
Zeitschrift: Bulletin technique de la Suisse romande

Band: 98 (1972)

Heft: 4

Artikel: Le mécanique aléatoire de Georges Dedebant et Philippe Wehrlé, 1re
partie: éléments d'analyse aléatoire

Autor: Baatard, François / Magnin, Simone

DOI: https://doi.org/10.5169/seals-71533

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-71533
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


BULLETIN TECHNIQUE DE LA SUISSE ROMANDE 98* année 19 février 1972 N°4

Communications de la Chaire de la Mécanique de la turbulence
de l'Ecole polytechnique fédérale de Lausanne et du groupe de travail EPFL-ISM

La mécanique aléatoire de Georges Dedebant et Philippe Wehrlé
par FRANÇOIS BAATARD, professeur, Dr es se. techn., et SIMONE MAGNIN, lie. es se. math., assistente

1re partie: éléments d'analyse
aléatoire

Introduction

En 1937 paraissait à l'Institut d'histoire des sciences et
des techniques de l'Université de Paris, aux éditions Thaïes,
un fascicule intitulé : « La mécanique des fluides turbulents
fondée sur des concepts statistiques » signé respectivement
de Georges Dedebant alors sous-directeur scientifique de
l'Organisation nationale de météorologie et de Philippe
Wehrlé, directeur de ce dernier institut. C'était la première
fois que l'on signalait le rôle, d'une manière rationnelle,
des dépendances de probabilité traduites pratiquement par
les corrélations dans l'évolution d'un fluide turbulent.
D'autre part les auteurs faisaient apparaître l'importance
de Véchelle et de la superposition des étages de perturbations.

En 1944 et 1945, G. Dedebant publiait dans les « Portu-
galiae Physica» : 1° une analyse aléatoire et 2° une mécanique

aléatoire. Seules quelques notes aux comptes rendus
de l'Académie des sciences de France avaient jusqu'alors
attiré l'attention sur les conceptions de Dedebant et Wehrlé.

L'analyse aléatoire contient comme cas particulier
l'analyse certaine : au contact la liaison donnée par la
dépendance de probabilité vaut 1.

La catégorie première de la mécanique aléatoire est la
dépendance de probabilité. Le relâchement de cette dernière
met en évidence la diffusion du milieu et la dissipation de
l'énergie par son passage d'un étage à un autre de moindre
échelle. D'échelle plus fine que le réel apparent, la structure
de l'étage sous-jacent détermine les phénomènes de ce réel
apparent qui en sont les effets moyens construits par
dépendances de probabilité.

La dépendance de probabilité (hasard lié) est déterminée
parce que Vincertitude qui affecte une moyenne provient tout
entière du terme d'indépendance (hasardpur).

La théorie de la viscosité turbulente de W. Heisenberg
s'intègre dans la mécanique aléatoire dont elle adopte le
processus d'évolution des tourbillons. La structure aléatoire
rend compte en effet des forces de frottement et des
dissipations d'énergie, le frottement n'étant explicable que par
des échanges dus à la diffusion turbulente.

La mécanique aléatoire est celle du corpuscule aléatoire,
capable de diffuser, les dépendances de probabilité se
situant entre la liaison certaine du solide et la liaison hasard
pur du gaz parfait ; elle s'exprime uniquement en termes de
fonctions aléatoires, de leurs dérivées successives, de leurs
écarts types et des dérivées de ces derniers.

H y a autant de mécaniques statistiques qu'il existe de
variétés de fonctions de connexion des champs de probabilité.
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Il convient de remarquer aussi la grande part qu'a prise le
professeur Bass dans l'élaboration mathématique des travaux de
G. Dedebant et Ph. Wehrlé.

G. Dedebant et Ph. Wehrlé, avec lesquels nous avons
travaillé et correspondu longuement, ont exprimé, de leur vivant,
le vœu que soit réalisé le présent travail.

Première partie — Analyse aléatoire

Parmi toutes les analyses aléatoires caractérisées par
autant de types de connexions des champs de probabilité
des variables aléatoires entrant en jeu qui donnent lieu à
autant de mécaniques aléatoires particulières, et vice versa,
il en est qui conviennent particulièrement à la turbulence et
aux champsdissipat ifs: ce sont l'analyse aléatoire et la mécanique

aléatoire basée sur des fonctions doublement derivables

en moyenne quadriatique.
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Chapitre premier — La dérivée aléatoire

L'algèbre des probabilités composées (ou conditionnelles)
est plus générale que l'algèbre ordinaire ; ces types de

probabilités ne se multiplient pas comme des nombres
algébriques :

Règle de calcul :
La probabilité de l'événement complexe (a, b) est le

produit de la probabilité de (a) par celle de (b) lorsque (a)
s'est produit, c'est-à-dire par (bla).

p(a,b) p(a)p(blà)

Or p (bla) traduit la dépendance de probabilité de b

vis-à-vis de ce qui s'est produit(quiest mesuréepratiquement
par la corrélation entre a et b).

Dans le cas d'indépendance, l'algèbre des probabilités
rejoint l'algèbre ordinaire. A partir de l'algèbre des probabilités

dépendantes, on construit une analyse par l'opération

de passage à la limite (Fréchet, Paul Lévy, Cramer,
Kolmogoroff, Markoff, Kintchine, Slutzky, etc.).

Nous présentons ici une généralisation de ces travaux,
sans préjuger de la nature de la dépendance (ou de l'hérédité

statistique).

Définition :
Une fonction aléatoire équivaut à la loi de probabilité

conjuguée

F„ (Xu X2, Xn; tu t2,... tn) dxx dx2 dx„
pour que les variables aléatoires X\t X\t X\t

prennent les valeurs courantes xit x2, xn et ceci pour
toute valeur de n.

Aux moyennes de Riemann, en raison de la discontinuité
de la fonction aléatoire, on substitue les moyennes stochastiques

données par des intégrales de Lebesgue-Stieltjes ;

il y a une raison physique à cela : les moyennes temporelles

prises dans un intervalle égal à la période sont des
1 t+T _constantes et la dispersion X'2 (t) — J (X \ t—X)2 dt

2T f-T
est aussi constante. Il n'y a pas de diffusion à l'intérieur
du fluide et pas de possibilité non plus de mettre en équation

des phénomènes macroscopiquement évolutifs et en
instance de diffusion, c'est-à-dire des champs dissipatifs.

H est évident qu'avec les fonctions aléatoires et discontinues

intégrables au sens de Lebesgue-Stieltjes ces
difficultés disparaissent, sans attenter à la corrélation. Il va
falloir reconnaître parmi cet ensemble de fonctions celles
qui sont dérivables (exactement comme en théorie des
fonctions analytiques on a choisi celles qui admettent une
dérivée : les fonctions monogènes).

