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Communication de la Chaire de la mécanique de la turbulence
de l'Ecole polytechnique fédérale de Lausanne et du groupe de travail EPFL-ISM

La mécanique aléatoire de Georges Dedebant et Philippe Wehrlé1

par le professeur FRANÇOIS BAATARD, D'ès se. techn., et SIMONE MAGNIN, lie. es se. math., assistante

2e partie: mécanique du
corpuscule aléatoire

(Suite)

Introduction

La mécanique aléatoire est celle du corpuscule aléatoire
défini par sa fonction de distribution R des probabilités
conjuguées positions-vitesses ; R contient donc les
dépendances de probabilités et même toutes les corrélations
définissables dans un fluide :

1) de probabilité, modèle prévisionnel du fluide réel
(lois locales) ;

WÊi réel et dissipatif d'énergie obtenu par des moyennes
de champ calculées à partir de R (lois globales).

Le corpuscule aléatoire R a pour coordonnées de position
et de vitesse des fonctions aléatoires du temps lesquelles
choisies doublement dêrivables en moyenne quadratique
donnent lieu à une mécanique de R qui est celle des milieux
turbulents en instance de diffusion. Le corpuscule aléatoire R
est aussi une association, par le jeu des probabilités
composées, d'une densité de probabilité de présence p (x, y, z; t)
et d'un champ aléatoire des vitesses f (u, v,w ; x, y, z, t)
c. à. d. pour une dimension, par exemple :

R(u,x;t) p(x;t) f(u ; x, t)

Le problème de la diffusion turbulente est dès lors celui
de la connexion des champs de probabilité obtenus à partir
de R. Le mécanisme de la dissipation d'énergie est le

suivant : par relâchement des dépendances de probabilité
dans l'espace positions-'^psses aléatoire, une partie de

l'énergie cinétique se dissémine entre les micro-particules
de l'étage sous-jacent jusqu'au stade thermique. La structure

aléatoire sous-jacente permet donc de rendre compte
des actions de viscosité turbulente, soit des forces de
frottement au niveau des moyennes.

La dépendance de probabilité est parfaitement
déterminée parce que l'incertitude affectant une moyenne
calculée avec la loi de probabilité conjuguée R provient tout
entière du terme d'indépendance en probabilité (hasard

pur et fluctuation). R a ainsi pour pôles le certain et le
hasard pur.

Les dépendances de probabilité R (x, u; t) jouent donc
en mécanique aléatoire le rôle des liaisons (statistiques) ;

elles en constituent la catégorie première ; R est une fonction

d'état définissant le milieu en instance de diffusion.
Comme X et U sont choisies doublement dêrivables en

moyenne quadratique, les moments des divers ordres du
corpuscule aléatoire R sont des fonctions macroscopiques'
dêrivables bien qu'une réalisation quelconque de X ou de
U puisse être parfaitement discontinue.

1 Voir Bulletin technique de la Suisse romande N° 4, du
SlÖSvrier 1972.

L'analyse aléatoire (1er fascicule) constitue la base

mathématique de la mécanique aléatoire.

20. Force d'expansion et diffusion du corpuscule
aléatoire.

Le corpuscule aléatoire est l'ensemble des 3 coord. X,
Y, Z qui sont des fonctions aléatoires du temps, dêrivables
au moins 2 fois en moyenne quadratique.

La mécanique aléatoire repose sur le principe que :

s

/ L \X, X; t) dt est extremum, L étant la fonction de

h
Lagrange.

Cela conduit aux équations :

—Y - dL - 0
dX)

' d~X~

(ce fait est démontré dans « l'analyse aléatoire » : calcul
des variations, § 19) qui s'écrivent dans le cas le plus
simple :

Ü
dxX

V(X) étant le potentiel de la force extérieure.

Nous en tirons immédiatement que :

dv
dx(D x

La mécanique certaine part du principe que :

/ L \X, X,t) dt est extremum ; elle obtient dans le cas

e,

simple où nous sommes placés

Im
(2) X- dx X (car X X, X X, etc.).

