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BULLETIN TECHNIQUE DE LA SUISSE ROMANDE 98'année 29 avril 1972 N°9

COMMUNICATION DES CHAIRES DE MACHINES ÉLECTRIQUES DE L'EPF-LAUSANNE (Professeurs MM. J. Châtelain et M. Jufer)

Calcul direct de l'énergie électromagnétique par approximation
de la fonction de potentiel magnétique
par DENIS DERRON

Calcul
de l'énergie électromagnétique
1. Introduction

Le but de la méthode proposée est de pouvoir calculer
rapidement l'énergie électromagnétique d'un domaine non
saturé et homogène, en connaissant les conditions sur la
frontière de ce domaine, mais sans passer par les résolutions

traditionnelles du problème de Dirichlet.

2. Hypothèses

— La perméabilité ju est constante dans le domaine
considéré.

— La densité de courant J est nulle.
— Le domaine est de forme cylindrique et peut se traiter

comme un domaine bidimensionnel, dans un plan
perpendiculaire à l'axe du cylindre.

— Les équations de Maxwell au départ sont les sui¬
vantes :

(1) rot H 0

(2) div#=0

3. Problème mathématique

L'énergie électromagnétique W, dans un volume v de
frontière S se calcule à l'aide de l'intégrale :

(3) W B.Hdv

De l'équation (1), se déduit immédiatement que

H -grad d

H dérive d'un potentiel magnétique scalaire 0.
D'autre part, l'équation (2) nous donne :

—div grad 0 0

d'où A6 Q

9 est donc un champ laplacien.
Soit x, y, z, des coordonnées cartésiennes dans le

volume v.
d (x, y, z) est une fonction harmonique dans le volume v.

En effet : — elle est de classe Ca ;

— elle satisfait à l'équation de Laplace ;
— elle est continue dans l'ensemble fermé

v + S.

Revenons à (3) :

PÌÌÉ§ dv (grad 6? dv

Donc (4) W- V
(grad 0)2 dx dy dz

Passons au problème plan :

Etant donné les hypothèses faites, nous avons un
volume v cylindrique ; et nous ne nous occupons que d'une
«tranche» plane de ce cylindre, le domaine D de frontière

r. D est dans le plan {x, y).

L
Fig. 1.

L étant la longueur du cylindre considéré, nous avons
maintenant la formulation mathématique du problème à
résoudre, soit :

(5) W=L- ß ff. (grad ô)a dx dy

Problème : Tenant compte des conditions ci-dessus, et
connaissant la valeur « g » de 6 sur r, déterminer W.

4. Principe de la méthode

Supposons connues les fonctions harmoniques :

V0'x,y) l; V^y); ...; V„(x,y)

On recherche une approximation V(x, y) de 6 (x, y), de
la forme :

V=ZC{V,(x,y)
<-o

avec la condition (6) / / (grad 0—grad F)8 dx dy => mini-

153



Puisque grad V0 0, cette condition ne permet pas de
déterminer le coefficient C0, ce qui ne joue aucun rôle,
puisque l'on désire calculer (5) et non pas 0 lui-même.

Désormais, on ignore V0 et l'on peut poser :

K=27 QVt(x,y)
i-l

E
dV,

V,— ds\CjCt= CT-A-C= CT-b1 dn ' }

(13)

W étant l'approximation de W cherchée :

ß-LW= CT-b-

Les Ci restent donc à déterminer, à l'aide de la condition

(6), qui peut se mettre sous la forme :

¦^ Cj (grtd (0-Z c, V})-grad (0-2? C, Vu) dxdy 0

d'où (7) :

(grad (0-27 C, K,) • grad K,) dx dy 0 (i 1,2,..., n)
D }-l

On peut transformer cette dernière relation par la
formule de Green.

Soit/et h, deux fonctions de classe C2 :

(8)
IL grad/-grad hdxdy ¦ %'¦Ah dx dy +

f dh
af- — • ds

p dn

dh
où — est la dérivée de h dans la direction de la normale

dn
extérieure à r.