1. La différentielle aléatoire

X11 étant mie fonction aléatoire, la différentielle aléatoire

est l'accroissement

Z(t,h) X(t + h)-X(t)

L'espérance mathématique en est :

En supposant X purement aléatoire, donc de valeur
probable nulle, l'écart type est :

Z(t,h) X<t-\-h)-X(t)

(en supposant que X1< est derivable).
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dX
~dt

Z2 (t, h) X2(t + h) + X2 (0-2 X't + h) X't)

ou bien, avec :

a (t) écart type de X et r (t, t + h) dépendance de

probabilité ou coefficient de corrélation entre X(t) et
X{t + h) :

Z2 (t, h) a2 (r + h) + a2 (r)-
-2 r (t, t + h) a {t) a (t + h)

a(t), derivable et si nécessaire analytique admet le
développement de Taylor :

hz l
a (t + h) a + h a' + — a" +

Pour que Z2 soit infiniment petit avec h, il est nécessaire
et suffisant que r(t,t + h) soit uniformément continue
pour h 0 c'est-à-dire que :

r (-0) r (+ 0) r (0) 1

La liaison aléatoire devient certaine au contact et le calcul
différentiel certain s'applique aux fonctions aléatoires au
contacfë& ce dernier apparaît alors comme un cas particulier
du calcul différentiel aléatoire.

2. Conditions de cohérence et structure correspondante
d'une fonction aléatoire

H est évident que l'on ne peut pas admettre sans autre,
sous prétexHi qu'un milieu physique présente une certaine
décoordination, que des grandeurs y relatives et de caractère

aléatoire soient groupées ipso facto en une fonction
aléatoire ; tout au moins si l'on veut que celle-ci soit
justifiable d'une classification et de règles de calcul, et
notamment de la propriété d'être derivable. Pour cela, les
corrélations ri} de n nombres aléatoires pris 2 à 2 doivent
remplir des conditions de cohérence exprimant qu'une
probabilité ne peut être négative.

Nous allons maintenant calculer un développement de la
fonction de corrélation r(t, t + h) d'une fonction aléatoire
quelconque X11, sous certaines hypothèses de continuité.

Remarquons premièrement qu'une fonction certaine de
h et de / qui aurait ses valeurs dans l'intervalle [—1, +1]
et qui vaudrait 1 pour h 0 n'est pas automatiquement
une fonction de corrélation. Pour que ce soit le cas il est
nécessaire que cette fonction satisfasse aux conditions de

cohérence que nous allons établir.
Soit, pour simplifier les calculs, n nombres aléatoires

'gKaLX», ¦¦¦ Xn- considérons X{ Xx—Xlt X2 X%—Xt,...
casKF Xn—Xn et notons :

X- ï hX\i-l
les Xi étant des coefficients réels quelconques.

La forme quadratique :

[ ^ xa\
n n
E E A( Xj (Ti <T] ri

i-1 Ì-1



où at représente l'écart type de X{, ne peut évidemment pas
être négative ; le déterminant formé par les r{j : A.« I fy I

doit donc être positif ou nul : c'est une des conditions de
cohérence. En faisant le même raisonnement avec toutes
les sommes de la forme Z Aj JYj, la somme portant sur
toutes les combinaisons possibles d'un nombre quelconque
de i, nous obtenons l'ensemble des conditions de cohérence
imposées aux r# (i,j= 1, ...n).

Pour une fonction aléatoire, il y aura un nombre infini
de conditions de cohérence ; bornons-nous à écrire les
deux premières :

Première condition de cohérence :

1 r (t, t + h)

r(t,t + h) 1 :0

quels que soient r et A (\f-1, h), et en développant :
1 —r2 (t, t + h) ^ 0 ce qui est déjà connu (inégalité de
Schwarz).

Deuxième condition de cohérence :

1 r(t,t + h)

r(t,t + h) 1

r (t, t + h + k) r(t + h,t + h + k)

r(t,t + h + k)
r(t + h,t + h + k)

1

\ft,h,k
qui prend, dans le cas stationnaire (du deuxième ordre), la
llllne:

1 r(h) r(h + k)
r'h) 1 r (k)

r(h + k) r(k) 1

Voici maintenant deux exemples de fonctions qui, à
première vue, semblent être des fonctions de corrélation et,
en fait, n'en sont pas :

D

r'h) l-h2si\h I < 1

0 si I h I Si 1

en effet si h k ¦

Note :

Pour X — Z Xt Xî nous obtenons ainsi :

Ch)

(") + (n-l) + („-2)+-+(3) + ©=a + «"-
2« -a»-i-i)

conditions de cohérence. (La notation I ; représente le nombre
de combinaisons de n objets pris i à i.)

2)

1 - 0
4

1 1 i4 4

B i
4

r'h)

-^r<0

1 si I h | t
0 si I h I > z

1

T> •J*

L,

Fig. 2.

en effetUï h k t
1 T 0
T 1 T
0 T 1

Fig.

1 -2 t2 < 0

S'il existe un h ^ 0 et un t pour lesquels r (f, t + h)
± 1 la deuxième condition de cohérence impose à

r (t, t + h) une forme remarquable. En effet cette conaition
devient :

1 ±1

r't, t + h + k) r't + h,t + h + k)

r{t, t + h + k)
r't + h,t + h + k)

1

± 2 r (r, t + h + k) r (t + h, t + h + k) -
-r2 (t,t + h + k)-r2(t + h,t + h + k)^:0

c'est-à-dire :

-[r(t,t + h + k)Tr(t+ h,t + h + k)lP^:0
— si r (t, t + h) 1 :

r't,t + h + k) r(Ji + h,t + h + k),\f-k
et dans le cas stationnaire:

r<h + k)=r(k),\fk,
ce qui signifie que r est périodique de période h.
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si r (t, t + h) -1 : r (t, t + h + k) -r(t + h,t +
+ h + k), \f k et dans le cas stationnaire:

r (h + k) — r (k), -\/- k, ce qui entraîne :

r (0) 1 — r (h) — r (2 h) et alors r est périodique
de période 2 h.

3. La continuité en moyenne quadratique d'une fonction
aléatoire.

a) Définissons maintenant la notion de continuité en
moyenne quadratique : une fonction aléatoire X11 est
continue en moyenne quadratique en t si

lim (X I t + h—X I t)2 lim Z21 ti Ä 0 quelle que soit
h-+0 A-s-0

la façon dont h tende vers 0. Elle sera continue en

moyenne quadratique si lim (X I t + h—X I t)2 0 en
A-+0

tout t.

En effet, si X11 est stationnaire :

X11 — este (que nous choisirons égale à 0)

XI t XI t + h — a2 r (h) fonction de A seulement

A a2 I r'h + h)-r(t0) I I X\tX\ t + tQ + h

-X\tX\t + t\ \X\t(X\ ¦h~~X\ t + e„) I

L'inégalité de Schwarz (\XY\^ SX2 Y2) entraîne:

A^ >Jx2Tt(X\t + tn + h-X\ ^T)2 (à cause de la

stationnarité) VX211 (2 X211-2 XI, +1()
1 h XI,+1())

V2Z2|e \Jx2\t-X\t + hX\t= V2(T2Vr(0)-r(A)

entraîne : I r (r + h)—r (O I ^ \/2 *Jr(0)—r(h)

ce qui signifie que si r (A) est continue en A 0, elle le sera
aussi en tout t_.

Nous nous proposons d'étudier sous quelles conditions
une fonction aléatoire est continue en moyenne quadra-
tique.

