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BULLETIN TECHNIQUE DE LA SUISSE ROMANDE

98cannée 10 juin 1972 N°12

Communication de la Chaire de la mécanique de la turbulence
de I'Ecole polytechnique fédérale de Lausanne et du groupe de travail EPFL-ISM

La mécanique aléatoire de Georges Dedebant et Philippe Wehrlé'

par le professeur FRANCOIS BAATARD, D' és sc. techn., et SIMONE MAGNIN, lic. és sc. math., assistante

Chapitre VII — L’onde aléatoire

36. Analyse spectrale de [oscillateur aléatoire station-
naire.

Dans le cas stationnaire, la densité de probabilité
conjuguée des fonctions X, X, Q obéissant & I’équation :

X+ 02x=0

w? x? -+ 12 . .
est de la forme: R —— @ ou u = x.

La densité de probabilité conjuguée de B, C et Q ou B
et C vérifient :

] Bsin Qt—Ccos Qt = X
l QBcosQt—Csin Qt) = U

vaut alors :
sin wt  cos wt-w

—CoSs wt sin wt - 2 2,

2 bZT 2 2 2 2
R<L (8%e ),w> :cuR(*w B+e ),a))

En faisant un second changement de variables :

[ B = Acos @
l; C = Asin @
la densité de probabilité conjuguée de A, @ et Q est de
la forme :
cos @ —asin @ w? a? R S
. R< 7,0)>:a0)R<— ,a))
sin ¢ acos ¢ 2 2

cette densité de probabilit¢ ne dépend pas de ¢. Il en
découle que @ est indépendante de 4 et de Q2 et que sa

/

1
densité de probabilité est uniforme (: 7 car @ prend
\ v/

ses valeurs entre 0 et Zn) .

La densité de probabilité conjuguée de 4 et de Q vaut
alors :

2n

> [ABT o 3 I e
w?*a w*a
/maR(—,7 ,(r))z/(p:2n(uaR(» 5 ,(/))

/

0

Y Voir Bulletin technique de la Suisse romande N° 4, du
19 février, et 9 du 29 avril 1972.

(Suite et fin)

1
La densit¢ de probabilité conjuguée de E = o A%Q?
et de © vaut :
1 2
2nwaR(e,w) = — R(e, w)
an® d’w @
0 1

Propriétés des moments. Connexion.

Soit, donc, I’oscillateur aléatoire pris aux deux instants #;
et 7, et dont on va étudier connexion et moments.

X1 = Asin (Qt,— D)
Xo = Asin (Qty— D)

ou X est stationnaire.

Le moment X; X5 peut s’écrire :

X1 Xg = A?sin (Qfl*d)) sin (Qf2—¢) =

1
— -E A? cos Q(fg*fl) = ‘;— A?cos [.Q (fl + t2)—2 @]

Calcul du dernier terme :

iAgcos [Q(t + 1) —2P] =

2
e /oo g
=// %cos[w(t1+rg)—2(p]aa)R<w2a ,w>d¢dwda=
000
=// —%si11[w(f1+tg)—2¢] dwda = 0
00 0

g L S T
Il reste alors: X; Xy = 5 A% cos Q (ta—1)

Soient A‘“’(w_)‘ la moyenne liée de 42 pour Q = w et
w(w) la densité de probabilité de Q, alors, le moment

rectangle X; X, vaut :

. 1 B
X Xy = 5 A%cos Q (ty—1;) =

1 [———
= / A* () cos w (1a—1) w (w) do
0
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Si ta= 1, X2 a la valeur:

?=%/FGW@MU

0

Commez = X—g =X= 0, le coefficient de corrélation
entre X; et X, vaut:

lﬁﬁﬁmww@m
rlta—t) = r () = —
[ A2 () y () do
;
En posant :
o 0074?(—5) v Ww;w (@)
/ A% () y () do

(e

0

r prend la forme :

o)

r (1) =J f(w) cos wt dw
0

c’est la forme de Khintchine qui n’est pas particuliére a
l’oscillateur stationnaire mais a toute fonction aléatoire
analytique stationnaire.

La connaissance de la fonction de corrélation r(t)

permet de calculer f(w). Si I'on connait 4> (a)—)‘ (et Zz),

il est possible de calculer la densité de probabilité w (w)
de Q.

. . A? cos Qt

La fonction de corrélation de X vaut r (r) = —
A

et il est facile de voir que la fonction de corrélation de X

vaut :
A% Q2 cos Qr
A (f) ——————
A2 Q?

1
Comme I’énergie de l'oscillateur est : E = 5 A2 Q2 5(2)
peut s’écrire :

o)
§ (s SO
E

E(a;; est la moyenne lie de I'énergie pour Q = w et
d’autre part & (w) est la fonction de répartition de .
Elle peut étre appelée fonction spectrale car elle détermine
la répartition des fréquences dans le spectre qui peut étre
continu, de bandes ou de raies. La fonction s (z) vaut :

(o)
~

s:(1) = / cos wt EI(_;)) d§ (w)

—_—

Si dp () = ? d (o)

oo
2

si(t) = / cos wt d ¢ (w)

0
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On obtient & nouveau la relation de Khintchine.

La fonction ¢ n’est identique a la fonction spectrale
J (w) que si E(w) = constante = E.

En connaissant s (2), -E_(c;) et E on peut calculer
d ¢ (w) et, en intégrant, & (w) la fonction de répartition
de Q (résultat analogue a ci-dessus).

37. Onde aléatoire.

Dans le cas d’une fonction aléatoire analytique station-
naire X |, la fonction de corrélation correspondante peut
s’écrire sous la forme :

) S3 h® L S2 eSS
r ) [ e S
5221 .82 4l - SE6!
ou les S; sont les écarts types de X@ |,.

(e))

La fonction r (k) peut aussi s’écrire sous la forme de
Khintchine :
=
r(h)=/cosa)hd5(w) 2)
—oo

ou & (w) est une fonction de répartition ; alors :

r(h) = cosQh et, en développant cos Q & :
/12 = h4 —= hG —
B Lo I L e s N P
rh) =1 Z!Q —|—4!Q 6!Q o
Du point de vue physique, le développement de r (h) en
fonction des S; représente [’aspect corpusculaire (1) du
corpuscule aléatoire, tandis que le développement de
r (h) = cos Q h représente son aspect ondulatoire (2).

Il suffit qu'une fonction aléatoire stationnaire soit
continue pour que sa fonction de corrélation puisse prendre
la forme de Khintchine :

+0oo

r(h) :V/‘cosa)hdg(w)

—00

ou le spectre & (w) est une fonction de répartition.

