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BULLETIN TECHNIQUE DE LA SUISSE ROMANDE 98- année 13 mai 1972 N° 10

COMMUNICATION DE LA CHAIRE DE STATIQUE ET DE RÉSISTANCE DES MATÉRIAUX DE L'EPFL

Calcul des ponts biais à poutres multiples sans entretoises par
la méthode des éléments finis

par J. JIROUSEK, Dr se. techn., ing. SIA'

Dotée pendant très longtemps de moyens relativement modestes, la Chaire de statique et
de résistance des matériaux de VEcole polytechnique de Lausanne s'est consacrée essentiellement

à sa tâche prioritaire, l'enseignement, laissant par la force des choses la recherche au
secondplan. Bénéficiant maintenant de possibilités plus étendues, elle a eu le bonheur de pouvoir

s'attacher M. J. JirouSek qui, après avoir enseigné dans plusieurs universités étrangères,
lui apporte le concours de ses connaissances et de sa compétence, qui sont grandes.

Nous sommes heureux de présenter ici cette publication ; si elle représente pour son auteur
la suite d'un travail commencé ailleurs, elle est pour notre chaire le témoignage d'une activité
que nous espérons promise à de nouveaux développements.

Professeur M.-H. Derron.

Introduction

Le pont à poutres multiples sans entretoises est formé
par un système de poutres préfabriquées placées l'une à
côté de l'autre et liées le long de la portée (voir, par exemple,
fig. 1). L'obliquité de l'ouvrage en plan peut être obtenue
par un décalage des extrémités des poutres. La liaison
entre les poutres est réalisée par le remplissage des loge-
ments (shear key) aménagés le plus souvent dans la partie
supérieure des joints (fig. 2). De plus, dans certains cas,
l'ouvrage peut être aussi précontraint latéralement. Si la
continuité ainsi obtenue est suffisante, on peut calculer
approximativement l'ouvrage comme une dalle ortho-
trope. Par contre, si la précontrainte latérale est faible ou
inexistante, les déformations de l'ouvrage et le retrait peuvent

entraîner un décollement des clavettes de remplissage
des joints. La rigidité transversale, et par conséquent aussi
la possibilité de transmission des moments transversaux
disparaissent. On peut alors considérer que les poutres
sont liées le long de la portée par des charnières longitudinales

sans frottement. Cette hypothèse, très généralement
admise en pratique, a été adoptée par exemple aux Etats-
Unis par le « Highway Research Bord » (voir le récent
rapport n° 83 2). C'est également ce que nous ferons dans
l'étude qui va suivre.
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Les méthodes de calcul des ponts multiples à charnières
longitudinales sans frottement peuvent être réparties en
trois catégories principales. La première, la plus fréquente,
est la théorie de la plaque articulée (voir par exemple [20],
[25] s) ; elle comprend toutes les méthodes qui
analysent l'ouvrage approximativement comme un
continuum sans rigidité transversale de flexion. La seconde

catégorie comprend les méthodes dès déformations compatibles

(voir par exemple [1], [4], [12], [14] ; elles
analysent le système des poutres en se basant sur les principes
généraux de la méthode des forces. La troisième catégorie,
celle des méthodes d'équilibre des joints (voir [9], [10]
adopte au contraire les principes généraux de la méthode
des déformations.

1 Chargé de cours, prem ier assis tan t à la chaire de statique et
de résistance des matériaux de l'EPFL.

2 National Cooperative Highway Research program Report 83
(1970).

8 Les chiffres entre crochets renvoient à la bibliographie en
fin de l'article.

Niveau théorique
des charnières

Remplissage
(Shear Key J

Zs

G > centre de gravité de la section
S ¦ centre de cisaillement de la section

Fig. 1. — Pont biais à poutres multiples.
Fig. 2. — Géométrie de la section
par le remplissage des joints.

charnières fictives formées
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A cause des complications mathématiques, les méthodes
connues se limitent presque en totalité à des ponts
rectangulaires. De plus, on suppose aussi presque toujours que
toutes les poutres ont la même section. D'après ce que nous
savons, les travaux concernant les ponts biais se limitent à
ceux (voir [9], [10] et [16]) qui ne traitent que le cas où les
charnières entre les poutres sont au niveau des centres de
cisaillement des sections. Ils ont, néanmoins, clairement
démontré l'effet non négligeable du biais sur l'interaction
des poutres du pont.

Le but de la présente étude est de montrer les possibilités
d'application de la méthode des éléments finis au calcul
des ponts biais à poutres multiples. Vu l'utilisation croissante

des ordinateurs dans la pratique, on peut envisager
que l'élaboration d'un programme standard de calcul des
ponts biais (en général avec des poutres de sections
inégales) permettrait de résoudre la majorité des
problèmes.

Afin d'obtenir une solution suffisamment simple, il a
fallu formuler certaines hypothèses simplificatrices. Celles-
ci sont en l'occurrence toujours très bien satisfaites pour
les poutres-caissons, mais le sont en général beaucoup
moins pour les poutres à section ouverte. La méthode de
calcul développée dans ce travail s'applique donc
essentiellement aux ponts à poutres de section fermée.

La technique de calcul par éléments finis utilisée ici se
base sur la subdivision en plan de chaque poutre en une
série de macro-éléments trapézoïdaux et sur les fonctions
de déplacement de ces> éléments. Ces fonctions, exprimées
par rapport aux paramètres nodaux des angles de
l'élément, assurent aussi bien la compatibilité des déformations
des éléments de la même poutre, que celle des poutres elles-
mêmes aux joints. Partant du théorème du minimum de
l'énergie potentielle, on développe la matrice de rigidité de
l'élément liant les forces nodales aux déplacements nodaux.
Ceux-ci sont ensuite calculés à partir des conditions d'équilibre

aux nœuds de l'assemblage.

f) les appuis sont constitués de façon à ne pas entraver
le gauchissement des sections d'appui.

D'autres hypothèses auxiliaires seront formulées au
cours du développement de la méthode de calcul.

2. Efforts internes des poutres et énergie potentielle
de déformation

Considérons une poutre de l'ouvrage (voir par exemple
la figure 3, où G désigne le centre de gravité de la section
et S son centre de torsion). Dans le cas particulier où S
se confond avec G et où les charnières entre les poutres se
trouvent au niveau des centres de torsion et si les sections
ne se gauchissent pas, les charges verticales appliquées sur
l'ouvrage n'engendrent qu'une flexion verticale et une
torsion des poutres autour de S. Alors, les points du plan
horizontal passant par les charnières ne se déplacent pas
dans ce plan (« v 0) et les forces d'interaction d'une"
poutre sur l'autre, par l'intermédiaire des charnières, sont
toutes verticales. Par contre, dans le cas général où ces
conditions simplificatrices ne sont pas réalisées, les points
du plan passant par les charnières subissent des déplacements

horizontaux et les forces d'interaction ont, en plus
des composantes verticales, des composantes horizontales
latérales et longitudinales (respectivement perpendiculaires

et parallèles aux axes des poutres). Ainsi, les poutres
sont en général soumises non seulement à la flexion verticale

et à la torsion, mais aussi à la flexion horizontale et
aux efforts normaux.

La figure 3 montre les efforts internes de la section
transversale d'une poutre dans ce cas général. On désigne
par My, Mz les moments fléchissants, par T le moment de
torsion, par Qy, Qz les efforts tranchants et par TV l'effort
normal. Les composantes des déplacements selon les directions

du système global d'axes x, y, z sont respectivement
m, v et w (fig. 3). De plus, y/ désigne la rotation autour de
l'axe de la poutre.

1re partie: Théorie

1. Formulation du problème et hypothèses de base

Considérons un pont biais à poutres multiples sans
entretoises (fig. 1). Les poutres peuvent être de section
différente mais constante le long de la portée. L'ouvrage
n'est pas précontraint latéralement, ou cette précontrainte
est négligeable. Il s'agit d'étudier l'interaction des poutres
sous l'effet des charges verticales et du tassement des
appuis, et de développer une méthode pratique de calcul.

