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Sur certains systèmes surdéterminés dont le calcul
incombe à l'ingénieur

par A. ANSERMET, ingénieur-professeur

Généralités

Le calcul de systèmes surdéterminés est un des plus
complexes qu'un ingénieur puisse avoir à traiter dans la
pratique. Il se présente dans de nombreux domaines (structures

à barres surabondantes, réseaux électrotélémétriques,
réseaux de conduites électriques, etc.). La difficulté réside
dans le fait que le nombre des équations est supérieur à
celui des inconnues. Une solution ne sera donc en général
pas absolument exempte d'arbitraire. Ce problème donna
lieu, outre-Rhin notamment, à d'abondantes publications ;
il ne sera donc traité ici que sous forme fragmentaire en
vue surtout de son application à des systèmes articulés [4]1.

Les inconnues sont alors les coordonnées des nœuds
mais spatialement 6 coordonnées sont susceptibles d'être
choisies arbitrairement puisque la structure peut subir
3 rotations et 3 translations sans causer de déformation.
N nœuds donnent donc lieu à (3 N—6) coordonnées

Il ¦ ¦ •¦ N(N-1)
inconnues et Ion peut concevoir jusqua • barres

par la méthode dite des combinaisons binaires. Le choix
des axes de coordonnées doit être judicieux ; il faut s'efforcer

de diminuer l'influence des éléments non diagonaux
dans la matrice de rigidité.

En outre, même si les équations initiales sont linéaires,
on aura recours à une solution dite provisoire fournissant
des valeurs approchées pour les inconnues ; les termes
absolus des équations prennent alors des valeurs petites,
ce qui facilite les calculs.

A cet effet, on rend le système statiquement déterminé
en faisant abstraction des éléments surabondants
(coupures de barres).

L'équation prend donc la forme générale :

(1) Vj a(x + b{y + ctz ft (poids pi)
i 1,2,3.

ces x, y, z étant donc des variations de coordonnées des
nœuds tandis que les poids pi interviennent par leurs
valeurs relatives ce qui procure une liberté bienvenue au
praticien.

Les coefficients et termes absolus seront obtenus parfois
par voie semi-graphique. Le choix des barres à couper
joue un rôle.

Avant de poursuivre on peut déjà former la valeur
moyenne du rapport entre les poids a priori et a
posteriori Pt.

[pi : Pi] nombre des inconnues.

Dans l'exemple numérique ci-après, on a 4 barres et
4

3 inconnues ; en moyenne : Pi pi 1.33 pi. Le poids

est amplifié grâce à la barre surabondante. (Voir théorème

[3], p. 68.)
Cette propriété est en outre un moyen de contrôle pour

les calculs. Elle n'est valable qu'en appliquant la solution

1 Les chiffres entre crochets renvoient à la bibliographie en
fin d'article.

développée dans le cours d'analyse numérique de M. le
prof. Descloux. Les poids p{ sont proportionnels aux
coefficients d'élasticité E, à la section transversale de
la barre et à l'inverse de la longueur de celle-ci. On sait
que cette solution est classique.

Cas concret (solution prof. Descloux). On rend minimum
[p vv]. C'est le cas le plus simple que l'on puisse concevoir ;
il porte sur le sommet libre d'un pylône (3 inconnues).

Barres

1-2
1-3
1-4
1-5

-0.817
0.00

-0.817
0.00

0.00
-0.817
0.00

-0.817

c

-0.577
-0.577
-0.577
-0.577

P

0.64
0.96
0.64
0.96

0.915
1.20
0.915
1.20

Equations normales sous forme implicite (dérivées de
.'énergie)

[p a v] 0 [p b v] 0 [p c v] 0

1 :0.915 1.093 1 : 1.20 0.833

Matrice de rigidité

["0.854 0.00 0.00
0.00 1.28 0.00
0.00 0.00 1.067

ifPx'.r VPl'5 0.8Ï72

1/Pa 1/P4 0.833

Matrice coeff. de poids
des inconnues

1.170 0.00 0.00
0.00 0.781 0.00
0.00 0.00 0.937

0.8172x 1.17 + 0.5772x0.937 .093

[p:P] 2(0.64x1.093 + 0.96x0.833) 3.00
(3 inconnues)

Les longueurs des axes principaux de l'ellipsoïde de
déformation du nœud sont proportionnelles à :

V/I.17 1.08 V0.781 0.88 \/0.937

ce qui n'est pas défavorable.

0.97

Ces valeurs permettent de calculer le rayon de la sphère
orthoptique lieu des sommets des trièdres trirectangles
tangents à l'ellipsoïde. En posant [pvv] — constant on
obtient des ellipsoïdes concentriques se réduisant à un
point pour une certaine valeur de la constante (minimum).