H faut et il suffit pour cela que :

lim 'X2\t + h + X2\
A-+0

soit r, c'est-à-dire que:

\x\t+h—xTt)2lim
A^-0

-2X\ t X\ t + h) 0 quel que

(<j't + h)—a{t))
^0 ^0

2 a (t) a (t + h) (l—r (t, t + h))'
0

a (i) désigne l'écart type de X11 et r (t, t + A) le coefficient

de corrélation entre X11 et XI t+h

Pour que la limite d'une somme de trois termes positifs
soit nulle il faut et il suffit que la limite de chacun de ces
termes soit nulle. Donc :

\°lim (X\t + h—X\t)2
A^-0

0 ce qui signifie que

X11 est une fonction continue de /.

2° lim (o- (t + h)—a (t))2 0
A^0
a (0 est une fonction continue de t.

c'est-à-dire que

3° lim 2a{t)a't + A) (l—r (t, t + A)) 0
Ä-+0

c'est-à-dire :

4° lim 1

A^0
r (t, t + A) 0 quel que soit / et quelle

que soit la façon dont A tende vers 0.

En résumé : la condition nécessaire et suffisante pour que

X I soit continue en moyenne quadratique est que X11 et
o(t) soient continus et que r(t,t+ h) soit continue à gauche
et à droite pour A 0.

b) Dans le cas où X11 est stationnaire (du deuxième
ordre), r (A) est même continue partout.

4. Développement du coefficient de corrélation dans le

cas de la continuité en moyenne quadratique.

Si X11 est continue en moyenne quadratique, r (t, t + A)

est donc continue en A 0 ; soit a l'ordre d'infinitude de
1 — r (t, t + h), nous pouvons représenter r (t, t + h) par
le développement :

r (t, t + A) 1 — X (/) I A Ia— I A I« tp (f, A)

ç> (t, h) étant une fonction qui tend vers 0 quand A-»-0

Notre but est d'établir un développement de tp (t, h).
Nous savons que r (t, t + A) r (t + A, t) ; en remplaçant

r par le membre de droite, nous obtenons la condition
de symétrie :

X (t + h)-X (O § tp (t, h)-<p (t + A,-A)

Supposons maintenant que X (t) est analytique :

X't + h) X't) + hX'(t) 2!
X" (t)

tp (t, A) Xx (r) h+ X2 (t) A2 + As (0 A3 +
+ A4(/)A4+

et
tp (/ + A,-A) -Ai A + (Xz-X'J h2 +

2+ (-T+A2-^s)Äs + (-^
i. o

^-a; + A4)a4 +

En portant le développement de <p (t, h) et de
tp (t + h, —h) dans la condition de symétrie et en identifiant

terme à terme, nous obtenons le système :

coefficient de h : A' 2 Ai
X"

coefficient de ha :

coefficient de h3
X*.

2Xs+^-Xi
X'" X"

coefficient de h4 : g§ £¦ + AJ

et ainsi de suite.

i<*>

4!

Les coefficients A« gardent cependant un grand caractère
d'arbitraire car la première équation entraîne la deuxième,
la troisième entraîne la quatrième, etc.
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On obtient donc le développement :

r't,t + A) 1-1 AI« A (0-
-IA X'(t)

A + Aa«A2
X'2 (r) X'" (t)

2 24 y
W +

5. Cas particuliers et classes correspondantes des fonctions

aléatoires.

1° Cas stationnaire :

r (t, t + h) r (A) 1 -| h \« (A + A2 A2 + A4 A4 + .-)
fonction paire quelconque

telle que r (A) satisfasse aux conditions de cohérence et où
les /,- sont des constantes.

2° Cas analytique : X I t sera dite analytique si sa fonc-
tion de corrélation est analytique. A ce moment a 2 et

r't,t + h)= l-A(f)A2- X'(t)
h3-Xz(t)h4

3° Cas analytique-stationnaire (ana-stat) :

r(t,t + h) r(h)=l -X A2-A2 A4-...

r est ime fonction paire quelconque, mais satisfaisant
toujours aux conditions de cohérence.

4° Il nous faut maintenant tenir compte des conditions
de cohérence et calculer les restrictions qu'elles imposent
au développement de r (t, t + A).

La première condition est, en fait, l'inégalité de Schwarz,
elle est donc toujours vérifiée.

Passons à la seconde condition :

1 r(t,t + h)
r(t,t + h) 1

r (t, t + A + k) r't + h,t + h + k)

r(t,t + h + k)
r(t + h,t + A + k)

i.e. :

1 -r2(t, t + h)-r2(t + h,t + h + k)-r2(t, t + h + k) +
+ 2 rfflkt + h) r (t + A, t + h + k) r (r, t + h + k) Si 0

Nous voulons remplacer r par son développement dans
cette inégalité ; nous nous bornerons au cas où A k, ce
qui nous donnera une condition nécessaire pour que la
deuxième condition soit satisfaite (mais évidemment pas
suffisante).

Calcul préliminaire :

r (I + h, t + 2 A) r (t, t + A) + A A (r, h)
où A(t,h)=-\h\tc(X'+ X"h+...)

La deuxième condition de cohérence pour A k est :

1 -r2 (t, t + h)-r2't + h,t+2 h)-r2 (t,t + 2h) +
+ 2 r (t, t + A) r (t + h, t + 2 h) r (t, t + 2 h) ^ 0

[1 -r (t, t + 2 A)] [1 + r (t, t + 2 h)-2 r% (t, t + h)-
-2 A (t, h) r(t,t + h) h]-A2 (t, h) h2 ^ 0

d'autre part

1 + r (t, t + 2 A)-2 r2 (t, t + h) \ h" \ X (-2« + 4) +
+ A|AlaA'(-2*+ 2) + I Ä laÄa Aa(—4- 2a + 4) —

-2 A2 I A I 2a +

La deuxième condition de cohérence devient :

[ I h" I 2« A + I A |a A 2" X' + I h \« h2 4 ¦ 2" A2 + ...] •

• [ [ h I« A (-2« + 4) + I A laA A' (-2a + 4) +
+ I A |aA2 (-4-2aA2 + 4 A2 + 2 A")-2 A2 I A I 2a + ...]

-A,2A2IA|2a+ ^0
Elle doit être vérifiée, en particulier, lorsque A tend

vers 0. En ce cas, le terme de plus petit degré donnera
son signe à l'expressi^KS

Premier cas : tx<2
I AI2" 2« A2 (-2*+ 4)^0

ce qui est vérifié et n'entraîne aucune condition nouvelle.

Conclusion : Cette -Asse de fonctions aléatoires contient
toutes celles qui ne sont pas dêrivables en moyenne quadratique.

Deuxième cas : a. 2

A6 [4 A + 4 h X' + 16 A2 A2 + ...] •

• [-16 A2 + 4 A2 +|p'-2 A2 + ]-A'2 A6 + ^ 0

et qui entraine :

-6 As A2 +
A'2-8AA"

SX

Conclusion : Cette classe contient les fonctions dêrivables
en moyenne quadratique.

