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BULLETIN TECHNIQUE DE LA SUISSE ROMANDE 98° année 10 juin 1972 N°12

Communication de la Chaire de la mécanique de la turbulence
de l'Ecole polytechnique fédérale de Lausanne et du groupe de travail EPFL-ISM

La mécanique aléatoire de Georges Dedebant et Philippe Wehrléa i

par le professeur FRANÇOIS BAATARD, D'ès se. techn., et SIMONE MAGNIN, lie. es se. math., assistante

(Suite et fin)

Chapitre VII — L'onde aléatoire

36. Analyse spectrale de l'oscillateur aléatoire stationnaire.

Dans le cas stationnaire, la densité de probabilité
conjuguée des fonctions X, X, Q obéissant à l'équation :

X+ Q2X 0

est de la forme : R co ou u x

La densité de probabilité conjuguée de B, C et Q où B
et C vérifient :

j Bsrnüt—Ccosßf X
\ Q (B cos Qt-C sìa Qt) U

La densité de probabilité conjuguée de E —- A2Q2

et de Q vaut :

1

0 1

m2 n co a R(e,co) — R(e,co)
co

Propriétés des moments. Connexion.

Soit, donc, l'oscillateur aléatoire pris aux deux instants tx
et f2 et dont on va étudier connexion et moments.

Xj, Asm{Qh—0)
Za A sin (ßfa—0)

où X est stationnaire.

vaut alors :

sin cot cos cot ¦ co

—cos cot sin cot-co

'w2(62+C2) \ ico2(b2+c2)
R[ ,oj \=coR\ -—

En faisant un second changement de variables :

| B A cos 0
\ C A sin (P

la densité de probabilité conjuguée de A, <P et Q est de
la forme :

cos <p —a sm cp

sin (p a cos cp

coR ——— co J a co R i —-—

cette densité de probabilité ne dépend pas de cp. Il en
découle que 0 est indépendante de A et de Q et que sa

densi té de probabilité est uniforme — car 0 prend

ses valeurs entre 0 et 271
In

La densité de probabilité conjuguée de A et de Q vaut
alors :

Le moment X\ X% peu t s'écrire :

xTxl A2 sin (Qh-0) sin (Qt2-&)
1

- A2 cos Q MÊm ~-jA*cos Iö fo + t2>~2 ®i

Calcul du dern ier terme :

-r- A2 cos [Q (h + /g) - 2 0]

// / —cos [£u(fi + fa) — 2cp\acoRI —~ ,co)dçdcoda=

oooï — sin [co (h + /a)- 2ç>] dcoda — 0

Il reste alors : X± Xz — A2 cos Q fa—1{)

Soient A2(co) la moyenne liée de A2 pour Q co et
y/(co) la densité de probabilité de ß, alors, le moment
rectangle X\ X% vaut :

as

eoa R —— ,(ü\dq> 2it(oaRi-

1 Voir Bulletin technique de la Suisse romande N° 4, du
19 février, et 9 du 29 avril 1972.

1

Xx X2 — ^2 cos Q (/a-'i)

— / A2 (co) cos co fa—h) y/ (co) deo

0
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Si tj i<i, X2 a la valeur :

X2 — / A2 (co) y/ (co) dea

Comme X\ Xi X O, le coefficient de corrélation
entre Jïi et X2 vaut :

On obtient à nouveau la relation de Khintchine.

La fonction cp n'est identique à la fonction spectrale

S (co) que si E (co) — constante E.

En connaissant s (t), E (co) et E on peut calculer
d <p (co) et, en intégrant, S (co) la fonction de répartition
de Ci (résultat analogue à ci-dessus).

A2 (co) cos cot y/ (co) dea

rfa-t-ò r(t)

En posant :

A2 (co) y/ (co) dco

f(eo)
A2 (co) y/ (co) A2 (co) y/ (co)

J
A2

A2 (co) y/(co) dea

r prend la forme :

37. Onde aléatoire.

Dans le cas d'une fonction aléatoire analytique stationnaire

XI la fonction de corrélation correspondante peut
s'écrire sous la forme :

r(h) 1
Sf h2 S\tf S%h6

S202\ 5g 4! S%61

où les St sont les écarts types de X® 11.

(D

La fonction r(h) peut aussi s'écrire sous la forme de
Khintchine :

r(h) / cos cohdS(ea) (2)

¦ (t) / f(co) cos cot dea

c'est la forme de Khintchine qui n'est pas particulière à

l'oscillateur stationnaire mais à toute fonction aléatoire
analytique stationnaire.

La connaissance de la fonction de corrélation r (t)
permet de calculer /(co)Jsi l'on connaît A2 (co) (et A2),
il est possible de calculer la densité de probabilité y/ (co)

de Q.

La fonction de corrélation dellf' vaut r (t)
A2 cos Qt

A*

et il est facile de voir que la fonction de corrélation de X
vaut :

s(t)
A2 Q? cos Q/

^2Q2

Comme l'énergie de l'oscillateur est : E -—ÂÊÊP, s (t)

peut s écrire :

s(t)
E cos ßf

E (co) est la moyenne liée de Vénergie pour ß co et
d'autre part S (co) est la fonction de répartition de ß.
Elle peut être appelée fonction spectrale car elle détermine
la répartition des fréquences dans le spectre qui peut être
continu, de bandes ou de raies. La fonction s (t) vaut :

s (t) I cos cat — d S (co)

où S (co) est une fonction de répartition ; alors :

r (h) cos ß h et, en développant cos Q h :

r(h) 1-
2!

a2
A4—;

4!
Q4

Ä6 —-a66!

Du point de vue physique, le développement de r (h) en

fonction des St représente Vaspect corpusculaire (1) du

corpuscule aléatoire, tandis que le développement de

r (h) cos fì h représente son aspect ondulatoire (2).

D surfit qu'une fonction aléatoire stationnaire soit
continue pour que sa fonction de corrélation puisse prendre
la forme de Khintchine :

+ 00

r(h) cos cohdS (co)

où le spectre S (co) est une fonction de répartition.