(3)

La mécanique certaine néglige donc la force :

d~V dV (*)N
dx dX
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Pour mieux comprendre le véritable sens de cette

expression, supposons que X' A1—A'soit faible devant X,
de telle sorte qu'on puisse développer V(X) en série de
Taylor :

dv\
v(x) v(x + Xj vÇx) + (x-x) dx\x

1 -\2d2V 1 -\3d3V\
2 v ' dX2 \X 3 v ' dX3 \X

Alors :

dx~dx\x+KX X)dxAx+2KX X) dX* X

dv _dv{x) i Y\*d*v
Tx~^r r2KX~X) dx* X

Les neuf dérivées partielles aléatoires des composantes
d'un vecteur :

(ÙX, Ùy, M VX, Vy, V,, WX, Wy, W^

forment un tenseur à composantes aléatoires.
Elles déterminent 45 moments du second ordre :

a) 9 moments quadratiques du type U:

b) 9 moments rectangles du type

c) 9 moments rectangles du type

d) 18 moments rectangles du type

Ces 45 moments du 2e ordre sont les limites, quand
Pi ->- P2, des dérivées partielles par rapport à tous les
couples fournis par deux coordonnées d'indices différents
du groupe de 6 fonctions de 6 variables :

ùx Vy

ùx vx

ùx Vy

L'expression (3) vaut donc :

»m. œÊm
UXU2 (xx, yx, zi ; x2, y2, z%) Vx W2 (xx, yx, z1 ; x2, y2, Za)

F

dx

2X dxs

dxs x dx

x

Nous voyons donc que la mécanique certaine ignore

une force qui dépend de X'2, c'est-à-dire de la diffusion
du corpuscule.

En conclusion, la force de diffusion est une fonction
de la distribution en densité du corpuscule aléatoire :

+00

m -1 pi dv(X) dv(x)\ Ax, t) —=— — =— dx
dx dx

Chapitre IV — Connexion du champ de probabilité
associé au corpuscule R

21. Champ de vecteurs aléatoires associé au corpuscule R.

Dans l'espace à 3 dimension un vecteur aléatoire est
l'ensemble des 3 variables aléatoires: U \P, V \P, W\P
fonctions du point P.

Entre deux points P1 et Pa du fluide de probabilité défini
par R on peut construire les 9 moments conjuguéï»|«||Bp^
deurs macroscopiques définissant le fluide réel) :

(4.1)

UtU2

Vil/*

ÏÏËÊ

UiVz

Vfv*

WxVs

U]_rV2

ViWi

WxWv

qui forment un tenseur non symétrique dit tenseur de
connexion et qui devient symétrique lorsque Pi -*¦ P2 :

c'est alors le tenseur de corrélation dont celui de von Karman

est un cas particulier.
On aurait très bien pu écrire ce tenseur avec les coefficients

de la corrélation et les écarts-types relatifs aux
variables U, V, JÇfgbar exemple :

Ui V2 r«i»a CT«i aH (Puis<lue a*i \U'.2

V\ V2 (xu yu zx ; x2, y%, z%) Ux V2 (xx, yu zx ; x2, y2, z2)

Wx W2 (xu yu zx ; x2, y2, z2) UxW2 (xu ylt z± ; x2, y2, z2)

Cela fournit 9-6 54 moments, mais UiU2 U2Ui),
Vi V2, Wx W2 étant symétriques donnent deux fois les
mêmes dérivées partielles (quand celles-ci sont prises par
rapport à des coordonnées de noms différents) ; ainsi :

WÈÊ d2 — d2 —lun §j—^— UXU2 lim •=—^— UXU2
dxxdy2 dx2dyx

UXUy

Il reste donc bien: 54—9 45 moments distincts.

22. Cas particulier : tenseur de connexion dans le cas
d'homogénéité et d'isotropie.

H se présente comme cas particulier du tenseur (4.1)
qui se simplifie selon la méthode classique de réduction en :

(4.2)

f(r)
0

0

0

00

0

0

g(r)

f(r) etg(r) étant respectivement les fonctions longitudinales
et transversales de corrélation.