Troisième cas ä»>2
I A |a2« A2 É-2a + 4) ^ 0 implique A 0,

puis A§ (4—2*)^:0 et A2 0 et ainsi de suite.

Conclusion : Cette classe contient les fonctions certaines.

Alors r (/, t + h) 1 et la fonction aléatoire correspondante

est de la forme : A -f(t) où A est une constante
aléatoire et f(t) une fonction certaine de t.

Dans le cas stationnaire nous arrivons évidemment aux
mêmes conclusions, en particulier si a 2 : — 6 Ag ^ A.2,

ce qui signifie que A2 est négatif ou nul.

6. La dérivée en moyenne quadratique.

Nous avons déjà établi la forme que prend la fonction
de corrélation r (t, t + A) correspondant à une fonction
aléatoire continue en moyenne quadratique. Nous allons
définir maintenant la notion de dérivée en moyenne
quadratique et étudier l'influence de l'existence d'une telle
dérivée sur la fonction r(t,t + h).

Définition : So it une fonction aléatoire X111 s'il existe

une fonction aléatoire X \ t telle que :

M ran.»lim
h->-0

XI sera la dérivée en moyenne quadratique de X\ t (au
point t).

Décomposons premièrement X 11 et X11 en la somme
d'une partie certaine et d'une partie purement aléatoire :

m x\t + x'\t
X\t + X'\t
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Alors : Deuxième cas: a>2

¦ n-X\
h -x\t

(X\t + il + X I t + ft—X11—X \t -X\t-X'\t

x\t + h-x\ x\ x'\t + h-x'\ -x'\t
Comme ces deux termes sont positifs ou nuls, la condition

nécessaire et suffisante pour que X \ t ait une dérivée
est que :

1) lim
A-*0

X 11 + ft XI
A

0

Um (X'U + h~rit -X'\X-
A^O

La limite est nulle et la fonction X I
t est de la forme Bfit)

où B est une constante aléatoire et f(t) une fonction
certaine. La dérivée d'une telle fonction est Bf (t) et ne
présente pas beaucoup d'intérêt.

Troisième cas : a 2 et X (t) ^ 0

\-r't,t+h) Wà 1 d2rit, t + h)
lim -2 =A(f)=-- jj^-A-^0

Il s'agit de la dérivée en moyenne quadratique.

Remarques :

1) La condition d'existence de la lim
A-*0

n'est pas suffisante pour que

1 -r (t, t + h)

La condition 1) signifie que la fonction certaine X11 est

derivable et que sa dérivée vaut : XI (si X11 existe, bien
entendu). Nous pourrons donc permuter la dérivation et
l'opération moyenne.

Une condition nécessaire pour que 2) soit réalisée est :

; X I [ + ft X | {\ •,»,lim - —r— - X 2 11

A-*0 h

(Nous supposerons X'2 11 finie.)

Or:
X I

t + h~X I fi '

h

a2 (t) + a2't+ h)-2 a (t) o't + h)r't,t + h)

a{t + h)-o(f)\* l-r(M + A)
+ 2 a (r) a (t + A)

ces deux termes sont positifs ou nuls ; il faut alors que

¦ _,, • t. \-r't,t + h)
a\t) soit derivable et que htm ¦ —-z existe.

A-^0

Nous avons donc :

a'2 + 2a2if)lim 1-r«'J + » I^-l
h*

Â-.-0

Remplaçons r't, t + A) par 1— I A laA(f)-l A \a<p(t,h)

a i & /• 1-KM + A) £dans la condition : lim —=— — existe.
h*

A-*0

Cela nous donne :

|A|«A(r)+ \h\*(p't,h)
lim rs — existe.
A-.-0

A2

lim l^\t + n-X'\t_^,{
A+0V h

On peut montrer que si tp (t, A) est de la forme

— u (r, A) où u (r, A) est continue et nulle pour A 0 et
h

Bu
possède une dérivée premiere gli contìnue et nulle pour

an
A 0, alors cette condition est aussi suffisante.

2) Nous pouvons définir la dérivée de façon plus générale

:

S'il existe XI JËÉ que :

lim
A->-0

A"2
-^ 11 0, où a est positif,

alors X 11 est la dérivée en moyenne quadratique de X\t.

Nous arrivons alors aux conditions nécessaires :

X \ t +zÈsrX \ t » O- rlim —737S— - existe et vaut X11
A^O

h"'2

a(t + h)-a(t) m
lim — ._,„ - existe

Â->-0
A"'2

g \-r't,t + h)
lim ¦ - existe.

A->0
h"

Comme on le voit, ce cas est intimement lié à celui où,
dans le cas certain, la dérivée serait définie de la façon
suivante :

Premier cas : a<2 et A (t) v^ 0

Il ne peut pas y avoir de dérivée.

fit + A) -f(t)dérivée lim —tttô— — > a étant positi!.
A-.-0

hm
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3) Nous avons étudié, aussi bien pour la continuité que
pour la dérivabilité en moyenne quadratique, ce qui se

passe pour la fonction de corrélation r it, t + h). Il est
beaucoup plus simple de voir ce qui se passe pour
X' I

t X' I

t + h — ßit,t + h), fonction d'autocovariance.

Continuité

lim iX\t + h-X\t)2= lim iX\t + h-X\t)2 +
A-+0 A->-0

+ iX'\t + h-X'\t)2 0

et alors : a) lim X11 + n — X11 XI est continue.
h-+0

b) lim iX' \t + h-X'\t?
A->0

lim (g(f+ A)-g(r))2 +

+ 2<j(t)ajt + A) (\-rjt,t + h)\ 0

c'est-à-dire que a if) est continue et que

lim X\tX\t+h X2\t
A->0

La fonction d'autccovariance X' 11X' I
s ß (t, s) est

donc continue au voisinage de la droite t s.

Dérivabilité : une condition nécessaire et suffisante pour
que X' 11 soit derivable en moyenne quadratique est
(théorème dû à Slutzky) :

lim
A-vO séparément
mm

X' h~X I j

X'\t + k-X'\ 0

(Nous supposerons X'21 finie.)

Il est équivalent alors de dire que :

X \ t + h X \ t X \ t + le X \ tlim —-— — existe.
h k

A-*0
k-+0

Cette limite est égale à :

lim
A-+0
£->0

A

X hX' ~X I t + Ä X I

X I X I

+ /c—X

au voisinage de la droite t s.

d2ßit,s)
dtd s

1. Corrélation entre la fonction et ses dérivées et
développement de r ih) suivant ses écarts types.

Ces quelques remarques faites, nous allons étudier un
nouveau développement de r it, t + h) dans le cas où la
fonction XI { correspondante possède des dérivées de tous
les ordres.

Notations : S2, it) : écart type de X11

Sfit) : écart type de X\ t

Nous avons vu que :

1-rit, t + h)

etc.

ct'2 + 2 er2 lim
A+0

les nouvelles notations :

X'2\ t ce qui donne avec

d'où :

S'02it)+2Slit)Xit) Sfit)
S2 «)-S'2 it)Xit)

2 S2 it)

h2 S2 it)-S'02 it)
et r (f, r + A) 1 — — \- termes d ordre

2 Sa it)
supérieur

Comme r doit être inférieur ou égal à 1, il faut que
Ç2_C"2

<J2
0 c'est-à-dire que Si ^ I S'0 I : la valeur absolue

de la dérivée de l'écart type est donc inférieure ou égale
à l'écart type de la dérivée.

