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BULLETIN TECHNIQUE DE LA SUISSE ROMANDE

98 année 1¢ avril 1972 N°7

Bases théoriques des méthodes extensométriques

par N.D. XENOPHONTIDIS, ingénieur EMP', chef de section & I'Institut des métaux et machines

de I'Ecole polytechnique fédérale de Lausanne

Extensométrie

Les solides soumis a des sollicitations se déforment. Pen-
dant la déformation on distingue deux phases : une phase
ou les déformations sont trés petites et réversibles puis
une phase ou les déformations sont plus importantes et
irréversibles.

Pour calculer les déformations dans la premiére phase,
on fait un certain nombre d’hypothéses concernant les
propriétés mécaniques des matériaux et on en déduit la
théorie de 1’élasticité.

La théorie de I’élasticité ne constitue qu’une approxima-
tion de la réalité. De plus, elle conduit a des équations
aux dérivées partielles dont I'intégration dans la majorité
des cas pratiques ne peut étre faite facilement.

La résistance des matériaux consideére un certain nombre
de cas simples. Elle idéalise les solides en leur donnant
des formes telles que poutres, plaques, coques, etc. Les
résultats ne sont cependant valables que sous certaines
conditions assez limitatives et généralement pas aux encas-
trements, appuis, points d’application de la charge.

On a donc imaginé des méthodes expérimentales qui
constituent en fait des méthodes d’intégration des équa-
tions de la théorie de I’élasticité. Différentes techniques se
sont ainsi développées qui constituent «1’analyse expéri-
mentale des déformations ».

Parmi les nombreuses techniques de 1’analyse des défor-
mations (ou des contraintes), certaines étudient le com-
portement interne des solides par des procédés destructifs
ou par ’étude de modeéles spéciaux. D’autres, par contre,
consistent & mesurer les seules déformations des surfaces
externes des constructions et machines réelles. Seules sont
alors connues les contraintes superficielles, mais comme
généralement c’est en surface qu’apparaissent les contraintes
les plus élevées, cet inconvénient n’est pas majeur. D’autre
part, lorsque les mesures superficielles vérifient les résultats
des calculs, on en déduit que, selon toute probabilité, il
en est de méme pour l'intérieur de la structure.

La méthode qui a pour objet la mesure des déformations
superficielles des corps s’appelle extensométrie. Le dis-
positif permettant cette mesure est un extensometre.

Les principes sur lesquels elle repose sont ceux de la
théorie de I’élasticité a laquelle il convient de se référer
pour 'interprétation des résultats.

Déformation

Comme nous venons de le dire, les solides naturels sont
déformables. On peut exprimer cette propriété de maniere
précise en disant que la distance entre 2 points quelconques
d’un solide varie en fonction des sollicitations extérieures.

On appelle déplacement total d’un point A la distance
entre les positions avant et aprés la variation de la forme

1 Ecole polytechnique d’Athénes.

du corps. Les composantes sur trois axes x, y, z du vecteur
déplacement total sont désignées respectivement par
u, v, w.

Pour définir la déformation du solide au voisinage d’un
point P quelconque, on considére, dans une direction

quelconque, un point « voisin» Q, tel que la distance II?Q |
soit petite vis-a-vis de la plus petite dimension du solide.
Dans la théorie, on la suppose infiniment petite, dans les
mesures expérimentales, elle est seulement petite, c’est la
longueur de base ou base de mesure.

Lorsque les sollicitations ont été appliquées, cette lon-
gueur |PQ| devient |P’Q’|. On appelle déformation dans
la direction PQ le rapport sans dimension

_ 1Pl — |PQ|

1) e [P0 |

De la figure 1 nous obtenons

(PQ) = (4x)* + (4y)® + (dz)®

(P'Q')E = (4x)? 4 4y + (42')?
Ax' = (1+ @> Ax + &Ay—{— %Az
dx Jy dz
2 Y ’ J J
Za 2 Al
dy =5 dx + (1+ 9y> dy+ 5 4z
Az':%d,\'#—a—wdy+ 1 91} Az
X dy dz

Les relations (2) donnent :

/

PO = (1 + 2 %) (4x? + (1 42 %) 4y +

z A

Fig. 1.
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aw " du Iy v
+<1+2(7—>(A)+2<9y 2>Ax41yT2<[7y

Iw dw  du
+ 5) Ay Az + 2<§;+ (7>A2Ax

L’équation (1) donne encore :

+

'\ 2
(epg + 1)2 = <(I;—g)) = cos? (x, PQ) + cos?(y, PQ) +
+ cos® (z, PQ) + 2 @cosz (x, PO) +

