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La variation de 7 s’obtient, comme en analyse certaine,
en remplagant X par X + « Y, Y étant une fonction
aléatoire arbitraire continue et nulle pour #; et 7. On
obtient, en faisant exactement les mémes calculs que dans
le cas certain :
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car la formule d’intégration par parties s’applique aussi en
analyse aléatoire.

or .
Pour que X |, rende 7 extremum il faut que 50 soit
o

nulle pour o = 0. Il résulte alors du lemme fondamental
que :

aﬁ _ (9_(0\) —0 (Equation
X 24 d’Euler-Lagrange)

Remarquons que cette condition, nécessaire, n’est pas
toujours suffisante pour que / soit extremum.

Conclusions

On peut donc remarquer que l’analyse aléatoire et
l’analyse certaine s’identifient au contact, puis divergent
considérablement au fur et a mesure que les liaisons se
relachent. C’est cette constatation qui va permettre la mise
en équation des milieux en instance de diffusion, particu-
lierement les milieux turbulents.

A cet effet, il sera procédé, en mécanique aléatoire, a
I’énoncé des principes et des régles de calcul relatifs a
I’évolution du corpuscule aléatoire R construit avec ses
fonctions de distribution des probabilités conjuguées qui
traduisent les interactions.

Adresse de l'auteur :
Frangois Baatard, 14, rue Etraz, 1000 Lausanne.

Sur le probléme relatif au controle des ouvrages d’art
quant a leur stabilité et leurs déformations

par A. ANSERMET, ingénieur professeur

Généralités

Le nombre des ouvrages d’art allant en augmentant, il
est opportun de perfectionner les méthodes tendant a
controler leur stabilité et leurs déformations; de grands
progres furent réalisés et le but de ces lignes est de rappe-
ler succinctement en quoi consistent les mesures et surtout
les calculs a effectuer. Des cas concrets seront présentés
portant sur un téléphérique, un barrage, des charpentes,
etc. Le probleme est complexe.

Méthodes modernes de mesures

Ainsi qu’on le sait, grace a I’électro- et la radiotélémétrie
(voir publication EPUL N°¢ 86), on dispose de procédés
nouveaux dont I’emploi ne cesse de progresser. Citons le
téléphérique de Klosters, le tunnel du Saint-Bernardin, etc.
Les résultats obtenus, pour les ellipses d’erreur aux tétes
de ce tunnel, donnaient toute satisfaction.

Pour le téléphérique [1]%, le barrage de Sambuco, les
méthodes de mesure et calculs furent perfectionnés. On
tint compte surtout de la déviation de la verticale, élément
assez nouveau. C’est un probléme-fleuve comportant plus
d’une solution. On ne peut plus se contenter de calculer
I'influence des masses visibles comme ce fut le cas pour
les tunnels du Simplon, du Leetschberg, etc. C’est moins
simple, comme on le verra.

Mais une difficulté réside ailleurs : le praticien a choisi,
pour effectuer des mesures, des emplacements donnant
confiance quant a la stabilité. Or au cours des calculs des
discordances sont constatées, faisant douter de cette sta-
bilité. A cet égard, le cas du téléphérique joue un role a
part.

1 Les chiffres entre crochets renvoient a la bibliographie en
fin d’article.
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Evolution des modes de calcul

On dispose de tout un éventail de moyens, surtout pour
de grands ouvrages, car I’opérateur fait ses observations a
partir d’un groupe de points fixes, & Sambuco par exemple
six points, ou I'on stationne périodiquement. Il en résulte
des discordances d’une fois a I'autre ensuite d’erreurs de
mesures. A la méthode des moindres carrés, dont 1’appli-
cation est depuis longtemps courante, s’ajoutent la statis-
tique mathématique, les transformations (affine, d’Hel-
mert, etc.) et méme la géométrie projective (cas d’un
amphithéatre). Le calcul électronique devient courant.