Si le spectre est une fonction « en escalier », r (h) vaudra :

r (h) V a2 cos co„ h, V a2 1

n

les con sont les valeurs de co pour lesquelles S (co) fait un
saut et les a2 représentent la valeur de ce saut (toujours
positif car S (co) est une fonction croissante). Dans ce cas
la fonction de corrélation r (h) est presque périodique.
Elle sera périodique si les con sont des multiples entiers
de la même pulsation fondamentale co0 :

r(h)— r a2 cos n co0 h

Si le spectre S (co) est derivable, r (h) sera de la forme
(Khintchine) :

Si dcp(œ)= -^d&(co) • (h) / cos co h tp (co) dco

s(t) i cos cot dtp (co)

où d S (co) ç (co) dco.

En général, (co) sera la somme d'une fonction
continue et d'une «fonction en escalier».
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38. Equation du son du corpuscule aléatoire.

L'une des formes les plus simples que puisse prendre
l'équation d'énergie (§ 29) est :

ds
dt

0

Physiquement ce fait a lieu lorsqu'on fait subir à un
corpuscule aléatoire dans l'état de Maxwell une « perturbation

sonore », c'est-à-dire si on modifie p0 et k0 en
chaque point de telle sorte que les dérivées d'espace soient
négligeables par rapport aux dérivées du temps.

Si -=- 0 alors A^/2.o_1 k3l2.p0~x constante
dt

dans tout l'espace.

Soit maintenant l'équation aux dérivées partielles du
2e ordre en p (voir § 24), conséquence de la double dérivabilité

en moyenne quadratique des fonctions aléatoires X,
Yet Z:

m WÊÊëèÊêêêê I
Les Xt sont nuls dans l'équation de Maxwell, par suite

l'équation se réduit à :

Q2

^2 2j 3^2 Wi-P)
3A

De plus, pour la loi de Maxwell : X2

s

d'où :

d_]p

dt2
v-i d2

*=i
Le développement de Taylor de pk donne :

d(pk)
pk p0k0 +

dp Po
¦ (P-Po) +

comme k3^2.p 1 este a312, cela peut s'écrire:

d (ap5's)
pk p0 k0

dp Po
(P-Po)

pk pjc0 + h ap0213 (p-p0)

pk p0k0 + g k0 (p-po) +

En remplaçant pk par sa valeur, l'équation s

dTp
dt*

£ (^devient:

d2p
dt2 — r k0 y2 p (ou pÉS? laplacien).

Cest une équation d'onde : la vitesse de propagation de
l'onde vaudra :

5 k0

3

Cette équation montre qu'une perturbation de densité,
apportée dans un « étage de turbulence », se propage avec
une vitesse correspondant au module d'énergie de l'étage.

L'hydrodynamique classique ignore ce fait, puisqu'elle ne
connaît que les ondes sonores proprement dites, ces
dernières ayant une vitesse d'un ordre de grandeur énormément

plus grand que celui qu'il s'agit d'expliquer.

L'entropie d'un corpuscule aléatoire de densité p et
de module k uniformes vastesig

S log (k^.p-1)

l i u'2 + u'2 + uj2
ou k —i è ±.

Pour une loi de Maxwell k U{2 U'22 U'82.k3'2
représente alors le produit des incertitudes Si s% S3 sur les

composantes de la vitesse aléatoire.

Comme la densité p est uniforme :

+1

o,2 X~'2 | rffpxfdxxdxadx, jp/5 X'2 X'2

(«a : proportionnel à)

+1

de plus : la masse M flip dxi dx% dx3 8 p l3

Alors le produit <7i «72 03 des incertitudes sur les

composantes de la position est proportionnel à: M5'2./?-1.

Cela signifie que l'entropie d'un'corpuscule aléatoire est
le logmithwèi du produit des incertitudes sur chaque couple
positions-vitéËàes à une constante près.

39. Fonction aléatoire de deux paramètres.

Les coordonnées du corpuscule aléatoire n'étaient
fonction que d'un seul paramètre certain t ; soit, maintenant,
une grandeur aléatoire 0 qui soit fonction aléatoire de t
et d'un point de l'espace : 0 constitue un champ aléatoire.

Si l'espace n'a qu'une dimension, la notion de champ
aléatoire se ramène à celle de fonction aléatoire 0\x,t
dépendant de deux paramètres certains x et t.

Cette fonction 0 \Ztt est derivable en moyenne quadra-
WÊÊÊÊÈÊÊÊÈ ^u* 3 0\x.t

tique par rapport a x et a t s il existe -—^ et
dt

tels que :

/#!*+*,«-# Ut d0\xlim -^-z— —^— 0 et que :

£-+0 dx

11m

A-*0
®\x.t+h-$\x.t d0\x.

dt
0

Dans le cas où 0 \Xit est stationnaire et analytique par
rapport à ses deux paramètres, la fonction de corrélation
correspondante pourra se mettre sous la forme :

r (h, k) 1
1

2<P'2 L

2®'Y,* „d0'd0'tm— k" + 2 —~ =— A k
dx j dt ax

fd0'\2..l-dF]i
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En effet :

lim (0'\x+k,M-0'\x,tf
h,k^O

lim [(0' \x+k,t+h-0'x+ic.t) + (0' \x+h,

h,k^O
-&\,jò?

lim (0'\x+ic,t+h-&'\x+k,t)2 + (&' ls+fc,t-

h,k-+0
-$'\x,t? +

+ 2 (0' \x+z,t+h - 0' \x+k,t)(&' I*+*.«- #' Ut)

Par définition de la dérivée, cette expression devient :

lim A2

A,&-*0

d0'\ x+k, t
dt dx

lim
h,k^O

h2

2hk

d0'
~dT

d0'\x+k.td0'\ x,t
dt

2hk

dx

d0' d0'
dt dx

d_0
lx'

lim (0'\x+k,H-h
h,k-+0
lim

&\x,t?

h.k^-0
D'où, finalement :

1», k) 1

2 0'2(l-r(h,k))

2 0'2
d0'

k2 „d0'd0'2 —= =— hkdt dx

h29_0
dt

La forme quadratique entre parenthèses est définie positive

car elle vaut :

d0' ¦k d0' \2

-w -h]

Comme dans le cas à un seul paramètre certain, les
conditions de cohérence sont satisfaites à la limite par la
fonction : r(h,k) cos (co h—p. k et la fonction de
corrélation de la fonction analytique stationnaire la plus
générale peut se mettre sous la forme :

+ 0O

r(h,k)= cos (Sih-Mk) / ïcos (eoh-p,k)da>ltF(co, p.)

