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BULLETIN TECHNIQUE DE LA SUISSE ROMANDE 98" année 1"" avril 1972 N"7

Bases théoriques des méthodes extensométriques

par N.D. XENOPHONTIDIS, ingénieur EMP1, chef de section à
de l'Ecole polytechnique fédérale de Lausanne

'Institut des métaux et machines

Extensométrie

Les solides soumis à des sollicitations se déforment.
Pendant la déformation on distingue deux phases : ime phase
où les déformations sont très 'petites et réversibles puis
une phase où les déformations sont plus importantes et
irréversibles.

Pour calculer les déformations dans la première phase,

on fait tm certain nombre d'hypothèses concernant les

propriétés mécaniques des matériaux et on en déduit la
théorie de l'élasticité.

La théorie de l'élasticité ne constitue qu'une approximation

de la réalité. De plus, elle conduit à des équations
aux dérivées partielles dont l'intégration dans la majorité
des cas pratiques ne peut être faite facilement.

La résistance des matériaux considère un certain nombre
de cas simples. Elle idéalise les soudes en leur donnant
des formes telles que poutres, plaques, coques, etc. Les
résultats ne sont cependant valables que sous certaines
conditions assez limitatives et généralement pas aux
encastrements, appuis, points d'application de la charge.

On a donc imaginé des méthodes expérimentales qui
constituent en fait des méthodes d'intégration des équations

de la théorie de l'élasticité. Différentes techniques se

sont ainsi développées qui constituent «l'analyse
expérimentale des déformations ».

Parmi les nombreuses techniques de l'analyse des
déformations (ou des contraintes), certaines étudient le
comportement interne des solides par des procédés destructifs
ou par l'étude de modèles spéciaux. D'autres, par contre,
consistent à mesurer les seules déformations des surfaces
externes des constructions et machines réelles. Seules sont
alors connues les contraintes superficielles, mais comme
généralement c'est en surface qu'apparaissent les contraintes
les plus élevées, cet inconvénient n'est pas majeur. D'autre
part, lorsque les mesures superficielles vérifient les résultats
des calculs, on en déduit que, selon toute probabilité, il
en est de même pour l'intérieur de la structure.

La méthode qui a pour objet la mesure des déformations
superficielles des corps s'appelle extensométrie. Le
dispositif permettant cette mesure est un extensomètre.

Les principes sur lesquels elle repose sont ceux de la
théorie de l'élasticité à laquelle il convient de se référer

pour l'interprétation des résultats.

Déformation

Comme nous venons de le dire, les solides naturels sont
déformables. On peut exprimer cette propriété de manière
précise en disant que la distance entre 2points quelconques
d'un solide varie en fonction des sollicitations extérieures.

On appelle déplacement total d'un point A la distance
entre les positions avant et après la variation de la forme

1 Ecole polytechnique d'Athènes.

du corps. Les composantes sur trois axes x, y, z du vecteur
déplacement total sont désignées respectivement par
u, v, Vf.

Pour définir la déformation du solide au voisinage d'un
point P quelconque, on considère, dans une direction

quelconque, un point «voisin» Q, tel que la distance IPQI
soit petite vis-à-vis de la plus petite dimension du solide.
Dans la théorie, on la suppose infiniment petite, dans les

mesures expérimentales, elle est seulement petite, c'est la
longueur de base ou base de mesure.

Lorsque les sollicitations ont été appliquées, cette
longueur |Pßl devient lP'ß'1. On appelle déformation dans
la direction PQ le rapport sans dimension

(1) SPQ
\P'Q'\ - \PQ\

\PQ\

De la figure 1 nous obtenons

(PQf (Axf + (Ayf + (Azf
(P'Q' )a G4*02 + (.Ayf + (Azf

(2)

Ax' | 1 + — Ax
dx i

Ay' p Ax + 11
àx

du du
^r- Ay + 3- Az
dy dz

dv\ I dv t
dy)Ay+dzAz

A ' ^W
AAz ^— Ax

dx dy
Ay

Les relations (2) donnent :

{ + 2^\(Axf

z n

1 dw\
11 s) '

i+2|W)

£fl

^xt m
^""^y s'a*.

Az

Q'

Ai.

S A ulAx
TZ!