23. Fonction de connexion infinitésimale du corpuscule
aléatoire.

Si la fonction de connexion et la corrélation vectorielle
du corpuscule aléatoire correspondent aux fonctions de
connexion et de corrélation vectorielles définies au § 9 du
fascicule 1 ; la connexion infinitésimale du corpuscule
aléatoire est définie par le début du développement en
série de r h :

h2 Ç?¦ r<*)-i-ij|+...
Sq et S\ étant respectivement les écarts-types de la fonction
et de sa dérivée première.

La connaissance de l'écart-type de la dérivée en un point
permet donc l'exploration infinitésimale de la connexion
du corpuscule aléatoire en ce point.

Remarque et conclusion : les propriétés des champs de
vecteurs aléatoires que nous avons énoncées ci-dessus
définissent en fait des propriétés d'une fonction aléatoire
de plusieurs variables.
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Chapitre V — Densité de probabilité conjuguée et
équivalent hydrodynamique du corpuscule aléatoire

24. Equations aux dérivées partielles régissant les
densités de probabilité du corpuscule aléatoire.

Soit X11 une fonction aléatoire de la variable certaine t,
derivable n fois en moyenne quadratique. Cette dérivabilité
va entraîner une forme particulière pour la densité de

probabilité conjuguée de X11, X11,... Xin) 11. Dans le
cas où n 2, c'est-à-dire dans le cas du corpuscule
aléatoire, la densité de probabilité conjuguée S (x, u, a; t)
deX\t, X\t U\t,X\t A\t devra satisfaire à l'équation
aux dérivées partielles :

r/ds ds
I I -s- - • — u+^-a]da 0

ds
du\dt dx

—oo

pour autant que S soit derivable par rapport k t, x, u
X)

'ds ds ds
"t" + -t- U + -zr- i

; dt dx du
r/ds ds ds

et que l [—^ - -^- u + -^- a) da soit continue par rapport

à x et u.

En effet, soit y/ (X, U) une fonction certaine de X et
de U, derivable par rapport à A' et U et s'annulant lorsque
l'une des variables certaines x ou « tend vers + oo. Alors :

d d dw dw
dtW(X,U) -w(X,U)^/x.X+^.U

cette égalité est vérifiée quel que soit i// X, U) derivable
par rapport h X et U, elle devient :

dt m w (x, u) S (x, u, a ; t) du dx da

'dw (x, u)

dx u S (x, u, a; t) dx du da +

+ oo

rri'dw (x, u)
+ 11 5—— aS(x,u,a; t) du dx da

dt

En intégrant par parties le second membre :

+oo

/ / / w (x, u) S (x, u, a ; t) du dx da —
J t- ty
—oo

+ 00

/ / I w (x, u) u S (x, u, a ; t) I du da —

—oo

+oo
CCC < i dS(x,u,a;t)Ui w(x,u)u dx

dx du da

+
+ 00I—oo

+ 00

w (x, u) a S (x, u, a ; /) I dx da
— 00

dS (x, u, a; t)
w (x, u) a du

du cl.x da

Par hypothèse y/(x, u) s'annule si x ou u tend vers i oo,
alors :

w (x, u)
dS (x, u,a; t) dS (x, u, a;t)+ u —dt

+ a

dx

dS (x, u,a;t)
du

dudxda 0

+00

w(x,u)
dS (x, u,a;t) dS (x, u,a;t)

u 1 h
dt dx

dS (x, u,a;t)+ a du
dadudx 0

Cette équation doit être vérifiée pour toute fonction
w (x, u) derivable par rapport à x et u et s'annulant si x
ou u tend vers ± oo ;

+ 00

ids ds ds\
si / I -x- +«-=—\- a^r- aaestcontinueparrapportàJcetM:dt dx du]

d)

Soit A, l'espérance de A lorsque x et u sont donnés :

+oo +O0

r S (x, u,a;t)

-foo

H -f
ds
dx + ds\

"du) da 0

—oo

7 -rr \ .,w S(x,u,a;iA I ai (a x, u : t) da / aJ J R(x,u;t)
—oo —oo

+oo

/ a S (x, u,a; t)da

da

j S(x, u, a ; t)da

T(a\ x, u; t) est la densité de probabilité conditionnelle
de A étant donnés x et u ;

R(x, u; t) est la densité de probabilité conjuguée de X\ t
et X\t.

