
Zeitschrift: Bulletin technique de la Suisse romande

Band: 98 (1972)

Heft: 4

Artikel: Sur le problème relatif au contrôle des ouvrages d'art quant à leur
stabilité et leurs déformations

Autor: Ansermet, A.

DOI: https://doi.org/10.5169/seals-71534

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 07.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-71534
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


La variation de / s'obtient, comme en analyse certaine,
en remplaçant X par X + a Y, Y étant une fonction
aléatoire arbitrane continue et nulle pour tx et f2. On
obtient, en faisant exactement les mêmes calculs que dans
le cas certain :

ÔI

ôx \dx \dx) dt

car la formule d'intégration par parties s'applique aussi en
analyse aléatoire.

SI
Pour que XI t rende / extremum il faut que %±

dx
soit

nulle pour a 0. Il résulte alors du lemme fondamental
que:

d_î_
_ (dj\ o (Equation

dX \dXj d'Euler-Lagrange)

Remarquons que cette condition, nécessaire, n'est pas
toujours suffisante pour que / soit extremum.

Conclusions

On peut donc remarquer que l'analyse aléatoire et
l'analyse certaine s'identifient au contact, puis divergent
considérablement au fur gl à mesure que les liaisons se

relâchent. C'est cette constatation qui va permettre la mise

en équation des milieux en instance de diffusion,
particulièrement les milieux turbulents.

A cet effet, il sera procédé, en mécanique aléatoire, à

l'énoncé des principes et des règles de calcul relatifs à

l'évolution du corpuscule aléatoire R construit avec ses

fonctions de distribution des probabilités conjuguées qui
traduisent les interactions.
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Sur le problème relatif au contrôle des ouvrages d'art
quant à leur stabilité et leurs déformations

par A. ANSERMET, ingénieur professeur

Généralités

Le nombre des ouvrages d'art allant en augmentant, il
est opportun de perfectionner les méthodes tendant à

contrôler leur stabilité et leurs déformations ; de grands
progrès furent réalisés et le but de ces lignes est de rappeler

succinctement en quoi consistent les mesures et surtout
les calculs à effectuer. Des cas concrets seront présentés

portant sur un téléphérique, un barrage, des charpentes,
etc. Le problème est complexe.

Méthodes modernes de mesures

Ainsi qu'on le sait, grâce à l'électro- et la radiotélémétrie
(voir publication EPUL N° 86), on dispose de procédés
nouveaux dont l'emploi ne cesse de progresser. Citons le
téléphérique de Klosters, le tunnel du Saint-Bernardin, etc.
Les résultats obtenus, pour les ellipses d'erreur aux têtes
de ce tunnel, donnaient toute satisfaction.

Pour le téléphérique [1] \, le barrage de Sambuco, les
méthodes de mesure et calculs furent perfectionnés. On
tint compte surtout de la déviation de la verticale, élément
assez nouveau. C'est un problème-fleuve comportant plus
d'une solution. On ne peut plus se contenter de calculer
l'influence des masses visibles comme ce fut le cas pour
les tunnels du Simplon, du Lœtschberg, etc. C'est moins
simple, comme on le verra.

Mais ime difficulté réside ailleurs : le praticien a choisi,
pour effectuer des mesures, des emplacements donnant
confiance quant à la stabilité. Or au cours des calculs des

discordances sont constatées, faisant douter de cette
stabilité. A cet égard, le cas du téléphérique joue un rôle à

part.

1 Les chiffres entre crochets renvoient à la bibliographie en
fin d'article.

Evolution des modes de calcul

On dispose de tout un éventail de moyens, surtout pour
de grands ouvrages, car l'opérateur fait ses observations à

partir d'un groupe de points fixes, à Sambuco par exemple
six points, où l'on stationne périodiquement. Il en résulte
des discordances d'une fois à l'autre ensuite d'erreurs de

mesures. A la méthode des moindres carrés, dont l'application

est depuispongtemps courante, s'ajoutent la statistique

mathématique, les transformations (affine, d'Hel-
mert, etc.) et même la géométrie projective (cas d'un
amphithéâtre). Le calcul électronique devient courant.

