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BULLETIN TECHNIQUE DE LA SUISSE ROMANDE 98* année 8 janvier 1972 N°1

Analyse limite de plaques circulaires
avec la condition de plasticité de Von Mises1
par G. GUERLEMENT et D.O. LAMBLIN, de la Faculté polytechnique de Mons (Belgique),
Département d'architecture, Professeur Marcel SAVE

1. Introduction
L'analyse limite des plaques circulaires parfaitement

plastiques a été étudiée par de nombreux auteurs [2] [3]
[6] [7] [8] [9] 2 et un nombre important de solutions ont
été proposées pour le critère de Tresca. Dans ce cas, la
linéarité de la condition d'écoulement facilite l'intégration
des équations d'équilibre. En général, pour une condition
d'écoulement non linéaire, les équations d'équilibre doivent
être intégrées numériquement et peu de solutions sont
connues à ce jour [4].

Ce rapport développe une méthode systématique
permettant d'obtenir des solutions pour ime condition d'écoulement

arbitraire non linéaire ; la méthode est ensuite
appliquée à la condition d'écoulement de Von Mises et
des solutions complètes correspondant à plusieurs cas de

charge courants sont obtenues. Ces solutions sont valables

moyennant les hypothèses habituelles de l'analyse limite
des plaques parfaitement plastiques soumises à flexion :
les efforts tranchants sont des « réactions » et les forces
de membrane sont négligées. Les charges limites calculées
n'ont donc une signification physique que si le rapport R/H
du rayon de la plaque à sa semi-épaisseur est supérieur
à 5 et inférieur à 40.

2. Equations fondamentales
Soient r, 0, z les coordonnées cylindriques de la plaque ;

z étant dirigé verticalement vers le bas. Avec les notations
des figures la et lb, où les forces et les moments sont
considérés comme positifs dans le sens indiqué, les équations

d'équilibre s'écrivent :

(rMr) Mg + rT, (1)
dr

rT- J p(r) r dr — qb, (2)

q

IPs ;,.i. j L

'V// w

p(r)

t
z

Fig. la. — Charges appliquées sur la plaque.

1 Cet article est publié avec l'appui de l'Institut de la construction

métallique (ICOM) de l'Ecole polytechnique fédérale de
Lausanne. Il constitue le texte d'une conférence donnée en mai
1970 à la Facoltà di Ingegneria de l'Université de Cagliari par
le professeur Marcel Save.

* Les chiffres entre crochets renvoient à la bibliographie en
fin d'article.

q étant une charge linéique circulaire uniforme qui peut
être une réaction. Par élimination de T entre les équations
(1) et (2), on obtient l'équation fondamentale

dr
(rMr) Mg — $m(r) r dr—qb. (3)

La condition d'écoulement s'écrit :

f(MrIM0, Mg/Mo) 0, (4)

où / est une fonction arbitraire satisfaisant les conditions
suivantes : dans le plan (Mg, Mr), (4) représente une
courbe fermée contenant l'origine, de concavité partout
dirigée vers l'origine et symétrique par rapport à la bissectrice

des axes coordonnés. D'autre part, dans ce rapport,
nous admettons que (4) est telle que Mg/M0 peut être
exprimé explicitement en fonction de Mr/M0 ; M0 est le
moment plastique par unité de longueur de la plaque.

Le mécanisme d'écoulement peut être décrit par la vitesse

w (dérivée par rapport au temps de la flèche) laquelle est
liée aux composantes Kr, Kg du vecteur vitesse de courbure
par les relations :

SlBl (5)
d2w

dr* dr

Kr et Kg, associées aux moments de flexion par la loi de
normalité, sont données par

Kr A EL
ÔMT

KB k IL
ÔMB

(6)

où X est un scalaire non négatif. Les relations (6) sont
seulement valables en un point régulier de la courbe

d'écoulement felli r—r continues en ce point I. En un
\oMr oMg

point singulier, les composantes Kr et Kg du vecteur vitesse
de courbure sont généralisées selon :

Kr= A(l-a)otéCi
\ÔMrl *(*£).•

*«=#-a)(iE \SMgh
1 (7)

Ces relations signifient que le vecteur vitesse de courbure
est localisé dans l'angle des deux normales limites à la
courbe d'écoulement au point considéré.

T+dT

Mr + dMr

^Sfr

Fig. lb.
plaque.