— 00

où F (co, fi) est une fonction de répartition. Cette forme
est une extension de celle de Khintchine.

La fonction aléatoire la plus simple donnant une fonction

de corrélation de cette forme est l'onde aléatoire,
extension de l'oscillateur aléatoire :

0\Xit A cos (ß t - Mx + W)

où A est une constante aléatoire d'espérance nulle, ß,
M des constantes aléatoires et W une constante aléatoire
de distribution uniforme.

Ces constantes sont toutes indépendantes deux à deux,
sauf ß et M qui peuvent être corrélées.

Le moment 0 0X 0 | x,t <P I
s,,«, vaut alors :

0 0t A2 cos (Q t-Mx + W) cos (Q tx-Mxi + W)

— cos [ß(f—fi)—M(x—xi)] +

cos [ß (t + h) + M (x + x{) + 2W]

— cos [ß (t—t1)-M(x—x1)1

Si t tx : 0&x= — cosM(x—xx)

si x xx : 0 0i —- cos ß (t—tx)

la connaissance de ces 2 moments ne permet évidemment

pas de connaître 0 0x dans le cas où t et x sont
quelconques.

ß
Cas particulier où M T — c constante certame.

c

Dans ce cas :

r (h, k) cos ß A ± — cos ß (t-tx) ±
X—Xx

où A /-§& k x—Xx.

Etant donnés deux points x et xx, si / et tx sont tels que :

xx—x ^p cfa—t)

la fonction de corrélation vaut 1 ; les valeurs de la fonction
aléatoire 0 I Xit en x et en xx coïncident alors avec un

décalage de temps égal à ± Xx~x

0 est donc une fonction aléatoire de la combinaison
(x ± c t) : c'est une grandeur qui se propage par ondes.

7 ~k\
La fonction de corrélation r (A, k) cos ß IA i -1 est

une onde : l'onde de corrélation, qui se propage avec la
vitesse c.

r (h, k) obé||| l'équation différentielle (éq. de d'Alembert) :

1 d2r(h,k) _ d2r(h,k)
~?~d~h2 dk2

1 32 tu M ^cosO * M1 d2r(hM) 1 Ve 2acosß A ±
1 V c

dh2 dh2 dh2

*±*) *2cosß(A±^) 5MÂjA)
dk2 dk2 dk2

Inversement la fonction r (A, k) ne peut valoir 1 (le cas
k _où A Â: 0 est exclu) que si - T c. En effet, à
A

cause des conditions de cohérence, il faut et il suffit, pour
que r(h,k) m 1, que le terme du second ordre du développement

de r(h,k) soit nul ; par conséquent :

--—) *a + 2^ s-**dx I dt dx
Aa 0

dans le cas de l'onde aléatoire, cette expression prend la
forme :

ßa Aa - 2 ß M h k + M2 k2 0 0)
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Pour que. cette équation puisse être vérifiée, il faut que Par exemple : (ux, «a ; *i)
QM =î Q2 M2 ; l'inégalité de Schwartz implique :

2

QM ^ Q2-M2 alors:

QM= Q2-M2

Cela entraîne que Q et M sont proportionnels, soit :

ßM= T este certame.

Alors l'expression (1) devient : ß2 A ± — I et elle

n'est nulle que si T c.

En conclusion, la condition nécessaire et suffisante pour
k Q

que r (A, k) 1 est que - — T c et que M T — •
A c

Remarque : le nombre certain c peut être considéré
comme un nombre aléatoire C de loi :

C c avec probabilité a
C —c avec probabilité 1 —a

La fonction de corrélation d'un champ admettant une
onde de corrélation prend alors la forme :

r (A, k) a. cos ß IA +

En particulier si a.

(1 — a) cos Q h

r(h,k)=l- cos ß h ¦+¦ Hi -f cos ß IA

|(Äj I i_ßüI/'Äa+^

Chapitre Vili — Moyennes de Lagrange et moyennes
d'Euler attachées au corpuscule aléatoire

La mécanique aléatoire s'est donc révélée essentiellement
comme une mécanique de la diffusion turbulente, qui
s'identifie à la connexion d'un champ de probabilité.

Elle se concrétise entre autre sous forme d'une théorie
de la viscosité, qui est la théorie de la diffusion de la
quantité de mouvement, et d'une théorie de la conductibilité,

qui est la théorie de la diffusion de l'énergie cinétique.

40. Rappel des règles de contraction des indices des
densités de probabilité conjuguées.

Notations : une suite de lettres minuscules séparées par des

virgules et mise entre parenthèses représentera la densité
de probabilité conjuguée des variables aléatoires
correspondantes.

Par exemple : (xx, «i, x2, «a)

est la densité de probabilité conjuguée des variables
aléatoires :

x\h, u\h x\tv x\h, U\H x\h.
Une densité de probabilité conjuguée conditionnelle

(densité liée) s'écrira de la même façon en plaçant un point-
virgule avant les variables qui sont données à priori.

est la densité de probabilité conjuguée de U\tl et U\tt
sachant que la variable aléatoire X\^ a pris la valeur
certaine Xx.

A l'aide de ces notations :

1) le théorème des probabilités totales s'exprime sous
la forme :

en sommant une densité par rapport à une de ses
variables courantes, c'est-à-dire par rapport à une variable
située avant le point-virgule, la densité obtenue ne
contiendra plus cette variable.

Par exemple :

(«1, u2 ; xx)

+00

/ («1» «2, x2 ; xx) dx2

ce que nous conviendrons d'écrire sous la forme :

(ux, «2 ; *i) (ux, «a, x2 ; Xx) dx2

Cette notation est alors analogue à celle du calcul
tensoriel concernant la sommation par rapport aux indices
muets.

2) le théorème des probabilités composées s'écrit :
dans le quotient de deux densités, où les variables situées
à droite du point-virgule sont les mêmes au dénominateur
et au numérateur, toute variable figurant à gauche du

|j|||pt-virgule à la fois au dénominateur et au numérateur
passe à droite du point-virgule dans la densité qui exprime
le quotient.