Si le spectre est une fonction « en escalier », r (h) vaudra :

r(h) = Za,%coswnlz, Za,’fz 1

n
les w, sont les valeurs de @ pour lesquelles & (w) fait un
saut et les a2 représentent la valeur de ce saut (toujours
positif car & (w) est une fonction croissante). Dans ce cas
la fonction de corrélation r (k) est presque périodique.
Elle sera périodique si les w, sont des multiples entiers
de la méme pulsation fondamentale w, :

r(h) = Zaﬁcosnwoh.

n

Si le spectre § (w) est dérivable, r (h) sera de la forme
(Khintchine) :
Hoo
Pl / cos w h ¢ () dw

(%
—0o0

ou dF (w) = ¢ (w) dw.

En général, & (w) sera la somme d’une fonction con-
tinue et d’une «fonction en escalier ».



38. Equation du son du corpuscule aléatoire.

L’une des formes les plus simples que puisse prendre
I’équation d’énergie (§ 29) est :

s
It

Physiquement ce fait a lieu lorsqu’on fait subir a un
corpuscule aléatoire dans I’état de Maxwell une « pertur-
bation sonore», c’est-a-dire si on modifie p, et k, en
chaque point de telle sorte que les dérivées d’espace soient
négligeables par rapport aux dérivées du temps.

a8

Si— =0, alors k%%.p7t = k*?2.p,”" = constante

ot

dans tout I’espace.

=0

Soit maintenant I’équation aux dérivées partielles du
2¢ ordre en p (voir § 24), conséquence de la double dériva-
bilité en moyenne quadratique des fonctions aléatoires X,
Yet Z;

9—” i <XZp>—Z(7 Xip)

Les A"; sont nuls dans I’équation de Maxwell, par suite
I’équation se réduit a:

De plus, pour la loi de Maxwell : X% =k,

d'ou: Z

Le développement de Taylor de pk donne :

Apk)
pk = pyky + p=po) + ...
I lp=p""P
comme k2. p7t = cste = a®?, cela peut s’écrire :
9(61/)5/3)
pk = polo+ 2P 2 gt )t
dp |p=p 7"
5
Pk = pok, + 5 apP(p—py) + ...

5
Pk = pok, + gko(P—Pa)Jr

92
En remplacant pk par sa valeur, I’équation 97'(; ==

{79 (kp) devient :

']Mu

sl\"

P p

5
S5 ko p®p  (ou p* = laplacien).

C’est une équation d’onde : la vitesse de propagation de

I’onde vaudra :
o 5k,
! 3

Cette équation montre qu’une perturbation de densité,
apportée dans un « étage de turbulence », se propage avec
une vitesse correspondant au module d’énergie de I’étage.

L’hydrodynamique classique ignore ce fait, puisqu’elle ne
connait que les ondes sonores proprement dites, ces der-
niéres ayant une vitesse d’'un ordre de grandeur énormé-
ment plus grand que celui qu’il s’agit d’expliquer.

L’entropie d’un corpuscule aléatoire de densité p et
de module k uniformes vaut :

S = log (k*2.p7h)

U2+ U 4y
3

ou k =

Pour une loi de Maxwell k = EF = E;E = U;;_z‘.k:"/z

représente alors le produit des incertitudes s; 55 53 sur les
composantes de la vitesse aléatoire.

Comme la densité p est uniforme :

1
PO o 8 1 e
o =X~ U[px{zdxld,vgdx3=gpl5:X'22:X'32

(A2 : proportionnel a)
=kl

de plus: la masse M = /]/p dxy dxy dxg = 8 p I3

Alors le produit g, gs g3 des incertitudes sur les com-
posantes de la position est proportionnel & : M52, p~t.

Cela signifie que entropie d’un corpuscule aléatoire est
le logarithme du produit des incertitudes sur chaque couple
positions-vitesses a une constante pres.

39. Fonction aléatoire de deux paramétres.

Les coordonnées du corpuscule aléatoire n’étaient
fonction que d’un seul parameétre certain 7 ; soit, maintenant,
une grandeur aléatoire @ qui soit fonction aléatoire de ¢
et d’un point de I’espace : @ constitue un champ aléatoire.

Si l’espace n’a qu’une dimension, la notion de champ
aléatoire se raméne a celle de fonction aléatoire @ |, ,
dépendant de deux paramétres certains x et f.

Cette fonction @ |, , est dérivable en moyenne quadra-

APy IDlye
et

tique par rapport a x et a ¢ s’il existe

JIx ot

tels que:
. ¢|x+k,t“¢Ix,t aélz,tg .
lim — = 0 et que:
0 k ox

li <¢lx.t+h_¢|x,t 9¢|x,t>2

im — =H0)

B0 h at

Dans le cas ou @ |, , est stationnaire et analytique par
rapport a ses deux parametres, la fonction de corrélation
correspondante pourra se mettre sous la forme :

; T Y
A /\ +2(7—(D—()—(phk+
2(1)/’ Ix at  Ix

+ <9¢/ e H
7) IJ’ vele

r(h,k)=1—
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En effet :

lim (¢l |x+k,t+h — @ Ix,t)z o

h,k—0

= hm [(¢, lz+k,t+h_¢,z+k,t) S (é/ |:z:+k,t_qjl |x,t)]2
h,k—0

= lim (43, | x+lc.t+h_¢, |:c+k,t)2 + ((15’ |z+k,t'(p, [:c,t)z i
h,k—0

i 2 (QI |x+k,t+h e ¢, lx+lc,t) ( ¢/ |x+k,t_ dsl Ix,t)

Par définition de la dérivée, cette expression devient :

S T
NN N
h k-0 ! &
QD | 41,0 D 14,4
2Bk at Ix
T AN 2 ’ ’ 7\ 2
= lim h2<99—¢> +2hk%399i+k2<99¢> -
hk—0 g £ ax *
= lim (¢I|z+k,t+h_¢’|z,t)2:
hk—0
e, e
bk 022 A1 B)

D’ou, finalement :
1 (d DN\, D I P’
252“7) S E

PN\,
+<(7t> h>+...

