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BULLETIN TECHNIQUE DE LA SUISSE ROMANDE

98 année 8 janvier 1972 N°1

Analyse limite de plaques circulaires
avec la condition de plasticité de Von Mises'
par G. GUERLEMENT et D.O. LAMBLIN, de la Faculté polytechnique de Mons (Belgique),

Département d'architecture, Professeur Marcel SAVE

1. Introduction

L’analyse limite des plaques circulaires parfaitement
plastiques a été étudiée par de nombreux auteurs [2] [3]
[6]1[7]1 [8] [9]12 et un nombre important de solutions ont
été proposées pour le critere de Tresca. Dans ce cas, la
linéarité de la condition d’écoulement facilite ’intégration
des équations d’équilibre. En général, pour une condition
d’écoulement non linéaire, les équations d’équilibre doivent
étre intégrées numériquement et peu de solutions sont
connues a ce jour [4].

Ce rapport développe une méthode systématique per-
mettant d’obtenir des solutions pour une condition d’écou-
lement arbitraire non linéaire ; la méthode est ensuite
appliquée a la condition d’écoulement de Von Mises et
des solutions complétes correspondant a plusieurs cas de
charge courants sont obtenues. Ces solutions sont valables
moyennant les hypothéses habituelles de 1’analyse limite
des plaques parfaitement plastiques soumises a flexion :
les efforts tranchants sont des «réactions » et les forces
de membrane sont négligées. Les charges limites calculées
n’ont donc une signification physique que si le rapport R/H
du rayon de la plaque a sa semi-épaisseur est supérieur
a 5 et inférieur a 40.

2. Equations fondamentales

Soient r, 0, z les coordonnées cylindriques de la plaque;
z étant dirigé verticalement vers le bas. Avec les notations
des figures la et 1b, ou les forces et les moments sont
considérés comme positifs dans le sens indiqué, les équa-
tions d’équilibre s’écrivent :

(oM = My + 1T, M
dr

rT= — frp(r) rdr — gb, 2)
q
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Fig. la. — Charges appliquées sur la plaque.

1 Cet article est publié avec 'appui de UZnstitut de la construc-
tion métallique (ICOM) de I’Ecole polytechnique fédérale de
Lausanne. Il constitue le texte d’une conférence donnée en mai
1970 a la Facolta di Ingegneria de I’Université de Cagliari par
le professeur Marcel Save.

# Les chiffres entre crochets renvoient a la bibliographie en
fin d’article.

q étant une charge linéique circulaire uniforme qui peut
étre une réaction. Par élimination de 7 entre les équations
(1) et (2), on obtient I’équation fondamentale

% (M) = My — [ p () r dr—gb. 3)

La condition d’écoulement s’écrit :
f(Mr/Mo’ MB/MO) = 0: (4)

ou f est une fonction arbitraire satisfaisant les conditions
suivantes : dans le plan (Mpy, M,), (4) représente une
courbe fermée contenant 1’origine, de concavité partout
dirigée vers ’origine et symétrique par rapport a la bissec-
trice des axes coordonnés. D’autre part, dans ce rapport,
nous admettons que (4) est telle que My/M, peut étre
exprimé explicitement en fonction de M,/M,; M, est le
moment plastique par unité de longueur de la plaque.

Le mécanisme d’écoulement peut étre décrit par la vitesse
w (dérivée par rapport au temps de la fleche) laquelle est
liée aux composantes K, Kg du vecteur vitesse de courbure
par les relations :

d2w 1 dw
o AL A 5
g dr? 4 rodr ®)

K, et Ky, associées aux moments de flexion par la loi de
normalité, sont données par

of K, — of

K. = <
R oM, oMy

(6

ou A est un scalaire non négatif. Les relations (6) sont
seulement valables en un point régulier de la courbe

)
oM, oMy
point singulier, les composantes K, et Kj du vecteur vitesse
de courbure sont généralisées selon :

" of of
K = l(l—a)((SM)l + Ax <5Mr>z s

0 . :
d’écoulement <—£ —f continues en ce point|. En un

of of )

Kg=2(0-) | + | —) ,0=a=1 7
o= 20-a o) +a{5r) ™
Ces relations signifient que le vecteur vitesse de courbure

est localisé dans I’angle des deux normales limites a la

courbe d’écoulement au point considéré.

Fig. 1b. — Eléments de réduction sollicitant un élément de
plaque.