Comme on le verra lors d'applications, certaines
simplifications sont à signaler. Par suite d'instabilité ou de
déformation, les coordonnées xt, y{, zt d'un point (i — 1, 2,
3 varient de Ax{, Aye, Azt. On peut dissocier parfois
la planimetrie de Faltimétrie sans traiter le calcul spatialement

comme le font des praticiens. Par voie de nivellement
direct la variatiœ Az est déterminée à partir d'un repère
de nivellement dont l'altitude absolue n'est pas nécessairement

connue. Restent les Axit Ay^ susceptibles, dans
certains cas, d'être déterminés directement.

Covariance. Une autre complication peut survenir quand
on compense par la méthode des moindres carrés.
L'indépendance des mesures n'est pas réalisée ; on dit aussi que
les mesures sont corrélées. Des éléments nouveaux
interviennent : les cofacteurs ou comultiplicateurs [2], [3]. Pour
former la matrice dite des cofacteurs, certains praticiens
ont recours à une précompensation (Vorausgleichung). On
s'efforcera donc d'éviter de la covariance.

Calcul des points de rattachement

En principe, pour un même ouvrage, on peut choisir
arbitrairement une origine pour les altitudes et coordonnées
planes ; l'orientation des axes x, y étant aussi arbitraire.
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Des points géodésiques connus de la mensuration du
territoire sont utilisés. En d'autres termes, on a deux

groupes de points dont les coordonnées sont déterminées
à double parce que à des époques différentes. La coïncidence

mutuelle est presque réalisée, mais pas rigoureusement.

Une transformation est de rigueur ; de nombreuses
solutions sont préconisées.

Théorème de Finsterwalder. Pour réaliser au mieux la
coïncidence de deux systèmes de points P4 et Pi (Punkt-
haufen), il faut assimiler à des forces les discordances

Pi P{ (Kürzesten Abstände) puis réaliser leur équilibre au
point de vue de la statique.

La solution d'un emploi courant est celle dite d'Helmert,
notamment en Suisse et outre-Rhin. On amène en
coïncidence les centres de gravité des systèmes Pt et P/, ce

qui élimine les trois translations dx, dy, dz. L'échelle subit
une variation dm puis trois rotations d£, dn, dÇ sont
calculées. On a donc

-fa

-fvl +
-fzi +

+ vXi dx + x{ dm + Zidn— ytdC
'

*yt dy + y{ dm—z{ dÇ + XfdÇ. } poids

vzi dz + zidm + yidÇ—Xid»

Les/sont les termes absolus, tandis que la transformation

est conforme, ce qui ne sera en général pas le cas

pour l'affinité.
Sous forme implicite, on a le groupe d'équations

normales :

précision. On renonce, sauf cas spéciaux, à des visées

réciproques et simultanées à cause des complications et
des frais. Ces déviations donnent lieu déjà à une augmentation

notable du nombre des inconnues. A titre de
contrôle, on s'efforce d'avoir une compensation, ce qui nécessite

d'avoir des mesures en nombre surabondant.
Une première étape comporte la mesure d'angles verticaux

et un calcul basé sur la formule connue du nivellement

trigonométrique, sans compensation. On obtient,
pour tous les éléments du problème, des valeurs qui ne
sont pas définitives, notamment pour les altitudes ; elles

ont un caractère provisoire.
La seconde étape porte sur les corrections à apporter

aux éléments provisoires ; ce calcul fournit les vraies inconnues.

Par hypothèse, les corrections sont assez petites pour
que les équations revêtent la forme linéaire ; ces équations
sont dites correctrices (Verbesserungsgleichungen).

Une remarque s'impose : pour la compensation, les
termes absolus/des équations doivent être précis, obtenus
en fonction des éléments mesurés et provisoires. Pour les

coefficients, les éléments servant à les calculer seront
connus à 1/2ooo près. Pour un côté du réseau AB, on a
les corrections d'altitude AHa et AHb, tandis que Az est
l'azimut du côté. Les composantes de la déviation sont ^
et rf, leur résultante \Ç2 + rf.