La forme quadratique entre parenthéses est définie posi-
tive car elle vaut:

D J P’ &
(‘ax—'“w "')

rth,k)=1— hk +

Comme dans le cas a un seul paramétre certain, les
conditions de cohérence sont satisfaites a la limite par la
fonction : r (i, k) = cos (w h—p k) et la fonction de cor-
rélation de la fonction analytique stationnaire la plus
générale peut se mettre sous la forme :

+00
r(h,k)=cos(Qh—Mk) = f:os (wh—pk)d, , F(w, @)
=00

ou F(w, pu) est une fonction de répartition. Cette forme
est une extension de celle de Khintchine.

La fonction aléatoire la plus simple donnant une fonc-
tion de corrélation de cette forme est ’onde aléatoire,
extension de l’oscillateur aléatoire :

D |, =Acos(Qt — Mx + ¥)

ou A est une constante aléatoire d’espérance nulle, Q,
M des constantes aléatoires et ¥ une constante aléatoire
de distribution uniforme.

Ces constantes sont toutes indépendantes deux a deux,
sauf Q et M qui peuvent étre corrélées.

Le moment ® @y = @ |, P |, vaut alors:

t

DD, = A%cos (R t—Mx + P)cos(Qt,—Mx, + V) =
A?
= —i* Cos [Q(t—tl)—M (X—Xl)] +

212

42

A
+7cos[Q(t+t1)+M(x+X1)+25”]

e
= 7 cos [Q (t—tl)—M(x—-xl)]

A?
Sir= Td ¢¢1 = TCOSM(X—Xl)

A%
i 6= Xy 9Dd51=—2—cos£2(t-—t1)

la connaissance de ces 2 moments ne permet évidemment

pas de connaitre @ @; dans le cas ou ¢ et x sont quel-
conques.

Q .
Cas particulier o M = F= — , ¢ = constante certaine.
c

Dans ce cas:

r(h, k) = cos Q2 <h + %) = cos Q [(t—tl) — x—x1:|

c

ou h = t=11, k = X—X1.

Etant donnés deux points x et x;, si 7 et #; sont tels que :

x1—x = F c(t1—1)

la fonction de corrélation vaut 1 ; les valeurs de la fonction
aléatoire @ |,; en x et en x; coincident alors avec un

X1—X

décalage de temps égal a -+

@ est donc une fonction aléatoire de la combinaison
(x £ ct): Cest une grandeur qui se propage par ondes.

k
La fonction de corrélation r (i, k) = cos 2 (h - E) est

une onde : l’onde de corrélation, qui se propage avec la
vitesse c.

r (h, k) obéit a I’équation différentielle (éq. de d’Alembert) :

1Pr(h k) P rh k)
& IR Ak

car:

2%cos Q (h + §>
J h? vy

k
2 i
1Pr(hk) 1 . cos.Q(h = Q)

1
=) o o

& g e I c

k
Z>_92r(h,k)
PUBEIATE

olx

J% cos Q <h + > J% cos Q

T k2 - Dk

h +
2

Inversement la fonction r (k, k) ne peut valoir 1 (le cas

k
ou h = k = 0 est exclu) que si o F c. En effet, a

cause des conditions de cohérence, il faut et il suffit, pour
que r (h, k) = 1, que le terme du second ordre du dévelop-
pement de r (h, k) soit nul ; par conséquent :

IO\ . ID D TN

dans le cas de I’onde aléatoire, cette expression prend la
forme :

QPR —-2QMhk + M2k® = )



Pour que cette équation puisse étre vérifiée, il faut que
2

QM = Q% M?; Iinégalité de Schwartz implique :
2
M= Q> M?

e}

, alors :

2
QM= Q*. M

Cela entraine que Q et M sont proportionnels, soit :

Q

M= F — ¢ = cste certaine.
C

e k\2
Alors I’expression (1) devient: Q2 <h + —) et elle
c
, k
n’est nulle que si o Fc.

En conclusion, la condition nécessaire et suffisante pour

k Q
quer(h,k)zlestqueﬁz Fcetque M = F 5

Remarque : le nombre certain ¢ peut étre considéré
comme un nombre aléatoire C de loi:

C = c avec probabilité o
C = —c avec probabilité 1—¢

La fonction de corrélation d’'un champ admettant une
onde de corrélation prend alors la forme :

r(h, k) = occosQ(h—{— é) +- (1—oz)cos.Q<h—§>
b 1
En particulier si o = > :
r(h, k)= 1 [cosQ <h—+— lf> + cos.Q(h—]fﬂ —
2 c c

: —1 k?
= cos (£ h) cos <9k> - I—in(hz-f— ?) e )

c

Chapitre VIII — Moyennes de Lagrange et moyennes
d’Euler attachées au corpuscule aléatoire

La mécanique aléatoire s’est donc révélée essentiellement
comme une mécanique de la diffusion turbulente, qui
s’identifie a la connexion d’un champ de probabilité.

Elle se concrétise entre autre sous forme d’une théorie
de la viscosité, qui est la théorie de la diffusion de la
quantité de mouvement, et d’une théorie de la conducti-
bilité, qui est la théorie de la diffusion de I’énergie cinétique.

40. Rappel des régles de contraction des indices des
densités de probabilité conjuguées.

Notations : une suite de lettres minuscules séparées par des
virgules et mise entre parenthéses représentera la densité
de probabilité conjuguée des variables aléatoires corres-
pondantes.

Par exemple : (xy, uy, X9, Us)

est la densité de probabilité conjuguée des variables
aléatoires :

Xl‘l’ Ulgl = Xlt]_’Xltg’ Ulgz = /\;Itz.

Une densité de probabilité conjuguée conditionnelle
(densité liée) s’écrira de la méme fagon en plagant un point-
virgule avant les variables qui sont données a priori.

Par exemple : (u1, us; x;)

est la densité de probabilité conjuguée de Ul et Ul,,
sachant que la variable aléatoire X|, a pris la valeur
certaine Xx;.

A Tl’aide de ces notations :

1) le théoréme des probabilités totales s’exprime sous
la forme :
en sommant une densité par rapport a une de ses
variables courantes, c’est-a-dire par rapport a une variable
située avant le point-virgule, la densité obtenue ne con-
tiendra plus cette variable.

Par exemple :
+oo
2]
(1, us 5 x1) =/ (ur, Uz, x5 x1) dxo
=0

ce que nous conviendrons d’écrire sous la forme :
(g, us 3 x1) = (uy, ug, x5 x1) dxs

Cette notation est alors analogue a celle du calcul
tensoriel concernant la sommation par rapport aux indices
muets.

2) le théoréme des probabilités composées sécrit :
dans le quotient de deux densités, ol les variables situées
a droite du point-virgule sont les mémes au dénominateur
et au numérateur, toute variable figurant & gauche du
point-virgule a la fois au dénominateur et au numérateur
passe & droite du point-virgule dans la densité qui exprime
le quotient.