Par exemple :

(«X, «2, Xx, Xz)
(«1, «2, *2 ; xx)

(xx)

(ux, u2; xlt Xa)
(«1, H2, x2 ; Xx) («1, «a. *i» *a)

(*2 ; xx) (xx, *a)

Connaissant la densité de probabilité conjuguée (jclt x%,

Ux, «a)> et à l'aide des opérations précédentes, il est possible
de calculer toutes les densités (conjuguées, individuelles
ou conditionnelles) se rapportant aux variables aléatoires
x\h, mm x\h, u\h.

Alors toute relation existant entre les densités de
probabilité dans un fluide peut s'obtenir par combinaison et
itération des deux opérations qui viennent d'être décrites.

Par exemple : (ux, «a î x{) («1, «2» x3 ; x{) dx2 —

s, («ii «2. xx, xa) dx2
(«1, «a Xx, *a) (x2 ; Xx) dxa ¦¦

(«i, u2, Xx, x2) dx2 dux du2

L'analogie avec les chaînes de Markov est évidente.

41. Nature des diverses densités de probabilité dans un
fluide.

Du point de vue physique, les densités de probabilité
dans un fluide sont de trois natures différentes :

a) Les densités corpusculaires sont les densités conjuguées

ou individuelles non liées.

Elles dérivent toutes par contraction de la densité:

(xx, ux, x2, Ma)

Ainsi : (xx, x2) (xx, «i, .v2, «2) dux du2

(xx) (*i, «i, x%, u2) dux du2 dx2, etc.
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b) Les densités de champ sont les densités liées

correspondant à des valeurs fixées des coordonnées :

(«!, u2 ; Xx, JCa)> ("i xi)> etc.

Les densités de champ correspondent au point de vue

d'Euler en hydrodynamique.

c) Les densités de « transition » ou de «passage »

correspondent à la densité de probabilité d'une certaine

transformation de l'état du corpuscule à un instant donné :

(x2, u2 ; Xx, ux), (x2 ; xx), etc.

Les densités de passage correspondent au point de vue de

Lagrange en hydrodynamique.

Propriétés des densités de probabilité de passage.

La densité de probabilité de passage : (x2 ; Xx) est la

densité de probabilité de XI ia sachant que le corpuscule

X\t se trouvait en xx à l'instant tx (diffusion turbulente).

Cette densité vaut :

(*1, Xz)
(x% ; xx)

(xx)

La densité de probabilité de passage est largement

utilisée dans les phénomènes de diffusion turbulente et

dans toute question relevant des probabilités en chaîne.

Signification hydrodynamique des densités tie passage

Dans un fluide « certain » la méthode de Lagrange
considère la position x2 d'une particule à l'instant t2 comme

une fonction certaine : x2 (xlt tx, t2) de la position Xx

occupée à l'instant tx par la particule.
Comme le fluide «certain» est continu, la relation

x2 x2 (xi, tx, fa) est biunivoque entre Xx et x2, de sorte

que les paramètres xx et tx permettent de repérer et d'identifier

sans ambiguïté la particule dont on parle.
Dans un fluide aléatoire, au contraire, à la particule

située en xx au temps tx correspond, au temps t2, non

pas une particule mais un sous-ensemble de particules dont

la coordonnée X2 est une fonction aléatoire X2\Xl, tlt ta

et qui se particularisera au sein des autres éléments du

fluide par sa densité :

(x2 ; xx) P (x2 ; xlt tx, t2)

tandis que la densité de l'ensemble des particules situées

en x2 au temps t2 est :

(x2) p (x2 ; fa) (x2 ; xx) (xx) dxx

La densité de probabilité de passage P permet donc

de calculer l'évolution de la densité de probabilité et, par
suite, de la densité du fluide turbulent entre l'instant tx

et l'instant f2.
La correspondance x2 -*¦ Xx n'est pas univoque, traduisant

ainsi la diffusion turbulente du fluide en lui-même,

ce qui est une propriété essentielle des fluides naturels et

que l'hydrodynamique classique ignore.

42. Moyennes de Lagrange et calcul de la dispersion

turbulente.

Soit d'abord une fonction certaine y/ de la variable aléatoire

X et du temps f. y/ (X, f) est en fait attachée à

l'élément fluide ayant la coordonnée X à l'instant f.
Au point xx, à l'instant tx, cette fonction a la valeur :

W (*i> h) Vi

Au temps t2, les éléments fluides qui étaient concentrés

en xx à l'instant tx, ont diffusé et possèdent une coordonnée

aléatoire X2.

La moyenne de Lagrange de y/ est : la moyenne de y/

prise sur ces éléments X2 qui émanent de Xx-

C'est donc :

W (x%, fa) (x2 ; Xx) dx2

où y/ est une fonction de Xx, de tx et de f2.

La variation v'—^i représente visiblement celle de y/
due à des actions extérieures, puisque tous les éléments du
fluide ont été suivis dans leur diffusion.

Si, en partioijUfpr, y/ X, on obtient la position du
centre de gravité des éléments du fluide qui ont diffusé à

partir de xx :

X ¦¦

+00

x2 (x2 ; xx) dx2I
Leur dispersion vaudra

X' X2~X-- (x2-X)2 (x2 ; Xx) dx2

A nouveau : les éléments fluides aléatoires sont surtout
caractérisés par les moments du premier et du deuxième

ordre construits à partir des densités de probabilité conjuguées.

Cas de l'espace généralisé positions-vitesses.

Soitiînaintenant une fonction certaine de X, U, t :

y/ (X, U, t). La moyenne de Lagrange dans l'espace
généralisé positions-vitesses est définie par l'intégrale :

+00

¥ (x2, u2 ; Xx, Ux) y/ (x2, u2, fa) dx% du2

et y/ est une fonction de Xx, «1, fi et fa.

La moyenne de y/ pour toutes les vitesses initiales «1 est

la moyenne de Lagrange proprement dite :

W -- I y(«i; Xx) dux — (x2, u2, ux ; Xx) y/ dux duo dx2

L'intérêt des moyennes de Lagrange réside dans le fait
qu'elles permettent littéralement de suivre, en fonction de

leur diffusion, les éléments du fluide.

Moyennes d'Euler attachées au corpuscule aléatoire.