Ix

os?(y, PO) + 2 g— cos® (z, PQ) +

(7

+ 2 ( > cos (x, PQ) cos (y, PQ) +
dy

+2 <9” + )eos (7, PQ) cos (z, PQ) +

Jz
Iw

x

+ 2 - > cos (z, PQ) cos (x, PQ)

et puisque
cos? (x, PQ) + cos? (y, PQ) + cos? (z, PO) = 1

il vient finalement

B) epg = % cos?(x, PQ) + 3—; cos? (y, PQ) +

+ B_W cos? (z, PQ) +
Jz

L <@ = g) cos (x, PQ) cos (y, PQ) +

+ @” 4 9—“’) cos (v, PQ) cos (z, PQ) +
z  dy

i, (g; AL %) cos (z, PQ) cos (x, PQ)

Pour voir la signification des dérivées partielles

du du v

examinons la figure 2.

Ju
Us == 4
yA " Sy Y |
—L_——'"_——,
ST*_'*—U___”I Il
wﬁdy / /
/ /
1 |
o
L-_—:_—_'::'_T—: S T
v
{ v V‘Sx ax
|
Pl |
| | |
k——*s—’l y
Ax ~u
U‘SX A% S,
0 X

Fig. 2.
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Nous avons

Ju
A —'— a_x AA\' AX 9[[
€z = Ax Jdx

de méme, on trouve pour les autres directions

v : Iw
8 = — = —_—
Yo dy 2 0z

Les & représentent les déformations selon les axes x,y
et z. On les appelle déformations normales.

En examinant le carré de la figure 2, on remarque que
non seulement il subit une translation, mais que simul-
tanément il se déforme.

La figure 2 montre aussi que la variation de I’angle
droit, c’est-a-dire I’angle de glissement dans le plan xy est

dv Ju
dx s dy 2 v Jdu

Yoy = T gy + Ay :7x+?y

De méme pour les autres plans on trouve

T 9w+9v _(7u+(7w
Yve = dy = 0z Vez = dz  dx
Ces angles de glissement sont appelés aussi déformations
de cisaillement.

Choisissons a présent un axe x’ parallele 3 PQ. La
relation (3) devient :

@) ez = &0 + 6,08 + £,03 + V00 + Yy 00z +
3 Vaz%301
AN 7% N
Avec oy = cosxx’ ay =cosyx’ og5= coszx’

En choisissant la direction de PQ paralléele a deux
autres axes y’, z’ on trouve d’une maniére analogue :

(5 & =efi+ &,P% + &.f3 + VeuPrPe + VyPafls +
+ yz:cﬁaﬁl

AN N\ 7N
avec iy =cosx) flo=cosyy fs=coszy

(6) & = &7} + &y + &VF + Vuy¥iVe + Vue¥ays +

iy YzzV3)1
2. N R
avec y; = cosxz’ Yy =cosyz 3= coszz’

Pour I’évaluation de la déformation de cisaillement, on
considére la variation angulaire de deux segments PQ; et
PQ, initialement orthogonaux entre eux. En choisissant
PQ; parallele a x” et PQ, parallele & y” et finalement un
autre segment PQj3 perpendiculaire aux deux autres,
donc paralléle a z’, nous obtenons

Yy = 2 €005 + 2 &yaafs + 2 €055 +
+ Vay(oafa + Prote) + Py (afs + Pas) +
+ Ver (3f1 + o1 fs)

Yy = 2 &yfaya + 2 &Bsys + 2 efiyy +

(7 + Vuz (Be¥s + 72Bs) + 2z By + 75P0) +
+ Yoy (Bryz + 1182)

Yoo = 2 &30 1 2 E01% + 2 &yYatta +
t Vew (V301 + AsP1) + Pay (1102 +01P2) +
t Vyz ()’2“3 <+ (Xg}’3)




Les relations (4), (5), (6) et (7) peuvent étre utilisées
pour le passage d’un systéme des coordonnées x y z a un
autre x" )’ z’.

Pour &, = y,, = 7, = 0 et 'axe des z’ parallele a
I’axe z, les relations précédentes donnent

& = g, c08% 0 + ¢, sin? 6 + y,, sin §-cos 0

® &, = &, c08*> 0 + ¢g,sin? @ — y,, sin §-cos O

Yary = 2 (€,—¢&z) sin O-cos @ + 4y (cos® O —sin® 6)

Er =& Yyz = Yoy =0 oy = cos@

Ces équations sont couramment utilisées dans la tech-
nique de mesure avec les jauges de contraintes.

