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BULLETIN TECHNIQUE DE LA SUISSE ROMANDE

98 année 19 février 1972 N°4

Communications de la Chaire de la Mécanique de la turbulence
de I'Ecole polytechnique fédérale de Lausanne et du groupe de travail EPFL-ISM

La mécanique aléatoire de Georges Dedebant et Philippe Wehrlé

par FRANCOIS BAATARD, professeur, D" és sc. techn., et SIMONE MAGNIN, lic. &s sc. math., assistante

1re partie: éléments d’analyse
aléatoire

Introduction

En 1937 paraissait a I'Institut d’histoire des sciences et
des techniques de I’Université de Paris, aux éditions Thalés,
un fascicule intitulé : « La mécanique des fluides turbulents
fondée sur des concepts statistiques » signé respectivement
de Georges Dedebant alors sous-directeur scientifique de
I’Organisation nationale de météorologie et de Philippe
Wehrlé, directeur de ce dernier institut. C’était la premiére
fois que I’on signalait le role, d’une maniére rationnelle,
des dépendances de probabilité traduites pratiquement par
les corrélations dans 1’évolution d’un fluide turbulent.
D’autre part les auteurs faisaient apparaitre I'importance
de I’échelle et de la superposition des étages de perturbations.

En 1944 et 1945, G. Dedebant publiait dans les « Portu-
galiae Physica » : 1° une analyse aléatoire et 2° une méca-
nique aléatoire. Seules quelques notes aux comptes rendus
de ’Académie des sciences de France avaient jusqu’alors
attiré I'attention sur les conceptions de Dedebant et Wehrlé.

L’analyse aléatoire contient comme cas particulier
I’analyse certaine : au contact la liaison donnée par la
dépendance de probabilité vaut 1.

La catégorie premiére de la mécanique aléatoire est la
dépendance de probabilité. Le relichement de cette derniére
met en évidence la diffusion du milieu et la dissipation de
I’énergie par son passage d’un étage a un autre de moindre
échelle. D’échelle plus fine que le réel apparent, la structure
de I’étage sous-jacent détermine les phénoménes de ce réel
apparent qui en sont les effets moyens construits par
dépendances de probabilité.

La dépendance de probabilité (hasard lié) est déterminée
parce que incertitude qui affecte une moyenne provient tout
entiere du terme d’indépendance (hasard pur).

La théorie de la viscosité turbulente de W. Heisenberg
s’intégre dans la mécanique aléatoire dont elle adopte le
processus d’évolution des tourbillons. La structure aléatoire
rend compte en effet des forces de frottement et des dissi-
pations d’énergie, le frottement n’étant explicable que par
des échanges dus a la diffusion turbulente.

La mécanique aléatoire est celle du corpuscule aléatoire,
capable de diffuser, les dépendances de probabilité se
situant entre la liaison certaine du solide et la liaison hasard
pur du gaz parfait ; elle s’exprime uniquement en termes de
fonctions aléatoires, de leurs dérivées successives, de leurs
écarts types et des dérivées de ces derniers.

Il y a autant de mécaniques statistiques qu’il existe de
variétés de fonctions de connexion des champs de proba-
bilité.
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Il convient de remarquer aussi la grande part qu’a prise le
professeur Bass dans I’élaboration mathématique des travaux de
G. Dedebant et Ph. Wehrlé.

G. Dedebant et Ph. Wehrlé, avec lesquels nous avons tra-
vaillé et correspondu longuement, ont exprimé, de leur vivant,
le veeu que soit réalisé le présent travail.

Premiére partie — Analyse aléatoire

Parmi toutes les analyses aléatoires caractérisées par
autant de types de connexions des champs de probabilité
des variables aléatoires entrant en jeu qui donnent lieu a
autant de mécaniques aléatoires particuliéres, et vice versa,
il en est qui conviennent particuliérement a la turbulence et
aux champs dissipatifs: ce sont 'analyse aléatoire et la mécani-
que aléatoire basée sur des fonctions doublement dérivables
en moyenne quadriatique.
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Chapitre premier — La dérivée aléatoire

L’algébre des probabilités composées (ou conditionnelles)
est plus générale que l’algébre ordinaire; ces types de
probabilités ne se multiplient pas comme des nombres
algébriques :

Régle de calcul :

La probabilité de I’événement complexe (a, b) est le
produit de la probabilité de (a) par celle de (b) lorsque (a)
s’est produit, c’est-a-dire par (bla).

p(a,b)=p(a)p(bla)

Or p (b/a) traduit la dépendance de probabilit¢ de b
vis-a-vis de ce qui s’est produit (quiest mesurée pratiquement
par la corrélation entre a et b).

Dans le cas d’indépendance, I’algébre des probabilités
rejoint I’algébre ordinaire. A partir de 1’algébre des proba-
bilités dépendantes, on construit une analyse par 1’opéra-
tion de passage a la limite (Fréchet, Paul Lévy, Cramer,
Kolmogoroff, Markoff, Kintchine, Slutzky, etc.).

Nous présentons ici une généralisation de ces travaux,
sans préjuger de la nature de la dépendance (ou de I’héré-
dité statistique).

Définition :
Une fonction aléatoire équivaut a la loi de probabilité
conjuguée

Fn (Xl’ Xg, Xn, 115 Tos on Ui) Xm de an
pour que les variables aléatoires X | by X ] T § | t,

prennent les valeurs courantes xi, X, ...
toute valeur de n.

X, et ceci pour

Aux moyennes de Riemann, en raison de la discontinuité
de la fonction aléatoire, on substitue les moyennes stochas-
tiques données par des intégrales de Lebesgue-Stieltjes ;
il y a une raison physique a cela : les moyennes tempo-
relles prises dans un intervalle égal 4 la période sont des

+ _

constantes et la dispersion X2 (1) = %, ' IT X | t—X)2dt
t—T

est aussi constante. Il n’y a pas de diffusion a 'intérieur

du fluide et pas de possibilité non plus de mettre en équa-

tion des phénomenes macroscopiquement évolutifs et en

instance de diffusion, c’est-a-dire des champs dissipatifs.

11 est évident qu’avec les fonctions aléatoires et discon-
tinues intégrables au sens de Lebesgue-Stieltjes ces diffi-
cultés disparaissent, sans attenter a la corrélation. Il va
falloir reconnaitre parmi cet ensemble de fonctions celles
qui sont dérivables (exactement comme en théorie des
fonctions analytiques on a choisi celles qui admettent une
dérivée : les fonctions monogénes).

1. La différentielle aléatoire

X |, étant une fonction aléatoire, la différentielle aléa-
toire est 1’accroissement

Z(t,h=Xt+h-X0)

L’espérance mathématique en est :

ZE =X+ DX =h
(en supposant que X | , est dérivable).
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En supposant X purement aléatoire, donc de valeur pro-
bable nulle, /’écart type est :

Z2(t D) =X+ h+ X2(0)—2X@+ h)X(©)

ou bien, avec:

o (¢) = écart type de X et r (¢, t + h) = dépendance de
probabilité ou coefficient de corrélation entre X (z) et
X@+h):

Z2(t, h)=a2(t+ h) + o> (t)—
—2r(t,t+ha(@)o(+ h)

o (t), dérivable et si nécessaire analytique admet le
développement de Taylor :

/2
o(t+h)=a—|—hc7’+%o-”+...