X,u

y.v

z,w

k^-Z

HypothiÉps de base :

a) les sections transversales des poutres possèdent un
axe vertical de symétrie ;

b) les liaisons entre les poutres sont équivalentes à des
charnières longitudinales travaillant sans frottement ;

c) toutes les charnières liant les poutres entre elles se
trouvent dans le même plan horizontal (fig. 2) ;

d) l'obliquité en plan de l'ouvrage n'est pas excessive,
de sorte que les dimensions des sections biaises des

poutres, parallèlement aux lignes d'appui, sont
petites vis-à-vis de la longueur des poutres ;

e) la section transversale des poutres est indéformable
dans son plan ;

CjJ>

e
BY

Fig. 3. — Composantes des déplacements («, v, w, y/) et efforts
internes d'une poutre du pont.
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Avec les conventions de la figure 3, les moments de
flexion, le moment de torsion et l'effort normal s'expriment
en fonction des déformations par

M„

M,

El,

GJ

N= EA

EIZ

dy
~cbc~

d«g

dx
'

dws

dx2
'

-EC dy
d?

(la)

(lb)

(le)

(ld)

D'autre part, le bimoment dû aux contraintes normales
de torsion non uniforme (torsion fléchie) vaut

B= -EC dy
d?' (le)

Dans ces relations,

Iy> h moment d'inertie de la section par rapport à
l'axe principal parallèle respectivement äyetz
et passant par G [cm4] ;

J moment de rigidité de torsion uniforme
(Saint-Venant) [cm4] ;

C moment d'inertie sectorielle [cm6] ;

A aire de la section [cm2] ;

ws> vs — déplacements latéraux ve et v du centre de
torsion de la section ;

uq déplacement longitudinal « du centre de gra¬
vité de la section.

En négligeant l'effet des contraintes tangentielles dues
à la flexion, ainsi que celles dues à la torsion fléchie, l'énergie

potentielle des efforts internes (énergie potentielle de

déformation) de la poutre s'écrit :

Ut

o

T (dy/

M„

+ B

EL,

+ Gjfê)' + EC

dhvs
'

dx2

_dy
~~dx*

dx"

dyy

Mz d2^
d*2 +

"(£
EL

EA

&Vs
dx2

dueV
dx

dx

+

dx. (2)

di//
Dans cette expression, Tg GJ -f- est la partie du

dx
moment de torsion selon Saint-Venant, tandis que la
torsion fléchie s'exprime en fonction du bimoment B.

3. Hypothèses simplificatrices

Avant de développer notre méthode de calcul, nous
formulerons encore deux hypothèses simplificatrices, tirées de

l'analyse détaillée des propriétés des ouvrages en question :

1. On a vu au paragraphe précédent que, dans le cas
général, les charges verticales engendrent aussi une flexion

horizontale des poutres. Cette flexion provoque le long des

poutres des déplacements horizontaux vs vs (x), différents

d'une poutre à l'autre. Mais, puisqu'on suppose en
même temps que les sections transversales des poutres
restent indéformables dans leur plan (les éléments de
l'ouvrage travaillent comme des poutres et non pas à la manière
d'une ossature plissée), on doit admettre que dans le plan
horizontal passant par les axes des charnières, les déplacements

v de toutes les poutres doivent être égaux. Puisque
l'assemblage des poutres est toujours très rigide dans ce
plan, il est logique d'admettre que les déplacements v au
niveau des charnières sont négligeables vis-à-vis des déplacements

verticaux w. Il en résulte (voir la figure 4) que le
déplacement horizontal v$ du centre de rotation de n'importe
quelle poutre est dû uniquement à sa distorsion y/ et
s'exprime simplement sous la forme

vs ¦zsy/' (3)

-JÜ4 r 11r r

p. 1z>

J

=-Zs-4'

Fig. 4. — Relation entre le déplacement latéral v„ et la rotation

i// de la section.

2. La solution se simplifie considérablement si l'on
admet que les charnières n'empêchent pas les fibres
adjacentes de deux poutres voisines de glisser longitudinalement
l'une par rapport à l'autre. (Ce glissement correspond à la
différence de déformations dues à l'effet simultané de la
flexion et du gauchissement). Ceci implique que l'on peut
supprimer le dernier terme de l'équation (2), puisque les

efforts normaux despoutres seront dorénavant nuls. La
différence des déplacements longitudinaux des fibres adjacentes,
due à la flexion, est très petite, et tant qu'il ne s'agit pas
de sections ouvertes, il en est de même pour l'effet du
gauchissement. La confrontation des résultats numériques
donnés plus loin (2e partie, problème 3) montre que la
possibilité de glissement longitudinal ne se manifeste
pratiquement pas et que cette hypothèse simplificatrice peut
être adoptée avec confiance pour l'analyse des ouvrages à

partir de poutres à section pleine ou fermée auxquelles est
consacrée cette étude. Elle serait, en revanche, beaucoup
moins satisfaisante pour les systèmes de poutres à section
ouverte, dont le gauchissement est beaucoup plus important.

4. Subdivision de l'ouvrage en macro-éléments et
introduction des fonctions de déplacements

Pour analyser l'ouvrage par la métìiode des éléments
finis, on le remplace par un assemblage de macro-éléments
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I 2 3

n-2 n-1

on trouve

Fig. 5. — Assemblage d'éléments finis.

selon la figure 5. Chaque poutre est, en général, subdivisée
dans le plan en une série de M macro-éléments trapézoïdaux

de longueur

/'-»¦
On utilisera deux systèmes d'axes dans le plan (voir

fig. 5 et 6) : le système dit « global » formé des axes x, y
orthogonaux, et le système dit « local » formé par les axes
biais je, tj, liés à un élément particulier. Le plan des deux
systèmes correspond à celui des axes des charnières liant
les poutres (voir la figure 2).

D'après la figure 6, les relations entre les coordonnées
globales du système et les coordonnées locales d'un
élément s'expriment par

x x0 + x + btj.tg a,

y y0 + bn.

On admettra que le déplacement vertical au niveau des
charnières (z 0) s'exprime :

w (x, rj) (1 — rf) W! (x) + jjw^ (je), (4)

où h>i (x), m>2 (x) sont les déplacements verticaux des
charnières entre les nœuds Au Bx respectivement An, B2. Pour
exprimer les dérivées de w (x, rf) par rapport à x et y, on
écrit:

dw

dx

w,y
x,n

3 x,y
x, t]

dw
X, w

x, n

x,y

où 9 sont les jacobiens de transformation. En
désignant pour simplifier

d
dx (...)'

y0[

n=0
WX.ri)

1-1

Fig. 6.
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X-0 X X=A

Système d'axes « global » et système « local ».

dx (\-rf)^'i + nw2, (4a)

J? —_ (Wl- w2)- tg a [(1 -rf)wi + nw£ (4b)
dy b

Pour t] 1 /2 on en tire

*>a (w)* ç =3(wi + wa) »
2 2

dw\ i, ~
dxli 2 2

(5a)

(5b)

W MphnJ — t(wi - Wjs)--tga.(w[ + w£ (5c)

et avec (3) on a encore

zs 1

vs -r (wi— W2) + r zs tg a (wx + w^. (5d)
D Z

Soit maintenant pour i 1, 2 les fonctions de déplacement

des charnières pour un élément

w{ wt (x) Bw«, (6)
où

B =[/!(*) Â(x) fa(x) /,(*)] (6a)

est la matrice de quatre fonctions

1

fi(x)= -^{Az-lx*A + 2x*),

h &) -i ÇxA*- 2 x*A + x3)

fa(x)= -zQx*A-2x*),

Â(x)
1

A" (- x*A + Xs)

(6b)

et

WA{

<Pa,

glu
(6c)

est le sous-vecteur deppatre déplacements nodaux généralisés.