Les moyennes d'Euler sont définies à partir des densités

de champ. Elles ont déjà été largement utilisées dans la
formation des équations aux valeurs probables d'un fluide
turbulent sous forme de moyennes liées en un point de

l'espace.
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43. Développement des moyennes de Lagrange en fonction
des moyennes d'Euler.

Les moyennes de Lagrange et les moyennes d'Euler sont
du même ordre ; à cause de cela, leurs relations ne peuvent
s'écrire que sous forme d'un développement.

La moyenne de Lagrange d'une fonction y/ de X, U, t
est :

W y/ (x2, u2, t2) (x2, u2 ; x{) dx2 du2

Si XI est analytique et si y/ est développable en série de

Taylor :

y (X2, U2, fa) y/ (Xx, Ux, h) + (fa-fi)

1 ^2d2y,(X,U,t)+ 2~i(h~h) - —dT~

Cela peut aussi s'écrire :

dy/(X,U,t)
dt +

y/ (X2, U2, t2) (h-h) dt y/ (X, U,t)\t=h

(ts-ti) -

car l'opérateur e ' <« se développe selon la série de

Taylor :

e f|§ it 1 + fa-tx) t + 1 fa-tx)2 ^+at 2 at

ce qui, appliqué à y/ (X, U, t) et pris à l'instant f fi
donne bien y/ (X2, U2, t2).

Si l'on prend la moyenne du développement précédent

pour un point initial donné Xx à l'instant fi, on obtient :

W (X2, U2, f2) yi(Xx, Ux, t) + (t2-t{) dy/(X,U,l)
dt t-ti

+
fa-tx)2 d2 y/ (X, U, t)

2! dt2

Les —i sont les moyennes liées étant donné le
point Xx ; comme les termes qui sont sous les barres sont
des fonctions aléatoires prises au temps tx, ce sont des

moyennes d'Euler. Comme y/ (X2, U2, t2) est une fonction
aléatoire prise au temps f2, on obtient une moyenne de
Lagrange car il y a passage de l'instant tx à l'instant t2.1

Alors, de manière générale :

d" y/ (X, U, t)
dtn

et, en particulier :

t=tL

dn y/(X2,U2,t2)
dt2n

d y/ (X, U, t)
dt

dy/(X2,U2,t2)
du h-h

Application à l'interprétation physique du second membre
de l'équation de transfert.

Elle s'écrit :

d_

dt
d

(p"v)+ 2j^j0> vaÊs P w

Si f tx, le second membre vaudra/?
dy/(X2,U2,tè

dt2

Si, à l'instant tx, une particule ponctuelle est concentrée
au point Xx, à l'instant infiniment voisin fa elle aura diffusé

autour du point moyen X2, parce que les microparticules
qui la composent n'ont pas la même vitesse. De plus, les
éléments qui composent une microparticule n'ont pas la
même accélération : les points représentatifs ont diffusé
dans l'espace des positions et des vitesses.

Les causes de la variation
dy/(X2,U2,t2)

dt2
ne peuvent

provenir que d'agents extérieurs, car nous avons
considéré toute la microparticule située en Xx à l'instant tx
et celle-ci uniquement.

44. Connexion cinématique et connexion géométrique.

Une fonction aléatoire de f et d'un point de l'espace
constitue un champ aléatoire (voir l'exemple de l'onde) dont
on peut définir la connexion cinématique.

Cette connexion cinématique est le moment rectangle,
moyenne doublement liée :

-I
0 0i= (<p,<pi; x, t, xx, tx) epepx dcp dcpx

La connexion cinématique est donnée expérimentalement

par la méthode d'observation « en réseau » et qui
consiste à placer des instruments enregistreurs et statistiques

en des points fixes.

Soit, par exemple, des enregistrements obtenus en deux
1

points O et Ox- Le moment rectangle 0 0x s'estime par la
somme des produits des valeurs successives de 0 en O
autour de l'instant f, par les valeurs successives de 0 en Ox

autour de l'instant tx '• c'est une « corrélation différée ».

Lorsque Xx -*¦ x et fi -> f, (ç>, tpx ', x, t, xx, fi) ->¦ (ep ;

x, t) ; cela exprime le fait que, si Ton considère un seul
-I

instrument, celui placé en O par exemple, les moyennes 0
ou 02 sont celles des valeurs de 0, ou de 02 respectivement,

autour de l'instant /. Elles sont alors identiques aux

moyennes hées 0 et 02 (moyennes de 0 et de 02 étant
donné le point x).

La connexion cinématique comprend deux cas particuliers,

soit que les points O et Ox sont confondus, ce qui est
le cas de la connexion locale (ou connexion dans le temps),
soit que les instants f et tx sont confondus et la connexion
cinématique devient alors la connexion géométrique dont le
tenseur de Von Karman est un cas particulier.

1 Note : ce développement de la moyenne de Lagrange en
fonction de la moyenne d'Euler n'est valable que dans le cas

d'une moyenne de Lagrange de la forme y/ (X2, U2, t2) où seul

xx est donné. Il n'est pas correct dans le cas d'une moyenne de

Lagrange de la forme y/ (X2, U2, t2) ou xx et ux sont donnés.

45. Connexion stationnaire ; connexion homogène ;
connexion isotrope.

Le tenseur de connexion cinématique est stationnaire
s'il n'est fonction des instants f et h que par leur différence

(fi-O-
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En ce cas, la connexion géométrique (obtenue pour
f fx) est permanente et la connexion locale, stationnaire.

La connexion cinématique est homogène lorsque son
tenseur de connexion n'est fonction des points O et Ox que
par les différences de leurs coordonnées : *i<—*«. La
même propriété appartient ipso facto à la connexion
géométrique. Quant à la connexion locale (que Ton obtient
pour O Ox), elle est uniforme dans tout le fluide.

La connexion cinématique est dite isotrope quand son
tenseur admet la symétrie de révolution autour de OOx et
reste invariant quand la distance OOx — r reste constante.
Lorsqu'un tenseur de connexion géométrique est homogène

et isotrope (tenseur de Von Karman), nous savons
qu'il peut s'exprimer sous la forme :

U{Ux,
f(r)~g(r)

(xx,—xt) (xxj—xj) + g (r) ôi},

f(r) est le coefficient de corrélation entre les composantes
des vecteurs U et Ux portées par la droite OOx et g (r) le
coefficifïbt de corrélation entre les composantes normales
à OOx.