Pour chaque sommet du réseau, ce sont deux inconnues
de plus.

U y a deux formes, respectivement linéaire ou angulaire
(unité : le centimètre ou la seconde ancienne ou nouvelle,
soit v" ou vce) p" 206265 pce 636620.

[vx] [Vy] M 0, [xvy - yvx] 0, [xvz - zvx] 0,

\yvz - zvy\ 0, [xvx + yvy + zvz] 0 [5]

Cette solution est donc très appliquée ; si on veut pousser
plus loin l'élimination partielle des discordances, on a
l'affinité, aussi très en faveur. Les centres de gravité des

systèmes coïncidant, on a :

x'i—xt axxi + s3yi + s2zt + (r2zt — rsy{) — vxl j

yi — yt S3X{ + a2yt + sxZ{ + (r3*j — rx z{) — v

z( — z{= szxt + sxyt + a3Z{ + (rxyi — r2xt) — >

poids égaux
[vv] minim.

Termes
absolus

Déformation Rotation

Il y a 9 équations normales si i ^ 4. Il y a d'autres
solutions [5] ; avoir trop d'équations est un problème qui
ne sera jamais complètement résolu. On pourrait combiner
9 à 9 ces équations, ce qui donnerait pour / 4, par

/12\ 12x11 4
exemple, 12 equations, soit _ ——— 220

groupes d'équations.
9!

Rôle de la déviation de la verticale

Ce rôle n'est pas négligeable, sauf pour des ouvrages
peu importants. Les méthodes classiques par voie
astronomique, gravimétrique n'auront pas la préférence ; le
choix de la surface de référence n'étant pas exempt
d'arbitraire, le problème est assez complexe. En général, on
adopte la voie spatiale, sans dissocier l'altimétrie. Des
angles verticaux, en nombre suffisant, sont mesurés avec

(D

D sin Az

AHh
D cos Az

p cos2 x
£a +

TJa+f™ (voir [4], [6])
p cos4 X

(2) p cos X
AHa + p AHb

D r D
+ cos Az-^a + sinAz-ria +f

Le praticien choisira selon ses préférences.
Il faut former [vv] et ses dérivées (poids 1 pour toutes

les mesures, sinon [pvv]). Ces dérivées sont les équations
normales, dont les coefficients se présentent sous forme de
matrice symétrique. En désignant les coefficients des

inconnues dans (1) ou (2) par a, b, c on a lav]
[M [cv] 0.

Fig.
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Première application

Réseau de 12 côtés, donc 24 équations (1) ou (2).
Les 6 sommets A, B F donnent lieu à 18 inconnues,

les AH, Ç, t]. En 0 l'altitude est arbitraire et, par hypothèse,

on a : £, rj 0, toujours en 0.
La déviation de la verticale dans un plan de visée est

(cos Az-Ç + sin Az-rj)^ s/Ç2 +T)2.

La formation des équations normales ainsi que sa
matrice symétrique des coefficients ne donnent pas lieu
à des commentaires.

PuiSjOTT inversion, on obtient la matrice ci-après :

Matrice aux coefficients de poids des inconnuesWmmetxiqae)

(Calcul par le Centre électronique EPUL)

0,64 +0,18 -0,07 - 0,11 -0,07 + 0,18 0,00 -0,74 - 0,16 - 0,38
0,64 + 0,18 - 0,07 - 0,11 - 0,07 + 0,41 -0,05 + 0,64 - 0,37

0,64 + 0,18 - 0,07 - 0,11 + 0,16 + 0,12 + 0,25 + 0,33
0,64 + 0,18 - 0,07 0,00 - 0,10 - 0,02 + 0,20

0,64 + 0,18 -0,16 + 0,12 -0,08 + 0,05
Matrice partielle 0,64 -0,41 -0,05 -0,19 - 0,08
L'ordre des inconnues 1,14 0,00 + 0,48 -0,16
est AHa, AHb AHf 1,62 + 0,37 + o,36 -^xm
puis £a ria &> Id 1,50 - 0,21

1,26

On possède ainsi des éléments pour des calculs de
précision et même de déformations.