Les fonctions fix) ont été choisies afin de satisfaire aux
conditions

A (0) =1 Â (0) | 0 /8 (0) =0 h (0) 0

/i(0) - 0 /^(0) 1 /8(0) 0 f'4(0) 0

AGd) 0 Â(A) 0 Â(A)=l A(A) 0

fi<A) 0 /aW) 0 f'3(A) 0 f'iiA)^!
En même temps, les paramètres du nœud (égaux
respectivement au déplacement w et à la rotation q> de la charnière

en ce point) seront toujours communs à tous les
éléments autour du même nœud. Ainsi, les fonctions de

déplacement (6) assureront automatiquement, aussi bien
la continuité des déplacements ws, vs et des pentes y/, <p

entre les macro-éléments de la même poutre, que la compatibilité

des déplacements w entre les poutres de l'ouvrage.



Notons toutefois (voir (5d)) qu'on ne peut pas assurer auto-
dvg

matiquement la continuité des pentes —— entre les élé-
dx

ments dès que le pont n'est plus rectangulaire (tg a ^zé 0).
La conséquence de cette imperfection, qui d'ailleurs ne.

peut intervenir que si zs ^zé 0, est toutefois minime. Dans
la deuxième partie (problème 5), nous démontrerons que
l'interaction des poutres n'est que très peu influencée par
la position zs des charnières et par conséquent aussi par
la flexion horizontale des poutres, de sorte qu'il n'est pas
nécessaire de rechercher une très grande précision.

5. Matrice de rigidité du macro-élément

Soient S le vecteur des forces nodales généralisées
(figure 7) et w le vecteur des déplacements nodaux associés

d'un élément :

Si
Sa"

MA

MB

MA

MR

W2

Wai

<Pax

wBl
<Pbx

WH

(PA2

(7a, b)

Za Zr

Z. "BA,° 90°

A2

É?B

Fig. 7. — Elément fini et ses efforts nodaux.

En utilisant les équations (5), (6) et (7b)

On cherche la relation

S kw (8)

où k est la matrice de rigidité d'ordre 8x8.
Soit Ut l'énergie potentielle de déformation de l'élément

correspondant aux déformations données par les équations
(4), (5) et (6). Soit Ue l'énergie potentielle des efforts
externes concentrés aux angles du même élément et
représentés par le vecteur des forces nodales. La somme

u=u(+ue
représente l'énergie potentielle totale de l'élément. Si
l'élément est en équilibre, on sait que, selon le théorème du
minimum de l'énergie potentielle, la variation d'énergie
potentielle totale correspondant à une variation infinitésimale

de ses déformations compatible avec les liaisons est
nulle

ôU ô (U( + Ue 0

Pour une série de fonctions de déplacement approchées
(voir (4)-(6)) et caractérisées par un vecteur w de
déplacements nodaux, la meilleure solution sera celle qui donne
le minimum de U par rapport à ces déplacements considérés

comme variables. On doit, par conséquent, poser

du
dvt dvi (Uf+Ue) 0, (9)

-ÌB'-ItgaB»

--B--tgaB
V+ JtgaB*
b 2

-y,"

B"

1,1-B'--tgaB"
o 2,

-B--tgaB
-ÌB"+^tgaB"

o Z

®-

Cw, (H)

de sorte que
A A

l- /Vm dx Ì wr Tc^D Cdiê-w

où la dérivation partielle s'opère par rapport au vecteur
défini par (7b).

Pour exprimer l'énergie potentielle de déformation (voir
(2), où selon les hypothèses adoptées on néglige l'effet de

N), on introduira le vecteur

(l'indice T signifie que la matrice doit être transposée).
L'énergie potentielle des efforts extérieurs étant

U.- -wTS,

m

My
Ts

Mz
B

EL,
GJ

EL
EC

w", l'énergie potentielle totale vaut

¥'

y,"

De. (10)
A

£/= Ut+ tf.-iw* fi
0

iCdi-w-wTS.
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Par dérivation (voir (9)),

du
dv/ CrDCd*w-S 0,

d'où

S= / CTDCd3cw

Compte tenu de (8), la matrice de rigidité de l'élément
est donc

A

k= /CrDCd3c. (12)

La matrice de rigidité k obtenue selon (12) est donnée
dans les tableaux 1 et 2. Pour des raisons pratiques, on
l'exprime sous la forme

k k + Ak (13)

où k (tableau 1) est la matrice fondamentale représentant
uniquement l'effet de la flexion verticale et de la torsion de
Saint-Venant et Ah. (tableau 2) est la matrice complémentaire

représentant la correction due à l'effet de la flexion
horizontale et de la torsion fléchie.

On cherche maintenant la relation

P Kr, (15)

où K est la matrice de rigidité de l'assemblage ; on
l'obtiendra en assemblant les matrices de rigidité (k)} k des
éléments. A cet effet, on écrira pour un élément Q)
quelconque (voir la figure 5) la relation (8) sous la forme

(S), (k), (w).

[sf 1

Si+i

Wm

Sfc+i }

kii k12 k13 k14"

k22 k2s k24

k33 k34

Symétrie

*44_IJ

r<

ri+i

r*+i

,(16)

où les éléments ku, ki2 de la matrice de rigidité (k)^
sont des sous-matrices d'ordre 2x2. Pour l'assemblage
d'éléments, la relation (15) s'écrira par analogie :

Pi
P2

I

Kn Ki2-
K22_

Symétrie

"Kln
"Kg»

I

K„

(17)

6. Matrice de rigidité de l'assemblage

Une fois connue la matrice de rigidité d'un
macroélément, l'établissement de la matrice de rigidité de
l'assemblage n'est plus qu'une question de routine. Toutefois,
pour que même un lecteur moins au courant de la méthode
des éléments finis puisse suivre le texte sans difficulté, il
parait opportun de décrire brièvement le procédé.

Avant d'établir la matrice de rigidité de l'assemblage
d'éléments finis, il faut passer (fig. 5) de la notation locale
des nœuds (Ai, Blt A%, B^) à la notation globale (1,2
n) et numéroter également les éléments (©, @... (in)). En
remplaçant pour chaque élément la notation locale par la
notation globale (c'est-à-dire en remplaçant par exemple pour
l'élément (J) de la figure 5 les déplacements locaux wA

9a\\ wb, • ¦ ¦ P31 les déplacements wt, tpt, wi + 1 de

l'assemblage) on établit automatiquement la continuité
entre les éléments.

Définissons sur l'assemblage deux vecteurs

Pi
Pa

et (14a, b)

qui soient respectivement le vecteur des forces nodales
et le vecteur des déplacements nodaux. Leurs éléments
sont les sous-vecteurs

Pi
Pi
M,

et (14c, d)

où Pi et Mi sont les forces nodales équivalentes. Elles
remplacent dans le calcili les véritables forces extérieures,
qui peuvent être par exemple réparties. Les nœuds d'appui

mis à part, on peut les obtenir au moyen des fonctions

de déplacement (4) et (6) en exprimant l'égalité de
leur travail virtuel et celui de la charge donnée.

où les éléments Ku, K12 de la matrice' de rigidité de
l'assemblage sont de nouveau des sous-matrices d'ordre
2x2. On obtiendra la matrice K en considérant à tour de
rôle la contribution Kj de chaque élément Q). Ainsi la
contribution de l'élément (J) de la figure 5 est par exemple

K,

1 2 i M-l k k+\ n

o o-p--o 0 0 0 0" 1

0 0 0 0 0 0 2

\ 1 1 1 1 1 1

\ 1 1 1 1 1 1

11 1 1 1 1 1

kn ki2 k13 kM 0

k22 k2S k24 0 /+i 1 1 1 1

\ 1 1 1 1

\l 1 1 1

k83 ks4 0 k
Symétrie lt44 0

1 1

\ 1

11

k-i
1

1

1

0 n

et la matrice de rigidité totale est par conséquent

K=^K,. (18)
/=!