Eléments de réduction sollicitant un élément de



3. Méthode numérique

Considérons la condition d'écoulement

MelM0 g (MrIM0)

et les variables non dimensionnelles

y Mr/M0 x rjR

(8)

(9)

Supposons la plaque entièrement plastifiée sous la charge
limite et portons les expressions de Mg/M0, Mr\M0, r/R,
tirées de (8) et (9) dans (3) nous obtenons l'équation
différentielle non linéaire du premier ordre :

dy
dx -y

Rz * qb

M„ M„

conditions initiales x X(, y yi,

conditions au contour : x Xf, y yf

(10)

(H)

Après examen des valeurs relatives de y+t, yj, yf, il est

possible d'interpoler entre /+ et l~ pour obtenir une meilleure

valeur de l'intensité^ de la charge. Par intégration
de (10) on détermine la valeur de y*f correspondant à /*.
Selon les valeurs relatives de y} et yf, l* remplacera /+ ou
/_ et l'interpolation sera recommencée. La dernière itération

fournit y*f égal à yf avec une erreur aussi faible qu'on
le désire. La fonction y y (x) correspondante est la
distribution du moment radial de flexion.

Un programme Fortran IV, écrit pour l'ordinateur
IBM 1130 de la Faculté polytechnique de Mons (Belgique),
permet d'appliquer automatiquement la méthode
précédente. L'intégration est faite par une « subroutine »
complétée d'un test de précision [13] des résultats. L'équation

(10) est donnée pour chaque cas étudié dans un sous-
programme « function » ; il est donc facile d'appliquer le

programme à n'importe quel cas de charge sans modifications

importantes.

L'intégration de (10) quand p ou q est donné, avec les

conditions aux limites (11) fournit une valeur de la charge q
ou p k l'état limite.

Hopkins et Wang [4] ont étudié la plaque soumise à une
pression uniforme et à une pression répartie annulairement
à partir du centre avec une condition d'écoulement
arbitraire (la condition de Von Mises fut particulièrement
considérée), us ont proposé deux méthodes pour intégrer
les équations de forme analogue à (10). La première
méthode est basée sur des intégrations analytiques successives

de (10) où l'expression initiale de y est trouvée à
l'aide d'un critère simple (par exemple le critère de Tresca).
Cette méthode est rapidement convergente mais ne semble

pas applicable à n'importe quel cas de charge vu les
difficultés mathématiques rencontrées et la nécessité de

connaître une expression analytique de v. La seconde
méthode est la méthode des isoclines, plus générale mais
graphique. Dar» ce rapport, on utilise une méthode
numérique générale applicable à tout cas de charge
symétrique de révolution et à toute forme de la condition
d'écoulement.

Pour une valeur de l'intensité de la charge appartenant
à un intervalle suffisamment large pour contenir, à

coup sûr, la charge limite, l'équation (10) est intégrée à

partir des conditions initiales x{, yt jusqu'au contour
x 1, y y*f à l'aide de la méthode de Runge-Kutta
[12]. Si la valeur choisie pour l'intensité de la charge
diffère de la valeur limite, yf diffère de yf. L'intégration
de (lOÄst alors recommencée avec une valeur différente
de l'intensité de la charge jusqu'à ce que l'égalité de y*f

et de yf soit réalisée 3. La méttiode peut être améliorée

par un procédé de ccwergence. Notons /+ et / les limites
de l'intervalle contenant l'intensité limite / (égale à p ou q
selon le cas étudié) de la charge et y+ et y~ les conditions
au contour résultant de l'intégration de (10) avec les
valeurs /+ et /" substituées à la charge limite.

Nous avons évidemment l'une des situations suivantes :

yf <y/ < y} ou y} < yf < yf (12)

4. Applications

4.1 La méthode exposée précédemment est appliquée à
la condition d'écoulement de Von Mises donnée par :

ou [4]
/ [Çm-MrMe + MgilMÎ] -1 0 (13)

2M6\MT Mr/M0 ± (4-3MP/M?)1'2 (14)

où le signe positif ou négatif est adopté selon que le point
(Mr, Mg) appartient à l'arc BAHGF ou à l'arc FEDCB
(fig. 2) respectivement.