Par exemple :

(uy, Uz, X1, X3)
(1)
(u1, ug, x3; x1) (g, us, x1, x9)

(1, g ;5 X1, X9) = =
? i (x5 x1) (x1, x3)

(1, Us, X535 x1) =

Connaissant la densité de probabilité conjuguée (x;, xs,
uy, us), et a 'aide des opérations précédentes, il est possible
de calculer toutes les densités (conjuguées, individuelles
ou conditionnelles) se rapportant aux variables aléatoires
Xlsy, Ule, Xlgy, Uly,.

Alors toute relation existant entre les densités de pro-
babilité dans un fluide peut s’obtenir par combinaison et
itération des deux opérations qui viennent d’étre décrites.

Par exemple : (uy, us; x1) = (uy, s, Xg; X1) dxs =

Uy, Us, X1, Xa) dx
= (uy, us ; x1, xg) (xg; x1) dxg = st M 101)

(l(l, Ug, X1, XZ) dA‘g du1 d[lg

L’analogie avec les chaines de Markov est évidente.

41. Nature des diverses densités de probabilité dans un
Sfuide.

Du point de vue physique, les densités de probabilité
dans un fluide sont de trois natures différentes :

a) Les densités corpusculaires sont les densités conju-
guées ou individuelles non liées.

Elles dérivent toutes par contraction de la densité:
(x1, Uy, Xg, Us)
Ainsi: (x1, xp) = (X1, Uy, Xo, Us) duy dus

(Xl) = (Xl, Uy, Xo, llg) dlll (lllz d.\‘g, etc.
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b) Les densités de champ sont les densités liées corres-
pondant a des valeurs fixées des coordonnées :

(uy, us 5 X1, X2), (uy; x1), ete.

Les densités de champ correspondent au point de vue

d’Euler en hydrodynamique.

¢) Les densités de « transition » ou de « passage » corres-
pondent a la densité de probabilité d’une certaine trans-
formation de I'état du corpuscule a un instant donné :

(X2, Us 3 X1, 1), (X235 X1), etc.

Les densités de passage correspondent au point de vue de

Lagrange en hydrodynamique.

Propriétés des densités de probabilité de passage.

La densité de probabilité de passage: (x2; x1) est la
densité de probabilité de X|., sachant que le corpuscule
X1, se trouvait en x; a I'instant 7, (diffusion turbulente).
Cette densité vaut :

(x1, X2)
(x1)
La densité de probabilit¢ de passage est largement

utilisée dans les phénoménes de diffusion turbulente et
dans toute question relevant des probabilités en chaine.

(x93 x1) =

Signification hydrodynamique des densités de passage

Dans un fluide « certain » la méthode de Lagrange con-
sidére la position x, d’une particule a I'instant 75 comme
une fonction certaine: xs (X1, f1, fz) de la position x;
occupée a linstant #; par la particule.

Comme le fluide «certain» est continu, la relation
X5 = X (X1, 11, I2) est biunivoque entre x; et xo, de sorte
que les paramétres x; et 7; permettent de repérer et d’iden-
tifier sans ambiguité la particule dont on parle.

Dans un fluide aléatoire, au contraire, & la particule
située en x; au temps #; correspond, au temps 7z, non
pas une particule mais un sous-ensemble de particules dont
la coordonnée X, est une fonction aléatoire XS o te v
et qui se particularisera au sein des autres ¢léments du
fluide par sa densité :

(x23 x1) = P (x2; X1, 11, I2)

tandis que la densité de I’ensemble des particules situées
en xp au temps fy est:

(x9) = p (x2; t2) = (xa5 x1) (x1) dxy

La densité de probabilité de passage P permet donc
de calculer I’évolution de la densité de probabilité et, par
suite, de la densité du fluide turbulent entre I'instant 7,
et I'instant f7s.

La correspondance x, — x; n’est pas univoque, tradui-
sant ainsi la diffusion turbulente du fluide en lui-méme,
ce qui est une propriété essentielle des fluides naturels et
que I’hydrodynamique classique ignore.

42, Moyennes de Lagrange et calcul de la dispersion
turbulente.

Soit d’abord une fonction certaine y de la variable aléa-
toire X et du temps 7. y (X, 1) est en fait attachée a 1’élé-

ment fluide ayant la coordonnée X a l'instant 7.
Au point xy, a I’instant 7, cette fonction a la valeur :

v (x1, ) = Y1
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Au temps 7, les éléments fluides qui étaient concentrés
en x; a I’instant 1, ont diffusé et possédent une coordonnée
aléatoire Xo.

La moyenne de Lagrange de w est : la moyenne de y
prise sur ces éléments Xy qui émanent de x;.

C’est donc :

+00

=]

b= [ v ) G dea

=
ol y est une fonction de x;, de #; et de 7s.

La variation /1;7— w1 représente visiblement celle de y
due a des actions extérieures, puisque tous les éléments du
fluide ont été suivis dans leur diffusion.

Si, en particulier, y = X, on obtient la position du
centre de gravité des éléments du fluide qui ont diffusé a
partir de xp:

400

/?:./ Xo (X2 x1) dxg

— 00

Leur dispersion vaudra :

+0o
2

fz: ﬁﬂfz /(Xz—:\’\)z(xﬂxl)dxz

—0o0

A nouveau : les éléments fluides aléatoires sont surtout
caractérisés par les moments du premier et du deuxieme
ordre construits a partir des densités de probabilité conju-

guées.

Cas de lespace généralisé positions-vitesses.

Soit maintenant une fonction certaine de X, U, t:
w (X, U, t). La moyenne de Lagrange dans I’espace géné-
ralisé positions-vitesses est définie par I'intégrale :

+00
4 :/./ (xa, Us 3 X1, 1) W (Xa, Us, to) dxs dus
—0Q

et y est une fonction de xy, ug, #; et fo.

La moyenne de  pour toutes les vitesses initiales u; est
la moyenne de Lagrange proprement dite :

+00 +00
= g e
W= / W (uy 5 x1) duy = /// (X2, Us, iy 5 X1) W duy dus dxy
S JJo
—00 =00

L’intérét des moyennes de Lagrange réside dans le fait
qu’elles permettent littéralement de suivre, en fonction de
leur diffusion, les éléments du fluide.

Moyennes d’Euler attachées au corpuscule aléatoire.