Il est évident qu’au point P il y a autant de valeurs de
la déformation & que de directions issues de P. Ainsi ¢ est
une fonction des coordonnées du point P et des cosinus

.
directeurs caractérisant les directions PQ.

Conclusion

En faisant seulement I’hypothése que le déplacement
subi par le point P au cours de la déformation est une
fonction continue du point P et en admettant que cette
déformation est infiniment petite, on voit que la défor-
mation ¢ dans la direction o;, f5;, 7;, est donnée par les
relations (4), (5), (6) et (7).

On démontrera plus loin qu’en tout point P d’un solide
il existe trois directions, en général uniques, orthogonales
entre elles et telles que si on les prend comme axes de
coordonnées, les glissements sont nuls :

Yoy = Vyz = Vzz = 0

Par suite, ces trois directions particuliéres, orthogonales
entre elles dans le solide libre, restent orthogonales entre
elles au cours de la déformation: ce sont les directions
principales de la déformation au point P.

Contraintes

Pour relier la déformation du solide aux forces exté-
rieures, il est indispensable d’introduire la notion d’efforts
intérieurs ou contraintes. Alors que la déformation est
un phénomeéne physique mesurable sur le solide méme,
au moins en surface, les contraintes ne peuvent étre direc-
tement mesurées.

Nous considérons un petit élément de surface dS en un
point P quelconque du solide. Cet élément est défini par
la direction positive de sa normale, de cosinus directeurs
oy, Op et og. Par la suite, on considére I’action exercée
par la partie du solide infiniment voisine a dS et située
du coté positif de la normale, sur la partie du solide
infiniment voisine de dS et située du coté négatif de la
normale.

Si dS représente l'aire trés petite de la surface, cette
action se réduit, dans les cas pratiques, a une force unique
dont la valeur est proportionnelle a dS.

La contrainte p sur cet élément est par définition la
limite

p=lim —

45 -0

Il est important de noter que la contrainte p est une
fonction de la position du point P et de 'orientation de
la surface qui passe par ce point.

La projection de p sur la normale a la surface A4S est
la contrainte normale ¢, sa projection sur le plan considéré
est la contrainte tangentielle 7.

Considérons un systéme d’axes x, y, z au point P, et
menons trois plans perpendiculaires aux axes x, y et z
comme sur la figure 3.

AZ
| Yp
N R
9 1 | B Tx
+ > o
y Tzy gy 'y
<1

g+
+

Fig: 3.

On appelle plan (x) le plan qui est perpendiculaire a
I’axe x, etc. Selon ce quivient d’étre dit, la contrainte qui
agit sur le plan x peut étre décomposée en une contrainte
normale ¢, et deux contraintes tangentielles selon les
directions y et z: T,,, T,,. De méme pour les deux autres
plans nous avons les contraintes : 6, Tz, Tyz €t 0z, T2z, T2y

Cauchy a démontré pour la premiére fois que 7., = Ty,
Tow = Tag ©t Toy = Typs

Ainsi nous disposons de six composantes de contraintes.

En considérant 1’équilibre d’un tétraedre élémentaire
autour du point P on démontre que ces six composantes
(04, Oy, Oz, Tay, Tyz, Tz) sont suffisantes pour la déter-
mination de la contrainte sur un plan arbitraire passant
par P.

Si oy, o, o5 sont les cosinus directeurs de la normale
du plan considéré et py., Puys Pq- l€s composantes de la
contrainte selon les directions x, y et z, nous obtenons

Pouz = 004 -+ Tyala + T,03

(9) Pa = Pay = Tay®a <+ 0,0 =t T2y03

Doz = Tzz01 = TyzX2 + 0,03

Une autre possibilité consiste a décomposer la contrainte
P selon les trois directions suivantes :
Une direction x” selon la direction de la normale
Une direction y” située dans le plan de la section
Une autre z’ perpendiculaire aux deux autres.