En remplaçant dans (1) :

?R dR d i

dl + Txu*' du (AR) 0(2)

Dans le cas où Jl, est derivable n fois en moyenne
quadratique, l'équation (1) se généralise sous la forme :

(3)

où M(x,u,a, ,k,l;t) est la densité de probabilité
conjuguée de X\t, X\t X^ \t", pour autant que M
soit derivable par rapport à t,x, u, k et que l'exprès-

+ 00

ÇldM dM dM ,dM\ I
U-x h a s h

dx du
0

— oo

r/dM
slonJ (_ + / -^r— dl soit continue par rapportdk I
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à x, u, a, k. Les équations faisant intervenir la densité

de probabilité conjuguée de X\t, X\t, X<rn)\t, pour
tout 1 ^ m < n, doivent, bien entendu, toujours être
vérifiées. En particulier, si m 1 :

(4)

où R (x, u ; t) est la densité de probabilité conjuguée
de X\t et X\t. Si p(x;t) est la densité de probabilité
de X\t et si U est l'espérance de U lorsque x est donné,
l'équation (4) devient :

-J-oo

r/dR dR\ JJ\Tt+udx)du
— oo

0

(5) dÌ + Jx
Œ>>

Remarques: 1) Lorsque la fonction aléatoire X\t est
remplacée par une fonction vectorielle aléatoire : (Xx I

X211, Xn I l'équation (1) se généralise sous la
forme :

m i (¦
''IdS(xx ,xn,ux ...,un,ax ...,an;t)

dt
(6) -c

as ds
Z^"< + E^airai---rfa»=0

2) Si la fonction aléatoire XIÉ est doublement derivable
en moyenne quadratique et si y/ X est une fonction
certaine de X deux fois derivable :

d2w
dJzVM-dX2

dw ¦¦

dx
Cette équation, moyennant quelques hypothèses

supplémentaires, peut se mettre sous la forme :

d2/)

dt2

d2
(pu2) + ~- (pi) 0

dx

où p (x; t) est la densité de probabilité de X\ t et U2etA
sont les espérances de U2 et A étant donné x.

Exemple : Soit l'équation différentielle :

X+ Q2X= 0

ppïpt le cas de l'oscillateur à fréquence aléatoire : X\t
A sin (Qt—<P) où A, Q et <P sont trois constantes

aléatoires.
Comme XI est doublement derivable en moyenne

quadratique, la densité de probabilité conjuguée de X\t
et XI : R (x, u ; t doit satisfaire à l'équation :

dR
dt

dR d ,r^,i— + — (AR)
d> du

0

qui peut alors s'écrire :

dR dR
-=- + « ^~dt dx

2
dR

narx -=- 0
du

dR
Si Jf|{ est stationnaire, — 0 et il reste:

dt

dR

dx
dR
du

La solution générale de cette équation aux dérivées
partielles est :

R (x, u ; t) R [ —

25. Equation générale de transfert.

Soit S (x, u, a, b, c ; t) la densité de probabilité conjuguée
de X\ t et d'un certain nombre de ses dérivées, par exemple :

X\t, X\t, X\t et X(rn\t. L'équation (3) devient:

-r-w-i

r/ds ds ds ds,
/ \dt dx du da
'7ds ds ds dS dS

+ dbC]dC

Soit une fonction certaine quelconque derivable :

w<X, U,A,B;t)
Alors :

a -i-oo
'

w (x, u,a,b;t) / lds ds ds
^r u + -^r- a +dt dx du

dS dS
&S b + -rr- c de du da db 0
da db

et cela entraîne :