X

Fig. 1.
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dw\ _ /dw du\
+ ^\AyAz+2lTx+T)AzAx

L'équation (1) donne encore :

Nous avons

(SPQ + D2 tiP'QlY
PQ

cos2 (x, PQ + cos2 (y, PQ) +

du
cos2 (z, PQ) + 2 ^cos2 (x, PQ) +

ax
dv dw

+ 2^- cos2 (y, PQ) + 2^- cos2 (z, PQ) +dy âz

(du dv\+ \d~ + dx)cos (*' Q) cos {y'PQ) +

/dv dw\
+ 2(dz + TÌ cos (y'PQ) cos (z'PQ) +

tdw du\ _+ \dx + d~)cos (z'FQ) cos (*'pß)

et puisque

cos2 (x, PQ) + cos2 (y, PQ) + cos2 (z, Pß 1

il vient finalement

(3) SpQ ^ cos2 (x, PQ) + j cos2 (y, PQ) +

+ t- cos2 (z, PQ) +dz
r •yiA

cos (x, PQ) cos f>, J°ß) +

cos (y, PQ) cos (z, PQ) +
/dw du\

+ xdx + d~z)cos (*'pß) cos (*' ß)

Pour voir la signification des dérivées partielles
du /du dv\
dx ' \dy dx)

examinons la figure 2.

(I+ dxl

(dv dw

dy

ynL u-|^y

T
« u »

1

i
/
/v4

i

Ay

J

py 1

1

/
/
/

i

<

p

1

1
/
i

1 ;

v

i

—

lAx
X

L
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;

1

y
Ax u*4j^Ax

»»
0

Fig. 2.

du
Ax + ^- Ax—Ax

dx
Ax

du
dx

de même, on trouve pour les autres directions

i
dv dw

v dy~
e* dz~

Les e représentent les déformations selon les axes x,y
et z. On les appelle déformations normales.

En examinant le carré de la figure 2, on remarque que
non seulement il subit une translation, mais que
simultanément il se déforme.

La figure 2 montimjiaussi que la variation de l'angle
droit, c'est-à-dire l'angle de glissement dans le plan xy est

Yxy

dv du
¦=- Ax m Ay
ax dy

Ax Ay

dv du

dx dy

De même pour les autres plans on trouve

dw dv du dw
dz dz dxyy^jy

Ces angles de glissement sont appelés aussi déformations
de cisaillement.

Choisissons à présent un axe x' parallèle à PQ. La
relation (3) devient :

(4) e'x e^a2 + £j,a| + fi«a§ + JV*ia2 + yyzX&a

+ Vzx<Xs<Xl

Avec eux cos x x' <*2
/\cos y x" a3 cos z x

En choisissant la direction de PQ parallèle à deux
autres axes y', z' on trouve d'une manière analogue :

(5) exßf + Evßl + ezßl + y^ßA + y^A
+ Vzxßaßi

/\ /\ /s
avec /?i cos xy' /?2 cos y y' ßz — cos z y

(6)

+ yzxysyi

avec yx cos x

^t/fi #Ì + 5WJL72 + JWaft +

y* cosyz y3 cos z z'

Pour l'évaluation de la déformation de cisaillement, on
considère la variation angulaire de deux segments PQx et
PQ2 initialement orthogonaux entre eux. En choisissant
PQx parallèle à x' et Pßa parallèle à y" et finalement un
autre segment PQ3 perpendiculaire aux deux autres,
donc parallèle à z', nous obtenons

(7)

y*-*

yvz

y**

I 2 SxCXxßx + 2 EyCLißt + 2 EiKsßs +
+ yxyfrißn + ßx<*iu + yVt (otißa + ßa«u +
+ yix (asft + aiÄs)

2 Eyßtfa + 2 e,ßaya + 2 ea&yi +
+ Vyt (ßara + y%ßz) + 7zx OSsVi + yaßu +
+ yxy (ßiy*, + yißa)

2 esy8as -I- 2 8ayi«i + 2 e„y8aa +
+ y*x<y&x + «s?i) + yxv (yi*2 +«iyì) +
+ yVi (yn<x3 + <*»ya)
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Les relations (4), (5), (6) et (7) peuvent être utilisées

pour le passage d'un système des coordonnées x y z à un
autre x' y' z'.

Pour ez yzx yyz 0 et l'axe des z' parallèle à
l'axe z, les relations précédentes donnent

(8)

Ex COS"

Ey COS2 9

Ey sin2 0 sin 0-cos i

Ex sin2 0 — yXy sin 0-cos 0

yx-y- 2 (ev—ex) sin 0-cos 0 + yxy (cos2 0—sin2 0)

ez* £z 7*v 7zv ° ai cos 0

Ces équations sont couramment utilisées dans la
technique de mesure avec les jauges de contraintes.