S'n
D'ailleurs le rapport — est lui-même une fonction de

Si
corrélation. En effet nous pouvons montrer que

-wiX) xp'iX)-Xdt

Alors
d

2S0S'0--S20--X'2\t--X'2\t

d'où
2X' \tX' \t 2riX',X')SaS1

r Ü X') 1
Si

En continuant à dériver X'2 11
> nous pouvons calculer

r iX', X'), r iX', X') etc.

Par exemple :

2 So Si + 2 S'02 -^S2 2 X' I, X' I, + 2 X'2\t-

2riX\ X')S0S8 + 2S\
d'où

riX',X') ?oS"0 + S'°*~S21

S0 S2

ce qui entraîne :

So S2 — Sq Sq + S0 —Sj ^ So S2

La condition nécessaire et suffisante pour qu'il y ait
dérivabilité est donc que la fonction d'autocovariance ß it, s)

d2ßit,s)
au voisinage de la droite s= t.admette une dérivée

dtdi

8. Cas de la stationnante en probabilité.

Etudions maintenant le cas particulier où XI, est
stationnaire.
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Dans ce cas nous avons : peuvent s écrire :

2 So A Sf où A et S0 sont des constantes. L'écart type
de la dérivée Si est donc aussi une constante et comme la
fonction de corrélation de XI { vaut

X'\tX'
S '¦\t V*'2i«

d2

dtds

1 d2
~~

S\dtds

ris-t)S\

X'\tX'\.=
1

\sj
elle ne dépend que de is—t). La dérivée d'une fonction
stationnaire est donc aussi stationnaire; sa fonction de corrélation

vaudra :

S(A)
d2rih) S2

dh S2

et nous avons automatiquement

¦ &M U + n, X<n>\t) (-!)" ^2"r(A) Sj
dh2n ' SÌ

Donc:

92nrih)
9h2n

Nous savons en outre que

m

o2
(-D" g

i »J n

riX,X)= - Sn S«
d'où: Si =^= So S2

et nous avons évidemment la formule plus générale :

Sn -1 Sn.

Le développement de Taylor de r ih) est :

OO 1

r ih) E ^^ A2"
„=o (2 n)

d2n r (A)

dh2n

co L2n / e \ 2

r(A)= E (-I)--£_(£)
„_o i2 n)l\S0l

9. Théorème de Khintchine.

Nous citerons maintenant l'important théorème de

Khintchine :

La fonction r (A) est la fonction de corrélation d'un
processus stationnaire continu si et seulement si r (A) peut se

mettre sous la forme :

fih)~l c°s At) d F ix)

où Fix) est une fonction de répartition.

On peut aussi dire que r (A) peut se mettre sous la forme :

1

2

ristique

0ih)-&i-h) où 0 Qi) est une fonction caracté-

En utilisant la forme de Khintchine, nous voyons que
les inégalités :

inégalités qui découlent de celle de Schwarz.

Exemple: Soit Fix) une fonction de répartition «en
escalier » présentant des discontinuités de valeur a„ en
n xB ix0 — constante).

Nous avons alors : E an — 1

0

ÏÏK r (A) E an cos (w Xa h)
o

C'est la fonction de corrélation d'ime fonction aléatoire
analytique et stationnaire.

Remarque importante : Nous avons vu que

A2sf(0-s02(0rit, t + h)= 1- S2(r)

cela signifie en pratique que la connaissance des écarts

types de X11 et de X11 permet d'étudier la connexion de
la fonction aléatoire pour A infiniment petit.

On peut même montrer que l'accroissement iX 11 + Ä—X11)
d'une fonction aléatoire stationnahe derivable suit, pour A

infiniment petit, une loi de Gauss d'écart type A Si.

10. Fonction de connexion et corrélation vectorielle.

En dernier lieu, nous définirons la fonction de connexion.
Soient deux constantes aléatoires U et V.

La fonction caractéristique de leur loi conjuguée est :

Xa0fiia+fi
piCkU+lpV) : -E

<x.ß Otlß1«!
U" Vß

si les moments U" ^existent, bien entendu. Si [/et Ksont
indépendantes nous aurons :

tfcßp+ß.9iiXu-hpv) 5 a\ß\
fja yß _ giku eiqm

La fonction de connexion 0 (A, <p) sera :

B (A (p) ei<^u+9"^—ea,u • e*9"

et si U et V sont indépendantes cette fonction sera nulle.

Au lieu de U et V nous pouvons aussi choisir des
vecteurs aléatoires A et B (définis comme en analyse certaine
mais où les composantes sont aléatoires)

6 iA 0) e'<-4A+*B) —eiAA ¦ ei0B

où A et 0 sont des vecteurs.

Si les vecteurs A et B sont indépendants entre eux, cette
connexion sera nulle, quelle que soit la corrélation existant
entre les composantes de A ou les composantes de B.

Cette fonction est donc intéressante par le fait qu'elle
fait la séparation entre les propriétés statistiques internes
d'un vecteur (relatives aux corrélations entre ses composantes)

et les propriétés statistiques proprement
vectorielles.
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Chapitre II — Intégrales, primitives et équations
différentielles aléatoires

En analyse aléatoire, il est nécessaire de rassembler sous
forme statistique les diverses réalisations pour pouvoir
définir la notion de dérivée. L'intégration, en revanche, se
définit de façon beaucoup plus directe.

11. Définition et propriétés fondamentales.

Soit U11 une fonction aléatoire||pésignons par 911 (0
une réalisation quelconque de U11 pour l'ensemble des
valeurs de r à la suite d'une épreuve statistique, alors :

0

lit)dt= / U\tdt

est l'intégrale de U\ t sur l'intervalle (a, b). L'intégrale J
existe si la fonction ^Ä) est sommable au sens de Lebesgue.

S résulte immédiatement de cette définition que :

& b »

JiU\t+ V\t)dt jU\tdt+ JV\tdt

et que :

o c o

j U\tdt= f U\tdt+ j U\tdt

quels que soient U\ t, V\ t>a,b et c.

L'intégrale aléatoire jouit encore de deux autres
propriétés importantes :

Premier théorème : Si la fonction I UvS[\ est sommable,
on peut écrire :

b 6

U\tdt U\tdt

Ce théorème, évident dans le cas où U11 est integratile
au sens de Riemann, a été démontré par Slutzsky, et
nous l'admettons.

Deuxième théorème : Si U\ t est continue en moyenne
quadratique la fonction aléatoire :

m ds

est derivable en moyenne quadratique et a pour dérivée U\ «.