+ 00

Tr/d(wS) d(uwS) d(awS) d(bwS)
dt dx du da

d (cwS)

+

db
de du da db

fin S (^ + dfcy) i
d(aV) d(byt)

\dt dx du da

d (cw)
+ db

de du da db

MI S(-^- + u^- + a^- + b^- + c-^-\ dcdudadb--
dt dx du da db]

Sy/ de du da db

Si S x, u, a, b, e ; t) s'annule lorsque u, a ou b tend
vers + oo, ce qui n'est pas restrictif, cette égalité devient :

¦W'^ + ^U***-dt dx

Sw de du da db

+ oo +oo

a~ Il ¥s de du da db + j- ffjf uy/S de du da dbJJJJ*S
— 00

+00

de du da db
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(7) jtG-p) x\Uw-p) ^-|/j
équation de
transfert.

où p (x; t) est la densité de probabilité de X\ t et ^, f/yr,

^ les espérances de w, Uyr et y/ lorsque x est donné.

Remarque : La grandeur w peut être fonction de X\t
et d'un nombre quelconque de ses dérivées ; il suffit, pour
faire le raisonnement précédent de choisir une densité
de probabilité conjuguée de (X\t et du même nombre
de ses dérivées + un).

Dans le cas général de l'équation (6), l'équation de
transfert (7), devient :

(8) (v-p) + y^ 5Î7 (UiW-p) =y/-pdt dxt

27. Equation de continuité,

a) y/ 1 :

t + WÊÊÈm équation de
continuité

ou, sous une autre forme :

dQp

dt 'Es*-
28. Equations du mouvement et tenseur de corrélation

des vitesses.

b) y/ Uj :

26. Equations aux valeurs probables d'un fluide turbulent.

Toutes les équations des paragraphes précédents ont
été établies sans préjuger d'une application quelconque :

mais il va apparaître ici que ces équations contiennent
implicitement celles aux valeurs probables d'un fluide
turbulent. H devient évident que l'on peut assimiler la
densité du fluide turbulent à la densité de probabilité

SÀnuguée p (Xt ; t) du corpuscule aléatoire R dont les
coordonnées Xf sont des fonctions aléatoires doublement
dêrivables en moyenne quadratique ; la vitesse moyenne
U Xi ; t) du fluide en chaque point étant la moyenne
liée de la vitesse aléatoire de la particule.

Soient
s

U'i^m-Ui, C'2=VUi, w'=w-p, A'i Ai-At
i^l

d0—> —>d„p —• v~i d0 TT I TT "r I ~TT \ArP p-zU{+Ut-%- + pUidt dt i-i 3 i=i }

0 (équation de continuité)

d0U( —i 1 v-i d r—¦—i \-^--plLdx-j^w*r j~x 3
dt

equations
du
mouvement
probable.

Si T est le tenseur :

-pîP2 -pÜ[~U'2 -pu', U's

-pU'x U'2 -pU'2

-pU'xU'3 -pU'2U's

-pU2 u'3

-pü?

d0 d v~i —i d
Soit maintenant 1 operateur — ¦& + U{ ^r—dt dt /—> dxt

1=1

d0 Vi
~p Ldxj i}Ai +

L'équation de transfert (8) peut s'écrire :

—, n S *,

<p-p JtG-p)+Yidx'SU<,r'-p)

d_r^
dt

3

(?•/»+E ^Œw»+S s; tor?)
d ~ mm$M

i=1 î-i
+ tjxSv^pp)

4 1 »

W ¦P-jt(wp) + PW^(Ui+^t(ûiyPp)

En remplaçant w par 1, U{ et — C'2, l'équation précédente

donnera respectivement l'équation de continuité,
les équations du mouvement probable et l'équation
d'énergie.