Comme on le verra lors d’applications, certaines simpli-
fications sont a signaler. Par suite d’instabilité ou de défor-
mation, les coordonnées x;, y;, z; d’'un point (i = 1, 2,
3 ...) varient de Ax;, Ay;, Az;. On peut dissocier parfois
la planimétrie de I’altimétrie sans traiter le calcul spatiale-
ment comme le font des praticiens. Par voie de nivellement
direct la variation Az est déterminée a partir d’un repére
de nivellement dont I’altitude absolue n’est pas nécessaire-
ment connue. Restent les Ax;, Ay;, susceptibles, dans cer-
tains cas, d’étre déterminés directement.

Covariance. Une autre complication peut survenir quand
on compense par la méthode des moindres carrés. L’indé-
pendance des mesures n’est pas réalisée ; on dit aussi que
les mesures sont corrélées. Des ¢léments nouveaux inter-
viennent : les cofacteurs ou comultiplicateurs [2], [3]. Pour
former la matrice dite des cofacteurs, certains praticiens
ont recours a une précompensation (Vorausgleichung). On
s’efforcera donc d’éviter de la covariance.

Calcul des points de rattachement

En principe, pour un méme ouvrage, on peut choisir
arbitrairement une origine pour les altitudes et coordonnées
planes ; I'orientation des axes x, y étant aussi arbitraire.



Des points géodésiques connus de la mensuration du
territoire sont utilisés. En d’autres termes, on a deux
groupes de points dont les coordonnées sont déterminées
a double parce que a des époques différentes. La coinci-
dence mutuelle est presque réalisée, mais pas rigoureuse-
ment. Une transformation est de rigueur ; de nombreuses
solutions sont préconisées.

Théoréme de Finsterwalder. Pour réaliser au mieux la
coincidence de deux systémes de points P; et P;” (Punkt-
haufen), il faut assimiler a des forces les discordances
P; P/ (Kiirzesten Abstande) puis réaliser leur équilibre au
point de vue de la statique.

La solution d'un emploi courant est celle dite d’Helmert,
notamment en Suisse et outre-Rhin. On ameéne en coin-
cidence les centres de gravité des systemes P; et P;’, ce
qui élimine les trois translations dx, dy, dz. L’échelle subit
une variation dm puis trois rotations J&, Jn, J¢ sont cal-
culées. On a donc

—fai + vz = dx + x;dm + zidn— yid¢
—fyi Tvyi= dy +yidm—z; )¢ + x;dC ; poids = 1
—fzi + V2 = dz 4 z; dm 4+ y;dE—xidn l

Les fsont les termes absolus, tandis que la transforma-
tion est conforme, ce qui ne sera en général pas le cas
pour I'affinité.

Sous forme implicite, on a le groupe d’équations nor-
males :

D] = [yl = [v2l = 0, [wvy — yve] =0, [xvy; — zvg] =0,

[yvz — zvyl =0, [xvz + yvy + 2v,] =0 [5]

Cette solution est donc trés appliquée ; si on veut pousser
plus loin I’élimination partielle des discordances, on a
I’affinité, aussi trés en faveur. Les centres de gravité des
systémes coincidant, on a :

Xj — Xg = a1x; + $3¥; + S22; + (razg — r3yy) — va
i —yi=ssxi+ agy; + s1z; + (rgxg —r1z) — vy
z{ — z; = sox¢ + 1y + agzy + (r1ys — rexy) — v

——

poids égaux
’ [vv] minim.

Termes Déformation Rotation

absolus

Il y a 9 équations normales si i ==4. Il y a d’autres
solutions [5]; avoir trop d’équations est un probléme qui
ne sera jamais complétement résolu. On pourrait combiner
9 a 9 ces équations, ce qui donnerait pour i = 4, par

, . ., (12 12:¢ Flatnnd
exemple, 12 équations, soit <9> = T 220
groupes d’équations.