Pour que Z? soit infiniment petit avec A, il est nécessaire
et suffisant que r (¢, ¢+ h) soit uniformément continue
pour & = 0 c’est-a-dire que:

r(—=0)=r(H0=r0) =1

La liaison aléatoire devient certaine au contact et le calcul
différentiel certain s’applique aux fonctions aléatoires au
contact : ce dernier apparait alors comme un cas particulier
du calcul différentiel aléatoire.

2. Conditions de cohérence et structure correspondante
d’une fonction aléatoire

11 est évident que I’on ne peut pas admettre sans autre,
sous prétexte qu’un milieu physique présente une certaine
décoordination, que des grandeurs y relatives et de carac-
tére aléatoire soient groupées ipso facto en une fonction
aléatoire ; tout au moins si I'on veut que celle-ci soit
justifiable d’une classification et de régles de calcul, et
notamment de la propriété d’étre dérivable. Pour cela, les
corrélations r;; de n nombres aléatoires pris 2 a 2 doivent
remplir des conditions de cohérence exprimant qu’une
probabilité ne peut étre négative.

Nous allons maintenant calculer un développement de la
fonction de corrélation r(t,t -+ h) d’une fonction aléatoire
quelconque X | ,, sous certaines hypothéses de continuité.

Remarquons premiérement qu’une fonction certaine de
h et de ¢ qui aurait ses valeurs dans l'intervalle [—1, + 1]
et qui vaudrait 1 pour 2 = 0 n’est pas automatiquement
une fonction de corrélation. Pour que ce soit le cas il est
nécessaire que cette fonction satisfasse aux conditions de
cohérence que nous allons établir.

Soit, pour simplifier les calculs, » nombres aléatoires

X1, Xz, ... Xy, considérons X{ = X1 —X1, Xy = X5—X;, ...
Xp = X;,—X, et notons :
n

X=X

i=1

les A; étant des coefficients réels quelconques.
La forme quadratique :

B N2 n on
X2 ::( Z A,-,X;) =X X Mhhojayry

i=1 je=] je=1



ol g; représente 1’écart type de X;, ne peut évidemment pas
étre négative ; le déterminant formé par les ry;: Ap, = | ryy |
doit donc étre positif ou nul: c’est une des conditions de
cohérence. En faisant le méme raisonnement avec toutes
les sommes de la forme X 4; X;, la somme portant sur
toutes les combinaisons possibles d’un nombre quelconque
de 7, nous obtenons I’ensemble des conditions de cohérence
imposées aux ry (i,j =1, ... n).

Pour une fonction aléatoire, il y aura un nombre infini
de conditions de cohérence; bornons-nous a écrire les
deux premiéres :

Premiére condition de cohérence :

1 r(t,t+ h)
r(t,t+ h) 1 =0
quels que soient 7 et & (\/ 7, ), et en développant :
1—r2(t, t + h) =0 ce qui est déja connu (inégalité de
Schwarz).

Deuxieme condition de cohérence :

1 r(t,t+ h)
r(t,t+ h) 1
rit,t+h+k) r¢+h,t+h+k

rt,t+ h+k)
r@+ht+h+k)|>0
1

Nth k

qui prend, dans le cas stationnaire (du deuxiéme ordre), la
forme :

1 r(h) r(h+ k)

r(h) 1 r (k) =)
r(h—+ k) rk) 1

Voici maintenant deux exemples de fonctions qui, a
premiére vue, semblent étre des fonctions de corrélation et,
en fait, n’en sont pas :

1)
[1—h2silh

- | <
r(lz)~] 0 silhl>

1
1

eneffetsi h=k =

N —

Note :

n

Pour X = X J; X{ nous obtenons ainsi :
i=1

Fig. 1.

(z) 5 <n11> + <”12> + it (’3’) + <g) = (R
()= (@) =2t

conditions de cohérence. (La notation (7) représente le nombre

de combinaisons de 7 objets pris i a i.)

3
1 — 0
4
3 3 1
T
A g g =
3
0 — 1
4
2)
1silhl =1
r<h)_{0sil/z|>7:
1
T > =
2
\
[ rem
.
\ ’ i
| =l | bithe
1 }O 1
Fig. 2.
eneffetsi h=k=1
1. 7.0
t It | =1=29%<0
071

S’il existe un 4 % 0 et un t pour lesquels r (¢, t + h) =
= 41 la deuxiéme condition de cohérence impose a
r(t, t 4+ h) une forme remarquable. En effet cette conaition
devient :

1 +1
+ 1 1
1t t+h+k) r@+ ht+h+k

rt, t + h+ k)
r+ht+h+k|=>0
1

+2rt,t+h+K)rt+ bt +h+ k) —
-2, t+h+k)—r2@+ht+h+k>0
c’est-a-dire :
—[rtt+h+k)Fr+ht+h+DPFE=>0

—sir(t,t+h)=1:
r(r,t+/1+k)=r(f+/1,t—{—/z+k),Vk

et dans le cas stationnaire:
r(h+ k) =r k), Nk,

ce qui signifie que r est périodique de période h.
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= Sir(f,t—|—h)= —12/'([,f+k+k): "I‘(Z—Fh,t—I—
+ h + k), ~/ k et dans le cas stationnaire:

r(h + k) = —r (k), X/ k, ce qui entraine:

r)=1= —r(h) = r (2 h) et alors r est périodique
de période 2 h.

3. La continuité en moyenne quadratique d’une fonction
aléatoire.

a) Définissons maintenant la notion de continuité en
moyenne quadratique : une fonction aléatoire X |, est
continue en moyenne quadratique en t si

lim (X|;e—X1)?*=Ilim Z*|,;, = 0quelle que soit
h—>0 h-0

la facon dont /4 tende vers 0. Elle sera continue en

moyenne quadratique si lim (X |,,,—X |,)? = 0 en
h—0
tout 7.

Nous nous proposons d’étudier sous quelles conditions
une fonction aléatoire est continue en moyenne quadra-
tique.

Il faut et il suffit pour cela que :

lim (X?|ion + X%, —2X1,X1|,4,) =0 quel que
h—0

soit ¢, c’est-a-dire que:

lim | (X1 —X1)? + (0@t + hH—a (1))? +
h»O E O é 0

+20(@) o+ k) (1—r @t + h)
=0
o () désigne I’écart type de X |, et r (¢, t + h) le coeffi-
cient de corrélation entre X |, et X |4y .

Pour que la limite d’'une somme de trois termes positifs
soit nulle il faut et il suffit que la limite de chacun de ces
termes soit nulle. Donc :

1° lim (X| ¢+)L_Xl 2)2 =0
h—=0

ce qui signifie que

X |, est une fonction continue de ¢.

20lim (o (t + h)—a (2))> =0 c’est-a-dire que

h—-0
o (1) est une fonction continue de 7.
lim 20 o @+ h (1—r @, t+ k) =0
h—0
c’est-a-dire:
4o [im 1 — r (t, t + h) = 0 quel que soit 7 et quelle
h—0
que soit la fagon dont / tende vers 0.