29. Equation thermodynamique et d'énergie du fluide
turbulent.

c) w | y c2

2-p-i(wpc*)-1 d
~ïlt dt\2 PE£,^

+
d

Zdx-\U<r&E

iSoient K — C'2 le module de la vitesse d'agitation et

S ln(K'l'-p~WÊl'entxopie de l'étage de perturbation,
3

alors : S — MM— In p et :

d0S
_

3 d0K
_

1 d0p

dt ~ 2K dt p dt

d0S 3 d0K d0p
pKHZ -2p-aT+Klû
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L'équation (9) devient :

d„/31 d n-%
2 dt y dt\2 pK) + hKidiUi

+ fd_Lidxi U'Cr2P

L*c*.p=ud^+ipdm?-pKvliït2 dt y 2 dt 2 r dt 2 r i-{ dxt

L'équation thermodynamique et d'énergie du fluide
turbulent contient :

Le premier membre représente le flux d'énergie turbulente

à travers les parois d'une micro-particule.

Les termes du second membre représentent :

1er terme : le produit de la variation d'entropie de
l'étage de perturbation par le module de la vitesse d'agitation

qui est l'analogue de la température car p K= — p C2

+ V — 'mc2^

WÊHKUk
dxt \2

KY,-5-Vi + ~C'2-pI—i dxi 2dt2 dt dt dt 2

d

o

E

- Kp > |K U( (éq. de continuité)
2 a—i dx,i-i *

*feujc2)=-PKd-£+
dxt\2 * J F dt ^FAir-r

Calcul du terme : — — C'2
2 dt

2 Jt C ~1 LâUt - LUt dt LUt dti-i
3 'dût v« d ÏM UA--E<'=E^-E^+Eé(®i-l <-l 4-1 ^ }=1 f.

-t^-tiZ^-i^-tt^ë,
• -1 »~ï^^t-: *~1 T^l 1-1 '
Alors :

d (PITTAI
dxt \2

dnS 1«oO i -rrx V^ apK^+JC<2pY^ u{

+pYu'(â~î -/>££&
«-11^1

',dUi
TT 'Tl' l

dxj

Ainsi le tenseur de turbulence prend l'aspect suivant :

T'-

1 —n
-p If? + -p C'2 -p U[ m -p U'x U's

-pUiU'2 -pU'2 + -pC2 -pU'2U's

-pUiU'3 ~pU'2U's -pU'a2 + jp C'2

On remarque qu'il peut être décomposé en un tenseur
des tensions (ou des viscosités turbulentes) construit à

partir des corrélations des vitesses T{j —p U't Uj et en

un tenseur des pressions turbulentes Pt] m — p C"2 ôy

Donc:

d iPiak
i—ldxAl

doS vi vi dUijiuiWH^im^j:^jLidxji i-i J

(équation d'énergie)
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2e terme : le travail accompli par les tensions de
viscosité turbulente, autrement dit, la quantité d'énergie
cinétique du mouvement moyen qui, par unité de temps,
se dissipe en énergie turbulente.

3e terme : une fonction dissipative dépendant des
corrélations vitesse-accélération.

30. Quelques conclusions au sujet des équations
précédentes.

La mécanique aléatoire a ainsi pu être particularisée en
une mécanique des fluides turbulents et dissipatifs dont
quelques équations fondamentales sont écrites ci-dessus.

D'autres résultats et grandeurs de la mécanique de la
turbulence peuvent être obtenus facilement en utilisant la
dérivée en moyenne quadratique et les propriétés
mathématiques du corpuscule aléatoire :

micro et macro-échelles de la turbulence, loi de la
décroissance de Taylor, etc.

Une analyse spectrale plus complète que celle que
permettent les calculs traditionnels fournit également
d'intéressants renseignements (voir plus loin).

31. Primitive X de U et mécanique de la diffusion.

En plus de la force d'expansion du corpuscule aléatoire
il existe ime autre circonstance qui explique que la mécanique

aléatoire soit justement celle de la diffusion
turbulente : elle est liée à une indétermination plus grande
que celle de la mécanique certaine dans laquelle une vitesse
définit un seul corpuscule à un changement d'origine
près. En effet la primitive X de U, définie par son moment
rectangle, dépend d'une fonction arbitraire.