Role de la déviation de la verticale

Ce role n’est pas négligeable, sauf pour des ouvrages
peu importants. Les méthodes classiques par voie astro-
nomique, gravimétrique n’auront pas la préférence ; le
choix de la surface de référence n’étant pas exempt d’ar-
bitraire, le probléme est assez complexe. En général, on
adopte la voie spatiale, sans dissocier I'altimétrie. Des
angles verticaux, en nombre suffisant, sont mesurés avec

précision. On renonce, sauf cas spéciaux, a des visées
réciproques et simultanées a cause des complications et
des frais. Ces déviations donnent lieu déja a une augmen-
tation notable du nombre des inconnues. A titre de con-
trole, on s’efforce d’avoir une compensation, ce qui néces-
site d’avoir des mesures en nombre surabondant.

Une premiére étape comporte la mesure d’angles verti-
caux et un calcul basé sur la formule connue du nivelle-
ment trigonométrique, sans compensation. On obtient,
pour tous les éléments du probléeme, des valeurs qui ne
sont pas définitives, notamment pour les altitudes ; elles
ont un caractére provisoire.

La seconde étape porte sur les corrections a apporter
aux €éléments provisoires ; ce calcul fournit les vraies incon-
nues. Par hypotheése, les corrections sont assez petites pour
que les équations revétent la forme linéaire ; ces équations
sont dites correctrices (Verbesserungsgleichungen).

Une remarque s’impose: pour la compensation, les
termes absolus f des équations doivent étre précis, obtenus
en fonction des éléments mesurés et provisoires. Pour les
coefficients, les éléments servant a les calculer seront
connus a /5009 prés. Pour un cdté du réseau AB, on a
les corrections d’altitude AH, et AH,, tandis que Az est
I’azimut du coté. Les composantes de la déviation sont &
et , leur résultante /&2 + 72

Pour chaque sommet du réseau, ce sont deux inconnues
de plus.

Il y a deux formes, respectivement linéaire ou angulaire
(unité : le centimétre ou la seconde ancienne ou nouvelle,
soit v ou v®) p” = 206265 p* = 636620.

D A
(1 yem — —AH, + AH, + _C_OSZ_Z L+
p cos? o
D sin A
p—cs:l(?szfxz Na + 7 (voir [4], [6])
cos? cos®
@) ‘vl':4¥AHa+p = A

+ cos Az-&, + sin Az-n, + f"

Le praticien choisira selon ses préférences.

Il faut former [vv] et ses dérivées (poids = 1 pour toutes
les mesures, sinon [pyv]). Ces dérivées sont les équations
normales, dont les coefficients se présentent sous forme de
matrice symétrique. En désignant les coefficients des
inconnues dans (1) ou (2) par a, b, ¢ on a [av] =
= [bv]= [ev] = .. .= 0.

A 0. 717

Fig. |
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Premiére application

Réseau de 12 cotés, donc 24 équations (1) ou (2).

Les 6 sommets A, B ... F donnent lieu a 18 inconnues,
les AH, &, . En 0 laltitude est arbitraire et, par hypo-
thése, on a: & = = 0, toujours en 0.

La déviation de la verticale dans un plan de visée est

(cos Az-& + sin Az-q) = \/E2 +n2.

La formation des équations normales ainsi que sa
matrice symétrique des coefficients ne donnent pas lieu
a des commentaires.

Puis, par inversion, on obtient la matrice ci-apres :

Matrice aux coefficients de poids des inconnues (symétrique)
(Calcul par le Centre électronique EPUL)

0,64 + 0,18 — 0,07 — 0,11 — 0,07 + 0,18 0,00 — 0,74 — 0,16 — 0,38
0,64 + 0,18 — 0,07 — 0,11 — 0,07 + 0,41 — 0,05 + 0,64 — 0,37

0,64 + 0,18 — 0,07 — 0,11 + 0,16 + 0,12 + 0,25 + 0,33

0,64 + 0,18 — 0,07 0,00 — 0,10 — 0,02 + 0,20

0,64 + 0,18 — 0,16 + 0,12 — 0,08 + 0,05

Matrice partielle 0,64 — 0,41 — 0,05 — 0,19 — 0,08
L’ordre des inconnues 1,14 0,00 + 0,48 — 0,16
est AHy, AHy ... AHf 1,62 + 0,37 + 0,36
puis &g ng Ev 1y - - - 1,50 — 0,21
1,26

On posséde ainsi des éléments pour des calculs de pré-
cision et méme de déformations.