En résumé : la condition nécessaire et suffisante pour que

X |y soit continue en moyenne quadratique est que X |, et
o (t) soient continus et que r(t,t + h) soit continue a gauche
et a droite pour h = 0.

b) Dans le cas ou X |, est stationnaire (du deuxiéme
ordre), r (h) est méme continue partout.
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En effet, si X |, est stationnaire :

A_’l_t = cste (que nous choisirons égale a 0)

X2[, = cste = o2

X1, X1,1n= a®r(h) = fonction de h seulement
=g+ B—r) | =1 XTe X T ihegen —

—X|l.X| t+ty | = | Xlt(X|z+t0+h—X|z+to)|

L’inégalité de Schwarz (| XY | = VX2 Y?) entraine:

A= \/’let(X|L+t0+h_X| ‘*‘0)2 (f‘:l cause de 1a

stationnarité) = VXZ 1,2 X21,—2 X T 1oy + 1 X L14¢) =

N2 X, VX ,—XT,.2 X1, = V202 Vr©@—r(h)
entraine: | r (1, + B)—r (1) | =2 \r () —r (k)

ce qui signifie que si r (h) est continue en & = 0, elle le sera
aussi en tout ty

4. Développement du coefficient de corrélation dans le
cas de la continuité en moyenne quadratique.

Si X |, est continue en moyenne quadratique, r (¢, ¢ -+ /)
est donc continue en 4 = 0 ; soit « I’ordre d’infinitude de
1—r(t,t + h), nous pouvons représenter r (¢, ¢ -+ h) par
le développement :

r,t+h)=1-2@ I hle— | hl=p(, h)
@ (t, h) étant une fonction qui tend vers 0 quand 40 .

Notre but est d’établir un développement de ¢ (z, /).
Nous savons que r(t,¢ + h) =r(t -+ h,t); en rempla-
¢ant » par le membre de droite, nous obtenons la condition
de symétrie :

A+hm—A)=9@,)—p @+ h,—h)

Supposons maintenant que A (¢) est analytique :
1 ’ hZ n
A+ h) =A0)+hA (1) + 71 AT () 4.

o (t,h) = /1 (1) h+ Ao (2) B* + Jg (£) H® +
F AR+
et
p(t+ h—h=—21h+ (Aa—A)H +
)v// " . )‘/// )LII §
+ (— ?1 + 25—Ag) B+ (— lT s 32—)_3 + Ag) B+ ...

En portant le développement de ¢ (¢, /) et de
¢ (t + h,—h) dans la condition de symétrie et en identi-
fiant terme a terme, nous obtenons le systéme :

coefficient de h : A" =2/,
;\'”
coefficient de h?: — = 2]
2
Y pz
coefficient de h®: 243+ 2 —1; = ——
2 6
i/// »Ir; N }¥(4)
coefficient de h*: g - 2“ + A% A0

et ainsi de suite.

Les coefficients A; gardent cependant un grand caractére
d’arbitraire car la premiére équation entraine la deuxi¢me,
la troisieme entraine la quatriéme, etc.



On obtient donc le développement :

rt,t+n=1—hleA@)—

[0 JLPIEEY P
1kl [T/z—l—/lg(r)h +< . - )h . ]

5. Cas particuliers et classes correspondantes des fonc-
tions aléatoires.

10 Cas stationnaire :

r,t+h)=r=1—hle(A+ A 2+ Ah*+ ..)

fonction paire quelconque
telle que r (k) satisfasse aux conditions de cohérence et ou
les /; sont des constantes.

20 Cas analytique : X | ; sera dite analytique si sa fonc-
tion de corrélation est analytique. A ce moment ot = 2 et

A (D)

rt, t +h) =1—1 () h®— — hB—2s (1) h*—...

30 Cas analytique-stationnaire (ana-stat) :
ritt+h=rh)=1—Ah—21, h*—...

r est une fonction paire quelconque, mais satisfaisant tou-
jours aux conditions de cohérence.

4° 11 nous faut maintenant tenir compte des conditions
de cohérence et calculer les restrictions qu’elles imposent
au développement de r (t, t + h).

La premiére condition est, en fait, ’'inégalité de Schwarz,
elle est donc toujours vérifiée.
Passons a la seconde condition :

1 r(t, t + h)
r(t, t + h) 1
rt,t+h+k) rt+ht+h+k)

r(t,t+ h+ k)
r(t+ht+h+k|=0
1

isiens
1—r2(t, e+ B)—r2 @+ ht+h+k)—r2@, t+h+ k) +
+2rt,t+Dr+ht+h+krit,t+h+k >0
Nowus voulons remplacer » par son développement dans
cette inégalité ; nous nous bornerons au cas ol 4 = k, ce
qui nous donnera une condition nécessaire pour que la

deuxiéme condition soit satisfaite (mais évidemment pas
suffisante).

Calcul préliminaire :

r(@+ht+2h)=r(t,t+h+hAQ@,h
ou A, by =—lh|1*AX + XV h+..)

La deuxieme condition de cohérence pour h = k est :

1—r2 @, t+h)—r2 @+ ht+2 hH—r2@, t+2h) +
+2rt,t+hr+h,t+20Dr,t+2hH =0

[I—=r@, t+20I +r(t,t+20)—2r2(0,t + h)—
—2A,h)r(t, t+ hh—A%, h)h? =0

d’autre part

V+r(te+20D=22@¢t+h=K|A(-224+4+
+ AP (=24 2) + | h|%h? A (—4-2% + 4)—
—2A%|h| %+ ...

La deuxiéme condition de cohérence devient :
DI 122+ | h1*h2% 2 + | h 1 h24.2% dg + ..]-
LA (—=24+ 4 + | h1*h A7 (—2%+ 4) +
+ Il h1*h? (—4.-2%0 +4 2 +2A)—2 02| h| 2%+ ...]
2R R+ ... =0

Elle doit étre vérifiée, en particulier, lorsque 4 tend
vers 0. En ce cas, le terme de plus petit degré donnera
son signe a l’expression :

Premier cas : a<<2
| RI222% 22 (—2% 4+ 4) =0
ce qui est vérifié et n’entraine aucune condition nouvelle.
Conclusion : Cette classe de fonctions aléatoires contient

toutes celles qui ne sont pas dérivables en moyenne quadra-
tique.

Deuxieme cas : o = 2

KS[4A+4h) +16H2 2 + ...]-
(=16 Ao+ 4 A +2 1" —2 22+ .. ]-A%2H+ ... >0

et qui entraine :

A2—8

—_ >~ )2
6}(.2‘.).‘{‘ 8}_

Conclusion : Cette classe contient les fonctions dérivables
en moyenne quadratique.

Troisieme cas : o>2
[ A 1%2% 22 (—2% + 4) = 0 implique 1 = 0,
puis A3 (4—2%=0 et J, = 0 et ainsi de suite.

Conclusion : Cette classe contient les fonctions certaines.

Alors r (t, t + h) = 1 et la fonction aléatoire correspon-
dante est de la forme : A-f(t) o A est une constante
aléatoire et f(t) une fonction certaine de t.

Dans le cas stationnaire nous arrivons évidemment aux
mémes conclusions, en particulier si o = 2: —6 Jy = 2,
ce qui signifie que A, est négatif ou nul.

6. La dérivée en moyenne quadratique.

Nous avons déja établi la forme que prend la fonction
de corrélation r (7, ¢ 4 h) correspondant a une fonction
aléatoire continue en moyenne quadratique. Nous allons
définir maintenant la notion de dérivée en moyenne qua-
dratique et étudier I'influence de I'existence d’une telle
dérivée sur la fonction r (¢, t + h).