L'équation (10) devient

dy
dx y^±y(4-3v2)'/*-

f p(xR) xdx
(15)

Pour estimer les bornes l~ et /+ de l'intervalle contenant
la charge limite, on peut utiliser les conditions d'écoulement

représentées par les hexagones de Tresca inscrit et
circonscrit à l'ellipse de Von Mises. Les théorèmes de
l'analyse limite [9] nous assurent que la charge limite
réelle est comprise entre ces bornes.

4.2 Plaques simplement appuyées

a) Plaque circulaire chargée uniformément sur un
anneau (fig. 3(a))

Comme la plaque est complètement plastifiée, en
vertu de la symétrie, on a au centre Mr Mg M0 (point A
de la fig. 2). Ce régime plastique est valable sur 0 ^r =^a.
Pour a<.r<R, Kg doit être positif. Le profil représentatif
de l'état de sollicitation sur le critère d'écoulement est AIH
(fig. 2), le point H correspond à r R car, au contour,
on a Mr m 0.

L'équation (15) devient :

dy y 1 »... pR*
dx 2x 2*v y ' 2M0 mut (16)

8 L'équation (10) peut aussi s'intégrer à partir des conditions
initiales Xf, yt jusqu'aux conditions au contour x x*, y — yf
pour une valeur choisie a priori de l'intensité de la charge.
Le paramètre x* définit la géométrie de la plaque dont l'intensité

de la charge limite est celle choisie. Cette méthode n'est
pas itérative mais elle ne permet pas d'obtenir la charge limite
pour une géométrie imposée.

avec les conditions d'intégration

xt yi i.

Xf =1, V/ 0.



Mr/M0

Me/M

Fig. 2. — Condition de plasticité de Von Mises.

Des limites inférieure et supérieure de la charge limite
sont données par [3] :

P-R2 1 1

2M0 2 1

~6 '

n+ —

1 /fl\2 1

2 t
vr

(17)

(18)

Le rapport p/p de la charge limite exacte de Von Mises

à celle de Tresca est donné en fonction de — (fig. 3).
R

La solution présentée ici tend asymptotiquement vers la

solution obtenue par Hopkins et Wang [4] lorsque — tend
R

vers 0 ; mais la procédure numérique devient difficile dans
ce cas.

La loi de variation du moment radial est donnée à la
a

figure 9 pour différentes valeurs de
R

b) Plaque circulaire soumise à une ligne de charge
circulaire (fig. 3(b))

Le régime plastique et les conditions d'intégration sont
les mêmes que ceux du cas a).

L'équation (15) devient

dx 7.x 2x M0x
(19)

Des bornes inférieure et supérieure de la charge sont
données par [8]

a a

Ma

1

a
R~

Vi
(20)

Le rapport qjq est porté en fonction de — à la figure 3
R

et le moment radial en fonction de x à la figure 10.

c) Plaque annulaire chargée uniformément (fig. 3(c))
En r a, MT =0. Le point représentatif se trouve

en H (fig. 2) car Kg doit être positif. Lorsque r croît, le
point représentatif de l'état de sollicitation se déplace

3T1.06

c
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a/R.

Fig. 3. — Charges limites non dimensionnelles pour les plaques
simplement appuyées.

à partir de H le long de IAB et revient en H pour r R.
Si le profil des sollicitations reste toujours à droite de B,
ce que nous supposons, l'équation (16) doit être considérée.
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Fig. 4. — Plaque annulaire soumise à une ligne de charge
circulaire.

Fig. 5. — Plaque annulaire, appuyée au contour intérieur et
soumise à une ligne de charge circulaire.

Les conditions aux contours sont :

1 R

xf=\ yf

o,

o.

(21)

Des bornes inférieure et supérieure de la charge limite
sont obtenues au moyen du critère Tresca [7] :

P-R*
2M„ a

R~ - 2
(22)

P =—r^P •

A/3

Les résultats sont donnés aux figures 3 et 11. Pour
confirmer la validité des résultats obtenus, il faut vérifier

2
que la valeur maximum de v n'excède pas —7= (point B

A/3
de la fig. 2), ce qui est montré à la figure 11.

d) Plaque annulaire, appuyée au contour intérieur et
chargée uniformément (fig. 3(d))

En r a, MT 0. Sur le critère d'écoulement, le point
représentatif se trouve en D (fig. 2) car Kg doit être négatif
en vertu de la déformée d'un diamètre.