Variante : une solution préconisée par Jakobi ([3], p. 57)
consiste à considérer 4 groupes de 3 équations en posant :

v2 vs 0 ; Vi va

v2 v3

V4

: v4

0; Vj

:0
v4 0;

Déjà avec 5 barres au lieu de 4 on aurait 10 groupes de
3 équations. On effectue ensuite, pour chaque inconnue,
une compensation par voie de moyenne pondérée. Gauss
qualifiait ce mode de calcul de voie détournée et peu
naturelle (unnatürlicher Umweg).
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Solution sans coupures. Le but recherché en opérant des

coupures de barres est d'obtenir des valeurs provisoires
pour les inconnues. Ce fut le mérite du professeur Mayor
d'éviter ce fractionnement des variations de coordonnées
des nœuds. Cet eminent staticien considère seulement
deux états : l'initial en faisant abstraction de la ou des
forces et l'état final. Il n'y a pas d'état intermédiaire et
pas de termes absolus dans les équations aux déformations,

ce qui exclut la formation de dérivées partielles de
l'énergie. Les coefficients a, b, c... ne sont, théoriquement,
plus rigoureusement les mêmes que précédemment mais
bien pratiquement. Cette méthode de Mayor redevient
très actuelle comme l'auteur de la publication EPUL n° 104
le montra. Un choix n'est pasgjps facile ; éventuellement,
à titre de contrôle, on calculera avec coupures puis sans
coupures.

Quel que soit le mode de calcul il convient d'insister
sur le rôle que joue l'ellipsoïde de déformation des nœuds
(Formänderungsellipsoid) ; il manque encore un élément :

la déformation quadratique moyenne relative à l'unité de
poids. Mais pour le praiicien cet élément joue un rôle
secondaire car il ne contribue pas à fixer la forme mais
l'échelle de la surface.

Quant aux essais et recherches sugjfnodèles réduits
préconisés par certains Instituts ils fournispfit des éléments
de contrôle mais ne suffisent pas toujours et occasionnent
parfois des frais non négligeables.

Pour un groupe d'ellipsoïdes de déformation des nœuds
c'est moins simple : on forme la matrice de rigidité et son
inverse. Tous les éléments nécessaires sont alors connus.

Covariance. Bien que cette notion soit traitée à fond
dans la littérature ([3], p. 107) il convient d'en faire mention.

Au lieu de rendre minimum la somme des/? v v (travail
déformation) il faut considérer l'expression : [p vv] +
+ PlZ Vi V2 + Pl3 VX V3 +

Il y a deux matrices : P11P12P13

P21P22 Pea

PS1PS2P3S.

et l'inverse
?11 9l2 9l8
<?21 922 923

.031 932 933.

dites respeeBvement des poids, et des cofacteurs.

Le contrôle par les poids a posteriori n'est plus
applicable. D'autres éléments de cet important problème ont
fait l'objet de précédentes publications ; il n'est pas nécessaire

de les développer à nouveau.

Conclusions

La solution relative aux systèmes surdéterminés au sens
de la méthode des moindres carrés, développée dans le
cours d'analyse numérique EPFL, se prête de façon
remarquable au calcul de structures articulées à barres
surabondantes. Elle permet notamment de calculer les
ellipsoïdes de déformation des nœuds [4], élément jouant
un rôle capital car si une de ces surfaces est très aplatie
ou au contraire sphérique ce n'est pas la même chose.
Ce calcul est devenu courant.
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Abaques pour l'addition de vecteurs

par F. GARDIOL, professeur à l'Ecole polytechnique fédérale de Lausanne

1. Introduction

Qu'il s'agisse de l'ingénieur civil ou mécanicien devant
déterminer la résultante d'un ensemble de forces ou de
contraintes, du physicien qui étudie les vitesses et les
accélérations dans des référentiels en mouvement ou de l'ingénieur

électricien qui manipule des flèches de Fresnel pour
la résolution d'un problème polyphasé déséquilibré, la
plupart des ingénieurs sont amenés occasionnellement à
additionner des grandeurs vectorielles. Lorsque les

composantes de chaque vecteur sont données dans un repère
cartésien, la résolution est immédiate et ne fait appel qu'à
de simples additions. Par contre, lorsque les vecteurs sont
spécifiés par leurs amplitudes et leurs directions respectives,

le problème se complique : il faut alors déterminer
les composantes dans un repère préalablement choisi,
sommer ces composantes et finalement déterminer l'amplitude

et la direction du vecteur résultant. Bien que ces
différentes étapes de la résolution ne fassent appel qu'à

des opérations algébriques et trigonométriques élémentaires,
la résolution complète du problème n'en requiert pas moins
un certain temps et peut donner lieu à des erreurs. Ce

processus peut être fortement accéléré à l'aide des deux

abaques présentés ici. Ces abaques permettent par ailleurs
d'obtenir une meilleure compréhension du problème,
comme on pourra le constater dans les exemples donnés

par la suite.

De nos jours, grâce à l'ordinateur, l'addition de vecteurs
ne présente aucun problème pour l'utilisateur disposant
du programme de calcul adéquat. L'ingénieur peut
néanmoins faire appel occasionnellement à la méthode
graphique présentée ici qui, si elle est moins précise, permet
de déterminer directement des ordres de grandeur ou de
vérifier des résultats de calculs à l'ordinateur (précaution
toujours souhaitable mais souvent oubliée...).
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