Il est évident qu'au point P il y a autant de valeurs de
la déformation e que de directions issues de P. Ainsi e est

une fonction des coordonnées du point P et des cosinus

directeurs caractérisant les directions PQ.

Conclusion

En faisant seulement l'hypothèse que le déplacement
subi par le point P au cours de la déformation est une
fonction continue du point P et en admettant que cette
déformation est infiniment petite, on voit que la
déformation e dans la direction a{, ß{, y{, est donnée par les
relations (4), (5), (6) et (7).

On démontrera plus loin qu'en tout point P d'un solide
il existe trois directions, en général uniques, orthogonales
entre elles et telles que si on les prend comme axes de

coordonnées, les glissements sont nuls r

Yx Yyz Yz: 0

Par suite, ces trois directions particulières, orthogonales
entre elles dans le solide libre, restent orthogonales entre
elles au cours de la déformation : ce sont les directions
principales de la déformation au point P.

Contraintes

Pour relier la déformation du solide aux forces
extérieures, il est indispensable d'introduire la notion d'efforts
intérieurs ou contraintes. Alors que la déformation est

un phénomène physique mesurable sur le solide même,
au moins en surface, les contraintes ne peuvent être
directement mesurées.

Nous considérons un petit élément de surface dS en un
point P quelconque du solide. Cet élément est défini par
la direction positive de sa normale, de cosinus directeurs
«x, aa et a3. Par la suite, on considère l'action exercée

par la partie du solide infiniment voisine à dS et située
du côté positif de la normale, sur la partie du solide
infiniment voisine de dS et située du côté négatif de la
normale.

Si dS représente l'aire très petite de la surface, cette
action se réduit, dans les cas pratiques, à une force unique
dont la valeur est proportionnelle à dS.

La contrainte p sur cet élément est par définition la
limite

AF
p lir

AS^-0 AS

Il est important de noter que la contrainte p est une
fonction de la position du point P et de l'orientation de
la surface qui passe par ce point.

La projection de p sur la normale à la surface AS est
la contrainte normale a, sa projection sur le plan considéré
est la contrainte tangentielle x.

Considérons un système d'axes x, y, z au point P, et
menons trois plans perpendiculaires aux axes x, y et z
comme sur la figure 3.

z

itf

W Tzy

<i

Fig. 3

On appelle plan (x) le plan qui est perpendiculaire à
l'axe x, etc. Selon ce qui vient d'être dit, la contrainte qui
agit sur le plan x peut être décomposée en une contrainte
normale ax et deux contraintes tangentielles selon les
directions y et z: Xxy, xxz- De même pour les deux autres
plans nous avons les contraintes : ay, xyx, xyz et az, xzx, xzy.

Cauchy a démontré pour la première fois qujsfcj, xyx,
tZx XXZ et TZy TyZ.

Ainsi nous disposons de six composantes de contraintes.
En considérant l'équilibre d'un tétraèdre élémentaire

autour du point P on démontre que ces six composantes
(o~x, (J'y, az, xXy, xyz, Xnx) sont suffisantes pour la
détermination de la contrainte sur un plan arbitraire passant
par P.

Si a1; a2, a3 sont les cosinus directeurs de la normale
du plan considéré et j»M, pay, p^ les composantes de la
contrainte selon les directions x, y et z, nous obtenons

(9) Pa

ojxî. + XyxXZ + xzxa.s

XxyCtx + ava2 + xzyaz

— Xxißx ~r xyza%

Une autre possibilité consiste à décomposer la contrainte
pa selon les trois directions suivantes :

Une direction x" selon la direction de la normale
Une direction y' située dans le plan de la section
Une autre z' perpendiculaire aux deux autres.

Selon la direction x' on a :

O'x Px-a PatCtx + Pau«2 + /W*3

et finalement

(10) a'x axal + ay<4 + ozol\ + 2 x^x^ +

+ 2 Xy&iP.* + 2 XaPsOCx

En choisissant deux autres plans perpendiculaires aux

axes y et z' avec comme indices les vecteurs ß et y, nous
obtenons
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(10)