Barrage de Sambuco

Ici on a un réseau de 13 côtés pour le contrôle de
l'ouvrage, donc 26 équations telles que celles ci-dessus (1), (2).
Six piliers reçoivent les instruments de mesure. Pour un
point l'altitude est arbitraire, ainsi que £,, ij. D y a donc
15 inconnues pour ces 26 équations. Le plus long côté
mesure 387 mètres [6].

Les observations furent échelonnées sur cinq périodes
et les résultats obtenus favorables. E fut tenu compte des
déviations de la verticale.

ment, on a une correspondance projective (instrument de
mesure en S) :

u,s

Fig. 2

Téléphérique de Klosters

Ce cas présente de l'intérêt : 6 mâts A, B F (voir
figure) se trouvaient dans un même profil vertical mais la
stabilité des lieux est précaire. Les contrôles furent effectués

par voie spatiale sans dissociation de Paltimétrie.
L'électrotelemetrie fut appliquée et, pour les calculs, les

équations (1), (2) comme à Sambuco (déviations).
Variante. Elle consisterait à opérer par nivellement direct

pour les calculs altimétriques, tandis que, planimétrique-

iABCD) iabcd)

1
mm.

sin ica)
_

sin ida)
sin icb) sin idb)

As j Xx — Xn

«8 X% A4

Analytiquement, on a les relations connues

(3) m + XxL2 § 0 ; Lx + X^L% 0 ; Lx +
Lx + XtL2 0.

(4) 1 + XXP2 0; Px
Px + XtP2 0

Va 0 ; Pi XsP2 0:

où £i — 0, L2 0 sont les équations de deux droites,
tandis que Pi 0, P2 0 sont celles de deux points. Le
rapport r n'est pas modifié quand S est déplacé. C'est
l'avantage de la variante. Les 6 mâts peuvent être combinés

4 à 4 de 15 façons différentes,-tandis que r iabcd)
=icdab) ibadc) idcba); par des permutations on
obtient en tout 24 rapports mais 6 valeurs : r, 1 /r, 1 —r,

1 r Ü 1
TT-— > —- et Une variation Ar s exprime par :

l—r r—\ r
Ar FiAxt, Ayì) sous forme linéaire (/ 1, 2 Les
Az( sont obtenus par voie de nivellement direct si
possible.

Cas d'un amphithéâtre

Le cas traité ici est celui de Pola, qui donna lieu à des

controverses quant au mode de calcul (voir publication
EPUL, N° 18). C'est la planimetrie qui est en cause en
ce qui concerne le mur d'enceinte. Les altitudes sont
contrôlées à part.

L'équation initiale était : Ay2 + Bxty( + Cx2 + Z)v{ +
+ Ex( + 1 v{.

Les Vj ne sont plus nuls pour i > 5 (ici / 1,2,3... 12).
Ces 12 points mesurés, combinés 5 à 5, donnent lieu à
792 ellipses pas rigoureusement confondues. Une compen-

Bn furentsation s'impose et des valeurs provisoires A0,
calculées : A A0 + AA ; B B0 + AB tandis que
les Xi yt mesurés donnaient lieu à des (x« + v/) et (y« + vj")
compensés. C'est un cas d'ex trémum lié facile à traiter.
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Si les poids des coordonnées mesurées xf, y( sont égaux,
on réalise la condition : [pp] minimum, où les p sont
les plus courtes distances des 12 points à l'ellipse calculée
[4].

Variante. Ici encore, une variante peut être envisagée ;
si deux points S et S' peuvent être considérés comme
stables, on les choisit comme sommets de faisceaux project

ifs.

A l'équation (3) valable pour le faisceau S s'ajoute
l'équation (5), revêtant la même forme, avec r' comme
birapport.