I\t+n-I\tSoit Z- U\ t, il faut montrer que

lim z2 m 0^
h-+0

Comme en analyse ordinaire, nous avons :

t+h

Z= i ÇiU\,-U\t)ds et

t

t+h t+h

Z,-ffhu\m-U\ùdtx- jiU\e-U\t)dß

1

Ä2

t+h t+h

j iU\tt-U\t)iU\ß-U\t)docdß
t t

t+h t+h

et alors: Z^= 1 Ç f(U\.-U\d{U\ß-U\od*dß
t t

t+h t+h
1

"h2

1

Ä2

f jiU\a-U\t)iU\ß-U\ddatdß
t

h t+h

f f\iU\a-U\t)iU\ß-U\t)\dotdß

t t

t+h t+h

t t

t+h t+h
1

A2
y?V(I/la-£/|,)2 \JiU\ß-U\u*docdß

Comme U\ t est une fonction aléatoire continue, on
peut trouver une valeur A0 de A telle que, si A < A0 :

\liU\t + n-U\t)2<£

e étant un nombre positif arbitrairement petit.

Il en résulte que :

\/iU\a-U\f2<e

\/iU\ß-U\t)2<s
et que

z2-!
h2

s2 doc dß — e2

ce qui montre bien que Za tend vers zéro avec A.

Nous voyons donc qu'une condition suffisante pour que
t

/1 {= / U\ sds soit derivable en moyenne quadratique et

a
ait pour dérivée U11 est que U11 soit continue en moyenne
quadratique.

On peut montrer qu'au moins dans le cas stationnaire
cette condition est aussi nécessaire.

12. Moyennes aléatoires et rôle de la connexion aléatoire

pour l'existence de l'intégrale.

Si la fonction de corrélation de U 11 vaut :

r («,Ä

et si

b

/= f U\tdt

(/_/)*= I f Six) S iß) r (a, ß) dctdß 0

a a
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alors le nombre aléatoire I se réduit à sa valeur

moyenne :

b

/=ft/= I ~Û\tdt

a

et l'intégrale de U I
{ cesse d'être aléatoire.

La constante aléatoire :

t+z

X= - I U\sds °>KoyiU\s)V

peut être appelée moyenne aléatoire de la fonction aléatoire
U I

g dans l'intervalle it, t + t).

Posons X' X-X, U'\S=U\„-U\
La variance de X est :

X' U'\.ds\ 72/ f U'\aU'\ßdxdß

Désignons par S (a) l'écart type de U I

a et r (a, ß) le
coefficient de corrélation entre U I „ et UI «.

Alors

Z'2 / / S i<x) S iß) r i<x, ß) da dß

et on découvre le fait fondamental suivant :

L'écart type de l'intégrale aléatoire dépend essentiellement

de la connexion du champ de la fonction à intégrer.

Ce fait jouera un rôle capital dans les fluides turbulents.

Cet écart type sera nul si r (a, ß) <

[ 1 si a ß

c'est-à-dire si la connexion du champ à intégrer est nulle.

Si ria.,ß)= 1, c'est-à-dire si U\t Bf (r) où B est

une constante aléatoire et fit) une fonction certaine,

X'2 -%\ S(x)S(ß)dxdß
t t

t+x

- S (a) dot ¦¦

t

SKCoySj

Dans le cas général I r (a, ß) I ^ 1 d'où :

y' jp2 ^ STcoy S

Ainsi l'écart type de la moyenne aléatoire est au plus égal
à la moyenne de l'écart type de la fonction.

Supposons maintenant que UI soit une fonction aléatoire

stationnaire, c'est-à-dire que r (a, ß) ne soit fonction
que de iß—oc) et que S (a) soit une constante S. Alors :

X"- IÜ ¦a) dx dß
2 S2

x f j ix-s) r is) ds

0

et l'on voit bien que, I r is) 1 étant ^= 1

F2 ^S2

13. Rôle de la connexion entre un grand nombre de

variables aléatoires et la fluctuation de leur moyenne.

Pour mieux comprendre l'importance de la connexion
dans la notion d'intégrale aléatoire, nous allons observer
ce qui se passe sur la moyenne arithmétique d'un très

grand nombre de variables aléatoires.

Soit X la moyenne arithmétique de n variables aléatoires

Ai, X2, Xn de valeur probable nulle :

EX.Z

Soit rfj le coefficient de corrélation entre Xt et A} et S<

l'écart type de X{. L'écart type de X est donné par :

n

Supposons, pour bien voir le fond de la question, les S{
tous égaux à 1 et les rtj tous égaux à un même nombre r.
On trouve :

r +

Lorsque r 0 (c'est le cas, en particulier, si les variables

sont indépendantes) S2 vaut — qui est un nombre très petit.
n

Au contraire, si les variables sont corrélées, l'écart type
S cesse tout de suite d'être négligeable et S2 vaudra
approximativement r.

Donc : la fluctuation de la moyenne d'un grand nombre
de variables aléatoires est la conséquence de la corrélation
entre ces variables. Elle est d'ailleurs inférieure à leur
fluctuation commune.

De plus, S2 étant positif, on a lorsque n est fini :

-1
r > r

Si n-* °°, r ne peut rester négatif.

Donc si un grand nombre de variables aléatoires présentent

deux à deux la même corrélation, celle-ci ne saurait
être négative.

14. PrimitMit d'une fonction aléatoire.

Comme nous avons étudié la dérivation d'une fonction
aléatoire, il serait intéressant de définir l'opération inverse
qui consiste à prendre la primitive d'une fonction. Nous
nous bornerons à l'étude du cas où la fonction aléatoire
U11 est stationnaire, d'écart type S et de coefficient de
corrélation :

riti-h)=rih)

Définition : Nous appelons primitive de U\ t toute fonction

aléatoire X 1h| qui admet U11 pour dérivée.
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A cause des propriétés de la dérivée (la condition nécessaire

et suffisante pour que XI soit derivable est que :

d2

dhdt2
X\ X2

existe), nous voyons que toute fonction aléatoire qui vérifie
l'équation

;.t ï-v- ^k^=c^ .-)-¦:;¦:'¦:¦::

est une primitive de UI (et inversement toute primitive de
U11 satisfait à cette équation).

Notation : XI tx, Ai X112 X2, Ux Ux-Wx
U2 U2-U2, X[ Ai-AÏ

d2
En intégrant l'équation : ^—^— Ai X2 Ux U2

dtxdt2

nous obtenons :

t2 tl fi h

les fonctions c* et c2 étant arbitraires.

h h

Ai Ar2 S2 I i r fa-fO dtx dt, + cl fa) + 4 (ra) + Ü tx t2

o o

Changeons de variables

< -
2 x Jacobien

| ri ?i avec le
1 0

-1 1

(o.t2) <''•'*> (o.ta)

(o.o) [l,.o) (o.o)

(ll.l)-l,)

<<1.-«,)

- / it2-tx-s)ris)ds+ I i
0 -t.

ne dépend que de ?i

12

fih- -s) r is) ds + cl iti) + c"2 (fa) + U tx t2

ne dépend que de 1%

D'où:

Ai X2 -S2 / ih-s) ris)ds+ cx fa) + c2 fa) + U tx t2

o

avec A r2—?i et c^, c2 fonctions arbitraires de tx et de t2.