(10) a'y oxßl + oyßl + azß% + 2 xxyßxß2 +
+ 2 xyzß2ßa + 2 x^ßsßx

o'z °xY\ + °vYl + ffzYÌ + 2 Xxyy1y2 +
+ 2 xyzy2y3 + 2 xzxysyi

Xx'V =Pa-ß= Gxßlfc + Oy<X2ß2 + OzK3ß3 +
+ Xxy (CXxß2 + ßl«z) + Xyz (<X2ß3 +
+ ß&a) + xzx (<x3ßx + ocxß3)

xyz- P$-Y oyß2y2 + OzßaYa + crxßxYi +
+ xyz (ß2y3 + yzßs) + Xix (ß3yx +
+ yaßu + Xxy(ßxY2+Yißu

Wm Py-<x GzYa<X-a + OxYiXi + oyy2o.2 +
+ xzx (y3ccx + <x3yx) + Xxy (7ia2 +
+ a2yi) + xuz (y2x3 + <x2y3)

En comparant les relations (7) et (8) aux relations (10)
et (11), on voit qu'elles sont analogues si on fait les
correspondances suivantes entre les contraintes et les
déformations :

01)

On peut démontrer qu'il est toujours possible de trouver
trois directions perpendiculaires entre elles telles que les
contraintes tangentielles soient nulles (directions
principales).

Représentation géométrique de l'état de contrainte en un
point
Nous venons de voir que l'état de contrainte en un point

est défini par les équations (9) ou (10) et (11), tandis que
l'état de déformation est défini par les équations analogues

(4), (5), (6) et (7).
Par la suite, nous allons examiner quelques méthodes

géométriques pour la représentation des lois trouvées.
Vu l'analogie des équations régissant les contraintes et les
déformations, il est indifférent de raisonner sur les unes
ou sur les autres. Prenons les contraintes.

Soit O].. 0a et 0s les trois contraintes principales qui
caractérisent l'état de contrainte en un point. On considère

un système d'axes rectangulaire local xyz parallèle
aux trois directions o\, a2 et a3. Il est évident qu'il n'y
a pas perte de la généralité du problème du fait que les
directions principales peuvent être définies pour chaque
état de contrainte. On suppose par la suite que

0i Ss a2 03

ax <—s- ex 2 Xxy I—*¦ Yxy

dy -S—* Ey 2. Tyg pi Yyz

az -<—* ez 2t™ *—»¦ Yzx

Dans un plan défini par sa normale a, la contrainte
tangentielle xa peut prendre la forme suivante :

Xi p\~a\ (Pa.x^-PgyO.xf + (PayOts-PçafXÔ2 +
+ (PazfXl-PeixVa?

Par conséquent, la contrainte tangentiale devient nulle
pour les sections où

Pox'-Pay '-Paz al : a2 : «3

Il est évident que pour une telle section on a

pa au ou pax aocx pay a«2 p„z aa3

et le système (9) devient

(ax-a)<Xx + xyxcc2

(12) - xxy<Xx + (Vy-oÊÊ

Xxz&i + xyza2

xzxoc3 0

Xzx<Xa 0

(az—&)<x3 0

Ce système ne peut avoir de solutions non nulles que
si son déterminant est nul.

0*-0
Xxy

Xxz

Oy — O

Xzx

Xzx

a.—a

m o

ou

(13) o*-ao2 + ba-c 0

a, b, c fonction des contraintes ax txv

L'équation (13) donne en général trois racines ax, a2
et Os qui sont les valeurs des contraintes principales (pour
lesquelles les x sont nuls).

Ellipsoïde de Lamé

Pour un système d'axes ainsi choisi on a

o~x =0i 0y 0a 0z 03

X,ir. ¦ X,jg Xzx «

Les équations (9) deviennent

0i(*i

et puisque a2 <4 + <4

Pay 02Ä2 Pa

• 1, il vient

03OC3

ou

(14)

avec x

y_
al 0§

y =Pa Pa

L'équation (14) représente un ellipsoïde, appelé ellipsoïde
de Lamé. Chaque rayon vecteur de 0 (voir figure 4) au
point P(x,y,z) P (pttx> Pay> Paz) lui a pour longueur
Pa VP««2 + Pay2 + P«8 ^t egal à la contrainte résultante
sur un plan passant par l'origine.

Une construction auxiliaire est nécessaire pour la
détermination de ce plan (non reproduite ici).

,lZ

Jil*X.-^r=1

Fig. 4.
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Quadrique indicatrice des tensions normales

Une autre méthode graphique pour la représentation
de l'état de contrainte en un point peut être obtenue en
considérant la surface.