3. Méthode numérique
Considérons la condition d’écoulement
Mo/ M, = g (M,[M,) ®)
et les variables non dimensionnelles
y=M,/M,, x=r/R. )

Supposons la plaque entiérement plastifiée sous la charge
limite et portons les expressions de My/M,, M,/M,, r|R,
tirées de (8) et (9) dans (3) nous obtenons 1’équation
différentielle non linéaire du premier ordre :

2 x i3
[—y +g0)— 1 PR xdx — ]—H (10)

o

dy 1
dx  x

conditions initiales x = x;, ¥y = »;,

conditions au contour: x = x5, y = yy . (11)

L’intégration de (10) quand p ou ¢ est donné, avec les
conditions aux limites (11) fournit une valeur de la charge g
ou p a létat limite.

Hopkins et Wang [4] ont étudié la plaque soumise a une
pression uniforme et & une pression répartie annulairement
a partir du centre avec une condition d’écoulement arbi-
traire (la condition de Von Mises fut particulierement
considérée). Ils ont proposé deux méthodes pour intégrer
les équations de forme analogue a (10). La premiere
méthode est basée sur des intégrations analytiques succes-
sives de (10) ou I’expression initiale de y est trouvée a
I’aide d’un critére simple (par exemple le critére de Tresca).
Cette méthode est rapidement convergente mais ne semble
pas applicable & n’importe quel cas de charge vu les
difficultés mathématiques rencontrées et la nécessité de
connaitre une expression analytique de y. La seconde
méthode est la méthode des isoclines, plus générale mais
graphique. Dans ce rapport, on utilise une méthode
numérique générale applicable a tout cas de charge symé-
trique de révolution et a toute forme de la condition
d’écoulement.

Pour une valeur de I'intensité de la charge appartenant
a un intervalle suffisamment large pour contenir, a
coup shr, la charge limite, I’équation (10) est intégrée a
partir des conditions initiales x;, y; jusqu’au contour
x = 1, y = y; a l'aide de la méthode de Runge-Kutta
[12]. Si la valeur choisie pour l’intensité de la charge
différe de la valeur limite, y} différe de y,. L’intégration
de (10) est alors recommencée avec une valeur différente
de P’intensité de la charge jusqu’a ce que 1’égalité de y;
et de y; soit réalisée ®. La méthode peut étre améliorée
par un procédé de convergence. Notons /" et /™ les limites
de l’intervalle contenant I’intensité limite / (égale a p ou ¢
selon le cas étudié) de la charge et y* et y~ les conditions
au contour résultant de l'intégration de (10) avec les
valeurs /™ et [/~ substituées a la charge limite.

Nous avons évidemment I'une des situations suivantes :

yr <y <y ou yj <y <ys- (12)

3 L’équation (10) peut aussi s’intégrer a partir des conditions
initiales x;, y; jusqu’aux conditions au contour x = x*, y = yy
pour une valeur choisie a priori de I'intensité de la charge.
Le paramétre x* définit la géométrie de la plaque dont I’inten-
sit¢ de la charge limite est celle choisie. Cette méthode n’est
pas itérative mais elle ne permet pas d’obtenir la charge limite
pour une géométrie imposée.

Apres examen des valeurs relatives de y}, y5, yy, il est
possible d’interpoler entre /™ et [~ pour obtenir une meil-
leure valeur de l'intensité /* de la charge. Par intégration
de (10) on détermine la valeur de y} correspondant a /”.
Selon les valeurs relatives de y; et yg, I remplacera /* ou
[~ et I'interpolation sera recommencée. La derniére itéra-
tion fournit y} égal a y; avec une erreur aussi faible qu’on
le désire. La fonction y = y(x) correspondante est la
distribution du moment radial de flexion.

Un programme Fortran IV, écrit pour I’ordinateur
IBM 1130 de la Faculté polytechnique de Mons (Belgique),
permet d’appliquer automatiquement la méthode précé-
dente. L’intégration est faite par une « subroutine » com-
plétée d’un test de précision [13] des résultats. L’équa-
tion (10) est donnée pour chaque cas étudié dans un sous-
programme « function » ; il est donc facile d’appliquer le
programme a n’importe quel cas de charge sans modifica-
tions importantes.

4. Applications

4.1 La méthode exposée précédemment est appliquée a
la condition d’écoulement de Von Mises donnée par :

f=I[M}—MMy + M})/M3]—1 =0 (13)
ou [4]
2My/M, = M,/M, £ (4—3MZ[M))'? (14)

ou le signe positif ou négatif est adopté selon que le point
(M,, My) appartient a I'arc BAHGF ou a I’'arc FEDCB
(fig. 2) respectivement.

