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BULLETIN TECHNIQUE DE LA SUISSE ROMANDE

98*année 29 avril 1972 N°9

COMMUNICATION DES CHAIRES DE MACHINES ELECTRIQUES DE L'EPF-LAUSANNE (Professeurs MM. J. Chatelain et M. Jufer)

Calcul direct de I'énergie électromagnétique par approximation
de la fonction de potentiel magnétique

par DENIS DERRON

Calcul
de I'énergie électromagnétique

1. Introduction

Le but de la méthode proposée est de pouvoir calculer
rapidement 1’énergie électromagnétique d’un domaine non
saturé et homogene, en connaissant les conditions sur la
frontiére de ce domaine, mais sans passer par les résolu-
tions traditionnelles du probléme de Dirichlet.

2. Hypothéses

— La perméabilité u est constante dans le domaine
considéré.

— La densité de courant J est nulle.

— Le domaine est de forme cylindrique et peut se traiter
comme un domaine bidimensionnel, dans un plan
perpendiculaire & I’axe du cylindre.

— Les équations de Maxwell au départ sont les sui-

vantes :
- —
(€)) rot H=0
@) divH=0

3. Probléme mathématique

L’énergie électromagnétique W, dans un volume v de
frontiere .S se calcule a 'aide de I'intégrale :

(€)) W=%[[/;B.Hdv

De I’équation (1), se déduit immédiatement que
— —
H = —grad 0

H dérive d’un potentiel magnétique scalaire 0.
D’autre part, I’équation (2) nous donne :

—divgrad§ = 0
d’ou 40 =0

0 est donc un champ laplacien.
Soit x, y, z, des coordonnées cartésiennes dans le
volume v.

0 (x, y, z) est une fonction harmonique dans le volume .

En effet : — elle est de classe C?;
— elle satisfait a I’équation de Laplace ;
— elle est continue dans ’ensemble fermé
v+ S.

Revenons a (3) :

W= /[// L Hdy = /—‘2_/] (grad 0)% dv

Jdu

Donc (4) W= %‘ ff/ (erad 0)? dx dy dz

Passons au probléme plan :

Etant donné les hypothéses faites, nous avons un
volume v cylindrique ; et nous ne nous occupons que d’une
« tranche » plane de ce cylindre, le domaine D de fron-
tiere I'. D est dans le plan (x, y).

34

Fig. 1.

L étant la longueur du cylindre considéré, nous avons
maintenant la formulation mathématique du probléme a
résoudre, soit :

) g // (grad 0)? dx dy
2./ D

Probléme : Tenant compte des conditions ci-dessus, et
connaissant la valeur « g » de @ sur I, déterminer W.

4. Principe de la méthode

Supposons connues les fonctions harmoniques :
Vo, ) =15 N, »); ...5 Valx, )

On recherche une approximation V (x, y) de 0 (x, »), de
la forme :

n
V=2GCV(x,y)
i=0
avec la condition (6) // (g[;l)d H—gr;d V)? dx dy = mini-
D

[

mum.
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Puisque g;;d Vo = 0, cette condition ne permet pas de
déterminer le coefficient Cy, ce qui ne joue aucun réle,
puisque I’on désire calculer (5) et non pas 0 lui-méme.

Désormais, on ignore ¥V, et ’on peut poser :

n
V=2 C;V;(x,y)

i=1
Les C; restent donc a déterminer, a I'aide de la condi-

tion (6), qui peut se mettre sous la forme :

f[(grad(@ EC V) - grad(H ):C V)>dxdy—0
i=1
d’ou (7) :

// (grad (0— ZC V;)-grad Vi) dx dy = 0 (i = 1,2,...,n)
On peut transformer cette derniére relation par la for-

mule de Green.
Soit fet &, deux fonctions de classe C?:

[/gr;)df-gr?dhclxdy:—// f-Ahdx dy +
v D D

e

dh
e L
+L[1-f dn

dh
ou n est la dérivée de i dans la direction de la normale

®)

extérieure a /.

En posant : f=0-XCV;

h=1V,

avec 4V; = 0 par définition

(7) devient : [(0—2 Cj
I

e J=1

dv;
V]> o ds =0

Ou encore :
% dV; o dv;
9 z , — ds| C;= “ds (i =
( ) Iy (b/[“ 3 dn > J v/[‘ ({I] 5 = ”)

On remarque que le membre de droite peut étre calculé
directement puisque € est connu sur /' ( = g donné) ; le
membre de gauche (sauf C;) est également connu.