En posant : / 0—27 C, V]

h=V,
avec A Vt 0 par définition

n \ dV*
0-27 Ct Vj)—±ds 0

r\ }=1 'j dn
(7) devient :

Ou encore :

dVi \ r dV,
(9) 27 / Vt —l- ds)Ci= / 0 —« ds (i 1, 2, n)

i=i \J r dn dn

On remarque que le membre de droite peut être calculé
directement puisque 0 est connu sur riß g donné) ; le
membre de gauche (sauf Q) est également connu.

C dV*
Posons : (10) ati I Vj —?- ds A (<%)

(11) b(
dVt

g~Tdsdn
b (bt)

~c (c{)

(9) devient le système d'équations linéaires :

(12) A C t
D'autre part, en posant dans (8) / V, h V, et en

tenant compte du fait que A V 0, il vient :

2 W
_ (grad Vf dxdy= f V-^ ds

5. Résumé de la méthode

1. Calculer les éléments a# et bt selon (10) et (11).

2. Résoudre (12).

3. West l'approximation de W cherchée sous (5).

6. Remarques

— En posant dans (8) / Vj, h Vt, avec AV( 0,

a»= iiJJ D
grad Vt • grad V{ dx dy ir' dn

ds

Ceci prouve la symétrie de la matrice A : «y a#.

On pourrait calculer a# par une intégrale de surface ;
il est cependant beaucoup plus simple et plus rapide
d'utiliser les intégrales sur la frontière, c'est-à-dire
(10).

7. Choix des fonctions Vt

Soit Z=x + iy. On sait, de par la théorie des fonctions

analytiques, que les fonctions :

<xK(x,y) Re(ZK)

ßK(x,y) Jm(ZK)

sont des fonctions harmoniques ; on peut donc poser :

V1 oc1 K2 ft Fs a2 F4 & V5 a3
V6 ß3

De plus, nous avons les relations :

t— <*x (x, y) 3-d x d y

A A
- «k (x, y) ^-ßK (x, y) K- Re {z*-1}

(14)
si s)

5- ßK (x, y)=-jr«K (x, y) K-Jm {ZK~1}
d x dy y— >

Loi de formation des fonctions Vf :
A l'aide du binôme de ïjifewton, on peut trouver les

formules donnant directement les fonctions Vt (x, y).

a) / est impair :

Posons m

(15)

/+1

m +1

J r dn

*%m xm-j+l yi-1
J 1.3,5,.

1+1
m-(m—1). m d2

(m-j + 1)
V *¦)
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Posons m

2[-4- + ']

(16)

ßm=Vt=Y1 X

/= 2,4,6,

m-1+1 yl-1.

i+2
m-(m—\) j 2

(m-j + 1)

8. Intégration curviligne numérique

Les intégrales (10), (11) sont de la forme :

I f& il—> —>

Soit n (nx, n,,) la normale extérieure, et S (Sx, Sy), la
tangente à r, orientée dans le sens trigonométrique positif.
On a:

P, (x yj1 i 'i

pi*i C>W W

Fie. 3.

Soit Sj et Si+i, les abscisses curvilignes de Pt et
Pi+1 ; on a :

/ p Sx ds Sx I '<Sxds Sx j gf p (xfr), X*)) *
s*

Wy — Òa;

donc :

Cf ^h-SydS- Cf j-h-SXdS

Dans notre cas, nous connaissons explicitement

f~h et /|-A^ c'y

(voir formule (14) Nous sommes donc ramenés au calcul
d'intégrales de la forme :

/ p-Sxds et / q-Sy ds

Sx étant bien entendu constant sur une droite, on a une
intégrale ordinaire dans le membre de gauche. On utilise la
formule du trapèze :

S, f St+1
P (x(s), y (s)) ds Sx

Si+1~Si
(p(x(S,), fR +

J st *

+ P(x(S(+i), y(Si+{))

-^—- (p(xì, yù + p(xi+i, yi+i))

Le même calcul peut être fait pour la seconde intégrale ;

on a donc les approximations :

p Sxds - (p(xt, yù + p(xi+l, y(+ù)

(17)

f qSyds= -^-—i (q(Xi, yù + q(Xi+1, y(+1))

Fig.