L’équation (10) devient

dy 1 1 1
el —(4—3y%)% —
Ix x[ 2yiz( %)

(15)

2

R® X qb
— — [ p(xR) xdx— —] .
MO e MO

Pour estimer les bornes /~ et /™ de I'intervalle contenant
la charge limite, on peut utiliser les conditions d’écoule-
ment représentées par les hexagones de Tresca inscrit et
circonscrit a l’ellipse de Von Mises. Les théoremes de
I’analyse limite [9] nous assurent que la charge limite
réelle est comprise entre ces bornes.

4.2  Plaques simplement appuyées

a) Plaque circulaire chargée uniformément sur un
anneau (fig. 3(a))

Comme la plaque est complétement plastifiée, en
vertu de la symétrie, on a au centre M, = My = M, (point A4
de la fig. 2). Ce régime plastique est valable sur 0 =r =a.
Pour a << r << R, Ky doit étre positif. Le profil représentatif
de I’état de sollicitation sur le critére d’écoulement est ATH
(fig. 2), le point H correspond a r = R car, au contour,
on a M, = 0.

L’équation (15) devient :

dy ¥ 1 - pR? 1 'a)e
i e ey el —32)e— () x| 1
T WIE o [" ( (16)

avec les conditions d’intégration



e e i it e
i |
E g G \\

Fig. 2. — Condition de plasticité de Von Mises.

Des limites inférieure et supérieure de la charge limite
sont données par [3]:

R 1
oM, 2|1 1 a2+1 ' a\3
6 2 \R ?(\E

pr=——p . (18)

s . 7

Le rapport p/p~ de la charge limite exacte de Von Mises
a celle de Tresca est donné en fonction de % (fig. 3).
La solution présentée ici tend asymptotiquement vers la
solution obtenue par Hopkins et Wang [4] lorsque % tend

vers 0 ; mais la procédure numérique devient difficile dans
ce cas.
La loi de variation du moment radial est donnée a la

a
figure 9 pour différentes valeurs de ®

b) Plaque circulaire soumise a une ligne de charge
circulaire (fig. 3(b))
Le régime plastique et les conditions d’intégration sont
les mémes que ceux du cas a).
L’équation (15) devient
dy 1 1 qa

*:___*4——3;2'/1_
dx ZXJ( 2x( ) M,x

(19)
Des bornes inférieure et supérieure de la charge sont
données par [8]

i JET LS (20)
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a
Le rapport g/q~ est porté en fonction de R ala figure 3

et le moment radial en fonction de x a la figure 10.

c¢) Plaque annulaire chargée uniformément (fig. 3(c))

En r = a, M, = 0. Le point représentatif se trouve
en H (fig. 2) car Ky doit étre positif. Lorsque r croit, le
point représentatif de I’état de sollicitation se déplace
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Fig. 3. — Charges limites non dimensionnelles pour les plaques
simplement appuyées.

a partir de H le long de IAB et revient en H pour r = R.
Si le profil des sollicitations reste toujours a droite de B,
ce que nous supposons, l'équation (16) doit étre consi-
dérée.



Fig. 4. — Plaque annulaire soumise a une ligne de charge
circulaire.

Les conditions aux contours sont :

a
xi:_’yi:()y

=

@1
Xf = 1 5 W 0.

Des bornes inférieure et supérieure de la charge limite
sont obtenues au moyen du critére Tresca [7]:

22)

2
—o ——:p o
1/3
Les résultats sont donnés aux figures 3 et 11. Pour
confirmer la validité des résultats obtenus, il faut vérifier

. " 2 .
que la valeur maximum de y n’excéde pas T (point B
3

de la fig. 2), ce qui est montré a la figure 11.

d) Plaque annulaire, appuyée au contour intérieur et
chargée uniformément (fig. 3(d))

En r = a, M, = 0. Sur le critére d’écoulement, le point
représentatif se trouve en D (fig. 2) car Ky doit étre négatif
en vertu de la déformée d’'un diameétre.

Lorsque r croit, le point représentatif de 1’état de solli-
citation se déplace a partir de D le long de DCB et revient
en D pour r = R (fig. 2). Si le profil des sollicitations
se trouve toujours a gauche de B, I’équation (15) devient :

dy ¥ 1 PR?
R A T, N
AL Al > v

e (1-x% - (23)

Cette équation est intégrée avec les conditions aux
contours :

a

Xg=—,y =0,

i R Vi (24)
xp=1, yr,=0.