Notons que cette façon de former la matrice K revient à
satisfaire à chaque nœud de l'assemblage la condition
statique

2 ^
où la somme concerne les quatre éléments autour du
nœud /.
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Tableau 1

Matrice de rigidité fondamentale — Effet de la flexion verticale et de la torsion pure

01+Û8 03+07 —a!—o3 Û5+Û7 ai—as 05—07+09 —01+03 05—07—09

a2—û4+2û8 —af,—ai —ag—as 05—07 —a9 —o2+2a8 —05+07+09 —fl4+a6+a8

Symétrie

ai+a3 —a&—a7 —ai+a3 —05+07—09 ai—a8 —05+07+09

a2+at+2a$ 05—07+09 04+06 + 08 —05+07—09 —a2+2o8

Ol+«8 05+07 —ai—as 05+07

02+04+208 —05—07 —06+08

01+03 —05—07

a2—04+2o8

al ^'
GJ „+ ~^r tg2 a
£/,

o2
2A GJ

6 G/
03

5 62J EL

1 G/
a4 26iz;tga

.05

06

2^V1 + ^tg2a
zt G/

30 62I/i,

a?
1 G/

10 62 ET,
1 / f77"

a8 —Â 1 + Ü! tg2 a

09

2^
1 G/

6J £Ä

£/„

tga

E(Itz* + C)

Tableau 2

Matrice de rigidité complémentaire — Effet de la flexion horizontale et de la torsion fléchie

61+63 65—67+69 —61—63 65+67+69 -61+63 -65+67+69 61—63 —65—67+69

62+64—268 —65+67—69 64+65 —65—67+69 —62+64 65+67—69 64—66—268

Symétrie

61+63 —65—67—69 61—63 65—67—69 -61+63 65+67—69

62+64+268 -65+67+69 64—6g+26s 65—67—69 —62+64

61+63 65+67+69 —61—63 65—67+69

62+64+268 —65—67—69 64+65

61+63 —65+67—69

62+64—268

61
12

62J3

h Wa

u
36

26s 2B tg a *6 P2

6' ÎZstga

68 ^-8tg«

69 X4 tg2 a
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La matrice de rigidité donnée par (18) est singulière et
comme telle ne possède pas de matrice inverse. Ceci est dû
au fait qu'il est impossible de résoudre le système d'équations

(15) sans prescrire un nombre nnnimum de déplacements

empêchant l'assemblage de se déplacer à la façon de
solides rigides, puisque les déplacements wt et les rotations
(Pi ne peuvent pas être uniquement déterminés par les conditions

d'équilibre. Le système d'équations (15) doit, par
conséquent, être encore modifié conformément aux conditions

d'appui. Sur un nœud d'appui simple /, on peut poser
par exemple

w, wt,

où m>j est soit nul, soit égal au tassement d'appui donné. En
cas d'encastrement, on aurait de manière analogue

<Pi

Wi

Les valeurs ci-dessus peuvent être introduites dans le
système (15), tout en éliminant les équations correspondantes
devenues superflues, ce qui revient à réduire l'ordre de la
matrice K et des vecteurs P et r.

Pour éviter de devoir procéder à la réorganisation complète

de la matrice K et des vecteurs P et r dans la mémoire
de l'ordinateur, la pratique courante consiste à multiplier
sur la diagonale de K le coefficient correspondant à wt
ou Çi par un très grand nombre (mettons 1012) tout en
remplaçant en (15) l'élément correspondant du vecteur P
par le même grand nombre multiplié par wt ou 7pi prescrit.
Cette opération a pour conséquence de remplacer dans (15)
l'équation superflue par une autre exprimant pratiquement
l'égalité wi vpj ou <pi ç?j. La résolution du système
d'équations ainsi modifié

K- (19)

est le vecteur r complet des déplacements nodaux, y compris

les déplacements et (ou) les rotations prescrits aux
appuis.

Pour exprimer les déformations ws, va, y/ et leurs dérivées

par rapport à x on utilisera les relations (5) et (6).
Pour les forces nodales Z, compte tenu des équations (7)
et (8), on se servira directement des lignes correspondantes
de la matrice de rigidité k k + Ak donnée aux tableaux 1

et 2. On exprimera ainsi le vecteur n en fonction des
paramètres nodaux aux angles de l'élément sous la forme

Fw (21)

où F est la matrice de coefficients d'ordre 12x8 (voir
tableau 3) et w le vecteur de huit déplacements nodaux
défini par l'équation (7b).

En examinant l'équation (20), on se rend compte que le
vecteur n ne contient pas l'effort tranchant Qy. Son absence
est due au fait que les hypothèses simplificatrices adoptées
au paragraphe 3 rendent impossible la détermination des
réactions horizontales entre les poutres au niveau des
charnières de liaison. De façon générale, on a

dM2
dx

où »iz mz(x) représente une charge répartie, constituée
par des couples horizontaux [tm/m] qui s'obtiennent
comme une des composantes de l'effet de la transmission
des interactions des poutres sur l'axe de torsion. Notons
que les valeurs de Qy sont très faibles et pratiquement
sans importance.

En appliquant à tour de rôle la relation (21) aux éléments
d'une poutre du pont, on constate, en général, une légère
oscillation des efforts obtenus respectivement à l'extrémité
droite de l'élément Q) et à l'extrémité gauche de l'élément
(y+1) (et ceci même en l'absence des charges isolées qui
pourraient justifier une certaine discontinuité). Cette petite
imperfection est propre à la méthode habituelle des
éléments finis, et pratiquement peu importante. Notons
qu'une meilleure approximation serait obtenue en prenant
les moyennes arithmétiques des valeurs de gauche et de
droite.

7. Calcul des efforts internes

Soit n le vecteur des efforts internes aux extrémités
~x 0 et x A de l'élément :

MyA f -ElyWl (0)
MzA -EIzv"e (0)
BA -EC y/" (0)
*SA GJ y/' (0)
TfA -EC y/" (0)
QzA ~Zai~Za»

MyB -EIyw"a (A)
MZB -EIzv"B (A)
BB -EC y/" (A)
TgB GJ y/' (A)
TfB -EC y/m (A)
QzB Zb1 + Zb3

(20)

où T, et Tf sont respectivement les parties du moment de
torsion T dues à la torsion de Saint-Venant et à la torsion
fléchie.

r-P =25 dkg

1 î
c

i
i

i

i Y

b)

15 cm 15 cm

,-12,5 dkg
Il 2 3 4 (\ 5 6 7 e

no 11 12 ,3 m IS 16 17

19 20 21 22 23 24 25 26

k- 29 30 31 32 33 34 35
i

mai 38 39 40 41 42 43 44
I

NÉ 47 48 49 SO SI 52 53

8x3,75 cm

EIy GJ

Fig. 8. — a) Modèle du pont rectangulaire de l'essai de
Kopecky [14].

b) Assemblage d'éléments finis (M 8) pour l'ana¬
lyse numérique du même ouvrage.
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Deuxième partie: Analyse numérique et applications

Pour faciliter le calcul pratique des ponts biais à poutres
multiples sans entretoises, nous avons élaboré un
programme standard en langage FORTRAN pour l'ordinateur

(programme PBPMSE). Ce programme, basé sur la
théorie développée dans la première partie de ce travail,
calcule pour le pont donné, avec les charges et les
tassements d'appui choisis, les déplacements (w, <p) et les
efforts internes (My, Mz, B, Ts, Tf, Qz) dans les poutres
de l'ouvrage. Le nombre d'éléments par poutre M l: A
peut être choisi en fonction de la précision voulue. Nous

n'entrerons pas dans les détails, puisque ce programme,
qui sera mis plus tard à la disposition des clients du centre
de calcul de l'EPFL, fera l'objet d'une publication
ultérieure.