Les moyennes d’Euler sont définies a partir des densités
de champ. Elles ont déja été largement utilisées dans la
formation des équations aux valeurs probables d’un fluide
turbulent sous forme de moyennes liées en un point de
espace.




43. Développement des moyennes de Lagrange en fonction
des moyennes d’Euler.

Les moyennes de Lagrange et les moyennes d’Euler sont
du méme ordre ; a cause de cela, leurs relations ne peuvent
s’écrire que sous forme d’un développement.

La moyenne de Lagrange d’une fonction y de X, U, ¢

est :
+oo
4 :/fl// (X2, s, to) (Xo, 135 X1) dxo dity
—00

Si X |, est analytique et si y est développable en série de
Taylor :
dy (X, U,1)

Y (Xs, Us, ts) = y (X1, U, 1) + (ta—11) 7

t=tq
d®y (X, U,1)

= + ...

t=ty

1
- o (r2—1)?

Cela peut aussi s’écrire :

(Lo

a
Y (Xs, Us, t5) = e =0 G v (X, U, 1) It:tl

a
(ta—t1)

car 'opérateur e at se développe selon la série de

Taylor :

iy d 1 2
e "V @ =1+ (ta—t1) = + = (2—1)?

7 ) (?+...

ce qui, appliqué a w (X, U, t) et pris a linstant ¢t = 1,
donne bien y (X, Us, t3).

Si 'on prend la moyenne du développement précédent
pour un point initial donné x; a l'instant #;, on obtient :

A g e d (X’ U”)
W (X, Us, ts) = w (X1, Uy, 1) + (fz—f1)W7 +

dt t=t,
(ta—1)* d>w (X, U, 1)
2! dr® t=t,
Les —— sont les moyennes liées étant donné le

point x; ; comme les termes qui sont sous les barres sont
des fonctions aléatoires prises au temps 7;, ce sont des
moyennes d’Euler. Comme y (X3, Us, f5) est une fonction
aléatoire prise au temps /5, on obtient une moyenne de
Lagrange car il y a passage de 'instant #; & 'instant 75. !

Alors, de maniére générale :

) e
o " W (X, Us, t5)

t=t, (l'fg"

d"y (X, U, 1
dr™

ta=t;
et, en particulier :

il
W d W (Xs, Us, ts)
t=t, n dty

dwy (X, U,t)
dt

ta=t,

1 Note : ce développement de la moyenne de Lagrange en
fonction de la moyenne d’Euler n’est valable que dans le cas

d’une moyenne de Lagrange de la forme y (X2, Us, f2) ou seul
x1 est donné. Il n’est pas correct dans le cas d’une moyenne de

Lagrange de la forme ?(Xz, Us, t3) ou x; et u; sont donnés.

Application a interprétation physique du second membre
de I’équation de transfert.

Elle s’écrit :
b . 50, — =
Z(pw)Jr;a—&(pin%pw

T e
2 v (Xs, Us, 1)

Si t = 11, le second membre vaudra p 7
2 to=t;

Si, a I’instant #;, une particule ponctuelle est concentrée
au point Xi, a I’instant infiniment voisin 7, elle aura diffusé

autour du point moyen )/(-;, parce que les microparticules
qui la composent n’ont pas la méme vitesse. De plus, les
éléments qui composent une microparticule n’ont pas la
méme accélération : les points représentatifs ont diffusé
dans I’espace des positions et des vitesses.

A
d W (Xs, Us, 1)
— ne peu-
dts to=t,

vent provenir que d’agents extérieurs, car nous avons
considéré toute la microparticule située en x; a I'instant #;
et celle-ci uniquement.

Les causes de la variation

44. Connexion cinématique et connexion géométrique.

Une fonction aléatoire de 7 et d’'un point de I’espace
constitue un champ aléatoire (voir I’exemple de ’onde) dont
on peut définir la connexion cinématique.

Cette connexion cinématique est le moment rectangle,
moyenne doublement liée :

“+ 00

l 2

DD, = / (@, @15 x,t, x1, 1) 01 dp dpy
s

La connexion cinématique est donnée expérimentale-
ment par la méthode d’observation «en réseau» et qui
consiste a placer des instruments enregistreurs et statis-
tiques en des points fixes.

Soit, par exemple, des enregistrements obtenus en deux

points O et O;. Le moment rectangle @ @, s’estime par la
somme des produits des valeurs successives de @ en O
autour de l’instant ¢, par les valeurs successives de @ en O,
autour de l'instant #; : c’est une « corrélation différée ».

Lorsque X1 X et Hh—>t, ((/); P15 X, t, X1, tl) e (w;
x,t); cela exprime le fait que, si I'on considére un seul
=l

instrument, celui placé en O par exemple, les moyennes @

ou @2 sont celles des valeurs de @, ou de ®? respective-
ment, autour de 'instant 7. Elles sont alors identiques aux

moyennes liées 8 et QD? (moyennes de @ et de @? étant
donné le point x).

La connexion cinématique comprend deux cas particu-
liers, soit que les points O et O, sont confondus, ce qui est
le cas de la connexion locale (ou connexion dans le temps),
soit que les instants 7 et 7; sont confondus et la connexion
cinématique devient alors la connexion géométrique dont le
tenseur de Von Karman est un cas particulier.

45. Connexion stationnaire ; connexion homogeéne ;
connexion isotrope.

Le tenseur de connexion cinématique est stationnaire
s’il n’est fonction des instants ¢ et #; que par leur différence

(ry—1).

215




En ce cas, la connexion géométrique (obtenue pour
t = ;) est permanente et la connexion locale, stationnaire.

La connexion cinématique est homogéne lorsque son ten-
seur de connexion n’est fonction des points O et O; que
par les différences de leurs coordonnées: x;;—x;. La
méme propriété appartient ipso facto a la connexion géo-
métriqgue. Quant a la connexion locale (que ’on obtient
pour O = 0y), elle est uniforme dans tout le fluide.

La connexion cinématique est dite isotrope quand son
tenseur admet la symétrie de révolution autour de OO; et
reste invariant quand la distance OO; = r reste constante.
Lorsqu’un tenseur de connexion géométrique est homo-
geéne et isotrope (tenseur de Von Karman), nous savons
qu’il peut s’exprimer sous la forme :

M (1, —xg) (o1, —2x5) + & (r) Iy,
r

U, Uy, = a; =

f(r) est le coefficient de corrélation entre les composantes
des vecteurs U et U; portées par la droite O0; et g (r) le
coefficient de corrélation entre les composantes normales
a 00;.

