croissant du kilométrage.