Barrage de Sambuco

Ici on a un réseau de 13 cotés pour le contrdle de I'ou-
vrage, donc 26 équations telles que celles ci-dessus (1), (2).
Six piliers regoivent les instruments de mesure. Pour un
point I’altitude est arbitraire, ainsi que &, #. Il y a donc
15 inconnues pour ces 26 équations. Le plus long coté
mesure 387 meétres [6].

Les observations furent échelonnées sur cing périodes
et les résultats obtenus favorables. Il fut tenu compte des
déviations de la verticale.

Téléphérique de Klosters

Ce cas présente de I'intérét: 6 mats 4, B ... F (voir
figure) se trouvaient dans un méme profil vertical mais la
stabilité des lieux est précaire. Les controles furent effec-
tués par voie spatiale sans dissociation de I'altimétrie.
L’électrotélémétrie fut appliquée et, pour les calculs, les
équations (1), (2) comme a Sambuco (déviations).

Variante. Elle consisterait & opérer par nivellement direct
pour les calculs altimétriques, tandis que, planimétrique-
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ment, on a une correspondance projective (instrument de
mesure en S) :

sin (ca) _sin(da)
sin (cb) " sin (db)
M—2 A —A

Ao — A3 Ag— Ag

(ABCD) = (abcd) =

==

Analytiquement, on a les relations connues :
(3) L1+;L1L2:O, L1+/{2L2:O,L1+/13L2:O;

L1+A4L2:0.
(€] Py + 4Py =0; Py + APy =0; P+ A3P, = 0;
P1+)L4P2:O

ou L; =0, Ly, = 0 sont les équations de deux droites,
tandis que P; = 0, P, = 0 sont celles de deux points. Le
rapport r n’est pas modifié quand S est déplacé. C’est
I’avantage de la variante. Les 6 mats peuvent étre com-
binés 4 a 4 de 15 fagons différentes, tandis que r = (abed) =
= (cdab) = (badc) = (dcha); par des permutations on
obtient en tout 24 rapports mais 6 valeurs: r, 1/r, 1—r,
1 r r—1

I=r'ir=1 ot T
Ar = F(Ax;, Ay;) sous forme linéaire (( = 1, 2 ...). Les
Az; sont obtenus par voie de nivellement direct si pos-
sible.

Une variation Ar s’exprime par :

Cas d’un amphithéatre

Le cas traité ici est celui de Pola, qui donna lieu a des
controverses quant au mode de calcul (voir publication
EPUL, N° 18). Cest la planimétrie qui est en cause en
ce qui concerne le mur d’enceinte. Les altitudes sont
contrdlées a part.

L’équation initiale était: 4y? + Bx;y; + Cx? + Dy; +
+ Ex;+ 1 = ;.

Les v; ne sont plus nuls pouri > 5(ici/ = 1,2,3... 12).
Ces 12 points mesurés, combinés 5 a 5, donnent lieu a
792 ellipses pas rigoureusement confondues. Une compen-
sation s’impose et des valeurs provisoires 4y, B, ... furent
calculées: A = Ay, + AA; B= B, + AB ... tandis que
les x; y; mesurés donnaient lieu a des (x; + v)) et (y; + v/)
compensés. C’est un cas d’extrémum lié facile a traiter.



Si les poids des coordonnées mesurées x;, y; sont égaux,
on réalise la condition : [pp] = minimum, ou les p sont
les plus courtes distances des 12 points a I’ellipse calculée
[4].

Variante. Ici encore, une variante peut étre envisagée ;
si deux points S et S’ peuvent étre considérés comme
stables, on les choisit comme sommets de faisceaux pro-
jectifs.

A Téquation (3) valable pour le faisceau S s’ajoute
I’équation (5), revétant la méme forme, avec r’ comme
birapport.