Définition : Soit une fonction aléatoire X |, ; s’il existe

une fonction aléatoire X | , telle que :

Tl C T\
lim <¥ ;x|,) —0
/I—)O !

/

X |, sera la dérivée en moyenne quadratique de X |+ (au
point 7).

Décomposons premiérement X |, et X |, en la somme
d’une partie certaine et d’une partie purement aléatoire :

Xle=XTy+ X
/\;lt'f/\}lg+/\;’|¢
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Alors :

Xlesn—XI - \?
< t+ t_X|t> 1
h

. (X|t+)L+X/'t+h_‘X[t_"Xl|t

_)'(|t_)'('|z) =
h )

\

’X]¢+h Xlt ( \)2 ’X/|t+h 'Xllt ' )2
— (S AT TR U i L ol BT N
( h XI‘, ( h lt/

Comme ces deux termes sont positifs ou nuls, la condi-
tion nécessaire et suffisante pour que X |, ait une dérivée

est que:
X Ly =X | ey
1) lim <i|”’/ 'ﬁ) =1
B '
X —X - 3
2) lim <—Q%J~X’It) =0
1
h>0

La condition 1) signifie que la fonction certaine X | ; est

dérivable et que sa dérivée vaut . X |, (si X |, existe, bien
entendu). Nous pourrons donc permuter la dérivation et
lopération moyenne.

Une condition nécessaire pour que 2) soit réalisée est :

X R
o A g
h—0 ¢

(Nous supposerons X2 . finie.)

Or:

Xllt+h_X/|z‘. Z__
i
W+ 2000U+N U+ R
o h? a

2 S
> +2a(r)a(z+/1)ﬂ}%ﬂ

_ [fot+h—0c()
i (T

ces deux termes sont positifs ou nuls; il faut alors que
1—r(@,t+ h)
e e AT

existe.
h.a

o (t) soit dérivable et que lim
h—0

Nous avons donc :

1—r(t,t+ h) B

7/12 X2 t

a’? + 20%(0) lim
h—0

Remplagons r (7, t + h) par 1 —| h|* L (O)—| h|*¢ (¢, h)

dans la condition : lim wfﬂ existe.

/ 2
h—0 !
Cela nous donne :

[ A1)+ | h|*p(t,h) .
e existe.

lim
h—->0

Premier cas : o<<2 et A(t)#0

Il ne peut pas y avoir de dérivée.
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Deuxieme cas : o>2

La limite est nulle et la fonction X | ; est de la forme B f(¢)
ou B est une constante aléatoire et f(¢) une fonction cer-
taine. La dérivée d’une telle fonction est Bf’ (¢) et ne
présente pas beaucoup d’intérét.

Troisieme cas: o =2 et A(t) # 0

1—r(r,r+h):}(f): _1.921*(1,1‘—}—/1)

lim —
h? 2 h?
h—0 : 9 h=0

Il s’agit de la dérivée en moyenne quadratique.

Remarques :
L=ty it S h)
= L T

1) La condition d’existence de la /im =

h—-0

n’est pas suffisante pour que

¥ lion—X’ : 2

lim (I”—;]—‘ —-X'| t) =0.
1

h~0

On peut montrer que si ¢ (¢, &) est de la forme

1
W w(t, h) ou w(r,h) est continue et nulle pour 2 = 0 et

- 2. L ou .
posséde une dérivée premiére —— continue et nulle pour

dh

h = 0, alors cette condition est aussi suffisante.

2) Nous pouvons définir la dérivée de fagon plus géné-
rale :

S’il existe X | , tel que :

lin (Xl:+n*X|t
==

e — X L) = 0, ol « est positif,

h—-0

alors X | ; est la dérivée en moyenne quadratique de X |,.

Nous arrivons alors aux conditions nécessaires :

X —X ) ;

lim % existe et vaut X |,
TP

/l—>0

o+ h—ac@® .

lim ————— "~ existe
hel?

hf,»O

. l—r(t,t+h) .

lim T existe.

/l >0

Comme on le voit, ce cas est intimement lié a celui ou,
dans le cas certain, la dérivée serait définie de la fagon sui-
vante :

£+ B —f@)

dérivée = lim — o a etant positif.
/2
h—-0



3) Nous avons étudié, aussi bien pour la continuité que
pour la dérivabilit¢é en moyenne quadratique, ce qui se
passe pour la fonction de corrélation r (¢, ¢t + h). Il est
beaucoup plus simple de voir ce qui se passe pour

X 1,X | ,sn=p(t 1+ h),fonction d’autocovariance.

Continuité :

lim (X|gq,—X1)2=1lim (X|ip0—X1)%+
h—0 h—-0
+ X Tosa—X 1,2 =0
et alors: a) /im X t+n = X_h . X_It est continue.
h—0
b) lim (X' |, ,—X"1)?=
h—0
=lim (6(t+mnH—0c®)+
h—->0 =0
+20()o@t+ h) (l—r(f,t+l1)) =0

=0

c’est-a-dire que ¢ (7) est continue et que

lim Xng[L+11:XZ|L
h—=0

La fonction d’autccovariance X' |, X" |, = u(t,s) est
donc continue au voisinage de la droite t = s.

Dérivabilité : une condition nécessaire et suffisante pour
que X[, soit dérivable en moyenne quadratique est
(théoréeme di a Slutzky) -

. (X’|t+h“X/|t
lim oo A P

h
h—0 séparément

k—0

k

(Nous supposerons X'2|, finie.)

_X/|t+/c_/\’/|t>2* 0

I est équivalent alors de dire que :

o XI|L+h7XI|[v AXA/II+IC—/‘;/l7
lim B X

h—0

k—0

t .
existe.

Cette limite est égale a:

i 1|iX116+I1X/It+k_X/|£+lzX/|t
i il — k—f —

h>0"
k—0

XX X Putys

k .  dtds

au voisinage de la droite 1 = s.

La condition nécessaire et suffisante pour qu’il y ait déri-
vabilité est donc que la fonction d’autocovariance wu(t,s)
P, s)

admette une dérivée — ——— au voisinage de la droite s = t.

dtds

7. Corrélation entre la fonction et ses dérivées et déve-
loppement de r (h) suivant ses écarts types.

Ces quelques remarques faites, nous allons étudier un
nouveau développement de r(t,t + h) dans le cas ou la
fonction X |, correspondante posséde des dérivées de tous
les ordres.

Notations :  SZ(t): écart type de X |,
S2(t): écart type de X |, etc.

Nous avons vu que :

1—r(,t+ A S ;
o'+ 20 lim —I—(/T+—1) = X"2|, ce qui donne avec
d
h—-0

les nouvelles notations :

Se2 (1) + 282 () A () = S2(1)
= _STO-52 @
d’ou: /1(’)— Tﬁ({)

h? 82 (—Sy2 (¢
et ,'(f’f._*_/z):]_LM

> 20 + termes d’ordre

supérieur

Comme r doit étre inférieur ou égal a 1, il faut que
S2—S(2
So
lue de la dérivée de I’écart type est donc inférieure ou égale

a l’écart type de la dérivée.