Dans le texte qui suit, on donne les résultats de quelques-
uns des nombreux problèmes résolus à l'aide du programme
PBPMSE. Les trois premiers ont été choisis pour vérifier
la théorie, en confrontant nos résultats avec ceux de la
littérature connue. Les autres exemples nous ont permis
d'étudier quelques questions intéressant la pratique.

Tableau 3

Matrice F pour le calcul des efforts internes aux extrémités des éléments

Cl 2C2 —Cl C2 Cl 2c2 —Cl C2

—zs fois la ligne 3

-rfi+fls —2a\4-di di—d3 —dz+di 01+03 M2+04 —di—da 0*2+04

«i 2c2—«a —ex ez Cl 2e2+es —ci C2

h h -h h -h -h h -h

—lai—26a —2fl5+09
+267-269 2oi+263 —205—09

-267-269 —2aj.—2b3
—2an—OQ 201+263 —205+09

+267-269

—Cl —ca Cl —2C2 —ci —c2 Cl -2c2

—z, fois la ligne 9

di+d3 02+04 —0*1—as 2rf2+04 -dì+03 —0*2+04 di—ds -202+04

—ei —e2 «1 —2«2—e$ —ci —e% Cl —2ea+es

comme la ligne 5

comme la ligne 6

10

11

12

Coefficients «1, 05, 09, voir tableau 1

Coefficients 63, 67, 6g, voir tableau 2

rfi
6 Eh
bA1

dz

3GJ
ci -2â-tga

ci-3EI»

2 Eh
bA

ca
Eh,

da
6 Eh
A» tga

GJ
ea -j tg a

A--
12 EC
bA» h

6 EC
~bW

C3=T
GJ
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MOMENTS FLECHISSANTS My [kgcm] MOMENTS DE TORSIONI [kgcm]
Rjutre I

Poutre I

Fig. 9. — Confrontation des résultats du calcul du pont de la
figure 8 avec les résultats expérimentaux obtenus sur le modèle
(valeurs entre parenthèses et diagrammes en traitillé).

Problème 1 : Confrontation des calculs avec l'expérience

Pour la première vérification de la théorie, nous avons
choisi le modèle d'un pont rectangulaire à cinq poutres
(figure 8a) qui a fait l'objet d'une étude expérimentale de
J. Kopecky [14]. Le modèle était réalisé en résine polyester
durcie (extroplex) et les charnières étaient représentées par
des encoches minces, fraisées dans la plaque compacte du
matériau.

Pour les dimensions de la section transversale des poutres
et les qualités physiques du matériau (E, G), la
référence [14] donne EIy GJ. Les charnières étant à mi-
hauteur des sections, on a zs 0 et les inerties Iz
n'interviennent pas (voir le tableau 2). De plus, si l'on néglige
pour les sections pleines le petit effet de la torsion non
uniforme (C 0), la matrice de rigidité supplémentaire

Ak est nulle. Ainsi, pour le cas envisagé, la matrice
de rigidité k des éléments sera représentée uniquement par
la matrice fondamentale k du tableau 1.

Le calcul du modèle a été exécuté pour deux réseaux
différents d'éléments finis : celui de la figure 8b (M 8),
et le réseau deux fois plus fin (M =16). Excepté dans la
région voisine de la charge concentrée P (fig. 8a), les deux
calculs conduisent à des résultats peu différents. La
figure 9 montre que les résultats du second calcul (M =16)
concordent bien avec les valeurs expérimentales.

On remarquera, sur la figure 9, que sous la charge
concentrée P, le diagramme des moments fléchissants
présente une pointe très aiguë qui, probablement, influence
considérablement la répartition des moments entre les

poutres du pont. Ce fait devrait être pris en considération
dans le calcul d'un pont réel, où de vraies charges concentrées

n'existent pas. Remplacer une charge répartie par des
charges isolées pourrait conduire à des résultats assez
différents.

a) 100 cm

b» 2x0,375"

"itt*

94

20
GsS

70

)-.
98cm

65 85

f"Sl.»

3=S

55

36 in

KL 61 -18

Iy 3,444. lO'V

J 5.900 .10'2m'1

BIV-36

Iy 0,1587.10s In"

Iz «0,1163.106i.n*

J 0,1979.10'in*

C 0,3114 -10sLn*

Problème 2
de calcul

Confrontation avec d'autres méthodes

Comme seconde vérification de notre méthode, nous
avons choisi le pont biais de la figure lia, formé de sept
poutres-caissons préfabriquées de type KL 61-18 (fig. 10a),
soumis à une charge uniformément répartie p 1 t/m2.

U) \ I m—m -

\ n |tâk M |ßu jN

1 2

N 3. i\ s
l\ m

\[\ m
\ 19m \\

br
3 r. 5 6 7 6 v9

\io \l \« \B \« \l5 \« \l7 \lB

^3

\»9 \20 \îl \ 2 \,23 \x \?5 \26 \27
\28 \j9 \so \ai \s2 \33 \34 \a5 \S6

31 \3B \39 \40 \41 \*2 \43 \tt \45
\*6 \47 \» \49 \ S0 \51 \5Z \S3 \s

\55 \56 \57 \56 \59 \60 \61 \62
\et nés \66 \67 \68 \69 \70 \7t V2

V- 8x 2.375m \
Fig. 10. — Quelques exemples réels de poutres-caissons
préfabriquées.

a) KL 61-18 (Tchécoslovaquie) pour les portées jusqu'à 20 m;
b) B IV-36 (Etats-Unis) pour les portées jusqu'à 88 ft.

Fig. 11. — a) Pont biais formé de sept poutres-caissons
KL61-I8.

b) Assemblage d'éléments finis (M 8) pour l'ana¬
lyse numérique de l'ouvrage.
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Tableau 4

Pont biais constitué par sept poutres-caissons KL 61-18

Confrontation des résultats de différentes méthodes de calculpour la charge répartie p 1 t/mz

Flèches w [cm] au milieu des poutres

Méthn\. I II III IV V VI VII

Kop. [16]

El. finis

1,51

1,509

1,55

1,548

1,57

1,568

1,58

1,574

1,57

1,568

1,55

1,548

1,51

1,509

Moments fléchissants My [tm] aux quarts de la portée des poutres

X
1

0 0.25 0,50 0.75 1,00

R Jir. [9] Kop. [16] El. finis Jir. [9] Kop. [16] El. finis Jir. [9] Kop. [16] El. finis Jir. [9] Kop. [16] El. finis Jir. [9] Kop. [16] El. finis

ïî^ -7,08 -8,48 -8,45 15,37 15,59 15,23 31,41 31,64 31,55 29,57 29,02 29,56 -4,91 -7,67 -4,28

II -5,37 -6,30 -5,78 18,32 18,10 18,25 32,53 32,30 32,69 27,07 26,77 27,19 -2,94 -4,79 -2,73

m -3,81 -5,00 -3,89 20,59 20,44 20,60 33,13 32,96 33,29 24,52 24,39 24,84 -2,30 -4,05 -2,06
IV -2,76 -4,23 -2,96 22,50 22,39 22,68 33,33 33,20 33,48 22,50 22,39 22,68 -2,76 -4,23 -2,96

v -2,30 -4,05 -2,06 24,52 24,39 24,84 33,13 32,96 33,29 20,59 20,44 20,60 -3,81 -5,00 -3,89
VI -2,94 -4,79 -2,73 27,07 26,77 27,19 32,53 32,30 32,69 18,32 18,10 18,25 -5,37 -6,30 -5,78

vu -4,91 -7,67 -4,28 29,57 29,02 29,56 31,41 31,64 31,55 15,37 15,59 15,23 -7,08 -8,48 -8,45

z -29,17 -40,52 -30,15 157,94 156,70 158,35 227,47 227,00 228,54 157,94 156,70 158,35 -29,17 -40,52 -30,15



Ce problème a déjà été résolu par d'autres méthodes approchées

(voir [9] et [16]), dont les résultats sont confrontés
avec les nôtres dans le tableau 4 (pour M 16). On
remarquera que nos résultats concordent, en général, très
bien avec les deux autres solutions approchées.