Posons :  (10) a; = / V]——ds A = (a;)

dV;

(11) bl-z/ e b =)

dn
¢ =(
(9) devient le systéme d’équations linéaires :
— —
(12) AC=b

D’autre part, en posant dans (8) f= V, h = V, et en
tenant compte du fait que 4V = 0, il vient :

2 [/NV Lhd —> 5 IV
= // (grad V)% dx dy = / vV b 5 ds
-L i) D J I
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A7 .
x U el ds> € G =CEid-C=0%
r dn

i,j=1

W étant I'approximation de W cherchée :

,uL
D

~

13) W2

5. Résumé de la méthode
1. Calculer les éléments a;; et b; selon (10) et (11).
2. Résoudre (12).

34 W est I'approximation de W cherchée sous (5).

6. Remarques

— En posant dans (8) f =
ona:

Vi, h=V;, avec AV; =0,

— = 2 dV,-
@y = grad Vj-grad V; dx dy = / v,—ds
JJ D T dn

Ceci prouve la symétrie de la matrice 4 : a;; = ay;.

— On pourrait calculer a;; par une intégrale de surface ;
il est cependant beaucoup plus simple et plus rapide
d’utiliser les intégrales sur la frontiére, c’est-a-dire

(10).

7. Choix des fonctions V;

Soit Z = x + iy. On sait, de par la théorie des fonc-
tions analytiques, que les fonctions :

ok (x,y) = Re (Z%)
Pr (x,y) = Jm (Z¥)

sont des fonctions harmoniques ; on peut donc poser :

V1=a1 V‘l:ﬂl V3=O(2 V4:‘82 V5:a3
=/)’3

De plus, nous avons les relations :

J P)
: (—7—'\_0{1; (x,y) = E[)’K (x,y) = K-Re{ZK—l}
(14

d ) '
e Pr(x,») = — 7y % (x,») = K-Jm {ZE1)

Loi de formation des fonctions V; :

A Taide du bindme de Newton, on peut trouver les for-
mules donnant directement les fonctions V; (x, y).

a) i est impair :

[+ 1
Posons m= a0
2
K+ 1,1
2[ 3 ]+1
P ZZ xmIHL il
(IS) 1= 153554
Yk
m-(m—1). ... .j 2
ek KT LY

(m—j+ 1)!



i
Posons = —
m 5
K0, 1
2[ 7 1]
:Bm =V; :Z Fitl yj-l‘
(16) j=2,4,6,...
i+2
m-(m—1). ... .j 2
L (-
(m—j+ 1!

8. Intégration curviligne numérique

Les intégrales (10), (11) sont de la forme :

=]

dh
t/rfﬁ ds,

- —
Soit » (n,, n,) la normale extérieure, et S(S,,S,), la
tangente a /[, orientée dans le sens trigonométrique positif.
On a:

n, =S,
ny, = —S,

<]

donc : /
T

t .
. 2 h.S,ds— = h-S,d
t/rf 9x1 y ds ) rf Hyz ' ds

dh b d % )
f—d;l- ds hc/rf-<9—xh-nx + a—ylz-ny) ds

Dans notre cas, nous connaissons explicitement

J %
— h et f—#
f(7x ¢ f&y '
(voir formule (14) ). Nous sommes donc ramenés au calcul
d’intégrales de la forme :

=]

/p~SIds et/ q-S, ds
J T ¢

0y
o4

Fig. 2.

On remplace I par un contour polygonal, et I’on est dés
lors ramené a évaluer les intégrales sur un segment de
droite.

Considérons par exemple :

/ pS,ds

Pi Pi+1

141 X101t Yi4q!

Fig. 3.