Alors :

X'XX'2 -S2 / (A-5) r (r) A + ci fa) + c2 fa)

AiA-2= / / U'1U^dt1dt2+c"1it1) + c"2it2)+ / / UxU2dtxdt2 Or

A'j X2 et —S2 / ih—s) r is) ds sont symétriques en ri et t2,

o

il faut alors que (ci fa) + c2 fa)) le soit aussi, ce qui entraîne :

Ci c2 c

Si tx t2, nous avons :

ct2(o F2T7=2c(o

Nous obtenons :

XXX2 / ih-s) r is) ds + | (ct2 (rj) + CT2 fa))

Fig. 3.

Nous pouvons écrire cette égalité sous une autre forme,
soit l'intégrale :

t

Z\t=fu'\sds iZx Z\h)
o

nous avons aussi :

X'i K%f (Za
2Zl)8 + 1 («r2 Ci) + à» fa))

Cela signifie que, en particulier, I UI, ds est une primi-
a

tive de U11.

Alors :

/ J ris)dtxds+ r is) dtx ds +

fris) dt, ds + c"x fa) + c2 ih) + Utxt2

15. Exemple d'une primitive particulièrement remarquable.

Considérons maintenant la primitive de U' 11 particulière

:

t

ZI, / U' \. ds
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Nous savons alors que le moment rectangle de la primitive

générale vaut :

-—r oUtù + tfiitd-iZi-ZÙ* CT2(?1)+CT2(ra)-i:2fa-/1)
AXA2

OU

E2it)

Sa fonction de corrélation R sera :

^2fa->l)-(<7fa)-CTfa))2Rih,t2)= 1

2 o- fa) a iti)

Pour que Ritx, t^) satisfasse aux conditions de cohérence
il faut imposer à la fonction indéterminée ct it) un certain
nombre de restrictions. Ainsi, pour que R soit compris
entre — 1 et + 1 il faut que :

I ct fa)-CT it,) I ^ E fa-ri) ^ ct (fa) + ct (fi)

Lorsque A f2—fi tend vers zéro, cette condition nous
donne : I ct' I — S, inégalité que nous avons démontrée déjà
dans le chapitre précédent, où, rappelons-le, a it) est
l'écart type de XI t et S l'écart type de sa dérivée U\ t.

16. Primitives stationnaires.

Nous nous bornerons maintenant à étudier ce qui se

passe dans le cas où U11 admet des primitives stationnaires.

Il faut pour cela que ct (f) soit une constante, la fonction

de corrélation R vaut alors :

Rjh)=l-£2[<2-tÙ l-
2ct2 2ct2

La première condition de cohérence implique donc :

I Ein)

Il faut alors que :

E2 2S2 I ih—s) r is) ds reste bornée, quel que soit A,

et en particulier quand A -»¦ °°, de telle sorte qu'on puisse
choisir a fini.

La seconde condition de cohérence entraîne que :
1 — 2 r2 ih) + rÇ2 A) ^ 0 c'est-à-dire, dans notre cas :

i-^\ 272 (2 A)

2ct2

D'où:

274(A)

La condition a) signifie que E (A) ne pourra pas franchir
la droite de coefficient angulaire S, à laquelle elle est
tangente à l'origine :

Z(ll)

;4 272(A)-i72(2Â)

Fig. 4.

en hachuré : domaine où peut se trouver E ih).

Comme E ih) est bornée quel que soit A elle peut prendre
l'une ou l'autre des allures suivantes :

a) tendre vers une asymptote horizontale, il en sera alors
de même pour R (A) qui tendra vers ß.

Considérons alors/» instants ; il leur correspond —-—
coefficients de corrélation et l'on peut toujours s'arranger,
quelque grand que soit p, pour que ceux-ci soient aussi
voisins de ß qu'on le désire. Or nous savons que si un
très grand nombre de variables aléatoires présentent
deux à deux la même corrélation, celle-ci ne peut pas être
négative. Donc ß est nécessairement positif ou nul.

b) être périodique ou presque périodique, et R(h) sera
aussi périodique ou presque périodique.

Remarque : Si, à tout nombre positif e, aussi petit que
l'on veut, on peut faire correspondre une longueur / (e),
telle que tout intervalle de longueur / contienne au moins
un nombre x pour lequel on ait :

soit rix) > 1 —e, soit rix) < — 1 + e

le coefficient de corrélation est une fonction presque périodique

dont la presque période est, soit x, soit 2 x.

Les fonctions aléatoires correspondantes peuvent être
appelées : fonctions aléatoires presque périodiques.

Nous allons faire, en dernier lieu, une remarque
intéressante : si E ih) est bornée supérieurement, il existe une
infinité d'intégrales stationnaires dont les écarts types ct
sont bornés inférieurement. Il y en aura généralement une
correspondant au minimum a0 des ct. Soit 91 (A) son coefficient

de corrélation.

et alors : a)

b)

2 E ih) ^ E (2 A)

274(A)

4 272(A)-272(2A)

Nous voyons que ia condition b) est plus restrictive que
celle imposée par la première condition de cohérence et
nous pouvons penser que les conditions de cohérence
d'ordre supérieur à 2 le seront encore plus.

Les coefficients de corrélation R ih) des autres intégrales
stationnaires s'expriment au moyen de 9t(A) par la
formule :

Rih)

On en déduit que :

ctV + ff2
°lçua (A)

R ih) ^ SU (A)
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Ainsi, toutes les courbes RQi) sont placées dans la
région du plan comprise entre la courbe 3t (A) et la droite
d'ordonnée + 1.

De plus, si iR. (A) satisfait aux conditions de cohérence,
R ih) y satisfait aussi, en effet :

Les conditions de cohérence pour R ih) sont :

E X2 + 2 EE RijXiXj^O quels que soient les Xt et
l<l quel que soit i.

Or:

E X\ + 2EE RliXiX, -\iE X\ + 2EE St0 A« X,) +

+ (l-^jiEXù2 ^iEX2 + 2EE%i,XiX]) ^0

si les cRtj satisfont aux conditions de cohérence.

s&llll Equations différentielles aléatoires.

La «Borie classique des équations différentielles repose
sur le théorème fondamental : si, en tout point d'un intervalle

fjË b), la fonction A'(f) admet ime dérivée nulle,
alors Xit) est une constante.

Ce théorème subsiste en analyse aléatoire, en effet :

1) X ne dépend pas de f car —- X X 0
dt

Notations. Y\t,Z\t : espérances de Y11 et Z11

parties purement aléatoires
de YI t et Z I

t

S2 (f) Y'2 |

ct2 (f) Z'2\t

tit) Y'\tZ'\t
a it) S it)

Comme nous avons supposé Z11 continue, ct (f et

Z11 seront continues.

L'hypothèse devient donc :

ti
~YZdt-{

S h

/ Y' Z' dt=0

Parmi les fonctions Y11 (qui sont arbitraires) choisissons
celles d'espérance nulle. Leur écart type S, ainsi que leur
corrélation avec Z11 restent cependant arbitraires.