Notons que les deux méthodes [9] et [16] considèrent,
à priori, que les charnières entre les poutres se trouvent au
niveau des centres de rotation S (ce qui est approximativement

vrai pour les poutres-caissons KL 61-18) et négligent
le petit effet de la torsion fléchie. Dans l'application de
notre méthode, qui est plus générale, nous avons par
conséquent posé zs 0 et C 0. On verra plus loin
l'influence de ces approximations.

Problème 3: Vérification des hypothèses simplificatrices

Les deux problèmes précédents concernaient des ponts
avec charnières au niveau des centres de rotation. Dans
ces cas, l'influence des hypothèses simplificatrices, énoncées

au paragraphe 3 de la première partie de ce travail,
n'apparaissait pas, puisque les poutres ne fléchissaient que
dans le plan vertical et le fait que leurs sections étaient
pratiquement symétriques par rapport au plan z — z8
imposait des déplacements longitudinaux u automatiquement

nuls au niveau des charnières.
Pour vérifier la validité de ces hypothèses simplificatrices,

nous avons étudié le pont rectangulaire de la
figure 12a, constitué par dix poutres-caissons américaines
de type B IV-36. Selon la figure 10b, la position théorique
des charnières si trouve à peu prés à douze pouces au-
dessus des centres de rotation. Les inerties /;,, Iz et le
moment d'inertie sectorielle C sont donnés dans la même
figure. Etant donné que la conversion des unités américaines

en cm (1" 1 in 2,54001 cm) donnerait des chif-
fres peu commodes pom: le calcul, nous avons conservé les
unités originales, les pouces.

Comme charge du pont, nous avons considéré la charge

linéaire p Pi sin n - appliquée successivement :

a) sur la bordure extérieure (indice 0) de la poutre I ;

b) au milieu de la largeur de la poutre I.

la contribution de l'effort normal est

&N max —
Nm 13/>!

710
0,018 ft

ce qui ne représente que 0,85 % de o~m Ajoutons
que les résultats de notre méthode (déformations, efforts
internes) concordent très bien avec les résultats du calcul
exact. Ainsi, les hypothèses simplificatrices adoptées se
trouvent pleinement justifiées.

Notons encore au sujet des contraintes normales que,
en plus de celles dues aux moments My et aux efforts
normaux N, d'autres contraintes normales viendront s'ajouter,
qui seront dues aux moments Mz et aux bimoments B. Par
notre méthode, on trouve (toujours pour la même section
et le même cas de charge)

°m.
540/>!

116 300
18 0,084a

Avec | B | max 45 fà et | co \ „^ 36 in2 (où | co | „^est la valeur absolue de la coordonnée sectorielle aux
angles de la section)

" max i i 4J £a h ¦—! w max 1— 36 0,005»i

Les contraintes a dues aux bimoments B sont donc
pratiquement sans importance.

Problème 4: Influence de la position des charnières

Dans le cas d'un véritable pont à poutres-caissons
préfabriquées et assemblées par le remplissage des joints
(« shear key »), il régnera probablement toujours une
certaine imprécision quant à la position exacte des charnières
par lesquelles on remplace approximativement l'effet d'une
telle jonction, n est intéressant de savoir dans quelle
mesure la position des charnières influence l'interaction des
poutres.

Nous avons examiné les deux ponts (rectangulaire et
biais) de la figure 12 et avons exécuté le calcul de chacun
d'eux pour deux positions zs différentes des charnières :

La raison de ce choix est que pour une charge sinusoïdale,
on trouve relativement facilement la solution exacte du
problème (voir [12]). Les équations sont applicables
uniquement pour des ponts rectangulaires à poutres de même
section. Pour faciliter leur application, nous les avons
programmées.

Le tableau 5 résume les résultats des deux calculs, la
solution exacte et le calcul approché par notre méthode
(M — 16). En accord avec les hypothèses simplificatrices
du paragraphe 3, les résultats du calcul exact confirment
que les déplacements latéraux v des charnières sont
vraiment très petits vis-à-vis des déplacements verticaux w.
Sous premier cas de charge, ce rapport est par exemple
pra 10888 pour la première poutre, et 19: 4477 pour la
dernière poutre du pont. D'autre part, le calcul des
contraintes normales confirme la très faible influence des efforts
normaux. Ainsi, par exemple, alors que dans la poutre I
le moment fléchissant My max engendre la contrainte

10x36'

1000

Cm.
My max n

y max

15 950a
158 700

21 2,1 Pi
Fig. 12. — Pont rectangulaire et pont biais formés de dix
poutres-caissons B IV-36. Dimensions en pouces (1* 1 pouce

2,54 cm).
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a) zs — 12 in (charnières près de la surface supérieure
des poutres d'après la figure 10b) ;

b) zs 0 (charnières au niveau du centre de torsion
des poutres).

La poutre I a été soumise à un groupe de trois charges
concentrées : Pj 0,25 Q, P2 0,50 Q et P3 0,25 Q
appliquées respectivement aux 7/i6, 8/16 et 9/16 de la portée.
(Leur effet correspond approximativement à une charge Q
uniformément répartie sur un tronçon central de 1/8 de la
portée. Notons toutefois que les charges nodales équivalentes

à une telle charge répartie, au sens des travaux
virtuels, comprendraient encore des couples nodaux de forces.
Mais la différence pratique n'est pas très grande.)

Les résultats du calcul pour les deux positions des

charnières sont résumés dans le tableau 6. | Le calcul a été

exécuté avec les éléments finis de longueur A — I Pour le
16/

niveau inférieur des charnières, les flèches de la poutre
chargée et des poutres voisines accusent une légère
augmentation, tandis que pour les poutres situées près de
l'autre bord du pont, les flèches ont une légère tendance à
diminuer. Les différences ne sont pas toujours apparentes
avec le nombre de décimales choisi. En ce qui concerne les
efforts internes, on constate sur la poutre chargée
(respectivement sur la poutre voisine) une légère augmentation des
moments fléchissants, ceci au profit des poutres plus
éloignées où la différence reste toutefois trop petite pour être
mise en évidence avec le nombre de décimales utilisé. Les
moments de torsion T restent pratiquement inchangés. Il
est, par contre, naturel que la position des charnières
influence fortement les moments de flexion Mz. Mais,
comme on l'a déjà vu dans le problème 3, vis-à-vis des
moments Mv, leur contribution aux contraintes normales a
n'est pas très importante.

Problème S : Influence du biais sur l'interaction des
poutres

Une opinion assez répandue en pratique admet que
l'effet du biais sur l'interaction des poutres du pont est
négligeable. Ceci dit, on applique les mêmes coefficients de
répartition transversale pour un pont biais que pour un
ouvrage rectangulaire. Pour vérifier dans quelle mesure se
justifie cette simplification, nous avons considéré les deux
ponts de la figure 12a, b qui correspondent respectivement
aux angles d'obliquité a 0° et a 40°.

Dans un premier cas, nous avons supposé une charge
uniforme p appliquée simultanément sur toutes les poutres
du pont. Dans un pont rectangulaire, elle provoque dans
toutes les poutres les mêmes moments fléchissants avec
maximum Mymax 0,125 pP. Les moments de
torsion T sont nuls. Dans un pont biais, les moments de
flexion My engendrés par la même charge sont plus petits,
mais il apparaît des moments de torsion T. En analysant
les diagrammes de My de la figure 13, où nous avons porté

les résultats de notre calcul I pour M — 16

tate que les valeurs maxima des moments fléchissants ont
diminué d'environ 21 %.