Il y a donc une infinité de corpuscules distincts admettant
la même vitesse.

Chapitre VI — Cinématique statistique du corpuscule
aléatoire dans l'espace de Hilbert

32. L'espace aléatoire est un espace de Hubert.

Soit E l'ensemble des variables aléatoires.

E est un espace vectoriel sur R, en effet :

l'ensemble E muni de la loi + : (X, Y) -*¦ X + y est un
groupe:

(X+ Y) + Z=* X+(Y+Z)
X X

il existe un élément 0 tel que : 0 + X X
il existe toujours un élément (—X) tel que : X + (—X) 0

L'application : (tx, X) -*¦ a X a g R, X€ E



vérifie: X(pX) (Xp)X
(X + p) X XX + pX

1-X X
X(X + Y) XX+ XY

ceci quels que soient X, Y, Z g E et X et p g R.

L'application (X, Y) ->¦ XY est une forme hermitienne
de Ex E dans R, en effet :

(X+ Y) Z= XZ+ YZ

aX-Y= ixXY

~XY= Yx

Cette forme hermitienne est positive car X2 ^ 0, quel

que soit X; elle est même définie positive car si X2 0,
X 0 et réciproquemerJtjfï!

Comme l'espace E est complet, E est un espace de

Hilbert.

33. Cinématique aléatoire stationnaire.

Comme E est un espace de Hubert, l'inégalité de Schwarz
est vérifiée (c'est d'ailleurs une conséquence de la lre
condition de cohérence) :

2

xy^ ^Épi
La norme de X peut alors se définir comme étant

|| x\\ \lx2 \ X +X'2

et le produit scalaire est l'application (X, Y) -»• XY.

Cas aléatoire stationnaire : soit une fonction aléatoire

X\t stationnaire telle que X\t 0, X2\t S2,, X\t X\^.h
S%r(h)

L'« angle » a entre X\t et X\t+h est alors donné par :

XltXit+k
cos a. -g r (h)

et le carré de la distance comprise entre les extrémités
de X\ t et X\ t+/l vaut :

d2 (X\t+h-X\t)2 2 S2 (1 -r (A) 2 S2 (1 - cos a)

La formule obtenue est, en fait, celle de la géométrie
classique donnant la longueur d du 3e côté d'un triangle
isocèle dont on connaît l'angle opposé a et la longueur SQ

des 2 côtés égaux.

Si la fonction aléatoire X11 est derivable, r (h) peut se

développer sous la forme :

r(h)= 1
Sf h2 SJA^
S§2! S%4\

où Si est l'écart type de la dérivée ième de X\

Lorsque h dt est très petit, l'élément d'arc de la
trajectoire hilbertienne vaudra : ds partie principale de

d partie principale de So \2 (1 —r (h) ); en remplaçant
r (h) par son développement ds devient :

ds Sxdt v
ds

~dt Si

Par conséquent, la vitesse du point représentatif sur sa
trajectoire est constante et égale à l'écart type Si.

L'accélération tangentielle est alors nulle et l'accélération

est entièrement normale. Elle vaut :

v^
7n

VCX_lt+2Ä—2XlM-ft
llm - -^2-ft-s-0

x\tf
A2

7n

34. Calcul du rayon de courbure et du rayon de torsion.

Calcul du rayon de courbure : c'est la limite du rayon
du cercle circonscrit au triangle X\t, X\t+h, X\t+h+^,
quand h et k tendent simultanément et indépendamment
vers 0.