(15) axx2 + a2y2 + a^ ±1

(Pa X Pa y Paz z)

On démontre que O P
\J\On

an étant la contrainte normale au point considéré.
Les figures 5 et 6 montrent les trois formes de la surface

(15).

Cercles de Mohr

La construction des cercles de Mohr constitue le moyen
le plus commode pour la représentation des contraintes
en un point. Elle fournit immédiatement la réponse à
plusieurs questions difficiles à résoudre autrement. Ainsi
par exemple elle donne immédiatement les contraintes
normales et tangentielles pour un état de contrainte donné.

En admettant les mêmes suppositions que celles qui ont
été faites pour les autres constructions géométriques, il
vient :

a„ Pa-<*- Pax'al +Pay-a2+Paz-x3

et puisque

Pax 0i«i Pa« 02«2 081*3

aa axa.2 + a2a\ + a3tx3

Pa Vax

il vient

cl

jPav + kPaz '01*1 + .702*2 + ^03*3

al«2 + 02*1 + 03«!

Nous avons ainsi le système d'équations :

(16)

a?+ al 1

02*1 + 03*3 0«Ox<4

a\a\ + az<4 + a\a\ al + t2

,Z

0l> 02> <>3> O

P(x,y,z)
Vfc

?y

Viï

Fig. 5.

Fig. 6.

v?2

bix2 + ö2y2+^3z2=1

z tfix2*o,2y2*03Z2=-l

\\
i \
\ "1

IIIIII

ife-j «î>tfj>0>fl,

K""ó" ¦T.~d k V

r •/
1

s \
N \\\\\
2y

Ces équations donnent :

'L (ax-aè(aa-a3) + x%

(160 aî

(a1-a2)(a1-a3)

(a a-0s)(0«--01) + T2

(cr2—0s) (02-0i)
(o ot-0l)(0«--02) + T2

(0s-0i) (ffa-02)

Cette équation, pour ax, a% et a3 données, représente
une famille de cercles dans le plan ax, xa avec comme
centre

02 + 03 |
Spilli

le cosinus directeur ai étant le paramètre. Sachant que

0 ^ a? ^ 1

La première de ces équations après quelques transformations

donne

(17) t2+ (aa
02 + 03 02 + 0s\ g0i- rs—I *i +

^fL^-Vd-^

on remarque que la famille des cercles est comprise entre
les deux cercles limites :

T2 +

T2 +

P 0a + a3
2

0a + 0s 2

2 2

02 + 08

2

2 0a
01- f 0s"

2

«x 0

a!=l
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Ces cercles ont respectivement pour rayon

02 + 03
~~2 01

a2 + a3

„2 „? «2

conduisent finalement aux deux équations suivantes :

De même les deux autres équations donnant les a| et a|

(18) T2

(19) T2

s
<r3 + 0i"*~ 2

2

02 -
a3 + ax'

2

03 — 01

2 d - *d

f 01 + 02

r 2

2

03-
ax + a2

2

01 — 02

2 d - *32)

représentant deux cercles ayant comme centres, respectivement

:

03+ 0i 0 ax + a2,02 2

Sur la figure 7, on voit les six cercles limites ainsi obtenus.

Il est évident que chaque point (aa, xa) doit se trouver
dans la région hachurée.

La figure montre que :

0i

0i — 0s

0mî» — 03

0

La contrainte normale qui agit sur le plan xmax est

01 + 03
Tmax 2

Pour trouver les cosinus du plan xmax on retourne aux
équations (16'). Ces équations, pour

03 +01 0i — 03
a„ —z et t„ —I

donnent

CCx= ±
V/2

a2 0 a3 ±
V/2

En résumé, nous avons (pour un état de contrainte défini
par les trois contraintes principales ax > a2 > <r3) :

a) La contrainte tangentielle max est égale à

0i — 03

b) Elle agit sur deux plans parallèles à la direction a2 et
inclinés à 45° par rappoJfli ax et a3.

c) La contrainte normale correspondante est

a3 + ax

d) Les Ci et <r3 sont les amax et ay»«» qui agissent sur le
point considéré.

La construction des cercles de Mohr permet de résoudre
les deux problèmes suivants :

a) Détermination des aa, xa agissant sur une section
définie par les cosinus directeurs ai, x2, a3.

b) Détermination des alt <x2 et a3 quand les aa et xa sont
donnés.