= 0 c’est-a-dire que S; = | S; | : la valeur abso-

’

; S, e .
Drailleurs le rapport S—O est lui-méme une fonction de
1L

corrélation. En effet nous pouvons montrer que

d ) .
EV/(X):W (X)-x

Alors :
d d———— A
2858y = S = X, = X [y =
0 dar”°  dr X P e
=2X |, X |;=2r(X", X)) S, 8,
d’ou :
7 o Sy
(X, Xy = 2
r( ) s,

En continuant a dériver X’2|,, nous pouvons calculer

r(X, X)), r(X. X" etc.
Par exemple :
dz? T .
2.8y Sy + 23{,2=ng: 25X e 2l B =

=2r(X,X') Sy S; + 252
d’ou
So 8o + S¢® — 5%

AT e
02

ce qui entraine :

—SO Sg e So S(l; + S(/)Z—S‘f = SO SQ

8. Cas de la stationnarité en probabilité.

Etudions maintenant le cas particulier ou X |, est sta-
tionnaire.
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Dans ce cas nous avons :

252) = S?ou et S, sont des constantes. L’écart type
de la dérivée S; est donc aussi une constante et comme la

fonction de corrélation de X | ¢ vaut
bl ol L
: = = 82910
\/Xlzlt \/Xlzls 1t §
2

ol I
= _Ms |:I (S—t)So} S_%

elle ne dépend que de (s—1). La dérivée d’une fonction sta-
tionnaire est donc aussi stationnaire; sa fonction de corréla-
tion vaudra :

X' e X' =

Pr) St
P O el
dh S

et nous avons automatiquement :

27 . 2
r(x(n)|t+h’X(n)|t) = (_1)n9 ™y (h) S5

2 h2n . ,ST,‘%
Donc:
27 h Sz
> r (k) = (=2t
ath h=0 SO

Nous savons en outre que :

St

r(X,zi;)= _Sosz

dou: | S2=25,5:

et nous avons évidemment la formule plus générale :

Sy%é Sn—l Sn+1

Le développement de Taylor de r (h) est :

n 20 1 2n(?“r(h)
r(l1)—£0(2n)! d h*n =0
e n h2n Sn 2
i Lnlt e (2n)!(s_,,>

9. Théoréme de Khintchine.

Nous citerons maintenant I’'important théoréme de
Khintchine :

La fonction r (k) est la fonction de corrélation d’un pro-
cessus stationnaire continu si et seulement si r (k) peut se
mettre sous la forme :

r (h) = [cos (hx)dF(x)

ou F(x) est une fonction de répartition.

On peut aussi dire que r (h) peut se mettre sous la forme :

1
5 |:q§ (hy—D (—/z)] ou @ (h) est une fonction caracté-
ristique.

En utilisant la forme de Khintchine, nous voyons que
les inégalités :
Sz = Sn—l Snll

n -
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peuvent s’écrire :

o

x2n = x2n—2 x2n+2

inégalités qui découlent de celle de Schwarz.

Exemple : Soit F(x) une fonction de répartition «en
escalier » présentant des discontinuités de valeur a, en
n xo (xo = constante).

[ee)

Nous avons alors: X a, = 1
0
o0

et r(h) = X a, cos (n xy h)
0

C’est la fonction de corrélation d’une fonction aléatoire
analytique et stationnaire.

Remarque importante : Nous avons vu que

h2.S%(r)—Sg?
Mot By e e i )

2 ST (1) + ...

cela signifie en pratique que la connaissance des écarts

types de X |, et de X |, permet d’étudier la connexion de
la fonction aléatoire pour /4 infiniment petit.

On peut méme montrer que I’accroissement (X |, . ,—X ;)
d’une fonction aléatoire stationnaire dérivable suit, pour 4
infiniment petit, une loi de Gauss d’écart type 4 S;.

10. Fonction de connexion et corrélation vectorielle.

En dernier lieu, nous définirons la fonction de connexion.
Soient deux constantes aléatoires U et V.

La fonction caractéristique de leur loi conjuguée est :

si les moments U* V¥ existent, bien entendu. Si U et ¥ sont
indépendantes nous aurons :

pLd q0/3 izx+/)’ ket WilE

ei(1u+(ov) = 5 U« Vli i eth % ei(pv

o, f a!ﬂ!

La fonction de connexion 0 (A, @) sera :

0 (;.L, (P) = ei(xuwv) _eixu a ev:a:v

et si U et V sont indépendantes cette fonction sera nulle.

Au lieu de U et ¥ nous pouvons aussi choisir des vec-
teurs aléatoires A et B (définis comme en analyse certaine
mais ou les composantes sont aléatoires)

0 (A, D) = I UA+PB) _,idA  ,idB

ou A et @ sont des vecteurs.

Si les vecteurs A et B sont indépendants entre eux, cette
connexion sera nulle, quelle que soit la corrélation existant
entre les composantes de A ou les composantes de B.

Cette fonction est donc intéressante par le fait qu’elle
fait la séparation entre les propriétés statistiques internes
d’un vecteur (relatives aux corrélations entre ses compo-
santes) et les propriétés statistiques proprement vecto-
rielles.



Chapitre Il — Intégrales, primitives et équations
différentielles aléatoires

En analyse aléatoire, il est nécessaire de rassembler sous
forme statistique les diverses réalisations pour pouvoir
définir la notion de dérivée. L’intégration, en revanche, se
définit de fagon beaucoup plus directe.

11. Définition et propriétés fondamentales.

Soit U, une fonction aléatoire. Désignons par 2 (r)
une réalisation quelconque de U |, pour ’ensemble des
valeurs de ¢ a la suite d’une épreuve statistique, alors :

12 k
J— /Qf(t)dt:/Ul,dt
@

[%
a

" est Dintégrale de U |, sur lintervalle (a, b). L’intégrale J
existe si la fonction @ (¢) est sommable au sens de Lebesgue.

Il résulte immédiatement de cette définition que :

b b b
/‘(Ult*}‘Vlg)de/Ultdf+/V|tdf
@ a a

a

b c b
fUItdt: /Uhdt-{—/Uhdt

a a c

et que:

quels que soient Ul ,, V,,a,b et c.

L’intégrale aléatoire jouit encore de deux autres pro-
priétés importantes :

Premier théoréme : Si la fonction | U| ;| est sommable,
on peut écrire :

b 4
/Ulgdtz [Ultdr
@ a

Ce théoréme, évident dans le cas ou U |, est intégrable
au sens de Riemann, a été démontré par Slutzsky, et
nous I’admettons.

Deuxieme théoréme : Si U |, est continue en moyenne
quadratique la fonction aléatoire :

t
Ilg:‘/U].gdS
a

est dérivable en moyenne quadratique et a pour dérivée U | ,.

. 1| —1I| .
Soit Z = $fh—‘ — Ul,, il faut montrer que
lim Z?=0.
h—0

Comme en analyse ordinaire, nous avons :
t+h

Z ﬁUls—Ull)(is et

1
—11(
t

t+h t+h

- :
7' R/(ula—u|,>da.l/(u|,,—ult)d/3
t t

t+h t+h
]

:l?lz_j/(Ula—vlt)(Ulﬁ—Ulc)dadﬁ
t ¢t

t+h t+h

e
etalors:Zzz/?/ [(Ula—UI,)(Ulﬁ—Ult)docdﬂ=
P

t+h t+h

/ f(ma—mt)(m,;—m,) da dB| =
:

1
G

[
t

t+h t+h
=]

1 «a
él—léb/b/|(U]a_Ult)(U|ﬂ_U|g)|d0Cd/3.é
t t

t+h t+h
=l

1
é,?/ f\/(Ula—Ult)z VUT ,—UT P dx df

t ¢

Comme U |, est une fonction aléatoire continue, on
peut trouver une valeur A, de & telle que, si A < hy :

\/(U| t+n—Ul)? <e

& étant un nombre positif arbitrairement petit.