46. Connexion physique du corpuscule.

La connexion cinématique est la connexion décrite du
point de vue du champ : elle correspond au point de vue
d’Euler en hydrodynamique. Mais, dans les applications,
c’est la connexion physique qui intervient ; elle correspond
au point de vue de Lagrange.

La connexion physique est la moyenne liée :

+
TN »
D P, =/f(¢, 13 X, 6 t1) pp1dy dpy
—00

@ est la grandeur attachée au corpuscule X |, a I'instant 7 au
point O (x représente les coordonnées de O), @; est la
grandeur attachée au corpuscule X |, & l’instant 7, au
point O;.

La connexion physique se distingue de la connexion
cinématique par le fait que @, n’est plus une valeur atta-
chée a un point fixe mais en un point aléatoire dont la posi-
tion (incertaine) se déduit de O, 7 et ;. On peut dire qu’elle
est la connexion entre les valeurs successives de @, atta-
chées 2 un méme €lément, suivi sur sa trajectoire.

L’importance de la connexion physique vient de ce
qu’elle régit les phénomeénes de diffusion. La diffusion
consiste en effet, en ce qu'un petit nuage de fumée, émis
au temps ¢ au voisinage de O, se trouve au temps # dis-
persé a I'intérieur d’un volume fini (point O; aléatoire). La
répartition des grains de fumée a I’intérieur de ce volume
dépend essentiellement de la connexion entre les vitesses
successives prises par les grains de fumée.

Les phénomeénes de viscosité et de conductibilité, qui sont
des transferts de quantité de mouvement et d’énergie, sont
également commandés par la connexion physique.

Le tenseur de connexion physique © se relie de fagon
trés simple au tenseur de connexion cinématique @, par
I'intermédiaire de la densité de probabilité de passage.

En effet, comme :

(@, 915 x) = (9, @15 x, x1) (x1; X) dxq,

alors :
+o00

G = /(xl;x)@dxl

—00
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Cette formule permet de séparer en deux parties les
propriétés du corpuscule aléatoire :

1) les propriétés du champ dans lequel il est plongé qui
sont représentées par le tenseur de connexion cinéma-
tique 6.

2) les propriétés mécaniques du corpuscule, qu’exprime
la probabilité de passage (x; ; x).

+00
‘6=f(x1;x)@dx1

montre que la connaissance de @ n’est pas suffisante pour
tout connaitre de la mécanique du fluide: il est encore
nécessaire de connaitre la densité de probabilité de pas-
sage (xp; x) pour obtenir le tenseur de connexion phy-
sique G.

Pour que la connexion physique soit stationnaire
(G fonction de (¢, —1)) il ne suffit pas que la connexion
cinématique le soit ; il faut de plus que la densité de pro-
babilité de passage (x;; x) ne dépende que de (¢;—1).

L’égalité :

47. Connexion corpusculaire.

La connexion physique concernait les éléments du cor-
puscule qui, & un instant 7, se trouvaient en un point
déterminé O. La connexion corpusculaire est la moyenne
étendue a tous les éléments du corpuscule sans condition
initiale. Elle se calcule a I'aide de la densité (¢, ¢;) ; par

exemple :
+oo
9P =fﬁ s 01 Q1 do doy
—oo

La relation :
(@, 90) = (@, 915 %) (x) dx = (9, @1 ; x, x1) (x1, X) dx dxy

montre que le tenseur de connexion corpusculaire G, pos-
sede les relations suivantes avec le tenseur de connexion
physique © et le tenseur de connexion cinématique © :

+h.00
G, = ‘/ (x) Gdx

+o0
G, = // (x, x1) @ dx dx;

48. Forme générale du probléme de la diffusion.
Ce probléme consiste en 1’étude de la fonction aléatoire :

Xalgs e,

ce qui revient surtout au calcul de ses moments principaux,
moyennes de Lagrange :

7L PN AT

Xo, X3, X5 X3

Les moyennes de Lagrange donnent une solution du
probléme sous forme d’un développement de Taylor faisant
intervenir les moments liés, pour un point donné, de toutes
les dérivées en moyenne quadratique de X. Cette solution



est évidemment théorique et n’offre d’intérét pratique que
pour des intervalles de temps trés petits. Il faut alors poser
le probléme en termes finis.

~ —~
Les moments X, et X3 se calculent au moyen de la den-
sité de probabilité de passage (x5 ; x1), par les formules :

+co
-
Xo= | xa(xa2; x1, 11, t2) dx
—00
+o0
2 2
X%= | x3(x2; X1, t1, tz) dxz
—00

Lorsque la densité de probabilité de passage ne dépend
que des différences (f5—1;) et (xp—x;), ces moments sont
indépendants du point initial x; et ne sont fonctions que de
I’intervalle de temps (¢,—1f;). La diffusion est alors homo-
geéne et stationnaire.

O
Pour obtenir le moment rectangle X» X3, il est nécessaire
de faire intervenir une densité de probabilité en trois
points :

400
T
Xy X3 = Xo x3 (X2, X35 X1, 11, tg, t3) dxo dxs
—00

Or, dans les fluides, 1’expérience atteint non la position
du corpuscule mais sa vitesse, celle-ci est la dérivée en
moyenne quadratique de la position. Le probleme de la
diffusion se pose ainsi comme un probléme d’intégration
aléatoire, la fonction X, s’exprimant par :

ty

X2=x1—|-/U|sds
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ou s représente I’instant auquel on considere U.

La moyenne de Lagrange de X, est:

ty, 4o

~
Xy = X1 +fds [”s(us;xls t1, s) du

ty —00

Son calcul nécessite la connaissance d’une densité de
probabilité aux instants #; et s.

Cas particulier : Un cas particulier intéressant est celui
ou cette densité ne dépend que de la différence (s—1?,) et ne
contient pas la coordonnée initiale x;.