(5) L[ + X'XL'2 0 j

L[ + X'tL'i 0

avec la condition r

l; + A2L2 0; l; + A^ 0:

A\ — A3 A\ A4

Aa — A» Xi A4

Pratiquement, on préférera la forme trigonométrique,
en fonction des sinus et des variations très petites Ar,
Ar' revêtant une forme linéaire: Ar FiAxt, Ayt)',
Ar' F'iAxi, Ayî). Il convient, pour faire un choix, de
remarquer que les mesures angulaires sont souvent plus
précises que les linéaires.

Cas des charpentes

D est en général moins simple que les précédents, car à
un défaut éventuel de stabilité du sous-sol vient s'ajouter
une déformation, surtout si la structure est du type dit
articulé avec barres surabondantes. Récemment la statistique

fut appliquée (voir publication EPUL N° 98), mais
son rôle est secondaire. Le problème revêt la voie spatiale
avec mesures linéaires (électrotélémétrie) et angulaires,
planimétriques et al timétriques. A la base du calcul on a
la variation de coordonnées des nœuds comme inconnues,
solution dont la supériorité n'est plus discutée.

La forme classique de l'équation à appliquer est (voir
ÏÏÈË

v( a(dx + b{dy + c(dz + +ff (poids p{)
i= 1,2, 3

Sous forme implicite, on a pour les dérivées de l'énergie :

[av] [bv] [cv] O ipt 1)

équations fournissant les éléments pour la matrice de
rigidité. Les termes absolus /¦ sont obtenus en coupant les
barres surabondantes ; la solution est semi-graphique
parfois.

Les inconnues ne sont pas toujours indépendantes, par
exemple si certains nœuds se déplacent sur des surfaces
d'équation connue. Une solution usuelle est celle dite par
fractionnement (nach Stufen).

Aux éléments de la première étape : v, dx, dy, dz
viennent s'ajouter ceux de la seconde : v', idx), idy),
idz) Sous forme générale on a, les dx, dy, dz
n'étant plus variables :

v' aidx + idx)) +
+ cidz + idz)) +

bidy + idy))

+/
d'où [vv'] 0; [(v + vOa] [vv] + [vV] [4]

les idx), idy), idz) étant liées, sous forme linéaire, par des
conditions :

Fxiidx), idy), idz)

Féidx), idy), idz)

Cette solution, sans élimination de certaines inconnues,
a des avantages. On choisira judicieusement les axes de
coordonnées pour, autant que possible, éliminer les coefficients

de poids non quadratiques.
En conclusion, on peut dire que de notables progrès

furent réalisés récemment pour déterminer le manque de
stabilité et les 'ipïformations d'ouvrages d'art ; l'électro-
télémétrie joue un rôle ainsi, pour d'importants ouvrages,
que la tendance à tenir compte toujours plus de la déviation

de la verticale, élément perturbateur nuisant à la
précision. En outre, il y a plus d'équations que d'inconnues.
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Sur le choix d'un mode de calcul en hyperstatique spatiale1
par A. ANSERMET, Ingénieur professeur

Rappel de notions usuelles

La plupart des problèmes se présentant dans le domaine
des sciences techniques donnent lieu à plus d'une solution ;
mais en général une indépendance complète entre les modes
de calcul n'est pas réalisée. On peut faire des comparaisons
et attribuer certains avantages à l'une ou l'autre solution.
L'hyperstatique des systèmes articulés spatiaux, comme on
le sait, fit l'objet de recherches, par des voies différentes
aux Ecoles polytechniques de Zurich et Lausanne. Les

publications des professeurs Stiissi et Mayor sont
considérées toutes deux comme remarquables à des titres divers.
La Baustatik du premier vient d'être rééditée, ce qui
prouve la faveur rencontrée chez les praticiens ; le Cours
du second est épuisé et ne sera probablement pas réédité.
Cette publication présentait un caractère un peu spécial,
car un chapitre fut rédigé à l'intention de l'Académie des
sciences et pris en considération par celle-ci. Faire un

1 Texte rédigé en hommage au professeur D' Fritz Stiissi.
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