Revenons aux équations (l||| (18) et (19). Ces trois
équations peuvent encore s'écrire

liä0i - 02) (0i — 0s)r?
02 — 03

2

(20) '22
03 — 01

2

2
r3

01 — 02

2

+ a| (a2 — as) (a2 — ax)

a2 (0s — ax) (a3 — a2)

liT

a3

2Tiax

^»
r>XJ

y<\
t«

fr- 01-02
Oi*CT

di* O3 g^.fg't 0i*02
2 2 2

Fig. 7. — Cercles de Mohr pour l'état tridimensionnel des contraintes défini par les
contraintes principales ax> o2> a3.
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Fis. 9.

Dans ces équations, on remarque que

rx /(ai) r2 /(a2) r3 /("^flll
Par conséquent, si a! const (angle du vecteur a par

rapport à l'axe z const), rx const. C'est-à-dire quand le

vecteur a tourne autour de l'axe z en maintenant un angle
constant, le rayon rx décrit un arc de cercle. Les mêmes
conclusions sont valables pour les rayons r2 et r3.

En se basant sur ces remarques, on fait la construction
suivante :

Sur une droite, on note les positions Ax, A2, A3 et on
trace les cercles Ci, Ca et C3.

Pour déterminer les contraintes aa, xx sur une section a
définie par les angles :

Çx J o. <Pz k a.

on mène les rayons K3C^ et KxC[ comme le montre la
figure 8.

Par la suite, avec comme centres Kx et K3 on mène les

arcs de cercle qui se coupent en C. On a : OC aa,
WÈÈ m

Etat bidimensionnel

Dans le cas où

az xZx — xzy — u

la représentation géométrique se simplifie considérablement.

En admettant comme avant que les axes x, y et z sont
choisis dans les directions «ri, a% et a3. il vient :

0i 02 0Z 03 0 Xgy

Les équations précédentes se simplifient

Pax 01*1 Pxv Tg&SgQ

Pax ax COS 0 pay

0

a2 sin 0

et

(21)

Pa \ 0? COs2 0 + a\ SÌn2 0

aa H Ci cos2 0 + Ö2 sin2 0

0i - 02 sin2 0

Comme nous l'avons vu dans le chapitre précédent, les

cercles de Mohr constituent une méthode graphique pour
résoudre les deux problèmes a) et 6) de la page 122, avec

comme données les contraintes ax, a2 et a3. Mais on ne
43*ä|t pas en général résoudre le problème inverse, c'est-à-
dire déterminer ax, a2 et a3 si sont données les contraintes
qui agissent sur une section arbitraire.

Cependant, ce problème peut être résolu dans le cas des

contraintes bidimensionnelles.
Soient alors des axes qui ne coïncident pas avec les

directions <Ti et a2. Dans ce cas :

(22)
-f 2 Txy sin 0 cos 0

Pax m 0i*i + xxya.2

Pay XxyO-x + 0^2
Après quelques opérations, on trouve :

'
aa ax cosa 0 -f- Gy sin8

j za —(ax—ay) sin 0-cos 0 + xxy (cos2 0—sina 0)

Pour les déformations correspondantes, on a :

[ ea ex cos2 0 + Ey sin2 0 + yxy sin 0-cos 9

t23) '
SYa x M n m n Yxy

— (ex — Ey) sin 0-cos 0- (cos2 0-sin2 0)

Les équations (22) peuvent s'écrire encore de la façon
suivante :

(24)

0«
ax +

2
av

Xa I —
ax — 0j

2

a«
cos 2 0 + Taj, sin 2 0

- sin 2 0 + Xxy cos 2 0

Note sur la convention des signes

Les ax, ay sont considérés positifs dans le cas de la
traction.

Le Xxy est considéré positif lorsqu'il est orienté comme
sur la figure 9.

La même convention est faite pour les aa et Ta.
Les équations (24) représentent un cercle. Nous remarquons

que si l'on trace le cercle et que l'on fait varier
l'angle 2 0 dans une direction, dans la section correspondante

l'angle 0 varie dans le sens opposé.
La représentation la plus usuelle du cercle de Mohr

garde la même direction pour la variation des angles et

pour cette raison on doit modifier la convention de signe

pour la contrainte tangentielle (voir figure 10).
Les équations (24) deviennent ainsi

(25)

ax -t- Oy ax — oy
0a 1 —y~ + ~~?— cos 2 0 - Xxy sin 2 d

Ta
°x a" sin 2 0 + t^ cos 2 0
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Conclusion résultant de la construction

a) Contraintes principales en un point
Chaque point sur le cercle représente un plan bien déterminé

passant par le point considéré d'un corps et il a
comme coordonnées les contraintes qui agissent sur le plan.
Les points A et D (x 0) correspondent aux plans
principaux :

ax 2 OB ± BP

Fig. 10.