Alors le chemin X’;—xl parcouru par le point moyen ne
dépend pas du point de départ ni de I’instant initial, mais
seulement de I'intervalle de temps (z3—#;). Lorsque («; x;)
ne dépend pas de xy, il en est de méme, en particulier, pour
(uy ; x1), densité de probabilité des vitesses en un point
donné ; cette densité est alors uniforme dans tout le fluide.
De plus, comme (u; ; x;) ne contient pas #1, la distribution
des vitesses est permanente. Par contre, il n’y a aucune res-
triction sur la densité de probabilité (x;). Ainsi nous avons
a faire a un fluide avec un module uniforme et constant de
la vitesse d’agitation, mais pouvant avoir une densité
différenciée, comme celle qui résulte d’un champ de
forces. Une atmosphére isotherme en équilibre vertical
sous l'action de la gravité, donne un modéle d’un tel
fluide.

o e
De méme que pour X,, le moment rectangle X, X3 se
calcule de la fagon suivante :

ta

X2=X1+fUlst

ty

t3

X3=X1+V/4U|tdt

b

Xo—x1) (Xz3—x1) = Xo X3—x1 (X3 + X3) + xi =

ts +

iy o)
=fds/ dt[/us U (us, U X1, 11, S, t) dus dut
ty t — o0

1

49. Diffusion stationnaire et homogéne

Pour qu’une densité de probabilité en deux points soit
suffisante pour le calcul du moment rectangle, il faut que
la densité de probabilité (u,, u; ; x;) ne contienne pas xj.
11 en résulte que: (us; x1) = (us, 4 ; X1) du; ne contient
pas x; non plus. Comme tout a I’heure, la densité de pro-
babilité de la vitesse en un point: (u; ; x;) est uniforme
dans le fluide. Si la densité (u, u; ; x1) ne dépend du temps
que par les différences (s—#;) et (r—#;), le moment rec-
tangle ne dépendra alors que des différences (fx—71) et
(t3—1t1). Cela entraine que la densité (u;; x;) qui ne dépend
pas de x;, ne dépend pas non plus de #.

Dans ce cas particulier, la diffusion est stationnaire et
homogeéne. 11 faut remarquer qu’alors la densité de proba-
bilité (x;) reste absolument quelconque.

En général, le probléme de la diffusion est ramené au
probléme de la connexion physique de la vitesse, c’est-a-

=

dire a I’étude des propriétés du moment : U U;.

Or, quand la connexion physique ne dépend pas du point
initial x;, elle est identique a la connexion corpusculaire,
car':

+00
e — —
Us Uy :f(xs) Us Ug dxs =U; U;

—00

T —
puisque la quantité Uy Uy, indépendante de x;, peut étre
sortie du signe d’intégration.

La connexion cinématique revét aussi une forme parti-
culiére. Soit, en effet, la relation :

+00
— |
Usngf(xt;xs)UsUtdxt s=t
oo

La diffusion étant stationnaire et homogéne, le premier
membre est fonction de (r—s); (x;; xs) est fonction de
(t—s) et de (x;—x;). Il en est donc de méme, par consé-

quent, de Uy U, : la connexion cinématique est, elle aussi,
stationnaire et homogene.

Soient §% = U'? = f?z, le carré de I’écart type des
vitesses d’agitation et r (r—s), la fonction de corrélation
physique entre les vitesses U |; et Ul d’'une micropar-
ticule aux instants 7 et s.
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Alors :

tt

t
Xi=s? /j r(t—s)dsdt = 252/(1—5)"(S)ds
v 0

Chapitre IX — Systémes de corpuscules aléatoires

50. Liaisons des systémes aléatoires.

Le corpuscule aléatoire généralise la notion du point
matériel de la mécanique classique, mais cela n’est évi-
demment pas suffisant pour répondre aux exigences de
tous les problémes : il faut considérer le cas des systémes de
corpuscules aléatoires.

Le role des liaisons de la mécanique classique est joué
en mécanique aléatoire par les corrélations qui représentent
la mesure de la dépendance de probabilité : une liaison
entre deux corpuscules aléatoires apparait dés que la pré-
sence de I'un modifie la probabilité de la position ou de la
vitesse de I'autre. Il existe donc en mécanique aléatoire des
liaisons de probabilité dont un cas limite est la liaison de
la mécanique classique (la corrélation vaut 1 au contact),
l'autre cas limite étant représenté par I'indépendance en
probabilité (hasard pur, corrélation nulle) du gaz parfait.

En mécanique aléatoire, I’inconnue du probléme est la
densité de probabilité conjuguée des positions et des vitesses :

R (X1, X9, ... Xp, Uy, Uz ... U, ;t) OU X; et u; représen-
tent respectivement les vecteurs aléatoires de composantes
Xij et Uiz (_]: 1, 2, 3)

Il peut arriver que le systéme différentiel décrivant le
mouvement puisse se décomposer en groupes d’équations
intégrables séparément.

En mécanique classique, un tel fait signifie que le sys-
teme de corpuscules peut se décomposer en sous-systémes
mécaniquement indépendants. En mécanique aléatoire,
au contraire, ce n’est pas toujours le cas car les conditions
initiales peuvent étre corrélées.

Le concept statistique introduit alors des liaisons 13 ou1, en
mécanique classique, il y avait indépendance totale ; en
effet, pour déterminer R il faut par exemple se donner la
densité de probabilité conjuguée des positions et des
vitesses initiales des corpuscules. En mécanique classique,
ces €léments constituent 6 n constantes numériques (indé-
pendantes entre elles puisqu’elles sont certaines) ; en méca-
nique aléatoire, ce sont 6 » nombres aléatoires, qui peuvent
étre corrélés.

51. Exemples de systémes de corpuscules aléatoires.

a) Cas simple de deux corpuscules aléatoires libres a une
dimension.

Le systéme différentiel de leur mouvement est :

]x:m [&:%
|(]1=0 !(}2:0

dont la solution formelle est :

Xl == Al t + Bl Xg =
Uy = A,

Agf+Bg
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Ay, A2, By et B, sont quatre constantes aléatoires ayant
pour densité de probabilité conjuguée :

R (a1, as, by, by).
La densité de probabilité conjuguée des deux corpus-
cules est :
R (ay, as, xy—uy t, xo—us t)
Les moments A7 Aj et B] By, oll A; = A;—A; et B} =
= B;—B; ne sont pas forcément nuls.
b) Cas de 2 corpuscules aléatoires libres & une dimension

ou les liaisons sont holonomes aélatoires : X»—X, est une
constante aléatoire E.

Les équations du mouvement deviennent :
Xi=A1t+ B,
Xo=A1t+ B, + E
Le probléme a pour solution une densité de probabi-
lité a trois variables :
R (x1, uy, €
Le systéme primitif de quatre équations différentielles

est remplacé par deux équations différentielles et une équa-
tion en termes finis :

X =0, U, —'or Xs=X +E

L’équation X; = X; + E a une influence sur la corréla-
tion entre les intégrales premiéres du systéme différentiel.