Soit S; et S;.i, les abscisses curvilignes de P; et
P,,,;0na:

/

[
Pi Pi+l

=]

Srish e 5 / SHL b (x(s), 2(s)) ds
Si

S, étant bien entendu constant sur une droite, on a une
intégrale ordinaire dans le membre de gauche. On utilise la
formule du trapéze :

» . Sz' _Si
s, / Si+1 p (x(s), y (s)) ds = S, _+12_.7 (p(x(Sy), ¥(Sy) +
J si

+ p(x(Si1), ¥(Si1)

Xit1—

%
= fl (p(x3, y2) + p(Xi51, Yir1)

Le méme calcul peut étre fait pour la seconde intégrale ;
on a donc les approximations :

2

Xit1—X;
[ pSeds =T, 30 + plias, v
Pi Pit+1
(17)
Yisi—Vi
/ qSyds = +12 ‘ (qCxs, ¥ + q(xit1, Yi41)
Pi Pi+l

9. Calcul des q;

Toute figure géométrique peut étre mise sous la forme
d’un polygone. Pour toute courbe qui n’est pas une droite,
il est évident que I'approximation sera d’autant meilleure
que le nombre de cotés du polygone est plus grand.

Soit M le nombre de sommets du polygone. De (10) et
(17), nous tirons :

2

(IU-‘_-/
r

(%

v v,
/ v, 0L, ds
r

V———LdA:/V--———I-,d— .
" dn © Jrlodx s . dy

dv; dV;
=Wy t-hg

Posons : f =
X

¥ Vi1~
1 Ym
(7 (qxems ym) + X ps15 Yime1)) —

Ay = 2
’ m=1 2
Xm+1—X
- % (pCemy ym) + P(Xmaa, J"'m+1)))
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Suivant la parité de i et j, nous sommes amenés a distin-
guer quatre cas pour a;;.

i
Posons: Z,2% =R, m * =Tn

a) i et j sont pairs :

i
Qi = Z 2 (Jm (Em)'-’m (§m)'(}’m+1 —¥Ym1)—

m

—Jm (Em) -Re (§m) (merl_xm—l))
b) i et j sont impairs :
i+ 1
ajj; = T 2 (Re (Zm) ‘Re (gm.) mir—Ym-1) +
m

+ Re (Im) -Jm (gm) (xm+1_xm—1))

c) i est pair et j est impair :
i
Ay = Z 2 (Re Tw) - Im (S) - Ums1—Ym-1) —
m
—Re (Im) .Re (§m) (Xm+1 "'xm—l))

d) i est impair et j est pair :
i+ 1

4

+ Jm (Bm) -Jm (Qm) (xm+1_xm—1))

Qi = 2 (Jm (Bm) - Re (gm) “m+1—VYm-1) +

10. Calcul des b;

Des équations (11) et (17), nous pouvons tirer :

dv;
b,=/g ds=./‘qSyds~ [pSzds
Jr dn T T

[

E ; dav; dav;
n posant: =g — =g
p P=i& dy 4=8 o
M
Ym+1—Vm—
bi =2 <_,E+—2L1 'l](z\'m, ym)_
m=1
Xm+1—Xm—1
= f P (xrm ym)

Suivant la parité de i, nous distinguerons deux cas
pour b; :

a) I est pair :
i

bi:4

X (gm -Jm (§m) (ym-)-l ‘ynz—l) =
m
—Em* Re (gm) ° (merl _an—l))
b) i est impair :
i4+1

bi o= _—4""' 2 (gm *Re (Qm) * (ym+1 _ym—l) +
m

‘+‘ Em* Jm (gm) (xm +1 _xm—l))
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Nous avons maintenant tous les éléments pour résoudre
le systéme (12), donc pour calculer I’énergie. Mais, sans
beaucoup de calculs supplémentaires, la méthode nous
fournit d’autres renseignements intéressants, comme nous
allons le voir.

11. Calcul des potentiels

11 peut étre en effet intéressant de connaitre le potentiel
magnétique @ en un ou plusieurs points de coordonnées
données, afin par exemple de dessiner les lignes €quipo-
tentielles.

Cependant, il est bien évident que I’énergie ne dépend
pas de la valeur absolue des potentiels, mais uniquement
de leur répartition dans le plan. Ceci se traduit mathéma-
tiquement par le fait que C, est indéterminé. Nous sommes
donc amenés a choisir arbitrairement un point de la figure
comme point de référence pour les valeurs du potentiel,
ce qui permet de déterminer C,, a I’aide des formules (15)
et (16).

Nous avons en effet :

O(Xw yo) = Cu o 2@ Ci Vz (xoa yo)

12. Calcul du champ magnétique

La aussi, la valeur du champ, ainsi que sa direction,
sont des grandeurs intéressantes a connaitre (pour des
questions de saturation par exemple).