46. Connexion physique du corpuscule.

La connexion cinématique est la connexion décrite du
point de vue du champ : elle correspond au point de vue
d'Euler en hydrodynamique. Mais, dans les applications,
c'est la connexion physique qui intervient ; elle correspond
au point de vue de Lagrange.

La connexion physique est la moyenne liée :

+00

0 0i== (<p>çil x, t, tx) epcpx dep depx

0 est la grandeur attachée au corpuscule X \
t à l'instant t au

point O (x représente les coordonnées de O), 0i est la
grandeur attachée au corpuscule X\t à l'instant tx au
point 0\.

La connexion physique se distingue de la connexion
cinématique par le fait que 0t n'est plus une valeur attachée

à tm point fixe mais en un point aléatoire dont la position

(incertaine) se déduit de O, f et fx. On peut dire qu'elle
est la connexion entre les valeurs successives de 0,
attachées à un même élément, suivi sur sa trajectoire.

L'importance de la connexion physique vient de ce
qu'elle régit les phénomènes de diffusion. La diffusion
consiste en effet, en ce qu'un petit nuage de fumée, émis
au temps f au voisinage de O, se trouve au temps tx
dispersé à l'intérieur d'un volume fini (point Ox aléatoire). La
répartition des grains de fumée à l'intérieur de ce volume
dépend essentiellement de la connexion entre les vitesses
successives prises par les grains de fumée.

Les phénomènes de viscosité et de conductibilité, qui sont
des transferts de quantité de mouvement et d'énergie, sont
également commandés par la connexion physique.

Le tenseur de connexion physique Ts se relie de façon
très simple au tenseur de connexion cinématique 0, par
l'intermédiaire de la densité de probabilité de passage.

En effet, comme :

alors :

(cp, (px;x) (tp, <px ; x, xx) (xx ;x)dxxl

+00

t? / (xx ', x) 0 dxx

Cette formule permet de séparer en deux parties les
propriétés du corpuscule aléatoire :

1) les propriétés du champ dans lequel il est plongé qui
sont représentées par le tenseur de connexion cinématique

0.
2) les propriétés mécaniques du corpuscule, qu'exprime

la probabilité de passage (xx ', x).

L'égalité :

+00

S C(xx; x) 0dxx
—00

montre que la connaissance de 0 n'est pas suffisante pour
tout connaître de la mécanique du fluide : il est encore
nécessaire de connaître la densité de probabilité de passage

(xx ; x) pour obtenir le tenseur de connexion
physique 'S.

Pour que la connexion physique soit stationnaire
(S fonction de fa—0) il ne suffit pas que la connexion
cinématique le soit ; il faut de plus que la densité de
probabilité de passage (xx ; x) ne dépende que de fa—t).

47. Connexion corpusculaire.

La connexion physique concernait les éléments du
corpuscule qui, à un instant f, se trouvaient en un point
déterminé O. La connexion corpusculaire est la moyenne
étendue à tous les éléments du corpuscule sans condition
initiale. Elle se calcule à l'aide de la densité (cp, epx) ', par
exemple :

+00

Ç> ?>i / (Ç, <Pi) (pepx dep dtpx

—00

La relation :

(<p, 9>ù (<P, epi ; x) (x) dx (ep, cpx ; x, Xx) (xlt x) dx dxx

montre que le tenseur de connexion corpusculaire tSe possède

les relations suivantes avec le tenseur de connexion
physique là et le tenseur de connexion cinématique 0 :

+00

TSC / (x) 15 dx

—00

+00

'S« / / (x, Xx) 0 dx dxx

—00

48. Forme générale du problème de la diffusion.

Ce problème consiste en l'étude de la fonction aléatoire :

-^21 H ili t,

ce qui revient surtout au calcul de ses moments principaux,
moyennes de Lagrange :

Les moyennes de Lagrange donnent une solution du
problème sous forme d'un développement de Taylor faisant
intervenir les moments liés, pour un point donné, de toutes
les dérivées en moyenne quadratique de X. Cette solution
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est évidemment théorique et n'offre d'intérêt pratique que
pour des intervalles de temps très petits. H faut alors poser
le problème en termes finis.

Les moments X2 et X\ se calculent au moyen de la densité

de probabilité de passage (x2 ; x{), par les formules :

+00

X2= I x2 (x2 ; xx, tx, t2) dx2

X\ — j x2 (x2 ; Xx, tx, fa) dx2

Lorsque la densité de probabilité de passage ne dépend

que des différences fa—tx) et (x2—x{), ces moments sont
indépendants du point initial xx et ne sont fonctions que de

l'intervalle de temps (fa—fi). La diffusion est alors homogène

et stationnaire.

Pour obtenir le moment rectangle X2 X3, il est nécessaire
de faire intervenir une densité de probabilité en trois
points :

x% X3 (x2, X3 ; Xx, tx, t2, tg) dx2 dxzX2Xa

Or, dans les fluides, l'expérience atteint non la position
du corpuscule mais sa vitesse, celle-ci est la dérivée en

moyenne quadratique de la position. Le problème de la
diffusion se pose ainsi comme un problème d'intégration
aléatoire, la fonction X2 s'exprimant par :

X2 — Xx U\sds

où s représente l'instant auquel on considère U.

La moyenne de Lagrange de X2 est :

+00

; tx, s) du

tl

h

X2 xx + j ds I us(u,;xx,

Son calcul nécessite la connaissance d'une densité de

probabilité aux instants tx et s.

Cas particulier : Un cas particulier intéressant est celui
où cette densité ne dépend que de la différence (s—tx) et ne
contient pas la coordonnée initiale xx.

Alors le chemin X2—xx parcouru par le point moyen ne
dépend pas du point de départ ni de l'instant initial, mais
seulement de l'intervalle de temps fa—tj). Lorsque (u ; x{)
ne dépend pas de xx, il en est de même, en particulier, pour
(«1 > xx), densité de probabilité des vitesses en un point
donné ; cette densité est alors uniforme dans tout le fluide.
De plus, comme («1 ; xx) ne contient pas tx, la distribution
des vitesses est permanente. Par contre, il n'y a aucune
restriction sur la densité de probabilité (x{). Ainsi nous avons
à faire à un fluide avec un module uniforme et constant de

la vitesse d'agitation, mais pouvant avoir une densité
différenciée, comme celle qui résulte d'un champ de

forces. Une atmosphère isotherme en équilibre vertical
sous l'action de la gravité, donne un modèle d'un tel
fluide.