52. Systemes d’oscillateurs aléatoires.

Soit un systéme de n corpuscules X; de densité de pro-
babilité de présence telle que :

Chaque X; est un oscillateur aléatoire stationnaire.
Tous les X; ont méme pulsation certaine @ et méme loi de
probabilité. Il existe entre eux des corrélations.

n
1 '
Soit X 'oscillateur aléatoire : — Z X; (centre de gravité
n
i=1

du systéme d’oscillateurs).

Soient :
o : écart type commun aux X : —';’ —i0°
2 écart type de X : X2 = 32
s: écart type commun aux X; : ;21 =$* =T
S: écart type de X : }—2=S2:w222

L’incertitude sur un oscillateur élémentaire est le produit :
s = —
w

qui mesure la dispersion du corpuscule dans I’espace géné-
ralisé positions-vitesses.

La dispersion de 1’oscillateur X est :

2 n n
o
XiXi=a ), )
=1 =

1 — ., . . -
ou ry = — X; X; désigne le coefficient de corrélation entre
p

2 n n n

L -C5e -5

i=1 j=1i=1

[

deux oscillateurs élémentaires (r; = 1).



53. Cas particuliers.

a) Si tous les X; sont indépendants: r; = J;, cela

n n
X 5 o2 o2
entraine =5 Fip = =
n n

j=14=1

b) Si tous les ry; sont positifs :

g 02 n n 0-2
D=2+ 5 Tneg
n n
7=1 ¢=1
i#]

¢) Si tous les r;; sont négatifs :

9 n n 2

T, Sl el

j=1i=1

d) Si tous les X; sont égaux: ry; = 1:

n n
B
712 "

j=14=1

e) Schéma en grappes de Borel :

Les n oscillateurs sont groupés en k grappes de p oscilla-
teurs rigidement liés (kp = n). Dans une méme grappe
ry = 1. Deux grappes différentes sont indépendantes : le
coefficient de corrélation entre deux oscillateurs apparte-
nant a deux grappes différentes est nul.

—1 —1
Parmi les n_(}%__) nombres ry; OU [ Fj, k ‘ﬁpz—)

nombres sont égaux a 1, tous les autres étant nuls.

2 n

7Y b

n n
=1 j=1 i=1

2 -
rij:l =g~2 [n+2-k-p(p2 1)] =

2 2 2

a g s a

= s+ kp’—kp)= 5 kp>=p—

n n n
-~ 2

De méme : X2 — % — pit
n

Conclusions

La mécanique du corpuscule aléatoire R est une méca-
nique statistique trés générale dont il existe autant de
développements particuliers qu’il y a de fonctions R ; aux
différents types de connexions de champ de probabilité y
associés correspondent autant de stades de I’évolution
d’une turbulence.

A chaque R correspond un type de prévisibilité qui per-
met de calculer 1’évolution des grandeurs macroscopiques
caractérisant la turbulence et la diffusion turbulente .

Parmi toutes les mécaniques aléatoires particuliéres, il
est possible de construire une mécanique newtonienne de la
diffusion turbulente, correspondant a la turbulence libre.
La fonction R est, dans ce cas, construite a partir des inté-
grales premicéres du systéme lagrangien dont elle dérive.

Des mécaniques non newtoniennes de la diffusion peu-
vent étre élaborées avec des fonctions R constituées par
d’autres fonctions que des intégrales premiéres du systéme 2.

La mécanique du corpuscule aléatoire telle qu’elle a été
développée dans le présent article apparait comme étant
une mécanique générale de la diffusion turbulente.

Ce travail a pu étre effectué grace a I'appui des Commis-
sions fédérales de I’hygiéne de I'air et de météorologie,
ainsi que du Fonds pour I’encouragement des recherches
scientifiques.

1 Voir thése P. Ravussin.
2 Voir these F. Baatard.
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Toute la profession de l'informatique. Editions Tests et
Entreprise moderne d’édition, Paris, 1971. — Trois volumes
de 16 x 24 cm, de 60 pages chacun. Prix : broché 19 fr. fr. le
volume.

Cet ouvrage a été écrit par une réunion de spécialistes de
I'informatique et d’utilisateurs d’ordinateurs, a initiative
et sous la direction de la Société Orgamatic, avec la colla-
boration du Centre d’information sur les carriéres liées a
I'informatique. Il s’adresse surtout aux profanes et fournit
une documentation compléte, claire et pratique sur toutes
les possibilités d’emplois qu’offre I'utilisation des ordina-
teurs. Chacune de ces possibilités est présentée sous la
forme d’une fiche signalétique qui mentionne les aptitudes
nécessaires des candidats, leur niveau scolaire souhaitable,
les moyens de formation et la position hiérarchique pou-
vant étre atteinte.

Le premier volume concerne la saisie de I'information
qui se fait avant le travail sur I'ordinateur proprement dit
et environnement de I"ordinateur qui comprend de nom-
breuses taches de préparation, de contrdle, de planification
et d’acheminement des informations.

Le deuxiéme volume traite de tout ce qui touche a la
conception du travail, a Ianalyse et a la recherche. Dans
le troisieme sont exposées les fonctions de programmation
et d’exploitation qui sont chargées de réaliser les méthodes

de traitement des informations ayant été choisies et mises
au point.

Chaque volume comprend un lexique donnant I’expli-
cation de certains termes qui risqueraient d’étre difficile-
ment compris.

Le savoir-diriger, par Pierre Baruzy. Collection CADRECO,
Entreprise moderne d’édition, Paris, 1972. — Un volume
13,5% 18,5 cm, 188 pages, franco 22 F.

Voici un ouvrage écrit par un dirigeant, a I'usage des
autres dirigeants, pour les aider dans leur tache difficile
de commandement et d’organisation.

Industriel renommé, P.d.g. de firmes internationales,
Président du Conseil National de I’'Organisation Frangaise,
Chancelier du Conseil International de 1’Organisation
Scientifique, le comte Pierre Baruzy communique aux
dirigeants et futurs dirigeants ce qu’il a appris et démontré
au cours de sa vie professionnelle.

Sous une forme volontairement condensée, ce manuel
pratique donne des régles de conduite précises, concrétes,
utilisables immédiatement et quotidiennement. « A chaque
page, on trouve des sources inépuisables d’interrogations,
de prolongement, d’approfondissement a la réflexion, et des
lignes directrices nettes » (Pierre de Calan, dans la préface).

Au sommaire :

Définitions — Responsabilités du dirigeant — Le dirigeant
en action — Prévoir — Organiser — Controler — Méthodes
de direction et de gestion — etc.
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