On remplace /'par un contour polygonal, et l'on est dès
lors ramené à évaluer les intégrales sur un segment de
droite.

Considérons par exemple :

pSxds

9. Calcul des ai}

Toute figure géométrique peut être mise sous la forme
d'un polygone. Pour toute courbe qui n'est pas une droite,
il est évident que l'approximation sera d'autant meilleure
que le nombre de côtés du polygone est plus grand.

Soit M le nombre de sommets du polygone. De (10) et
(17), nous tirons :

mLv>% *-[/'%•*'* -./>J r
\,dVt

dy
Sxds

dVt dVi
Posons : p V» —^ q V» 19

dy dx

ym+i ~y»M
27

Xm+1 X„

(l(xm, yrrù + ?(*m+l> JWl))"

(p(xm, y«d + p(xm+i, ym+ù)
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Suivant la parité de i et j, nous sommes amenés à distinguer

quatre cas pour ati.

Posons : Zm 2 R-

a) i et j sont pairs :

7 2 T^±m J_m

t—1

Z 2 u

<kl -r 27 (Jm (RJ ¦ Jm (Sm) ¦ (ym+1 -ym-ù -

^ m

— Jm (JLJ ¦ Re (Sm) (xm+i -xm_i))

b) i et j sont impairs :

i+latj —r— 27 (Re (Tm) • Re (Um) (ym+1 -ym-ù +
^ m

+ Re (Tjn) ¦ Jm (Um) (xm+1 —xm_i))

c) i est pair et J est impair :

Nous avons maintenant tous les éléments pour résoudre
le système (12), donc pour calculer l'énergie. Mais, sans
beaucoup de calculs supplémentaires, la méthode nous
fournit d'autres renseignements intéressants, comme nous
allons le voir.

11. Calcul des potentiels

Il peut être en effet intéressant de connaître le potentiel
magnétique 0 en un ou plusieurs points de coordonnées
données, afin par exemple de dessiner les lignes équipo-
tentielles.

Cependant, il est bien évident que l'énergie ne dépend
pas de la valeur absolue des potentiels, mais uniquement
de leur répartition dans le plan. Ceci se traduit mathématiquement

par le fait que C0 est indéterminé. Nous sommes
donc amenés à choisir arbitrairement un point de la figure
comme point de référence pour les valeurs du potentiel,
ce qui permet de déterminer C0, à l'aide des formules (15)
et (16).

Nous avons en effet :

0 (xQ, y„) Ca + 27j Q Vi (x0, y0)

<ki -r 27 (Re (S») • Jm (Sm) ¦ (ym+1 —ym-ù —
^ m

—Re &L). Re (S^) (xm+1 —xm-.ù)

d) / est impair et j est pair :

<kl —r- % (Jm (&nï ¦Re (Mm) ¦ OWi -ym-i) +^ m

+ Jm (Rj„)-Jm (Um) (xm+1—*m_i))

10. Calcul des bt

Des équations (11) et (17), nous pouvons tirer :

Ai / g -p ds= / qSy ds— j pSxds

En posant : p g
dVi

M
bi=Z

m-l\ I

dy

ly-m+i ~ym-i

q g
dVi
dx

•q(xm,ym)-

Xm+l Xm~.\
p (xm, ym)

Suivant la parité de /, nous distinguerons deux cas

pour Aj :

a) i est pair :

12. Calcul du champ magnétique

Là aussi, la valeur du champ, ainsi que sa direction,
sont des grandeurs intéressantes à connaître (pour des

questions de saturation par exemple).

Par définition, H —grad 0.