Ces expressions peuvent aussi être calculées par differentiation

des relations précédentes. Il est évident qu'elles
représentent les contraintes max et min qui peuvent agir
sur un plan quelconque passant par le point.

Nous venons de dire que ces équations représentent un
cercle. Ce fait est mis en évidence après l'élimination de
l'angle 2 0. Il vient alors :

(26)

C'est l'équation d'un cercle avec comme centre et
rayon :

ax + a.
v-,0 T2'¦xy

Le paramètre 2 9 est compté à partir du rayon vecteur
au point ß (ax, xxy), dans le sens inverse de la marche des
aiguilles d'une montre, jusqu'au point P (<r, t).

4 0

6"-T

<."

Q' fT
P' P

|T

V\+Ö.
E(*f*.Tmax)

kff).T(fl)]
K*

6^ Ox.fxv)
ß

o a

m
(0y,-TXy

<JJ, * 0y.

Flg. 11
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b) Orientation des plans principaux
Appelons 9p l'angle déterminant l'orientation des plans

principttx. On pasl

tg 2 9p tg (2%-CBQ) -tg CBQ
CQ

BC
2t,

Cette équation donne deux valeurs possibles pour
l'angle 9p. On utilise l'équation auxiliaire

CO Tsin29p sm(2n -CBQ) -— •

BQ

V •¦Xy

qui donne l'angle du plan où agit ax.

c) xmax et orientation des plans sur lesquels il agit

Il est évident que

1
_ | /fa - M2 j T2'moi \ / \ 2 1

tg2 0Tmax=tg(|-A) BC ax — ay
CQ 2xxy

ou

(n WE BPsm20T sin (!§- CBQ —
2

ax — ay

Wp)t*~
pour spécifier l'angle.

Ë Ci + a2 ax + ay

d) La méthode du pôle

Le point JSfr est appelé le pôle et a une propriété unique.
Une droite menée du point Q" (pôle) à un point P définit le
plan PQ sur lequel agissent les contraintes (a, x) (la
normale de ce plan ayant la même pente par rapport à l'axe x
que la droite Q"P par rapport à ß"ß) (fig. 12).

Relations entre les contraintes et les déformations

Jusqu'à présent, les contraintes et les déformations ont
été examinées séparément sur la base des considérations
purement théoriques, la seule supposition quant au
comportement du matériau étant sa continuité. Ainsi les
relations trouvées sont valables pour tous les corps qui sont
faits d'une matière continue.
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Fig. 13

Les relations qui lient les contraintes et les déformations
sont basées sur des lois expérimentales qui varient suivant
le matériau. Ainsi la mécanique est divisée en différentes
branches, traitant chacune une classe des matériaux
spécifiés (mécanique des fluides, mécanique de la plasticité).
La théorie de l'élasticité s'occupe avec les solides sollicités
dans leur domaine élastique.

Les relations développées plus loin sont basées sur cette
dernière hypothèse.

Loi de Hooke

On considère une barre mince soumise à une force F
progressivement croissante. On suppose que la charge est

uniformément répartie sur la section. On obtient ainsi le
diagramme suivant :

Pour la partie OP nous avons (fig. 13) :

(27) Eex

E: constante de proportionnante.
La valeur de cette constante dépend du matériau. La

relation (27) qui montre la proportionnalité de la contrainte
et des déformations est appelée loi de Hooke.

Loi de Hooke généralisée

On vient de voir que chaque état de contrainte et de

déformation peut être défini au moyen de six composantes.
Une généralisation logique de la loi de Hooke consiste à

faire de chaque composante des contraintes une fonction
linéaire des déformations ; cela a été fait par Cauchy :

ax Cxx £x + Ci2 Ey + Ci3 ez + Ci4 yxy +

+ Ci5 yyz + Cie -\-yzx

xzx r? Cei ex + Ce2 Ey -f- Ce3 Ez + C64 yxy +

+ C6S yyz + C68 yZx

C'est la loi de Hooke généralisée.
Cxx ¦ ¦ ¦ '¦ constantes élastiques du matériau indépendantes
des contraintes et des déformations.

On peut démontrer par des considérations sur l'énergie
de déformation que pour des corps isotropes (les propriétés
élastiques sont les mêmes dans toutes les directions) les
36 constantes ne sont pas indépendantes mais liées entre
elles par des relations de sorte qu'il y a deux (et seulement
deux) constantes élastiques indépendantes.