Les côtés a, b, c du triangle dont les sommets sont les
extrémités de X\t, X\t+h et X\t+h+ic ont pour partie
principale :

a \l(X\t+h~X\t)2 =So V2(l-r(A))

S0 2|SjÄ2_SlÄ*
S% 2 S2 4

SfÄ2-Sl

Si h3

12
Sxh-

S|Ä3 JA
~~S7'2ÀJ +

•^mmm
vVl, -X\l+hV Sxk- S\k^

Si 24

c vVlt+n+*-X\ù2 Sx(h+k)-$^t^3 -

Sip
a +

Si 24

l'aire du triangle vaut :

SiS2 (h + k) hk
A sjp(p—a) (p-b) (p—c)

Le produit des côtés vaut :

abc Sfhk(h + k) +

Par conséquent, la limite du rayon du cercle circonscrit
ab c\— vaut:

R
Sl(h + k)hk

_ Sj
SiSa (h + k) hk ~ SÏ

Remarque : on arrive de façon plus rapide à ce résultat
si on emploie directement la formule de géométrie :
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IIXII3 Sf Sf

IlixXll SiS2 S2

La norme du produit vectoriel du dénominateur est le

produit des normes de XI% et X\t car ces deux vecteurs

sont «perpendiculaires»: X\tX\t 0 dans le cas
stationnaire.

Calcul du rayon de torsion :

La formule employée en géométrie donne :

(XxX)2 (SiSa)2

En effet :

Ri
dét(X,X,X) X2 XX XX

XX X2 XX

Ri
(SlS2)2

si 0 — V2^2
o si \0-

-si o SÌ

XX XX X2

(Sx S,)2

\fsfsjsf^s~f

Si S2

v/sfsjj-s
Ri

35. Cinématique dans le cas général.

Cas général :
Soit X'\t la partie purement aléatoire de X\t: X'\t
x\t-xTt.

Alors :

r (t, t + h)
X'\tX'\ x'ix'l

s/^v/F2!^ s0(t)s0(t + h)

En supposant que S0(t) et X'\t soient un certain nombre
de fois dêrivables :

S0 (t + h) S0 (t) + hS'0 (t) +
h2 „ s

h3 „+ 2]S0(t)+-S%(t)+

X% X'\t+h A"2|( + h X% X% + - X'\t X'\t +

h3 ^~+ Ylx'\tx'\t+
S2 (t) + h So (t) S'0 (t) + j- (S0 (0 S„ (/) + S'02 (t)-

- Si (t)) + ^y (So (/) S? (0 + 3 S'0(l) S0(t) - 3 Si «Si (0) +

Sg X'211 d'où, en dérivant : S0 S'0 X' 11X' I,

En dérivant une seconde fois :

S0S"0+ S02 X'\t X'\t + X'2\t X'\tX'\t + s\

et: X 11 X I j — Sq S0 + S0 sx

De même :

Si A"2|( d'où X'\tX'\t SXS[

et X'\tX'\t + X'\tX'\t S0S"0 + 3SQS'Ó-2SXS'X

d'où : X'I tFlt SpS^-f 3 SoS'ó - 3 Si S^

En remplaçant S0 (f + h) et X' I t+Ä par leur développement

dans l'expression de r(t,t + h), r (t, t + h)
prend la forme :

r(t,t+h)=l

h4

h S0 —£>x h (SoS0S0—SoSxSx—S0 +S0Sj)
2 S2 2Sg

Ar= (4SgS0S^ + 3S?SÔ2 - 4SBSiS^ - 45^ +

+ SgS| - 18 S0S02S"0 - 12 S02Sf + 12 S04 + 6 S0SÔSf +

+ 12S0S0SiS;)+...

Comme dans le cas aléatoire stationnaire, le module
de la vitesse v vaut Sx(t) et celui de l'accélération vaut S2(r)
mais cette accélération n'est plus entièrement normale à

la trajectoire car ici Si dépend de t et possède ime dérivée
non nulle :

dv
— accélération tangentielle : —- Sx (t) ysdt

- accélération normaS 7» \ S\(t)—S'2(t)

Le rayon de courbure de la trajectoire vaut alors :

Il ill3 S3 Sl(t)
Il x x x II SiVsl-si2 yjsi(t)-s'x2(t)

R

Conclusion : on voit donc que tous les éléments ciné-
matiques sont calculés en fonction des écarts types de la
fonction aléatoire et de ses dérivées, ainsi que de leurs
dérivées.
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