Il en résulte que:
VUT,—Ul)2<e

e
\J(U'ﬂ_’Ul t)z =8
et que:
tih tth

— 1
Zzél?//szdadﬁ=82

t

ce qui montre bien que Z2 tend vers zéro avec A.

Nous voyons donc qu’une condition suffisante pour que
t

2

I),= / U | sds soit dérivable en moyenne quadratique et

(2
a

ait pour dérivée U | ; est que U | ; soit continue en moyenne
quadratique.

On peut montrer qu’au moins dans le cas stationnaire
cette condition est aussi nécessaire.

12. Moyennes aléatoires et réle de la connexion aléa-
toire pour l’existence de lintégrale.

Si la fonction de corrélation de U |, vaut :

r(a’ﬂ):(Ula—U—L,,)(Ulﬂ—Ulﬁ :{(l)sm:ﬁa
\/(Ula—Ulaz\/(Ulﬂ—TJI—,,)z b
b
et si L= / Ul zdt

«
b
)

b
0= [ [s@SP r@paxds -0

3
[
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alors le nombre aléatoire I se réduit a sa valeur
moyenne :
)

a
et I'intégrale de U |, cesse d’étre aléatoire.

La constante aléatoire :

t+t
1t X
x— 7/ oy dn = oy (Tr] )

t

peut étre appelée moyenne aléatoire de la tonction aléatoire
U |, dans lintervalle (¢, ¢ + 7).

X' =X—F, Uly=Ul,—Ul,

Posons

La variance de X est:

t+t 2 tT T
2 1 q/ 1 : Frh U il
X2=?2 /Ulsds ~?2/fU|aU’|5docdﬁ
t / t @

Désignons par S («) ’écart type de Ul , et r(a, f) le
coefficient de corrélation entre U |, et Ul .
Alors :
H‘-r t—i—r
X?= / / S () SP)r(x,p) dudp

. .

t ot

et on découvre le fait fondamental suivant :

L’écart type de lintégrale aléatoire dépend essentielle-
ment de la connexion du champ de la fonction a intégrer.

Ce fait jouera un role capital dans les fluides turbulents.

Osia#pf

Cet écart type sera nul si r (o, f) = .
oK : @ 5 { lsia=p
c’est-a-dire si la connexion du champ a intégrer est nulle.

Si r(a, f) =1, cest-a-dire si U|,= Bf (r) ou B est
une constante aléatoire et f(¢) une fonction certaine,

t+t t+t t+1

’ w(a)S(/J)tIad/)’: g :S‘(oc)doc =
|

TL
t
— <®1zoy S>H

Dans le cas général | r (o, f) =1, d’ou:

o1
X V=

(=

\p’ X' = Moy S

Ainsi I’écart type de la moyenne aléatoire est au plus égal
a la moyenne de I’écart type de la fonction.

Supposons maintenant que U | , soit une fonction aléa-
toire stationnaire, c’est-a-dire que r («, /) ne soit fonction
que de (f—o) et que S (o) soit une constante S. Alors :

t+r t+t T
X' = i;!/ l/ r (f—o) do dff = 2:1: / (t—s) r (5) ds

«
t t 0
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et I’on voit bien que, |  (s) | étant =1

FZéSz

13. Réle de la connexion entre un grand nombre de
variables aléatoires et la fluctuation de leur moyenne.

Pour mieux comprendre I'importance de la connexion
dans la notion d’intégrale aléatoire, nous allons observer
ce qui se passe sur la moyenne arithmétique d’un tres
grand nombre de variables aléatoires.

Soit X la moyenne arithmétique de n variables aléatoires
X1, Xs, ..., X, de valeur probable nulle :

uE

n

X

Soit r;; le coefficient de corrélation entre X; et Xj; et S;
I’écart type de X; . L’écart type de X est donné par :

> 1
Sz — ;QZZI'HS{S]'

Supposons, pour bien voir le fond de la question, les S;
tous égaux a 1 et les r;; tous égaux a un méme nombre r.
On trouve :

; 1—r
S2=r 4
n

Lorsque r = 0 (c’est le cas, en particulier, si les variables
P

sz U ; .
sont indépendantes) S vaut — qui est un nombre trés petit.
n

Au contraire, si les variables sont corrélées, I’écart type
S cesse tout de suite d’étre négligeable et S% vaudra approxi-
mativement r.

Donc : la fluctuation de la moyenne d’un grand nombre
de variables aléatoires est la conséquence de la corrélation
entre ces variables. Elle est d’ailleurs inférieure a leur
fluctuation commune.

De plus, S? étant positif, on a lorsque # est fini :

—1

i n—1

Si n— oo, r ne peut rester négatif.

Donc si un grand nombre de variables aléatoires présen-
tent deux a deux la méme corrélation, celle-ci ne saurait
étre négative.

14. Primitive d’une fonction aléatoire.

Comme nous avons étudié la dérivation d’une fonction
aléatoire, il serait intéressant de définir I'opération inverse
qui consiste a prendre la primitive d’une fonction. Nous
nous bornerons a 1’étude du cas ou la fonction aléatoire
U |, est stationnaire, d’écart type S et de coefficient de
corrélation :

r(ta—1) = r (h)

Définition : Nous appelons primitive de U |, toute fonc-
tion aléatoire X | ;, qui admet U | ; pour dérivée.



A cause des propriétés de la dérivée (la condition néces-
saire et suffisante pour que X | ; soit dérivable est que :

2

— X7 X;
ot dt, 7

existe), nous voyons que toute fonction aléatoire qui vérifie
I’équation

est une primitive de U | ; (et inversement toute primitive de
U |, satisfait a cette équation).

Notation : Xlt1,=X1, X|t2:X2, U{: UI‘U1
Ué: Ug—Ug, X]/.:XI_XI
2

dty dts

En intégrant 1’équation :

nous obtenons :

by ity to ¢

Xi o= ‘/f 1 Udtydits + ¢y (1) + ¢ (t2) + f / U, Usdt, dts
0 [ %

0 00

les fonctions ¢ et ¢, étant arbitraires.
1 2
tz tl

Xl Xg = S2 / / r(fz—fl) df]_dfg + (',1’ (’1) + (‘g(fg) +U tl fg
00

|w

Changeons de variables :

‘ § = fg_fl
| i =1 avecle

Jacobien

(ty.0)  (0,0)

Cty-ty)

Fig. 3.

Alors :
B ()z tz)-s ? tz;s

X Xé = S [ / / r(s) dt; ds + / / r(s)dt, ds +
00 to-ty 5

ta-t1 t1
» »

i

oo
-ty -8

)

r(s) di, (Is’ Fel(t) + ¢ () + Uty ty =

te-t1 0

—§2 [_ / (to—t1—5)r(s)ds + ’(Tl + 5) r(s) ds +
5 32

1

ne dépend que de f;

ta
+ / (to—s5) r (5) ds] L&) e G - U 1 ks
0
ne dépend que de 7,

D’ou:
n :
X K= =5 J (h—s) r(s)ds + ¢, (t) + ¢ (1) + U 1, 1

0

avec h = ty—1 et ¢y, ¢; fonctions arbitraires de 1, et de 7,.