Soit (x0, y0) les coordonnées du point dont on veut
calculer le champ :

/)ß\
Hx (x0, y0)= — 3- I

dx)x0, y0

Hy (Xo, y0) h)x0, y0

Hx(x0,y0) —27 Cf
«=1,3,5,...

i+ 1
Re \(x0 + jy0) 2

-27 Cf — -Jm \(x0 +jy0) 2 H
/-2,4.6,... * l |

Hy (x0, y0) 27 C{ i+l
t—1,3.5.

Jm \(x0 + j'y>y<>) 2 \

t -2,4,6,...

Ici, j^yJ^Z.

Cr ì -Re\

A« j 27 (gm-Jm (Sm) 0'ro+1->'m-i)—
¦ m

-gm • Re (Sm) • (xm+1 -xm-i))

b) / est impair :

i+lAi —r— ^ (gm-Re (U^'(ym+i-ym-ù +
^ m

+ gm-Jm (Um) (p|+1- *m_i))

13. Applications pratiques de la méthode

13.1 Définition d'un système d'axes cartésiens

On a tout avantage à choisir un système dont l'origine se
situe près du « centre » du domaine, de façon à diminuer
les erreurs d'arrondi de l'ordinateur.

13.2 Définition de la frontière r
Pour le moment, nous ne considérons que les domaines

ayant une frontière d'un seul tenant, c'est-à-dire sans îlots.
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D'autre part, on peut considérer que les machines
électriques nous offrent des domaines dont les frontières
comprennent soit des segments de cercles, soit des segments de
droite. Ceci permet de faire un programme de « polygona-
lisation » entièrement automatique de n'importe quelle
figure géométrique, avec autant de points qu'on le désire

sur le pourtour.

vent être incorrectement réparties alors que la valeur de

l'énergie est néanmoins précise.

14.1.5 Résultats pour le calcul du champ H
L'on peut simplement dire que, dans la mesure où les

équipotentielles sont correctes, les valeurs obtenues pour H
le sont aussi.

13.3 Définition de la fonction g
La fonction g fixe les conditions aux limites du potentiel.

Cette fonction doit être définie en tous les sommets du
polygone formant r. Il est avantageux de faire un
programme automatique pour calculer g suivant des répartitions

linéaires ou sinusoïdales.

14. Résultats pratiques

Pour avoir une bonne idée de la précision de la méthode,
il est nécessaire de choisir tout d'abord des figures géométriques

simples, pour lesquelles il est possible de définir
mathématiquement l'énergie, sans devoir utiliser des

méthodes approchées, elles-mêmes imprécises.

14.1 Remarques

14.1.1 Nombre d'approximations Vi
Le programme de calcul a été fait en simple précision.

De ce fait, on remarque que quelle que soit la figure, il est
inutile d'aller beaucoup au-delà de 10 (dix) approximations,
car alors les erreurs d'arrondi de l'ordinateur diminuent la
précision. Par contre, on doit prendre au moins 5 (cinq)
approximations pour avoir un résultat correct.

14.1.2 Nombre de sommets du contour r
E existe une certaine corrélation entre le nombre

d'approximations / et M, le nombre de sommets de r. En
pratique, on remarque qu'il est favorable de prendre M
50 à 100 fois plus grand que /.

14.1.3 Résultats pour le calcul de l'énergie
On constate que pour des figures « simples » (triangles,

carrés, et les figures convexes), la précision obtenue est

excellente, puisqu'elle est supérieure au %o.
Par contre, dès que le domaine se complique, et que l'on

a une frontière telle une denture par exemple, les résultats
deviennent complètement faux. Comme limite d'utilisation,

on peut fixer une figure en forme de « L », où l'erreur
est de l'ordre du %, sur la valeur de l'énergie.

Mais il faut ici faire une observation très importante. Si

nous définissons un troisième axe cartésien z', sur lequel
nous reportons les valeurs de g (x, y, zj, nous constatons
que plus la surface g se rapproche d'un plan, meilleure est

la précision. Même si la figure géométrique est beaucoup
plus compliquée qu'un « L », la précision de la méthode
redevient meilleure que le %o si g est dans un plan.