Selon la direction x” on a:

- —

Or = Pyr@ = Pyali + Pyye + Puzs
et finalement
10) 0y = 0,02 + 0,08 + 003 + 2 Tas +

+ 2 Ty 0000t3 + 2 Tpp030

En choisissant deux autres plans perpendiculaires aux

axes »" et z” avec comme indices les vecteurs et y, nous
obtenons
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(10) oy = 0.pf + 0,5 + 0.f2 + 2 T4yBife +

10 + 2 7y.foPs + 2 TuPsfr

0; = 05 + 0y)3 + 0213 + 2Ty ide +

+ 2 TyoPeys + 2 Teadans

Toy = Pa+B = Gy + 0,0Ps -+ 0505 +
+ Tay (1fa + rote) + 74z (affs +
+ Patts) + Top (a3fy + 01 f33)

Ty = 1—79; = 0yfays + 0Py + G fuys +

(n + Tye (Bays + V2Ps) + Tow (Bsy1 +
+ 73D + Tay Biv2 + 7152)

Tz = Py = O,yal + Op104 + 0y acty +
+ Tow (P30 + 03Y1) + Tay (1062 +
+ o2y1) + Tyz (V203 + o2)s)

En comparant les relations (7) et (8) aux relations (10)
et (11), on voit qu’elles sont analogues si on fait les cor-
respondances suivantes entre les contraintes et les défor-
mations :

Oy ~—> & 2Ty < Vay
Oy <— & 2Ty, <« Vyz
Oz %= &; 2% > Yoy

Dans un plan défini par sa normale o?, la contrainte
tangentielle 7, peut prendre la forme suivante :

Ty = P08 = (Doulle—Puy01)? + (Poyts—Dysta)? +
== (pazal _paxa{!)z

Par conséquent, la contrainte tangentielle devient nulle
pour les sections ou

Doz Poy ' Pyz = %11 021 U3

Il est évident que pour une telle section on a

Dy = Q&0 Ou p,, = 00 Pyy = 00y Py, = 003

et le systeme (9) devient

(0z—0)oy + Typ000 + T, =0
(12) § 1500 + (6,—0)as  + 1,03 =0
Tzz01 = Tyz2 + (02—0)0(3 =0

Ce systéme ne peut avoir de solutions non nulles que
si son déterminant est nul.

0,—0 Tyz T
Ty Oy—0 Tos =10
Tzz Tyz g,—0

ou
(13) o¢®*—ac®+ bo—c=0
a, b, ¢ = fonction des contraintes o, ... 7,, ...

L’équation (13) donne en général trois racines oy, o
et o3 qui sont les valeurs des contraintes principales (pour
lesquelles les 7 sont nuls).
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On peut démontrer qu’il est toujours possible de trouver
trois directions perpendiculaires entre elles telles que les
contraintes tangentielles soient nulles (directions prin-
cipales).

Représentation géométrique de [’état de contrainte en un
point

Nous venons de voir que I’état de contrainte en un point
est défini par les équations (9) ou (10) et (11), tandis que
I’état de déformation est défini par les équations analo-
gues (4), (5), (6) et (7).

Par la suite, nous allons examiner quelques méthodes
géométriques pour la représentation des lois trouvées.
Vu I’analogie des équations régissant les contraintes et les
déformations, il est indifférent de raisonner sur les unes
ou sur les autres. Prenons les contraintes.

Soit ¢y, g; et o3 les trois contraintes principales qui
caractérisent 1’état de contrainte en un point. On consi-
dére un systéme d’axes rectangulaire local x y z paralléle
aux trois directions gy, oy et gs. Il est évident qu’il n’y
a pas perte de la généralité du probléme du fait que les
directions principales peuvent étre définies pour chaque
état de contrainte. On suppose par la suite que

G']_Ea'géa;;

Ellipsoide de Lamé
Pour un systéme d’axes ainsi choisi on a
Oz = 01

Gy = 02 g, = O3

Tyz = Tyz = Tzz = 0
Les équations (9) deviennent
Paz = 0101 Doy = 030 P,, = 0303

et puisque of + of + o = 1, il vient

Paz' 1 Py’ 5 D
2 it 2 s 3 1
a1 a3 03
ou
2 32 22
()" = el = T = =1
o7 o5 o3
avec X = p,, Y = DPay 2= Dz

L’équation (14) représente un ellipsoide, appelé ellipsoide
de Lamé. Chaque rayon vecteur de 0 (voir figure 4) au
point P (x, y, 2) = P (Pyy, Py, Por) Qui @ pour longueur
Py = \pu?+ Puy® + Pa,” est égal a la contrainte résultante
sur un plan passant par l’origine.

Une construction auxiliaire est nécessaire pour la déter-
mination de ce plan (non reproduite ici).

Fig. 4.



Quadrique indicatrice des tensions normales

Une autre méthode graphique pour la représentation
de I’état de contrainte en un point peut étre obtenue en
considérant la surface.

15)  o1x* + 029% + 032 = +1

=% - Pey=" D@m= 2)

1
On démontre que | O P = ———
Vil

o, étant la contrainte normale au point considéré.
Les figures 5 et 6 montrent les trois formes de la surface
(15).