Nous avons :

ta

j Y'\tZ'\tdt (r(f)S(f))ff(f)rff 0

2) XI g XI j8 ne dépend ni de tx, ni de f2, car

dÇk „

M X\hX\ „ X gj Al e, 0 X\ hX\ h M XI | X \h
dtx ot2

3) (A" I tx—X\ tj \X I ta—X\ ts) est alors une constante

C, donc aussi \X I —AT I J

La fonction de corrélation est alors une constante et
comme toute fonction de corrélation vaut 1 à l'origine,
cette constante vaut 1.

Nous en déduisons immédiatement que X11 est une
constante aléatoire.

r Q) S it) étant une fonction arbitrane de t, nulle pour tx
et f2 et a if) étant continue, le lemme fondamental du calcul

des variations s'applique. Alors :

ct (f) 0

D'où : Z' 11 0 et par suite Z I t — Z I t

Choisissant maintenant des fonctions YI t de valeur

probable YI non nulle (sauf pour fi et fa, on doit avoir :

Z I

t dt 0

Chapitre III — Calcul des variations

18. Le calcul des variations se transpose sans difficultés
en analyse aléatoire et conduit à des équations d'Euler-
Lagrange aléatoires.

Nous démontrerons d'abord le lemme fondamental :

Soit Y11 une fonction aléatoire arbitraire qui se réduit
à la constante certaine zéro pour t fi et t t2 (il est même
suffisant que Y11 soit continue en moyenne quadratique).

Soit Z11 une seconde fonction aléatoire continue en

moyenne quadratique.

Alors :

-/ Y11Z I dt 0 quelle que soit Y\ t, Z \
t ne peut

être que le nombre certain zéro.

ZI j étant continue et Y11 étant arbitraire et nulle pour fi
et f2 (il suffit même que Y11 soit continue), on peut appliquer

une seconde fois le lemme fondamental. D'où ;

Z\ 0 et alors Z\t 0

Le problème du calcul des variations aléatoires est la
recherche des fonctions aléatoires X11 dêrivables qui
rendent extremum l'intégrale :

1 (A", A", f) dt

et qui se réduisent pour tv et 12 à des constantes aléatoires
données.

tp est une fonction certaine de ses arguments, nous la

supposerons doublement derivable par rapport à Ai A et t.
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La variation de / s'obtient, comme en analyse certaine,
en remplaçant X par X + a Y, Y étant une fonction
aléatoire arbitrane continue et nulle pour tx et f2. On
obtient, en faisant exactement les mêmes calculs que dans
le cas certain :

ÔI

ôx \dx \dx) dt

car la formule d'intégration par parties s'applique aussi en
analyse aléatoire.

SI
Pour que XI t rende / extremum il faut que %±

dx
soit

nulle pour a 0. Il résulte alors du lemme fondamental
que:

d_î_
_ (dj\ o (Equation

dX \dXj d'Euler-Lagrange)

Remarquons que cette condition, nécessaire, n'est pas
toujours suffisante pour que / soit extremum.

Conclusions

On peut donc remarquer que l'analyse aléatoire et
l'analyse certaine s'identifient au contact, puis divergent
considérablement au fur gl à mesure que les liaisons se

relâchent. C'est cette constatation qui va permettre la mise

en équation des milieux en instance de diffusion,
particulièrement les milieux turbulents.

A cet effet, il sera procédé, en mécanique aléatoire, à

l'énoncé des principes et des règles de calcul relatifs à

l'évolution du corpuscule aléatoire R construit avec ses

fonctions de distribution des probabilités conjuguées qui
traduisent les interactions.

Adresse de l'auteur :
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Sur le problème relatif au contrôle des ouvrages d'art
quant à leur stabilité et leurs déformations

par A. ANSERMET, ingénieur professeur

Généralités

Le nombre des ouvrages d'art allant en augmentant, il
est opportun de perfectionner les méthodes tendant à

contrôler leur stabilité et leurs déformations ; de grands
progrès furent réalisés et le but de ces lignes est de rappeler

succinctement en quoi consistent les mesures et surtout
les calculs à effectuer. Des cas concrets seront présentés

portant sur un téléphérique, un barrage, des charpentes,
etc. Le problème est complexe.

Méthodes modernes de mesures

Ainsi qu'on le sait, grâce à l'électro- et la radiotélémétrie
(voir publication EPUL N° 86), on dispose de procédés
nouveaux dont l'emploi ne cesse de progresser. Citons le
téléphérique de Klosters, le tunnel du Saint-Bernardin, etc.
Les résultats obtenus, pour les ellipses d'erreur aux têtes
de ce tunnel, donnaient toute satisfaction.

Pour le téléphérique [1] \, le barrage de Sambuco, les
méthodes de mesure et calculs furent perfectionnés. On
tint compte surtout de la déviation de la verticale, élément
assez nouveau. C'est un problème-fleuve comportant plus
d'une solution. On ne peut plus se contenter de calculer
l'influence des masses visibles comme ce fut le cas pour
les tunnels du Simplon, du Lœtschberg, etc. C'est moins
simple, comme on le verra.

Mais ime difficulté réside ailleurs : le praticien a choisi,
pour effectuer des mesures, des emplacements donnant
confiance quant à la stabilité. Or au cours des calculs des

discordances sont constatées, faisant douter de cette
stabilité. A cet égard, le cas du téléphérique joue un rôle à

part.

1 Les chiffres entre crochets renvoient à la bibliographie en
fin d'article.

Evolution des modes de calcul

On dispose de tout un éventail de moyens, surtout pour
de grands ouvrages, car l'opérateur fait ses observations à

partir d'un groupe de points fixes, à Sambuco par exemple
six points, où l'on stationne périodiquement. Il en résulte
des discordances d'une fois à l'autre ensuite d'erreurs de

mesures. A la méthode des moindres carrés, dont l'application

est depuispongtemps courante, s'ajoutent la statistique

mathématique, les transformations (affine, d'Hel-
mert, etc.) et même la géométrie projective (cas d'un
amphithéâtre). Le calcul électronique devient courant.

Comme on le verra lors d'applications, certaines
simplifications sont à signaler. Par suite d'instabilité ou de
déformation, les coordonnées xt, y{, zt d'un point (i — 1, 2,
3 varient de Ax{, Aye, Azt. On peut dissocier parfois
la planimetrie de Faltimétrie sans traiter le calcul spatialement

comme le font des praticiens. Par voie de nivellement
direct la variatiœ Az est déterminée à partir d'un repère
de nivellement dont l'altitude absolue n'est pas nécessairement

connue. Restent les Axit Ay^ susceptibles, dans
certains cas, d'être déterminés directement.

Covariance. Une autre complication peut survenir quand
on compense par la méthode des moindres carrés.
L'indépendance des mesures n'est pas réalisée ; on dit aussi que
les mesures sont corrélées. Des éléments nouveaux
interviennent : les cofacteurs ou comultiplicateurs [2], [3]. Pour
former la matrice dite des cofacteurs, certains praticiens
ont recours à une précompensation (Vorausgleichung). On
s'efforcera donc d'éviter de la covariance.

Calcul des points de rattachement

En principe, pour un même ouvrage, on peut choisir
arbitrairement une origine pour les altitudes et coordonnées
planes ; l'orientation des axes x, y étant aussi arbitraire.
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