En pratique, la charge uniforme qui pourra être prise en
considération pour la répartition transversale des effets dus
à l'interaction des poutres sera le plus souvent le poids
propre du tablier. Par contre, le poids propre des poutres
sera porté indépendamment par chacune d'elles, étant
donné que le remplissage des joints ne s'effectue qu'après
la mise en place des poutres. Notons toutefois que chaque
poutre isolée bénéficiera de l'effet favorable du biais, qui
se manifestera par une certaine diminution des moments
fléchissants (à peu près 18 % dans le cas envisagé). Ceci
est dû au fait que l'effet du biais des appuis équivaut,
dans une certaine mesure, à un encastrement partiel. Pour
ce qui est des surcharges, notons, par exemple, que les

-0,025

0,025

I.OOCD.125 0.250 1375 0 50C 0.625 0.750 0.875

Tmax

F>ta

0,0285

0.0321

D347

363

037

My Pi

Fig. 13. — Diagrammes des moments fléchissants Mu et les valeurs maxima
des moments de torsion T pour les cinq premières pou très du pont biais de la
figure 12 b. Poutres-caissons B IV-36, charge uniformément répartie p parunité de longueur de chaque poutre. En traitillé : effet de la même charge sur
un pont rectangulaire.
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Tablbau 6

Influence de la position zs des charnières sur l'interaction des poutres. Pont rectangulaire
et pont biais de la figure 12. Poutre I chargée par un groupe de trois forces concentrées :
P XU Q, P2 V« Q et P3 1UQ, appliquées

la portée
respectivement à 7/16, 8/16 et|»i6 de

Pont rectangulaire (« 0)

R
10*Elwarn : Q Muum : Ql Mutm : Ql T™* :Ql

z, 12" z, =0 z. 12' z. 0 z» 12" z. 0 z, 12' z. =0

I 0,2014 0,2016 0,0442 0,0444 0,0015 0 0,0080 0,0080
II 0,1815 0,1816 0,0365 0,0365 0,0023 0 0,0149 0,0149
m 0,1583 0,1584 0,0290 0,0289 0,0014 0 0,0128 0,0128
IV 0,1395 0,1395 0,0242 0,0242 0,0010 0 0,0109 0,0109
V 0,1244 0,1244 0,0209 0,0209 0,0007 0 0,0090 0,0090
VI 0,1124 0,1123 0,0185 0,0184 0,0005 0 0,0072 0,0072
VU 0,1032 0,1031 0,0167 0,0167 0,0004 0 0,0055 0,0055
VIII 0,0964 0,0964 0,0155 0,0155 0,0002 0 0,0039 0,0039
IX 0,0921 0,0920 0,0147 0,0147 0,0001 0 0,0023 0,0023
X 0,0899 0,0898 0,0143 0,0143 0,0000 0 0,0008 0,0008

Pont biais (a 40°)

R
WElwam '. Q Muai i:Ql Mzan ï-.QI Tm» ¦ Ql

z. 12' z, =0 z. 12' z. 0 z> 12* z. =0 z. | 12* z. 0

I 0,1802 0,1804 0,0408 0,0410 0,0012 0 0,0146 0,0146
II 0,1576 0,1577 0,0325 0,0326 0,0021 0 0,0200 0,0200
m 0,1309 0,1310 0,0241 0,0241 0,0010 0 0,0165 0,0166
IV 0,1086 0,1087 0,0187 0,0188 0,0007 0 0,0134 0,0135
v 0,0905 0,0905 0,0150 0,0150 0,0004 0 0,0108 0,0108
VI 0,0760 0,0760 0,0123 0,0123 0,0003 0 0,0086 0,0087
VII 0,0646 0,0646 0,0102 0,0102 0,0002 0 0,0067 0,0067
vm 0,0559 0,0559 0,0087 0,0087 0,0001 0 0,0052 0,0052
IX 0,0494 0,0494 0,0075 0,0075 0,0001 0 0,0038 0,0038
X 0,0446 0,0446 0,0066 0,0066 0,0000 0 0,0026 0,0026

normes françaises pour les ponts routiers prévoient comme
surcharge du type A une charge uniformément répartie.
Vis-à-vis d'un ouvrage rectangulaire, celle-ci bénéficierait
donc pleinement de la réduction des moments de flexion My
(21 % dans notre cas).

Un second cas de charge a été envisagé sous la forme de
charges Q constituées par des charges linéaires p Q : Al
réparties uniformément sur les petits tronçons Al= l: 16.
Nous les avons appliquées à tour de rôle au milieu des
joints r 0,l,2,3,4et5. Notons que par la combinaison
de telles charges, nous pouvons exprimer par exemple
l'effet des roues d'un véhicule roulant sur le pont. Les
résultats du calcul, qui a été exécuté avec des éléments
finis de longueur A — 1:16, sont résumés dans le tableau 7.
En plus des moments fléchissants au milieu de la portée,
nous avons confronté les valeurs approchées des moments
maxima Mv max et les maxima des valeurs absolues des
moments de torsion I 7^ max- On constate que, vis-à-vis
du pont rectangulaire, les moments fléchissants du pont
biais sont beaucoup plus petits et les moments de torsion
plus grands.

Notons encore que sur un pont biais, la position
longitudinale la plus défavorable d'une charge Q (pour engendrer

les plus grands moments possibles My max max) ne
se trouve, en général, pas au milieu de la portée. En procédant

par tâtonnements, nous avons trouvé par exemple que,

si la charge Q se déplace le long du bord extérieur (indice 0)
de la poutre I, le moment My m^ max apparaît quand la
charge se trouve à peu près à Vie / à gauche du centre. Le
moment My max max ainsi obtenu vaut 488.10~4 Ql (contre
484.10-4 Ql pour la charge au milieu de portée). La
différence n'est donc pas très importante.

Problème 6: Effet du tassement des appuis

Comme dernière application, nous avons étudié l'effet
du tassement d'appui sur le pont biais de la figure 12b.
Nous avons supposé que l'angle gauche de l'extrémité
gauche du pont (x 0, y 0) a subi une dénivellation
égale à Z/1000. Ainsi, l'extrémité gauche du bord extérieur
de la poutre I est descendue de / : 1000, tandis que l'extrémité

gauche du bord intérieur (attachée par le joint 1 à la
poutre H) est restée en place. Pour obtenir l'effet de ce
tassement, il suffit de substituer au déplacement nodal du
nœud 1 la valeur Wi /: 1000.

Le calcul a été exécuté avec des éléments finis de
longueur A — l : 16. Les résultats (moments de flexion Mv et
moments de torsion T) sont représentés dans les figures 14
et 15. Quant aux moments fléchissants, on remarquera que
le tassement affecte essentiellement la région autour du
nœud 1, tandis qu'ailleurs ces moments restent relative-
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Tableau 7

Influence du biais sur l'interaction des poutres
Dix poutres-caissons B IV-36 de portée l 1000 in. Charge Q p-Al répartie sur Vie

de la portée et appliquée au centre du joint r 0,1, 2...