Cercles de Mohr

La construction des cercles de Mohr constitue le moyen
le plus commode pour la représentation des contraintes
en un point. Elle fournit immédiatement la réponse a
plusieurs questions difficiles a résoudre autrement. Ainsi
par exemple elle donne immédiatement les contraintes
normales et tangentielles pour un état de contrainte donné.

En admettant les mémes suppositions que celles qui ont
été faites pour les autres constructions géométriques, il
vient :

Uoz = pa'a = Paz'al + pay'(XZ + paz'aS

et puisque

Pyz = 0101 Doy = 0202 Poz = 033

0, = 010 + 0903 + 0303

Py = Pyy + IDgy + kPyy = 10100 + joo20i2 + ko3og
il vient
o; + T3 = ojof + o503 + o303
Nous avons ainsi le systéme d’équations :
J =

(16) ‘ 0103 + 0202 + 0303 = a,

2+ ai=1

I

o%0? + 030 + o2k = 62 + T2

Ces équations donnent :

(12 1 (_Ua_UZ) (O'a“O'a) ’i‘ T;
(o1—02) (0,—03)

(0,—03) (6,—0ay) + 12
16/ ?: o o o
e " (02—03) (05—01)

o (G—a) (o, ~de) 1]

%= ~ (05—0y) (03—03)

La premiére de ces équations aprés quelques transfor-
mations donne

5 2 i 2
a7 72+ (O-a s QZ,LOFG> = (g] — gg,%ﬂ> 0‘% s

2
gy — 03\* 5
4 < 32 ’) (1—af)

Fig. 5.

0’1x2+0‘2y2*0’322= 1
01) 02)0) 0%

Fig. 6.

Cette équation, pour g, g5 et g3 données, représente
une famille de cercles dans le plan o,, 7, avec comme
centre

g2 + O3
U L

le cosinus directeur oy étant le paramétre. Sachant que

0=a =1

on remarque que la famille des cercles est comprise entre
les deux cercles limites :

9 _0'2’{‘0'32# 02+032
oifoote et
) oy + a3? g + o3?

T+ la Dt ] = = ——3] o =1
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Ces cercles ont respectivement pour rayon

Oy + O3
2

gy + 03

g1 )

De méme les deux autres équations donnant les o2 et o2
conduisent finalement aux deux équations suivantes :

2 2
(18) Tu[afsji] :[02_%2] gl

+ [@]20 —d)
19 2+ [a el M] - [03 =

2

. 2
+ [‘”Toﬂ 1 — o2

2
ag (op)
%] a8+

représentant deux cercles ayant comme centres, respecti-
vement :

o3 + 0'1’0 o1 + 0’2’0

2 2
Sur la figure 7, on voit les six cercles limites ainsi obtenus.
Il est évident que chaque point (g, 7,) doit se trouver

dans la région hachurée.
La figure montre que :

Omaz = O1 Omin = 03

01 — 03

Tmaz = 2 Tmin = 0

La contrainte normale qui agit sur le plan 7,,,, est

01 + o3
Tmazr 2

Pour trouver les cosinus du plan 7,,,, on retourne aux
équations (16”). Ces équations, pour

A,

V2 )

En résumé, nous avons (pour un état de contrainte défini
par les trois contraintes principales g; > g5 > 03):

:ag+01 ot _[201—0'3
* 2 & 2
donnent
o = + i- oy =0 g = —1—
V2

a) La contrainte tangentielle max est égale a

g1 — O3
Tmaz = —2—

b) Elle agit sur deux plans paralléles a la direction o5 et
inclinés a 45° par rapport a g, et 3.
¢) La contrainte normale correspondante est

g3+ 01
Tmaz 2

d) Les gy et g3 sont les G4z €t 0,5, qui agissent sur le
point considéré.

La construction des cercles de Mohr permet de résoudre
les deux problémes suivants :

a) Détermination des o,, 7, agissant sur une section
définie par les cosinus directeurs o, oo, 0.

b) Détermination des oy, as et a3 quand les g, et 7, sont
donnés.