14.1.4 Résultats pour le calcul de potentiel

Ici, les résultats sont beaucoup moins bons. En effet, la
méthode a été établie de façon que l'approximation soit
bonne pour l'énergie, mais sans aucune condition sur la
répartition du potentiel.

De fait, on constate que si g est dans un plan, les conditions

aux limites sont respectées, même si la figure est
compliquée. Plus g s'éloigne d'un plan, plus les lignes
équipotentielles deviennent imprécises et l'on constate qu'elles
ont tendance à se situer elles aussi dans un plan. Dans le
cas de la figure en forme de « L », les équipotentielles peu-

15. Conclusions

— Méthode extrêmement rapide et précise pour l'énergie.

— Ne convient pas pour des domaines trop compliqués.

— Ne convient que sous certaines conditions pour cal¬

culer précisément la répartition du potentiel et du
champ magnétique.

16. Possibilités de développement de la méthode

16.1 Domaines avec îlots

Un premier pas à faire est d'élargir le champ d'application

de la méthode. Pour cela, il est possible d'introduire la
possibilité d'avoir des îlots dans le domaine :

Rappel : Nous avions les fonctions

Vi

Jm\Z2j =ß

i±il

si i est pair

Re]Z 2j a. j si l'est impair

Fig. 4.

Soit A (xa + fya), xa et ya étant les coordonnées du
point A, point qui se trouve à l'intérieur d'un îlot.

On peut démontrer que, pour traiter ce cas, il faut non
seulement prendre des fonctions Z" comme précédemment,
mais encore des fonctions (Zj—A)~n, donc aux anciennes
fonctions V{ viennent s'ajouter les nouvelles fonctions V'k :

V'k

Jn{Z-A) 2 =)?' si A- pair

*+i
Re{Z-A) a' - si A: impair

2

Donc :

0 27C, Vi + EEC'LKV'LK
i h K

où L numérote les îlots.
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La suite du calcul est la même qu'avant, mais, bien
entendu, le nombre de cas pour les a{j et les Aj vont
augmenter. Cette partie de la théorie n'a pas été éprouvée sur
des cas pratiques ; nous ne pouvons par conséquent pas
donner de résultats.

16.2 Augmenter la précision

Il serait certainement possible d'améliorer encore la
précision, et par suite de pouvoir prendre des domaines plus
compliqués, si l'on pouvait prendre un plus grand nombre
d'approximation Vt. Pour pouvoir le faire, il faut diminuer

les erreurs d'arrondi, et par conséquent travailler en
double précision.

17. Exemples

a) Figure pour laquelle le potentiel est situé dans le plan

3(A)

2(A)

HA) 1(A)

0(A)0(A)

Fig. 5.

La répartition du potentiel est linéaire sur les côtés.

W calculé 0,534. IO-6 (/)
W 0,534.10"5 (/)

b) Figure pour laquelle le potentiel n'est pas situé dans
un plan :

1000(A)

Fie. 6.

0(A)

Ici aussi, la répartition du potentiel est linéaire sur les
côtés du carré.

»T calculé 0,419 (J)

W 0,419 (/)
Les valeurs indiquées sur les figures sont celles du potentiel

magnétique en ampères.
Ces deux exemples représentent les deux sortes de

domaines pour lesquels la méthode est bonne :

a) Un domaine géométriquement « compliqué », mais
avec les valeurs du potentiel situées dans un plan.

b) Un domaine géométriquement «simple», avec les
valeurs du potentiel pouvant être réparties autrement
que dans un plan.

Nous tenons à remercier tout particulièrement M. le
Professeur J. Descloux de l'EPFL, dont les conseils
précieux nous ont permis d'élaborer cette méthode.

J. D. MÉTHÉE
de Lausanne.
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