104- My : Q! au centre de la potrée

Poutre

Charge Q appliquée sur le joint r

r --0 1 2 3 4 5

a =0" 40° 0° 40° 0° 40° 0° 40° 0° 40° 0° 40°

I 525 484 443 406 326 277 266 212 225 169 197 137
II 362 308 407 371 384 345 285 239 237 187 204 151

m 290 229 302 255 367 328 355 315 264 218 222 172
IV 242 180 249 197 273 227 346 305 340 299 254 208
V 209 144 213 158 228 177 258 212 336 295 334 293
VI 184 117 188 129 198 145 218 168 252 206 334 293
VII 167 98 170 108 178 121 192 140 216 166 254 208
VIII 155 83 157 92 164 104 176 120 194 142 222 172
IX 147 71 149 80 155 91 166 106 182 125 204 151

X 143 62 145 70 151 81 161 94 176 113 197 137

104-Af« Ql

I 525 484 443 406 326 299 266 234 225 193 197 163

II 362 341 407 371 384 345 285 256 237 205 204 171

III 290 263 302 276 367 328 355 315 264 234 222 189

IV 242 204 249 219 273 244 346 305 340 299 254 224
V 209 177 213 182 228 196 258 228 336 295 334 293
VI 184 150 188 154 198 165 218 185 252 222 334 293
VII 167 130 170 133 178 143 192 158 216 183 254 224
VIII 155 116 157 120 164 127 176 141 194 160 222 189
IX 147 106 149 110 155 118 166 129 182 147 204 171

X 143 102 145 106 151 113 161 125 176 140 197 163

10».| r|max:ß/

I 170 240 24 111 15 71 11 59 10 50 9 43
II 149 199 149 202 46 112 34 82 29 70 27 61

III 128 164 129 168 130 175 60 119 48 92 45 81

IV 109 133 109 138 110 145 112 154 69 126 63 102
V 90 107 90 111 92 118 94 127 96 143 81 134
VI 72 85 72 89 74 95 76 104 78 114 81 134
VII 55 69 55 70 56 75 58 82 60 92 63 102

Vili 39 53 39 53 40 58 41 64 43 71 45 81

IX 23 39 23 39 24 43 24 47 26 54 27 61

X 8 25 8 27 8 29 8 33 9 38 9 43

ment faibles. Par contre, les moments de torsion sont
assez élevés et presque constants sur la totalité de la
poutre I. La torsion des autres poutres est peu importante.

Conclusion

Le présent travail propose une solution approchée du
calcul des ponts biais à poutres multiples sans entretoises.
Il se base sur quelques hypothèses simplificatrices qui sont,
en règle générale, bien remplies pour les ponts à poutres de
section pleine ou fermée (poutres-caissons). Le calcul par
éléments finis se fonde sur le théorème du minimum de

l'énergie potentielle et sur la méthode des déformations.
Les fonctions de déplacement choisies pour les éléments

finis comprennent tous les modes rigides de déplacement
et sont susceptibles de donner toutes les déformations
correspondant à une valeur constante des efforts internes.
Elles assurent aussi automatiquement la continuité des

déplacements entre les poutres et la continuité des dépla¬

cements et des rotations entre les éléments de la même

poutre. Dans le cas d'un pont biais, cette continuité n'est
toutefois pas complète pour les dérivées des déplacements
horizontaux v. Cette petite imperfection n'intervient
d'ailleurs que si les charnières entre les poutres se trouvent
au-delà du niveau des centres de rotation des sections.
Etant donné la faible influence du niveau des charnières

sur les résultats, son effet est minime.
Mis à part cette petite imperfection, notre modèle est

donc du type « conforme ». Comme l'a montré De
Veubeke1, un tel modèle est plus rigide et son énergie de
déformation est plus petite que la valeur exacte. Partant
dans le cas d'un ouvrage rectangulaire (où la continuité
est parfaite), notre solution converge vers la solution exacte
de la construction idéalisée, qui obéit aux hypothèses
simplificatrices admises.

1 Voir, par exemple, « Displacement and Equilibrium Models
in the Finite Element Methods. Stress Analysts », J. Wiley and
Sons Ltd, Londres 1965.
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B IV-36 de portée / 1000 in). Diagrammes des moments de
torsion.

Dans le cas d'un ouvrage biais, le problème de la convergence

est plus compliqué. On peut montrer que, dans la
mesure où l'on diminue la longueur des éléments et où
chaque élément s'approche de l'état de contrainte constant,

la petite discontinuité des dérivées des déplacements
horizontaux v diminue et disparaît à la limite. Par
conséquent, la solution converge. Notons toutefois que le
calcul d'un ouvrage biais ne converge vraisemblablement
que vers des valeurs très proches de la solution exacte, et
ceci pour la raison suivante : l'adoption de la fonction de
déplacement sous la forme donnée par l'équation (4)
signifie que dans la bande limitée par les bords longitudinaux

d'une poutre, le déplacement vertical w est linéaire
le long des droites parallèles aux lignes d'appui. Dans le
cas d'un pont biais, ceci revient à l'hypothèse des «
sections biaises rigides ». Or, cette hypothèse n'est exacte
qu'au droit des appuis. Ailleurs elle n'est valable
qu'approximativement, à moins que les poutres-caissons ne
soient dotées de diaphragmes rigides parallèles aux lignes
d'appui.

Nous prévoyons d'étudier encore expérimentalement sur
modèles réduits toutes nos hypothèses de travail ; nous

avons de bonnes raisons de penser que ce contrôle confirmera

la validité de la méthode proposée.
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Adresse de l'auteur :

Dr J. Jirouäek,
Chaire de statistique et de résistance des matériaux, EPFL
Avenue Dapples 23
1006 Lausanne

Bibliographie
The science of rock mechanics. Part 1 : The strength

properties of rocks, par W. Dreyer, Dr-Ing. Professeur
à l'Université technique de Clausthal. « Series on Rock and
Soil Mechanics », Volume 1 (1972), No 2, janvier 1972.
Trans. Tech. Publications. P.O. Box 9787, Bay Village,
Ohio 44140 (USA); D-3392 Clausthal — Zellerfeld, Adolf-
Ey-Str. 5 (Germany). — Un volume 15x21 cm, VIII-
501 pages, 137 figures, 86 tableaux, 200 références. Prix :
relié, 25 dollars US. (International Standard Book Number
(ISBËf: O-87849-002-7.) (Library of Congress Catalog
Card Number: 78-149276.)

Ce volume est le premier d'une série de cinq consacrée
à la « Science de la mécanique des roches ». Il traite plus
particulièrement des propriétés de résistance des roches.

Après avoir exposé quelques généralités sur les
caractéristiques mécaniques des minéraux (déformations,
constantes élastiques), l'auteur aborde la mécanique des roches
proprement dite, aux points de vue à la fois théorique et
pratique.

D montre en particulier quels sont les procédés de
détermination des caractéristiques des roches sur échantillons
et donne des valeurs numériques de ces caractéristiques
pour différents types de roches. Il décrit également les
méthodes d'essai in situ, en tenant compte des progrès
les plus récents réalisés dans ce domaine. Quelques
chapitres de son livre sont aussi consacrés aux essais sur
modèle en mécanique des roches.

Signalons, pour les lecteurs que la question intéresse,
les titres des quatre autres volumes formant ce traité :
Bins and Bunkers for Handling Bulk Materials. —
Engineering Geology and its Application in Civil Engineering
Projects. — State-of-Stress Measurements in Rock Masses.
— Slope Stability in Soil and Loose Rock.

Ecole polytechnique fédérale
de Lausanne
Conférences

L'Institut de la construction métallique nous prie
d'annoncer les conférences suivantes :

Le mercredi 17 mai 1972, à 14 h. 15, à la salle de confé-
rence de l'Institut de la technique des transports, 9, ch.
des Délices', Lausanne : Behavior of Steel Frames Under
Cyclically Applied Lateral Loads, par le professeur
Le-Wu Lu, de l'Université Lehigh à Bethlehem (Penn-

-"$mm&me).

Le lundi 5 juin 1972, à 10 h. 15, en salle B 304 : Accidents
constatés sur les ponts existants, par M. Ed. Rey,
adjoint du Service fédéral des routes et des digues.

Le mercredi 7 juin 1972, à 10 h. 15, à la salle de conférence
l'ITEP, 9, ch. des Délices : Problèmes relatifs à la
construction en bois et en particulier en bois collé, par
M. G. Kaempf, Holzbau AG, à Rupperswil.

Congrès
XXV« Congrès international CEBEDEAU

Liège et Gand, 16-19 mai 1972

Le programme comprend des conférences, discussions
et visites d'étude, sous les thèmes Eau - Air - Corrosion,
entre autres :
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