Lorsque r croît, le point représentatif de l'état de
sollicitation se déplace à partir de D le long de DCB et revient
en D pour r R (fig. 2). Si le profil des sollicitations
se trouve toujours à gauche de B, l'équation (15) devient :

dy
dx

y_

2x
1 (4 - 3/)'/* + £L (1-x2) (23)
2x 2xM„

Cette équation est intégrée avec les conditions aux
contours :

xt — ,yt 0,

xf= 1. y/= 0.

(24)

Des bornes inférieure et supérieure de la charge sont
obtenues au moyen du critère de Tresca [7] :

p-R
2Ma

2 In (a/R)
2ln(a/R)-(alRf

2

(25)

Vï
1 n est le symbole des logarithmes népériens.

Les résultats sont donnés aux figures 3 et 12 et on peut
Mr ,-verifier que —— est toujours inférieur à 2/<y/3 (moment

radial correspondant au point B).

e) Plaque annulaire soumise à une ligne de charge
circulaire (fig. 4)

Hliouchine [8] a obtenu la charge limite :

Mo
a

(26)

en utilisant le critère d'écoulement de Tresca avec un
profil de sollicitations se réduisant au point H. On obtient
la même solution avec la condition de plasticité de Von
Mises. Pour ce cas simple, il est possible d'obtenir analy-
tiquement un champ de vitesses associé. En utilisant les

formules (5), (6), (7), on montre facilement que le champ
de vitesses associé est donné, pour le critère de Tresca, par :

d-a)
W0

R-a (R-r) rWo

a^lnR
lnR

(27)

et pour le critère de Vonraßses par :

W WËËËm ivi
(28)

W0 est la vitesse en r a, mesurée positivement vers le
bas.

La solution donnée par la formule (26) est donc la solution

exacte pour les deux conditions de plasticité.

f) Plaque annulaire, appuyée au contour intérieur et
soumise à une ligne de charge circulaire (fig. 5)

Comme pour le cas e, il est facile de montrer que
M0

q — — est la charge lim ite exacte à la fois pour la condi-
R

tion de plasticité de Tresca et pour celle de Von Mises.
Le profil des sollicitations est réduit au point H (fig. 2).
Les champs de vitesses associés sont donnés par :

(1 - a) -=— (r- a)-] In -R—a -, R a
In —

a

pour la condition de plasticité de Tresca, et par :

m

(29)

.R'/a-a'/j

pour le critère de Von Mises.

(r'/i_a'/i) (30)



m
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Fig. 6. — Plaque avec un renforcement central soumise à une
ligne de charge sur le contour extérieur du renforcement.

g) Plaque avec un renforcement central soumise à une
ligne de charge sur le contour extérieur du
renforcement (fig. 6)

En r a, le point représentatif se trouve en B car le
moment radial doit avoir une valeur absolue maximale.
En r R, le point représentatif se trouve en H et, par
conséquent, le profil des sollicitations est BAIH.

L'équation (19) s'applique avec les conditions aux
contours :

Xi

Xf

yi Vï (3D

yf o

On obtient une borne inférieure pour q en considérant
le critère de Tresca et le profil des sollicitations AH. On a :

q_a
Mn

1

a
1

R
(32)

Cette solution est complète ; le champ de vitesses associé
étant donné par :

W.
w —2- (R-r) (33)

R — a

Le rapport qjq~ est porté en fonction de a/R à la figure
3 et le moment radial en fonction de x à la figure 13.

4.3 Plaques encastrées

a) Plaque circulaire soumise à une charge distribuée
uniformément sur un anneau (fig. 8(a))

On utilise l'équation (16) avec les conditions :

a
~R

(34)

Xf 1 yt

x{ yt 1

2

vT
La solution obtenue par Hopkins et Prager [3] pour le

critère de Tresca est donnée à la figure 8.
La solution obtenue au moyen du critère de Von Mises

tend, lorsque a tend vers 0, vers la solution obtenue par
Hopkins et Wang [4] pour la plaque complètement chargée.
La loi de variation du moment radialest donnée àia figure 9.

b) Plaque circulaire soumise à une ligne de charge
circulaire (fig. 7(b))

Le profil des sollicitations et les conditions initiale et
finale d'intégration sont identiques à ceux du cas 4.2a).
L'équation (19) s'applique.