— —
Par définition, H = —grad 6.

Soit (x,, ¥,) les coordonnées du point dont on veut

calculer le champ :
S
9x) X0, Yo

20
Hy (Xos yu) = 9_y> y

H (x5, 7,) =

i+1 it
Hy (X0, y)) = =2 Gy “Re 1(xo + jyo) 2
1.=153:5 =
-2 Cz E 'Jm. {(xo +jyo)?_l}
1=24,6,...

i+ 1 okt

Hl/ (xo: yo) =2 Ci‘ B 'Jm (xo == /yo) 2
1=1,3.5...

1=2,4,6,..:

1 L
+ 2 G- ”2“ -Re {(xo + jyo) 2 1}

Ici, j =\ —1

13. Applications pratiques de la méthode

13.1 Définition d’un systéme d’axes cartésiens

On a tout avantage a choisir un systéme dont I’origine se
situe prés du « centre » du domaine, de fagcon a diminuer
les erreurs d’arrondi de I’ordinateur.

13.2 Définition de la frontiére I"

Pour le moment, nous ne considérons que les domaines
ayant une frontiére d’un seul tenant, c’est-a-dire sans ilots.



Drautre part, on peut considérer que les machines élec-
triques nous offrent des domaines dont les frontiéres com-
prennent soit des segments de cercles, soit des segments de
droite. Ceci permet de faire un programme de « polygona-
lisation » entiérement automatique de n’importe quelle
figure géométrique, avec autant de points qu’on le désire
sur le pourtour.

13.3 Définition de la fonction g

La fonction g fixe les conditions aux limites du potentiel.
Cette fonction doit étre définie en tous les sommets du
polygone formant /. Il est avantageux de faire un pro-
gramme automatique pour calculer g suivant des réparti-
tions linéaires ou sinusoidales.

14. Résultats pratiques

Pour avoir une bonne idée de la précision de la méthode,
il est nécessaire de choisir tout d’abord des figures géomé-
triques simples, pour lesquelles il est possible de définir
mathématiquement I’énergie, sans devoir utiliser des
méthodes approchées, elles-mémes imprécises.

14.1 Remarques

14.1.1 Nombre d’approximations V;

Le programme de calcul a été fait en simple précision.
De ce fait, on remarque que quelle que soit la figure, il est
inutile d’aller beaucoup au-dela de 10 (dix) approximations,
car alors les erreurs d’arrondi de I'ordinateur diminuent la
précision. Par contre, on doit prendre au moins 5 (cing)
approximations pour avoir un résultat correct.

14.1.2  Nombre de sommets du contour I

11 existe une certaine corrélation entre le nombre d’ap-
proximations I et M, le nombre de sommets de /. En
pratique, on remarque qu’il est favorable de prendre M
50 a 100 fois plus grand que 1.

14.1.3  Résultats pour le calcul de I’énergie

On constate que pour des figures « simples » (triangles,
carrés, et les figures convexes), la précision obtenue est
excellente, puisqu’elle est supérieure au °/yo.

Par contre, dés que le domaine se complique, et que ’on
a une frontiére telle une denture par exemple, les résultats
deviennent complétement faux. Comme limite d’utilisa-
tion, on peut fixer une figure en forme de « L », ou l'erreur
est de 'ordre du %, sur la valeur de I’énergie.

Mais il faut ici faire une observation trés importante. Si
nous définissons un troisiéme axe cartésien z’, sur lequel
nous reportons les valeurs de g (x, y, z"), nous constatons
que plus la surface g se rapproche d’un plan, meilleure est
la précision. Méme si la figure géométrique est beaucoup
plus compliquée qu’un « L », la précision de la méthode
redevient meilleure que le °/y si g est dans un plan.

14.1.4 Résultats pour le calcul de potentiel

Ici, les résultats sont beaucoup moins bons. En effet, la
méthode a été établie de fagon que I'approximation soit
bonne pour ’énergie, mais sans aucune condition sur la
répartition du potentiel.