De même que pour X2, le moment rectangle X2 Xs se

calcule de la façon suivante :

X2 xx+ / U\sds

X« xx+ / UUdt

(X2-Xx)(Xs-Xx) X2 Xs-Xx (X2 + X3) + xf

ta t8 -f-00

t ds I dt 11 u„ut («„, ut ; xx, tx, s, t) dus dut

ti ti —00

49. Diffusion stationnaire et homogène

Pour qu'une densité de probabilité en deux points soit
suffisante pour le calcul du moment rectangle, il faut que
la densité de probabilité (us, ut ', xx) ne contienne pas xx.
Il en résulte que : (ug ; xx) («„, Ut ', xx) à% ne contient
pas xx non plus. Comme tout à l'heure, la densité de
probabilité de la vitesse en un point : («1 ; xx) est uniforme
dans le fluide. Si la densité (u8, ut ; xx) ne dépend du temps
que par les différences (s—tx) et (f—tx), le moment
rectangle ne dépendra Sors que des différences fa—tx) et
fa—tj). Cela entraîne que la densité (ux ; xx) qui ne dépend
pas de Xx, ne dépend pas non plus de fil

Dans ce cas particulier, la diffusion est stationnaire et
homogène. H faut remarquer qu'alors la densité de probabilité

(xx) reste absolument quelconque.

En général, le problème de la diffusion est ramené au
problème de la connexion physique de la vitesse, c'est-à-

dire à l'étude des propriétés du moment : Us Ut.

Or, quand la connexion physique ne dépend pas du point
initial xs, elle est identique à la connexion corpusculaire,
car:

U.Ut (Xg)UgUtdXg U.Ut

puisque la quantité Us Ut, indépendante de xs, peut être
sortie du signe d'intégration.

La connexion cinématique revêt aussi une forme
particulière. Soit, en effet, la relation :

+00

UÊUt (xt ; x,) Ua Ut dxt s^t

La diffusion étant stationnaire et homogène, le premier
membre est fonction de (f—s) ; (xt ; xt) est fonction de

(t—s) et de (x8—xi). Il en est donc de même, par conséquent,

de Ue Ut : la connexion cinématique est, elle aussi,
stationnaire et homogène.

Soient S2 U'2 U le carré de l'écart type des

vitesses d'agitation et r (t—s), la fonction de corrélation
physique entre les vitesses 171 « et U \

s d'une microparticule

aux instants f et s.
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Alors :

X'2
t t

-if0 0

"(f--s) ds dt 2S
t

f,--s),¦ (s) ds

0

Chapitre IX — Systèmes de corpuscules aléatoires

50. Liaisons des systèmes aléatoires.

Le corpuscule aléatoire généralise la notion du point
matériel de la mécanique classique, mais cela n'est
évidemment pas suffisant pour répondre aux exigences de
tous les problèmes : il faut considérer le cas des systèmes de
corpuscules aléatoires.

Le rôle des liaisons de la mécanique classique est joué
en mécanique aléatoire par les corrélations qui représentent
la mesure de la dépendance de probabilité : une liaison
entre deux corpuscules aléatoires apparaît dès que la
présence de l'un modifie la probabilité de la position ou de la
vitesse de l'autre. Il existe donc en mécanique aléatoire des
liaisons de probabilité dont un cas limite est la liaison de
la mécanique classique (la corrélation vaut 1 au contact),
l'autre cas limite étant représenté par l'indépendance en
probabilité (hasard pur, corrélation nulle) du gaz parfait.

En mécanique aléatoire, l'inconnue du problème est la
densité de probabilité conjuguée des positions et des vitesses :

R (xx, x2, x„, ux, u2 un; t) où xt et ut représentent

respectivement les vecteurs aléatoires de composantes
x{j et u(j(j= 1,2, 3).

Il peut arriver que le système différentiel décrivant le
mouvement puisse se décomposer en groupes d'équations
intégrables séparément.

En mécanique classique, un tel fait signifie que le
système de corpuscules peut se décomposer en sous-systèmes
mécaniquement indépendants. En mécanique aléatoire,
au contraire, ce n'est pas toujours le cas car les conditions
initiales peuvent être corrélées.

Le concept statistique introduit alors des liaisons là où, en
mécanique classique, il y avait indépendance totale ; en
effet, pour déterminer R il faut par exemple se donner la
densité de probabilité conjuguée des positions et des
vitesses initiales des corpuscules. En mécanique classique,
ces éléments constituent 6 n constantes numériques
(indépendantes entre elles puisqu'elles sont certaines) ; en mécanique

aléatoire, ce sont 6 n nombres aléatoires, qui peuvent
être corrélés.

Ax, A2, Bx et B2 sont quatre constantes aléatoires ayant
pour densité de probabilité conjuguée :

R (ax, a2, bx, 2>a).

La densité de probabilité conjuguée des deux corpuscules

est :

R (ax, a2, Xx—Ux t, x2—u21)

Les moments A[ A2 et B[ B2, où A't A{—A{ et B't
B{—B( ne sont pas forcément nuls.

b) Cas de 2 corpuscules aléatoires libres à une dimension
où les liaisons sont holonomes aélatoires : X%—Xx est une
constante aléatoire E.

Les équations du mouvement deviennent :

Xx Ax t + Bx

X2 Axt + Bx + E

Le problème a pour solution une densité de probabilité
à trois variables :

R (xx, Ux, s)

Le système primitif de quatre équations différentielles
est remplacé par deux équations différentielles et une équation

en termes finis :

Xx= Ux Ux 0 X2 Xx + E

L'équation X2 Xx + E a une influence sur la corrélation

entre les intégrales premières du système différentiel.

52. Systèmes d'oscillateurs aléatoires.

Soit un système de « corpuscules Xt de densité de
probabilité de présence telle que :

Chaque Xt est un oscillateur aléatoire stationnaire.
Tous les Xt ont même pulsation certaine co et même loi de
probabilité. Il existe entre eux des corrélations.