Alors :

h

X; Xy = —8® / (h—s) r () ds + c1 () + cs (1)
)

Or
)‘L
X X5 et —S2 / (h—s) r (s) ds sont symétriques en 1, et 1o,

0
il fautalors que (¢; (1) + ¢3 (#3)) lesoit aussi, ce qui entraine :
€l ='tag—=¢C

Si #; = t5, nous avons:

a2 ()= X2 i;=2e(t)

Nous obtenons :
e
nx;——5 / (h—s) r (s) ds + % (0 (1) + 0° ()
0
Nous pouvons écrire cette égalité sous une autre forme,
soit I'intégrale :

t
zu:/u'lsds (Zi=Z14)
5

nous avons aussi :

Z—7)" 1

X Xy = — 2 2 (02 (t) + o (fz))

t
Cela signifie que, en particulier, [U | ¢ ds est une primi-

(=
a

tive de U | ,.

15. Exemple d’une primitive particuliérement remarqua-
4 P
ble.

Considérons maintenant la primitive de U’ |, particu-
liere :
t

Zl,::/U'],\.ds

0
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Nous savons alors que le moment rectangle de la primi-
tive générale vaut :

(1) + 02(12)_(22_21)2_= a2(t)) + 0% (1) =22 (ta—1y)

XX
Losd 2 7

s

ou
23\(r). = .Z2Y
Sa fonction de corrélation R sera :

2% (ta—t)— (o (ty) —a (1))?
20 (1) o (tp)

R(fl,f2)= 1—

Pour que R (t#, t5) satisfasse aux conditions de cohérence
il faut imposer a la fonction indéterminée o (¢) un certain
nombre de restrictions. Ainsi, pour que R soit compris
entre —1 et + 1 il faut que:

lo(t)—o(t) | =X (t1a—1) =0 (1) + 0 (1)

Lorsque h = 15—t tend vers zéro, cette condition nous
donne: | ¢’ | =S, inégalité que nous avons démontrée déja
dans le chapitre précédent, ou, rappelons-le, o (¢) est
I’écart type de X | ; et S I’écart type de sa dérivée U | ,.

16. Primitives stationnaires.

Nous nous bornerons maintenant a étudier ce qui se
passe dans le cas out U |, admet des primitives stationnai-
res. Il faut pour cela que o (7) soit une constante, la fonc-
tion de corrélation R vaut alors :

(-t _ 0

h) =1—
R 2.0% 2 g2

La premiére condition de cohérence implique donc:
s 2 (h)
2

Il faut alors que :
%
22 =128%[ (h—s) r (s) ds reste bornée, quel que soit &,

0
et en particulier quand /4 — oo, de telle sorte qu’on puisse
choisir ¢ fini.

La seconde condition de cohérence entraine que:
1—2r%(h) + r(2 h) =0 c’est-a-dire, dans notre cas :

22 (h)\?2 222 h)
1—2 <1— o ) + <1~ —.-—) =0

202

D’ou:

4
2By zeg-z2en

et alors: a) 25 () =212h

4
by oo 2B
422 (hH)—22%22h)

Nous voyons que la condition b) est plus restrictive que
celle imposée par la premiére condition de cohérence et
nous pouvons penser que les conditions de cohérence
d’ordre supérieur a 2 le seront encore plus.

58

e e e ——————— e e

La condition ) signifie que X (k) ne pourra pas franchir
la droite de coefficient angulaire S, a laquelle elle est
tangente a 1’origine :

2(h)

en hachuré : domaine ou peut se trouver 2 (k).

Comme 2 (h) est bornée quel que soit £ elle peut prendre
I’'une ou I’autre des allures suivantes :

a) tendre vers une asymptote horizontale, il en sera alors
de méme pour R (k) qui tendra vers u.

p(p—1)
2
coefficients de corrélation et I'on peut toujours s’arranger,
quelque grand que soit p, pour que ceux-ci soient aussi
voisins de x qu’on le désire. Or nous savons que si un
trées grand nombre de variables aléatoires présentent
deux a deux la méme corrélation, celle-ci ne peut pas étre

négative. Donc pu est nécessairement positif ou nul.

Considérons alors p instants; il leur correspond

b) étre périodique ou presque périodique, et R (h) sera
aussi périodique ou presque périodique.

Remarque : Si, a tout nombre positif &, aussi petit que
I’on veut, on peut faire correspondre une longueur / (g),
telle que tout intervalle de longueur / contienne au moins
un nombre 7 pour lequel on ait :

soit (1) > 1—e¢, soit r(7) < —1 + ¢

le coefficient de corrélation est une fonction presque pério-
dique dont la presque période est, soit 7, soit 2 7.

Les fonctions aléatoires correspondantes peuvent étre
appelées : fonctions aléatoires presque périodiques.

Nous allons faire, en dernier lieu, une remarque inté-
ressante : si X' (h) est bornée supérieurement, il existe une
infinité d’intégrales stationnaires dont les écarts types o
sont bornés inférieurement. Il y en aura généralement une
correspondant au minimum g, des g. Soit &R (%) son coeffi-
cient de corrélation.

Les coeflicients de corrélation R (/) des autres intégrales
stationnaires s’expriment au moyen de &R (k) par la for-
mule :

R(h) = (1_ ﬁ’) R gk
g a

On en déduit que:

R (k) =R (h)



Ainsi, toutes les courbes R (k) sont placées dans la
région du plan comprise entre la courbe & (k) et la droite
d’ordonnée + 1.

De plus, si R (h) satisfait aux conditions de cohérence,
R (h) y satisfait aussi, en effet :

Les conditions de cohérence pour R (/) sont :

24+ 2XXR; M A =0 quels que soient les 4; et
£ quel que soit i.

Or:

2
SN L TTTR N %g E AR+ 2Z5 Ry My A) +

1<j i<j

0-(2) U% < 0
+ (1= @22 2T (2 124+ 255 R4y 14 ) 20
ag g

i<j

si les &; satisfont aux conditions de cohérence.

17. Equations différentielles aléatoires.

La théorie classique des équations différentielles repose
sur le théoréme fondamental : si, en tout point d’un inter-
valle (a, b), la fonction X (1) admet une dérivée nulle,
alors X (¢) est une constante.

Ce théoréme subsiste en analyse aléatoire, en effet :

2 ol d— =
1) XnedépendpasdetcarEX:Xzo

2) X4 X |4, ne dépend ni de 71, ni de 75, car

¢l I S - ke rty
Xl X, =X X1, =0=X|y Xlsy=5-XIs, X
o Xl XTu= X1, X1, o Kl =5 XT, X1,

3) (XIy—X14) (X1s—X1,,) est alors une constante
C, donc aussi (X |,—X1[,)°

La fonction de corrélation est alors une constante et
comme toute fonction de corrélation vaut 1 a I'origine,
cette constante vaut 1.

Nous en déduisons immédiatement que X |, est une
constante aléatoire.

Chapitre Ill — Calcul des variations

18. Le calcul des variations se transpose sans difficultés
en analyse aléatoire et conduit a des équations d’Euler-
Lagrange aléatoires.

Nous démontrerons d’abord le lemme fondamental

Soit Y| , une fonction aléatoire arbitraire qui se réduit
a la constante certaine zéro pour t = ty et t = ty (il est méme
suffisant que Y|, soit continue en moyenne quadratique).