60
O

5
n
cr 5.0

o

3.0

2.0

a/R

Lc_
e.b,

•rrrrr/l

b.

g.)

f

a/R

Fig. 7 — Charges limites non dimensionnelles pour les plaques
encastrées.

Les lignes en pointillés correspondent au critère de Tresca.
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Fig. 8. — Charges limites non dimensionnelles pour les plaque,
encastrées.

Les lignes en pointillés correspondent au critère de Tresca.
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La borne inférieure obtenue au moyen du critère de
Tresca [7] et la charge limite sont données en fonction
de ajR à la figure 7. La loi de variation du moment radial
est donnée à la figure 10.

c) Plaque annulaire soumise à une charge uniformément
répartie (fig. 8 (c))

Le profil des sollicitations part du point H et s'arrête
en F (fig. 2) car kg doit être partout positif d'après la forme
du mécanisme de ruine.

L'équation (16) s'applique avec les conditions aux
contours :

a
H R

Xf= i, yf

^ o,

2
(35)

Sawczuk [7] a étudié ce cas de charge avec la condition
de plasticité de Tresca et donne une solution qui ne satisfait
pas partout aux conditions d'admissibilité statique.

Dès lors, la charge obtenue est une borne supérieure
de la charge limite. Comme on peut le voir à la figure 8,
cette borne supérieure est bonne pour les petites valeurs
de a/R ; pour les plus grandes valeurs de a/R, cette borne
supérieure de la charge se situe fort haut par rapport à
la charge limite exacte.

La loi de variation du moment radial est donnée à la
figure 11.

d) Plaque annulaire, encastrée au contour intérieur et
soumise à une charge uniformément répartie (fig. 8 (d))

En r a, Mr —(2/y^J) M0 (encastrement) et le

point représentatif se trouve en F (fig. 2). Lorsque r croît,
le point représentatif décrit l'arc FED ; on atteint le point Z)

en r R.
L'équation (23) doit être intégrée avec les conditions

aux contours :

Xi

Xf

a
R~

2

(36)

yf o.

La borne inférieure obtenue au moyen du critère de
Tresca [7] et la charge limite pour la condition de plasticité
de Von Mises sont données à la figure 8. La loi de variation

du moment radial est donnée à la figure 12.

e) Plaque annulaire soumise à une ligne de charge
(fig. 7 (e)).

En utilisant le critère de Tresca, Illiouchine [8] a donné
la solution

Mo
1 +

1

On peut compléter cette solution par le champ de
vitesses :

W0 r
w In

In
a R '

ït

(38)

Avec la condition de plasticro de Von Mises, le profil
des sollicitation est HGF(ûg. 2). Les équations (19) et (35)
sont valables. On donne les résultats aux figures 4 et 7.

f) Plaque annulaire, encastrée au contour intérieur et
soumise à une ligne de charge (fig. 7 (f))

Le profil des sollicitations est FED.

L'équation (15) devient :

dx 2jc 2x M„x
(39)

avec les conditions aux contours (36).
Pour le critère de Tresca, Hodge [14] a donné la solution

complète :

Rq
M„

1

1 - R

Les résultats sont donnés aux figures 7 et 14.

g) Plaque avec un renforcement central, soumise à ime
ligne de charge au contour extérieur du renforcement

(fig. 7 (g))
Le profil des sollicitations est BAIHGF.

L'équation (19) s'intègre avec les conditions :

a

Xf i » yf

2

vT
2

VF

(40)
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où lf„ est la vitesse en r a.
Fig. 13. — Loi de variation du moment radial pour différentes
valeurs de a/R.
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Fig. 14. — Loi de variation du moment radial pour différentes
valeurs de a/R.

Une borne inférieure de a a été donnée par Miouchine [8]
(fig. 7).

Les résultats sont donnés aux figures 7 et 13.

f(x) ~v exp
X'*

m i
2 x x t/4_ 3y2

avec le signe — dans (40) et les conditions

x x{, w 0

X Xr, w — w„
(42)

On obtient

w(x)=w0S f(x)dxll f(x)dx,
x xr

1 f 3 Xi 1 y/W -T7 exp { — f rfx

La détermination de w comporte simplement des doubles
quadratures.

L'existence du champ de vitesses associé est établie
(voir aussi [11] et les charges limites obtenues sont donc
exactes.
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exp représente la base des logarithmes népériens.
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