Revenons aux équations (17), (18) et (19). Ces trois
équations peuvent encore s’écrire

= 2
r% = [%] + a% (g1 — a9) (01 — 03)

_ 2
(20) § r3 = [%Tal:l + of (g2 — 03) (62 — 01)

2

01— 032
r3 = [1;2] + o3 (o3 — 01) (03 — 03)

|
|
|
|
1
l
01+0;
2

07+05 0340
2 2
Fig. 7. — Cercles de Mohr pour DPétat tridimensionnel des contraintes défini par les

contraintes principales o1 > g9 > o3.
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Dans ces équations, on remarque que

ry = f (o) ry = f(0t2)

rg = f(a3)

Par conséquent, si o; = const (angle du vecteur o par
rapport a I’axe z const), r; = const. C’est-a-dire quand le

vecteur o tourne autour de I’axe z en maintenant un angle
constant, le rayon r; décrit un arc de cercle. Les mémes
conclusions sont valables pour les rayons rs et rs.

En se basant sur ces remarques, on fait la construction
suivante :

Sur une droite, on note les positions 4;, As, A3 et on
trace les cercles C;, Cs et Cs.

Pour déterminer les contraintes o, 7, sur une section o
définie par les angles :

pz=1Ja

R

¢z:k

on méne les rayons K3Cj et K;C; comme le montre la
figure 8.

Par la suite, avec comme centres K; et K3 on mene les
arcs de cercle qui se coupent en C. On a: OC’' = g,,
CCi=x

o

Etat bidimensionnel
Dans le cas ou
Oy = Togg = Tzy =10

la représentation géométrique se simplifie considérable-
ment.

En admettant comme avant que les axes x, y et z sont
choisis dans les directions ¢, g» ¢t g3, il vient:

Oz, =01 0y=02 0,=03=0 Tp=7Ty=7T=0
Les équations précédentes se simplifient :
Paz = 0101 Poy = 0202 ou

Pyz = 01 €OS 0 Doy = 02 5in 0

et
Py, =\ 02cos? 0 + aisin® 0
@1 G, = 61 c08% 0 + g5sin? 0
01 — 02 . 4
Ty = ——=='5in® O
- 2

Comme nous I’avons vu dans le chapitre précédent, les
cercles de Mohr constituent une méthode graphique pour
résoudre les deux problémes a) et b) de la page 122, avec

y 4
a (2
O *Txy
N Ox X X
Fig. 9.

comme données les contraintes g, o» et gz. Mais on ne
peut pas en généial résoudre le probleme inverse, c’est-a-
dire déterminer oy, g5 et g3 si sont données les contraintes
qui agissent sur une section arbitraire.

Cependant, ce probléme peut étre résolu dans le cas des
contraintes bidimensionnelles.

Soient alors des axes qui ne coincident pas avec les
directions ¢; et g». Dans ce cas :

Pyuz = 0201 =1 Tzy2

Poy = Tzy%a S Tylla
Aprés quelques opérations, on trouve :
@2 (0, = 05 c08* 0 + 0y sin® § + 2 14y sin O cos 0
[ 1, = —(6,—0,) sin 0-cos 0 + T, (cos® §—sin® )
Pour les déformations correspondantes, on a :

l &, = £;c0s> 0 + &, sin? O + ,y sin -cos O

l 2

o (e; — &y)sinf-cos 0 + /i,)y (cos® 6 —sin? 0)

Les équations (22) peuvent s’écrire encore de la fagon
suivante :

o, + 0o O — O 4
g, = "“2 Y A xz Ycos26 + T4y sin26
(24)
Oz — Oy .
]r“:—%ystH%-rzycosZH

Note sur la convention des signes

Les g, g, sont considérés positifs dans le cas de la
traction.

Le 7., est considéré positif lorsqu’il est orient€ comme
sur la figure 9.

La méme convention est faite pour les g, et 7,.

Les équations (24) représentent un cercle. Nous remar-
quons que si I'on trace le cercle et que l'on fait varier
I’angle 2 0 dans une direction, dans la section correspon-
dante I’angle 6 varie dans le sens opposé.

La représentation la plus usuelle du cercle de Mohr
garde la méme direction pour la variation des angles et
pour cette raison on doit modifier la convention de signe
pour la contrainte tangentielle (voir figure 10).

Les équations (24) deviennent ainsi
Oy = Gf—;iy + ‘Z-}',’ig»’/ cos20 — T4y, sin26

(25) ;
0y — Oy .
Ty= ———2sin26 4 1, cos20
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Ay
y
dy dd
\ l [o4% X X
Txy
Ta
Fig. 10.

Nous venons de dire que ces équations représentent un
cercle. Ce fait est mis en évidence aprés ’élimination de
I’angle 2 0. 11 vient alors :

Oz + 0y\2
(26) <0'a = T) T,

(6, — 0,\?
x Y 2
= (f) + Ty

R0

C’est I’équation d’un cercle avec comme centre et

rayon :
o, + 0, Gl (T2
(A °> \/(iz ) +

Le paramétre 2 6 est compté a partir du rayon vecteur
au point Q (g, 7,,), dans le sens inverse de la marche des
aiguilles d’'une montre, jusqu’au point P (¢, 7).