Soit Z |, une seconde fonction aléatoire continue en
moyenne quadratique. o

Alors :
ty
si‘/ Y1, Z1|,dt =0 quelle que soit Y|,, Z| ¢ ne peut

t1
étre que le nombre certain zéro.

Notations : Y |,,Z |, espérances de Y|, et Z |,

Y'|,,Z |,: parties purement aléatoires

de YlgetZ|z
S2() =YY%,
c2 () =27\,
e ar
r0= 5o

Comme nous avons supposé Z |, continue, o (f) et
Z |, seront continues.

L’hypothése devient donc :

ta t2

/?Zdz+ / Y Z dt =0

£ £y

Parmi les fonctions Y | ; (qui sont arbitraires) choisissons
celles d’espérance nulle. Leur écart type S, ainsi que leur
corrélation avec Z |, restent cependant arbitraires.

Nous avons :

t t
/ ¥, Z"|.dt =/ (rS®)o@d =0

t £

r (1) S (r) étant une fonction arbitraire de ¢, nulle pour #
et 15 et o (¢) étant continue, le lemme fondamental du cal-
cul des variations s’applique. Alors :

ag()=0
Dou: Z' |, =0 et par suite Z|,= Z |,

Choisissant maintenant des fonctions Y|, de valeur
probable Y | , non nulle (sauf pour #; et 7, on doit avoir :

t2

/YILZ|5d1=O

t
Z |, étant continue et Y |, étant arbitraire et nulle pour #;

et 75 (il suffit méme que Y |, soit continue), on peut appli-
quer une seconde fois le lemme fondamental. D’ou :

Z|,=0 etalors Z|l,=0

Le probléme du calcul des variations aléatoires est la
recherche des fonctions aléatoires X |, dérivables qui
rendent extremum l'intégrale :

te
.

I= /(p()(,/\",r)dt
&
et qui se réduisent pour 7, et 7, a des constantes aléatoires
données.

¢ est une fonction certaine de ses arguments, nous la
supposerons doublement dérivable par rapport a X, X et 7.
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La variation de 7 s’obtient, comme en analyse certaine,
en remplagant X par X + « Y, Y étant une fonction
aléatoire arbitraire continue et nulle pour #; et 7. On
obtient, en faisant exactement les mémes calculs que dans
le cas certain :

[23

N ) () 9\
w5 (57) )«

o

12}

car la formule d’intégration par parties s’applique aussi en
analyse aléatoire.

or .
Pour que X |, rende 7 extremum il faut que 50 soit
o

nulle pour o = 0. Il résulte alors du lemme fondamental
que :

aﬁ _ (9_(0\) —0 (Equation
X 24 d’Euler-Lagrange)

Remarquons que cette condition, nécessaire, n’est pas
toujours suffisante pour que / soit extremum.

Conclusions

On peut donc remarquer que l’analyse aléatoire et
l’analyse certaine s’identifient au contact, puis divergent
considérablement au fur et a mesure que les liaisons se
relachent. C’est cette constatation qui va permettre la mise
en équation des milieux en instance de diffusion, particu-
lierement les milieux turbulents.

A cet effet, il sera procédé, en mécanique aléatoire, a
I’énoncé des principes et des régles de calcul relatifs a
I’évolution du corpuscule aléatoire R construit avec ses
fonctions de distribution des probabilités conjuguées qui
traduisent les interactions.

Adresse de l'auteur :
Frangois Baatard, 14, rue Etraz, 1000 Lausanne.

Sur le probléme relatif au controle des ouvrages d’art
quant a leur stabilité et leurs déformations

par A. ANSERMET, ingénieur professeur

Généralités

Le nombre des ouvrages d’art allant en augmentant, il
est opportun de perfectionner les méthodes tendant a
controler leur stabilité et leurs déformations; de grands
progres furent réalisés et le but de ces lignes est de rappe-
ler succinctement en quoi consistent les mesures et surtout
les calculs a effectuer. Des cas concrets seront présentés
portant sur un téléphérique, un barrage, des charpentes,
etc. Le probleme est complexe.

Méthodes modernes de mesures

Ainsi qu’on le sait, grace a I’électro- et la radiotélémétrie
(voir publication EPUL N°¢ 86), on dispose de procédés
nouveaux dont I’emploi ne cesse de progresser. Citons le
téléphérique de Klosters, le tunnel du Saint-Bernardin, etc.
Les résultats obtenus, pour les ellipses d’erreur aux tétes
de ce tunnel, donnaient toute satisfaction.

Pour le téléphérique [1]%, le barrage de Sambuco, les
méthodes de mesure et calculs furent perfectionnés. On
tint compte surtout de la déviation de la verticale, élément
assez nouveau. C’est un probléme-fleuve comportant plus
d’une solution. On ne peut plus se contenter de calculer
I'influence des masses visibles comme ce fut le cas pour
les tunnels du Simplon, du Leetschberg, etc. C’est moins
simple, comme on le verra.

Mais une difficulté réside ailleurs : le praticien a choisi,
pour effectuer des mesures, des emplacements donnant
confiance quant a la stabilité. Or au cours des calculs des
discordances sont constatées, faisant douter de cette sta-
bilité. A cet égard, le cas du téléphérique joue un role a
part.

1 Les chiffres entre crochets renvoient a la bibliographie en
fin d’article.
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Evolution des modes de calcul

On dispose de tout un éventail de moyens, surtout pour
de grands ouvrages, car I’opérateur fait ses observations a
partir d’un groupe de points fixes, & Sambuco par exemple
six points, ou I'on stationne périodiquement. Il en résulte
des discordances d’une fois a I'autre ensuite d’erreurs de
mesures. A la méthode des moindres carrés, dont 1’appli-
cation est depuis longtemps courante, s’ajoutent la statis-
tique mathématique, les transformations (affine, d’Hel-
mert, etc.) et méme la géométrie projective (cas d’un
amphithéatre). Le calcul électronique devient courant.

Comme on le verra lors d’applications, certaines simpli-
fications sont a signaler. Par suite d’instabilité ou de défor-
mation, les coordonnées x;, y;, z; d’'un point (i = 1, 2,
3 ...) varient de Ax;, Ay;, Az;. On peut dissocier parfois
la planimétrie de I’altimétrie sans traiter le calcul spatiale-
ment comme le font des praticiens. Par voie de nivellement
direct la variation Az est déterminée a partir d’un repére
de nivellement dont I’altitude absolue n’est pas nécessaire-
ment connue. Restent les Ax;, Ay;, susceptibles, dans cer-
tains cas, d’étre déterminés directement.

Covariance. Une autre complication peut survenir quand
on compense par la méthode des moindres carrés. L’indé-
pendance des mesures n’est pas réalisée ; on dit aussi que
les mesures sont corrélées. Des ¢léments nouveaux inter-
viennent : les cofacteurs ou comultiplicateurs [2], [3]. Pour
former la matrice dite des cofacteurs, certains praticiens
ont recours a une précompensation (Vorausgleichung). On
s’efforcera donc d’éviter de la covariance.

Calcul des points de rattachement

En principe, pour un méme ouvrage, on peut choisir
arbitrairement une origine pour les altitudes et coordonnées
planes ; I'orientation des axes x, y étant aussi arbitraire.
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