1 "
Soit X l'oscillateur aléatoire : - > X( (centre de gravité

n i—i
i=i

du système d'oscillateurs).

Soient :

a : écart type commun aux A« : X\ a2

E: écart type de X: X2 E2

s : écart type commun aux Xt : X\ s2 co2 à2

S : écart type de X: X2 S2 co2 Z2

L'incertitude sur un oscillateur élémentaire est le produit :

51. Exemples de systèmes de corpuscules aléatoires.

a) Cas simple de deux corpuscules aléatoires libres à une
dimension.

Le système différentiel de leur mouvement est :

j Xx Ux [X2=U2
\ Ùx 0 I Ù2 0

dont la solution formelle est :

Xx Ax t + Bx X2 A2t+ B2

Ux ='Ax I U2 Aa

sa
co

qui mesure la dispersion du corpuscule dans l'espace
généralisé positions-vitesses.

La dispersion de l'oscillateur X est :

n n

EE**-5EE ri]L - [n TiXi) '

Xi Xj désigne le coefficient de corrélation entre

deux oscillateurs élémentaires (rit =1).

1
OÙ Ti) —g Al A)
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5 3. Cas particuliers.

a) Si tous les Xt sont indépendants : /¦# ôy, cela

entraîne^ -2 ^ ^
b) Si tous les ry soût positifs

o"1

n

Y^^+YYr^0-.Z_i n i—i Lj n
}=i t=i

c) Si tous les rfj sont négatifs :

1=1 i=l

d) Si tous les Xt sont égaux : rtj 1 :

T2

XT=^X!I>=tr2

e) Schéma en grappes de Borei :

Les n oscillateurs sont groupés en k grappes de p oscillateurs

rigidement liés (kp n). Dans une même grappe

rq= 1. Deux grappes différentes sont indépendantes : le
coefficient de corrélation entre deux oscillateurs appartenant

à deux grappes différentes est nul.

Parmi les «(»-!) nombres r« où i ^ j, k P(P-1)

nombres sont égaux à 1, tous les autres étant nuls.

Donc:
a 2pn n n

i-i t=i

o' n+2-k P(P-Ï)

-=(« + kp2—kp)
nò

De même : X2 S2

kp2

Conclusions

La mécanique du corpuscule aléatoire R est ime mécanique

statistique très générale dont il existe autant de

développements particuliers qu'il y a de fonctions R ; aux
différents types de connexions de champ de probabilité y
associés correspondent autant de stades de l'évolution
d'une turbulence.

A chaque R correspond un type de prévisibilité qui permet

de calculer l'évolution des grandeurs macroscopiques
caractérisant la turbulence et la diffusion turbulentex.

Parmi toutes les mécaniques aléatoires particulières, il
est possible de construire une mécanique newtonienne de la
diffusion turbulente, correspondant à la turbulence libre.
La fonction R est, dans ce cas, construite à partir des
intégrales premières du système lagrangien dont elle dérive.

Des mécaniques non newtoniennes de la diffusion peuvent

être élaborées avec des fonctions R constituées par
d'autres fonctions que des intégrales premières du système 2.

La mécanique du corpuscule aléatoire telle qu'elle a été

développée dans le présent article apparaît comme étant
une mécanique générale de la diffusion turbulente.

Ce travail a pu être effectué grâce à l'appui des Commissions

fédérales de l'hygiène de l'air et de météorologie,
ainsi que du Fonds pour l'encouragement des recherches

scientifiques.
1 Voir thèse P. Ravussin.
2 Voir thèse F. Baatard.
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Toute la profession de l'informatique. Editions Tests et

Entreprise moderne d'édition, Paris, 1971. — Trois volumes
de 16x24 cm, de 60 pages chacun. Prix : broché 19 fr. fr. le
volume.
Cet ouvrage a été écrit par une réunion de spécialistes de

l'informatique et d'utilisateurs d'ordinateurs, à l'initiative
et sous la direction de la Société Orgamatic, avec la
collaboration du Centre d'information sur les carrières liées à

l'informatique. Il s'adresse surtout aux profanes et fournit
une documentation complète, claire et pratique sur toutes
les possibilités d'emplois qu'offre l'utilisation des ordinateurs.

Chacune de ces possibilités est présentée sous la
forme d'une fiche signalétique qui mentionne les aptitudes
nécessaires des candidats, leur niveau scolaire souhaitable,
les moyens de formation et la position hiérarchique pouvant

être atteinte.
Le premier volume concerne la saisie de l'information

qui se fait avant le travail sur l'ordinateur proprement dit
et l'environnement de l'ordinateur qui comprend de
nombreuses tâches de préparation, de contrôle, de planification
et d'acheminement des informations.

Le deuxième volume traite de tout ce qui touche à la
conception du travail, à l'analyse et à la recherche. Dans
le troisième sont exposées les fonctions de programmation
et d'exploitation qui sont chargées de réaliser les méthodes

de traitement des informations ayant été choisies et mises

au point.
Chaque volume comprend un lexique donnant l'explication

de certains termes qui risqueraient d'être difficilement

compris.

Le savoir-diriger, par Pierre Baruzy. Collection CADRECO,
Entreprise moderne d'édition, Paris, 1972. — Un volume

|S|pxl8,5 cm, 188 pages, franco 22 F.

Voici un ouvrage écrit par un dirigeant, à l'usage des

autres dirigeants, pour les aider dans leur tâche difficile
de commandement et d'organisation.

Industriel renommé, P.d.g. de firmes internationales,
Président du Conseil National de l'Organisation Française,
Chancelier du Conseil International de l'Organisation
Scientifique, le comte Pierre Baruzy communique aux
dirigeants et futurs dirigeants ce qu'il a appris et démontré
au cours de sa vie professionnelle.

Sous une forme volontairement condensée, ce manuel
pratique donne des règles de conduite précises, concrètes,
utilisables immédiatement et quotidiennement. « A chaque
page, on trouve des sources inépuisables d'interrogations,
de prolongement, d'approfondissement à la réflexion, et des

lignes directrices nettes » (Pierre de Calan, dans la préface).
Au sommaire :
Définitions — Responsabilités du dirigeant — Le dirigeant

en action — Prévoir — Organiser — Contrôler — Méthodes
de direction et de gestion — etc.
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