Fig. 11.
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Conclusion résultant de la construction

a) Contraintes principales en un point

Chaque point sur le cercle représente un plan bien déter-
miné passant par le point considéré d’un corps et il a
comme coordonnées les contraintes qui agissent sur le plan.
Les points A4 et D (t = 0) correspondent aux plans prin-
cipaux :

: Oy + Oy | W
01,2OBIBP:zTyI\/<1TJ> + 7%,

Ces expressions peuvent aussi étre calculées par différen-
tiation des relations précédentes. Il est évident qu’elles
représentent les contraintes max et min qui peuvent agir
sur un plan quelconque passant par le point.

b) Orientation des plans principaux

Appelons 6p I'angle déterminant 'orientation des plans
principaux. On a:
co 7 2oy

ZN /
tg20p=tg(2n—CBQ)= —tgCBQ = — —= — .~ '3y
BC Gy — Oy

Cette €quation donne deux valeurs possibles pour
I'angle Op. On utilise I’équation auxiliaire

co

2N
sin20p = sin(2n —CBQ) = T

qui donne I'angle du plan ou agit ;.

C) Twaz €t orientation des plans sur lesquels il agit

Il est évident que

/ 2
= / 9 — O-y 4 2
Tmaz = / ,)_ = Tyy

/

BC 0,0y
€o .. 2t

R
€20, —tg <; . CBQ) -

ou

/1T N BP Oy — G
sin20, = sin (f - CBQ) st I « v

REYESEE
’ S, Tty

pour spécifier 'angle.

g1 SE T2 O + 01/
On a encore ¢ = — = 7

2

d) La méthode du péle

Le point Q" est appelé le pole et a une propriété unique.
Une droite menée du point Q" (pdle) a un point P définit le
plan PQ sur lequel agissent les contraintes (o, 7) (la nor-
male de ce plan ayant la méme pente par rapport a 'axe x
que la droite Q"P par rapport 4 Q"Q) (fig. 12). ,

Relations entre les contraintes et les déformations

Jusqu’a présent, les contraintes et les déformations ont
été examinées séparément sur la base des considérations
purement théoriques, la seule supposition quant au com-
portement du matériau étant sa continuité. Ainsi les rela-
tions trouvées sont valables pour tous les corps qui sont
faits d’'une matiére continue.




g On
oy © P, X
Ty
Q“(Ux.'Txy) T’Txy
Oy

Fig. 12.

Les relations qui lient les contraintes et les déformations
sont basées sur des lois expérimentales qui varient suivant
le matériau. Ainsi la mécanique est divisée en différentes
branches, traitant chacune une classe des matériaux spé-
cifiés (mécanique des fluides, mécanique de la plasticité).
La théorie de I’élasticité s’occupe avec les solides sollicités
dans leur domaine élastique.

Les relations développées plus loin sont basées sur cette
derniére hypothese.

Loi de Hooke

On considére une barre mince soumise a une force F
progressivement croissante. On suppose que la charge est
uniformément répartie sur la section. On obtient ainsi le
diagramme suivant :

Pour la partie OP nous avons (fig. 13) :

27) Or— B €z
E : constante de proportionnalité.

La valeur de cette constante dépend du matériau. La
relation (27) qui montre la proportionnalité de la contrainte
et des déformations est appelée loi de Hooke.

Loi de Hooke généralisée

On vient de voir que chaque état de contrainte et de
déformation peut étre défini au moyen de six composantes.
Une généralisation logique de la loi de Hooke consiste a
faire de chaque composante des contraintes une fonction
linéaire des déformations ; cela a été fait par Cauchy :

0;=Cré+ Ciaty+ Cigé; + Crg Yoy +
+ Ci5 Yyz + Cr6 + Ve

Tex = Cﬁl &+ Cﬁ‘z &y + CG.‘S & + CG-I Yay ik

+ CGS }'yz + C66 yzz

C’est la loi de Hooke généralisée.
Cyy ... : constantes élastiques du matériau indépendantes
des contraintes et des déformations.

On peut démontrer par des considérations sur I’énergie
de déformation que pour des corps isotropes (les propriétés
élastiques sont les mémes dans toutes les directions) les
36 constantes ne sont pas indépendantes mais liées entre
elles par des relations de sorte qu’il y a deux (et seulement
deux) constantes élastiques indépendantes.