De fait, on constate que si g est dans un plan, les condi-
tions aux limites sont respectées, méme si la figure est com-
pliquée. Plus g s’éloigne d’un plan, plus les lignes équipo-
tentielles deviennent imprécises et ’on constate qu’elles
ont tendance 2 se situer elles aussi dans un plan. Dans le
cas de la figure en forme de « L », les équipotentielles peu-

vent étre incorrectement réparties alors que la valeur de
I’énergie est néanmoins précise.
14.1.5 Résultats pour le calcul du champ H

L’on peut simplement dire que, dans la mesure ou les
équipotentielles sont correctes, les valeurs obtenues pour H
le sont aussi.

15. Conclusions

— Meéthode extrémement rapide et précise pour I’énergie.
— Ne convient pas pour des domaines trop compliqués.

— Ne convient que sous certaines conditions pour cal-
culer précisément la répartition du potentiel et du
champ magnétique.

16. Possibilités de développement de la méthode

16.1 Domaines avec ilots

Un premier pas a faire est d’élargir le champ d’applica-
tion de la méthode. Pour cela, il est possible d’introduire la
possibilité d’avoir des ilots dans le domaine :

Rappel : Nous avions les fonctions

i
In\Z2 =8, si 7 est pair
= 3
S
Re\Z 2 | =By si i est impair

Fig. 4.

Soit A = (x4 + jya), X, et ¥, étant les coordonnées du
point A4, point qui se trouve a l'intérieur d’un ilot.

On peut démontrer que, pour traiter ce cas, il faut non
seulement prendre des fonctions Z? comme précédemment,
mais encore des fonctions (£ —A4 )™, donc aux anciennes
fonctions ¥; viennent s’ajouter les nouvelles fonctions V'k :

ald
} . :ﬂ/k
i

RS

In{Z— si k pair
Vik = s

( 0 l_-_ 2_ i v . .
Re{Z—A} =0y si k impair

2

Donc :
0=2XCVi+ XXC'1x V'ik
i

L K

ou L numérote les ilots.
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La suite du calcul est la méme qu’avant, mais, bien
entendu, le nombre de cas pour les a;; et les b; vont aug-
menter. Cette partie de la théorie n’a pas été éprouvée sur
des cas pratiques ; nous ne pouvons par conséquent pas
donner de résultats.

16.2  Augmenter la précision

11 serait certainement possible d’améliorer encore la pré-
cision, et par suite de pouvoir prendre des domaines plus
compliqués, si I’on pouvait prendre un plus grand nombre
d’approximation V;. Pour pouvoir le faire, il faut dimi-
nuer les erreurs d’arrondi, et par conséquent travailler en
double précision.

17. Exemples

a) Figure pour laquelle le potentiel est situé dans le plan :

3(A)

2(A)

1(A) 1(A)
1(A)

0(A) a(A)

Fig. 5.

La répartition du potentiel est linéaire sur les cotés.

W calculé = 0,534.1075 (J)

~

w = 0,534.107° (J)

b) Figure pour laquelle le potentiel n’est pas situé dans
un plan :

0(A) 1000(A)
1000(A) 0(A)
Fig. 6.

Ici aussi, la répartition du potentiel est linéaire sur les
cotés du carré.

W calculé = 0,419 (J)

w =0419 (J)

Les valeurs indiquées sur les figures sont celles du poten-
tiel magnétique en ampéres.
Ces deux exemples représentent les deux sortes de
domaines pour lesquels la méthode est bonne :
a) Un domaine géométriquement « compliqué », mais
avec les valeurs du potentiel situées dans un plan.
b) Un domaine géométriquement « simple », avec les
valeurs du potentiel pouvant étre réparties autrement
que dans un plan.

Nous tenons a remercier tout particulierement M. le
Professeur J. Descloux de I'EPFL, dont les conseils
précieux nous ont permis d’élaborer cette méthode.
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rieur, professeur a I'Université Libre de Bruxelles. Paris,
Eyrolles, éditeur, 1969. — Un volume 16 x 24 cm, 149 pages,
74 figures.

Sous une forme condensée, I’auteur donne quelques prin-
cipes concernant la construction des voiles en béton armé,
puis en expose plus longuement leur calcul :

1. Introduction. — 2. Classification des formes. — 3. Dispo-
sitions architecturales. — 4. Technologie des voiles minces. —
5. Bases du calcul des voiles minces. — 6. Voiles plans. —
7. Calcul des membranes. — 8. Calcul des coques. — 9. Insta-
bilité¢ de I'équilibre.
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