Des bornes inférieure et supérieure de la charge sont
obtenues au moyen du critére de Tresca [7]:
PR 21n (a/R) ¥

2M, 1+ 21In(a/R)—(a/R? ° (25)

p+

— 277 Vi
Vil

* 1n est le symbole des logarithmes népériens.

e WL

i

Fig. 5. — Plaque annulaire, appuyée au contour intérieur et
soumise a une ligne de charge circulaire.

Les résultats sont donnés aux figures 3 et 12 et on peut

. M, : e . —
vérifier que ﬁr est toujours inférieur a 2/\/ 3 (moment
o
radial correspondant au point B).

e) Plaque annulaire soumise & une ligne de charge
circulaire (fig. 4)
Tlliouchine [8] a obtenu la charge limite :

q—i—", (26)
a

en utilisant le critére d’écoulement de Tresca avec un
profil de sollicitations se réduisant au point A. On obtient
la méme solution avec la condition de plasticit¢ de Von
Mises. Pour ce cas simple, il est possible d’obtenir analy-
tiquement un champ de vitesses associé. En utilisant les
formules (5), (6), (7), on montre facilement que le champ
de vitesses associé est donné, pour le critére de Tresca, par :

0

R—a

W, r
2 @7
a R

In —
R

w=(0— o) (R—r) + «

et pour le critére de Von Mises par :

W, ;
= _— 9% (RY%2— ¢
w ry— (R72— r72) (28)
W, est la vitesse en r = a, mesurée positivement vers le
bas.
La solution donnée par la formule (26) est donc la solu-
tion exacte pour les deux conditions de plasticité.

f) Plaque annulaire, appuyée au contour intérieur et
soumise a une ligne de charge circulaire (fig. 5)
Comme pour le cas e, il est facile de montrer que

M .. . - :
g= ?" est la charge limite exacte a la fois pour la condi-

tion de plasticité de Tresca et pour celle de Von Mises.
Le profil des sollicitations est réduit au point H (fig. 2).
Les champs de vitesses associés sont donnés par :

W W, .
o (1 — 0 a2 () A 2 Ty (29)
R—a R a
In —
a

pour la condition de plasticité de Tresca, et par :

74
) — — % (r%— g
W RV_ % @ a’?) (30)

pour le critére de Von Mises.



Fig. 6. — Plaque avec un renforcement central soumise a une
ligne de charge sur le contour extérieur du renforcement.

g) Plaque avec un renforcement central soumise a une
ligne de charge sur le contour extérieur du renfor-
cement (fig. 6)

En r = a, le point représentatif se trouve en B car le
moment radial doit avoir une valeur absolue maximale.
En r = R, le point représentatif se trouve en H et, par
conséquent, le profil des sollicitations est BAIH.

L’équation (19) s’applique avec les conditions aux
contours :

a 2
Xp=— V= —r >

R 4/3 (31)
xf:1,yf=0

On obtient une borne inférieure pour ¢ en considérant
le critére de Tresca et le profil des sollicitations AH. On a :

2 1

Q
[

|

LS

L_a. (32)
R

Cette solution est compléte ; le champ de vitesses associé
étant donné par :
W,

R_a (R—¥) . (33)

W =

Le rapport g/g~ est porté en fonction de a/R a la figure
3 et le moment radial en fonction de x a la figure 13.

4.3  Plaques encastrées

a) Plaque circulaire soumise a une charge distribuée
uniformément sur un anneau (fig. 8(a))
On utilise ’équation (16) avec les conditions :
a

Xi:E, yizla

34
1 5 (34)
xf = ,yj = — —
V3

La solution obtenue par Hopkins et Prager [3] pour le
critere de Tresca est donnée a la figure 8.

La solution obtenue au moyen du critére de Von Mises
tend, lorsque a tend vers 0, vers la solution obtenue par
Hopkins et Wang [4] pour la plaque complétement chargée.
La loi de variation du moment radial est donnée a la figure 9.

b) Plaque circulaire soumise a une ligne de charge
circulaire (fig. 7(b))

Le profil des sollicitations et les conditions initiale et
finale d’intégration sont identiques a ceux du cas 4.2 a).
L’équation (19) s’applique.

1.0

00 a2 04 06 08
Fig. 7— Charges limites non dimensionnelles pour les plaques

encastrées.
Les lignes en pointillés correspondent au critére de Tresca.
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Fig. 8. — Charges limites non dimensionnelles pour les plaque.

encastrées.

Les lignes en pointillés correspondent au critére de Tresca.
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La borne inférieure obtenue au moyen du critére de
Tresca [7] et la charge limite sont données en fonction
de a/R a la figure 7. La loi de variation du moment radial
est donnée a la figure 10.