Ainsi nous obtenons :

Oy = )Jl 4+ 2 G &y Tay = G Vay

(8
P
0 3
Fig. 13
o, =A1+2Gg, Ty — G
0.=A1+2Geg, Tow = Gz
avec

/. constante de Lamé

G

module de cisaillement

Ji=¢&; + & + &
On remarque que Si Ty = Ty, = T, = Oilest y,, =
= VYyz = VYzz = 0

Pour des corps isotropes, les axes principaux des
contraintes et des déformations coincident.

Signification physique des constantes élastiques
a) Cisaillement pur
O =0y =0;= Ty, = Tz =0
T,y = contrainte appliquée.

Les équations précédentes donnent :

contraintes de cisaillement
déformation angulaire

G:Tﬂ,

S
Vxy

= module de cisaillement

b) Cas de la traction simple

Oy =0;=Toy = Tyz = T2z = 0

0, = contrainte appliquée.

Les équations précédentes donnent :
A+ G

Cf — e
’ GBA+2G)

(o

A
oGy ®

&y = &;

Auparavant, nous avons défini la constante E dans un
essai de traction simple :

1
€z = = 0z

Il vient :

,_GQG—E)
ST
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d’autre part :
A GBL+26
2G(BA+2G6G) A+ G

}L VE avec V= A
Z T2 EG)

Ey=¢& = — T

k——_f‘::
20+6G) *

.~ € . ]
v = le rapport négatif g—y dans le cas de la traction simple.
x

En choisissant les E, v comme constantes élastiques,
nous obtenons :

&z = — (Ux i Y (ay Tt O'z))

E

1
81/ N E(Uy =y (Jz + Gz))

1
G= (0: — v(o, + 0y)

2(1+ V)
sz=szy
2(1+ )
yz:—-r‘cyz
21+
P
et
92 = < (A =ve+ vy + &)
- £ 1 ) e
Uy_m(( — Ve, + v+ &)
Ca A —=we + v+ &)

S A+vwa-—-2v

Etat plan des contraintes

g, =0
Il vient :
(I—=v) e, = —v(ez + &)
v
& = —(1—_1))(814—%)
Donc

E

= / iz e v? :
Oz= (-m (( V) Ex ng a_—v) (81 == Ey)>

» E (1 =2v+ 12— + g, (—V2+v—1?)
T A+na-2v) (1—v)
E
g pe &z + vey
Finalement
E
Oz = ?vz(s”+ VEy)
Gy — ?‘)2 (E"c + vV Ey)
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La nouvelle presse a filer de 7200 tonnes
de I'’Aluminium suisse S.A., a Chippis

par PIERRE HOFFMANN, ingénieur SIA

L’aluminium prend une place toujours plus impor-
tante dans le construction, dans le génie civil et dans de
nombreuses branches de I'industrie. Il est livré sous forme
de pieces moulées, de pieces laminées et de profilés obtenus
par filage. Les applications de ces profilés dont les formes
peuvent étre extrémement diverses sont innombrables.
Dans certaines d’entre elles, on a besoin de trés fortes
sections. Il en est ainsi, par exemple, pour les profilés
entrant dans la constitution de structures porteuses
(batiment et génie civil), de facades, d’ossatures de véhi-
cules routiers et ferroviaires, d'engins de manutention de
toutes sortes, de machines, ainsi que pour ceux utilisés en
électrotechnique et dans les constructions navales et
aéronautiques. Ces fortes sections peuvent naturellement
étre obtenues en assemblant deux ou plusieurs profilés au
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moyen de cordons de soudure, par exemple. Mais il est
évidemment préférable de les filer d’'une seule piéce. Clest
pourquoi I’Aluminium suisse S.A. a décidé d’acquérir et
d’installer dans son usine de Chippis une presse a filer
capable d’exercer sur les billettes un effort de poussée de
7200 tonnes et qui est actuellement la plus forte presse a
filer de Suisse. La plus grande presse a filer d’Europe,
pouvant exercer une poussée de 8500 tonnes, se trouve
en Allemagne et les trois plus grandes presses du monde,
pour une poussée de 12 500 tonnes, sont en service aux
Etats-Unis. Il existe, d’autre part, une presse de 9500
tonnes au Japon. Les grandes presses ne permettent pas
seulement de fabriquer des profilés plus grands, mais
ceux-ci peuvent avoir des parois plus minces et des formes
plus compliquées. De plus, les alliages de grande résis-
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