(5) L+ MLy=0; L, + AL,=0; L)+ 1L, =0;
L+ ALy =0

)»1—/13';\.]_“14
Ao — A3 Aa— Ay

Pratiquement, on préférera la forme trigonométrique,
en fonction des sinus et des variations trés petites Ar,
Ar” revétant une forme linéaire: Ar = F(dx;, Ay;);
Ar’ = F'(4x;, Ay;). 1l convient, pour faire un choix, de
remarquer que les mesures angulaires sont souvent plus
précises que les linéaires.

avec la condition r = r’ =

Cas des charpentes

Il est en général moins simple que les précédents, car a
un défaut éventuel de stabilité du sous-sol vient s’ajouter
une déformation, surtout si la structure est du type dit
articulé avec barres surabondantes. Récemment la statis-
tique fut appliquée (voir publication EPUL Ne 98), mais
son role est secondaire. Le probléme revét la voie spatiale
avec mesures linéaires (électrotélémétrie) et angulaires,
planimétriques et altimétriques. A la base du calcul on a
la variation de coordonnées des nceuds comme inconnues,
solution dont la supériorité n’est plus discutée.

La forme classique de ’équation a appliquer est (voir
[4]:

v = aydx + bydy + ¢;dz + ... + f; (poids p;)
=1,.2.:3 \..

Sous forme implicite, on a pour les dérivées de I’énergie :
[avl]=[bv] =[ev]= ... =0 (pi=1

équations fournissant les éléments pour la matrice de rigi-
dité. Les termes absolus f; sont obtenus en coupant les
barres surabondantes ; la solution est semi-graphique par-
fois.

Les inconnues ne sont pas toujours indépendantes, par
exemple si certains nceuds se déplacent sur des surfaces
d’équation connue. Une solution usuelle est celle dite par
fractionnement (nach Stufen).

Aux éléments de la premiére étape: v, dx, dy, dz ...
viennent s’ajouter ceux de la seconde: v/, (dx), (dy),
(dz) ... Sous forme générale on a, les dx, dy, dz ...
n’étant plus variables :

v+ v = a(dx + (dx)) + b(dy + (dy)) +
+cdz+ (dz) + ... +f

dou [w1=0; [(v+ v)2]=[w]+ [v] [4]

les (dx), (dy), (dz) étant liées, sous forme linéaire, par des
conditions :

Fi((dx), (dy), (dz) ...)=0;
Fy((dx), (dy), (dz) ...)=0.

Cette solution, sans ¢élimination de certaines inconnues,
a des avantages. On choisira judicieusement les axes de
coordonnées pour, autant que possible, éliminer les coeffi-
cients de poids non quadratiques.

En conclusion, on peut dire que de notables progrés
furent réalisés récemment pour déterminer le manque de
stabilité et les déformations d’ouvrages d’art; I’électro-
télémétrie joue un role ainsi, pour d’importants ouvrages,
que la tendance a tenir compte toujours plus de la dévia-
tion de la verticale, élément perturbateur nuisant a la pré-
cision. En outre, il y a plus d’équations que d’inconnues.
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Sur le choix d'un mode de calcul en hyperstatique spatiale’

par A. ANSERMET, ingénieur professeur

Rappel de notions usuelles

La plupart des problémes se présentant dans le domaine
des sciences techniques donnent lieu & plus d’une solution ;
mais en général une indépendance compléte entre les modes
de calcul n’est pas réalisée. On peut faire des comparaisons
et attribuer certains avantages a I’'une ou I’autre solution.
L’hyperstatique des systémes articulés spatiaux, comme on
le sait, fit 'objet de recherches, par des voies différentes
aux Ecoles polytechniques de Zurich et Lausanne. Les

publications des professeurs Stiissi et Mayor sont consi-
dérées toutes deux comme remarquables a des titres divers.
La Baustatik du premier vient d’étre rééditée, ce qui
prouve la faveur rencontrée chez les praticiens ; le Cours
du second est épuisé et ne sera probablement pas réédité.
Cette publication présentait un caractére un peu spécial,
car un chapitre fut rédigé a I'intention de I’Académie des
sciences et pris en considération par celle-ci. Faire un

1 Texte rédigé en hommage au professeur DT Fritz Stiissi.
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