¢) Plaque annulaire soumise & une charge uniformément
répartie (fig. 8 (c))

Le profil des sollicitations part du point H et s’arréte
en F (fig. 2) car kg doit étre partout positif d’aprés la forme
du mécanisme de ruine.

L’équation (16) s’applique avec les conditions aux
contours :

X; = yi:Os

a
i ’
(35)

2
xle,J/f:—\T;.

Sawczuk [7] a étudié ce cas de charge avec la condition
de plasticité de Tresca et donne une solution qui ne satisfait
pas partout aux conditions d’admissibilité statique.

Dés lors, la charge obtenue est une borne supérieure
de la charge limite. Comme on peut le voir a la figure 8,
cette borne supérieure est bonne pour les petites valeurs
de a/R ; pour les plus grandes valeurs de a/R, cette borne
supérieure de la charge se situe fort haut par rapport a
la charge limite exacte.

La loi de variation du moment radial est donnée a la
figure 11.

d) Plaque annulaire, encastrée au contour intérieur et
soumise a une charge uniformément répartie (fig. 8 (d))
En r=a, M, = —(2/4/3) M, (encastrement) et le
point représentatif se trouve en F (fig. 2). Lorsque r croit,
le point représentatif décrit I’arc FED ; on atteint le point D
en r = R.
L’équation (23) doit étre intégrée avec les conditions
aux contours :

a 2
=3 M= = —=,
R V3 (36)

Xf:I, y/':O.

X; =

La borne inférieure obtenue au moyen du critére de
Tresca [7] et la charge limite pour la condition de plasticité
de Von Mises sont données a la figure 8. La loi de varia-
tion du moment radial est donnée a la figure 12.

e) Plaque annulaire soumise a une ligne de charge
(fig. 7 (e)).
En utilisant le critére de Tresca, Illiouchine [8] a donné
la solution

On peut compléter cette solution par le champ de
vitesses :

Wo 1n (38)
W= n—
a R’
I —
R

ou W, est la vitesse en r = a.

Avec la condition de plasticité de Von Mises, le profil
des sollicitation est HGF (fig. 2). Les équations (19) et (35)
sont valables. On donne les résultats aux figures 4 et 7.

f) Plaque annulaire, encastrée au contour intérieur et
soumise a une ligne de charge (fig. 7 (f))
Le profil des sollicitations est FED.

L’équation (15) devient :

dy y 1 Rq
__¥___4_32'/z
2x( ) +Mx

S 39
dx 2x i (9

avec les conditions aux contours (36).
Pour le critére de Tresca, Hodge [14] a donné la solution
compléte :

1

Rq
M, il a.
R

Les résultats sont donnés aux figures 7 et 14.

g) Plaque avec un renforcement central, soumise & une
ligne de charge au contour extérieur du renforce-
ment (fig. 7 ()

Le profil des sollicitations est BAIHGF.

L’équation (19) s’intégre avec les conditions :

a 2
Xi= =5 Yi=—=>
R V3
5 (40)
Xg= 1 = — —
f » Vr
V3
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Fig. 13. — Loi de variation du moment radial pour différentes

valeurs de a/R.
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Une borne inférieure de g a été donnée par Illiouchine [8]
(ig. 7).

Les résultats sont donnés aux figures 7 et 13.

5. Détermination du champ de vitesses

Pour s’assurer que les charges limites obtenues sont
exactes, il faut établir ’existence de champs de vitesses
associés aux champs de moments.

Dans le cas de la condition de plasticité de Von Mises,
les équations (5), (6) et (14) donnent :

d>w |dw 1 2M,— My N 1 3M, ll (40)
dr? | dr _7<2M04 M,) 2R “(4MG—3Mp)”: [

Considérons d’abord le signe -+ dans cette équation.
Avec les conditions

X=Xy W= W,

(41)

x=x5, w=0,

I’'intégration de (40) donne [4]

w(x) = w, j:\'lf (x)dx | j\-,f (x) dx
X Xt

ou :

el 3 1y *
f(x) = 7, ©XP {— ?fx ;\/——4_ o dx}

avec le signe — dans (40) et les conditions

x= X5 w=0,
(42)

= X5, W=Ww, .

On obtient :

W) = w, | £ dx [ ] f ),

1 3 xi 1 y
f(X)=x—,/zexP{7fx % A

La détermination de w comporte simplement des doubles
quadratures.

dx

L’existence du champ de vitesses associé est établie

(voir aussi [11]) et les charges limites obtenues sont donc
exactes.
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* exp représente la base des logarithmes népériens.
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