Ainsi nous obtenons :

ax Ux + 2 G ex

ay XJx + 2 G Ey

az XJx + 2 G ez

Xyz G yyz

Xzx G ya;

X constante de Lamé

G module de cisaillement

J\ £i + £y + £z

On remarque que si Xxy xyz xzx 0 il est y^y

Yyz Yzx 0

Pour des corps isotropes, les axes principaux des
contraintes et des déformations coïncident.

Signification physique des constantes élastiques

a) Cisaillement pur

T** 0

Xxy contrainte appliquée.

Les équations précédentes donnent :

T™ contraintes de cisaillement
G JsL

yxy déformation angulaire

module de cisaillement

b) Cas de la traction simple

a,j az= Xxy — xyz Xax 0

ax contrainte appliquée.

Les équations précédentes donnent :

X + G

G (3 X + 2 G)

Ez

X

2G(3X + 2G)

Auparavant, nous avons défini la constante E dans un
essai de traction simple :

1

Ex T. 0*E

Il vient

G Yxy

G (2 G - E)
E-3G
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d'autre part :

X
€v c»

G (3 X + 2 G)

G(3X + 2G) X+ G

2(X+G) -vex avec v
2(X+G)

v le rapport négatif — dans le cas de la traction simple.
Et.

En choisissant les E, v comme constantes élastiques,
nous obtenons :

ex p (ax — v (Oy + az))

Ey=r-(ay-v (az + ax))

ez - (az - v (ax + ay))

_2(1 +v)
Yxy —

p Xxy

2 (1 + V)

et

Yyz E

2(1 +v)

(1 + v) (1 - 2 v)

E
ly~ (1 + v) (1

E
(1 + v) (1 - 2 v)

ïNj (d — V) £* + V (fij, + £z))

— ((1 - V) Ey + V (£z + £*))

((1 — V) Ez + V fe + £j,))

fro? plan des contraintes

az 0

Il vient :

ez= —

(1—v)||= — v(ex + %)

il
(Ex + %)

d -v)
Donc

(1— v)ex+ VEy- (Ex + Ey)
(1 + v)(l -2v)V~ '-*'-» (i_v)

£¦ /ea;(l-2v+v2-v2) + £î,(-v2 + v-v2)
(l + v)(l-2v)

E

(1-v)

1 -v!
Finalement

(sx + v e„)

x 1-v2 (fi* + V Ey)

(Ex + V Ey)
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La nouvelle presse à filer de 7200 tonnes
de l'Aluminium suisse S.A., à Chippis
par PIERRE HOFFMANN, ingénieur SIA

L'aluminium prend une place toujoms plus importante

dans le construction, dans le génie civil et dans de
nombreuses branches de l'industrie. Il est livré sous forme
de pièces moulées, de pièces laminées et de profilés obtenus
par filage. Les applications de ces profilés dont les formes
peuvent être extrêmement diverses sont innombrables.
Dans certaines d'entre elles, on a besoin de très fortes
sections. Il en est ainsi, par exemple, pour les profilés
entrant dans la constitution de structures porteuses
(bâtiment et génie civil), de façades, d'ossatures de
véhicules routiers et ferroviaires, d'engins de manutention de
toutes sortes, de machines, ainsi que pour ceux utilisés en
électrotechnique et dans les constructions navales et
aéronautiques. Ces fortes sections peuvent naturellement
être obtenues en assemblant deux ou plusieurs profilés au

moyen de cordons de soudure, par exemple. Mais il est
évidemment préférable de les filer d'une seule pièce. C'est
pourquoi l'Aluminium suisse S.A. a décidé d'acquérir et
d'installer dans son usine de Chippis une presse à filer
capable d'exercer sur les billettes un effort de poussée de
7200 tonnes et qui est actuellement la plus forte presse à
filer de Suisse. La plus grande presse à filer d'Europe,
pouvant exercer une poussée de 8500 tonnes, se trouve
en Allemagne et les trois plus grandes presses du monde,
pour une poussée de 12 500 tonnes, sont en service aux
Etats-Unis. Il existe, d'autre part, une presse de 9500
tonnes au Japon. Les grandes presses ne permettent pas
seulement de fabriquer des profilés plus grands, mais
ceux-ci peuvent avoir des parois plus minces et des formes
plus compliquées. De plus, les alliages de grande résis-
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