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BULLETIN TECHNIQUE DE LA SUISSE ROMANDE

97¢ année 6 février 1971 N° 3

Méthode des éléments finis dans le domaine non linéaire'

par MUKHTAR HUSSAIN KHAN, ingénieur SIA, M. ASCE, Dr és sc. techn. EPFL, ingénieur principal chez Bonnard & Gardel,
ingénieurs-conseils S.A., et assistant & la Chaire d'aménagements de production d'énergie de I'EPFL

1. Introduction

Le comportement non linéaire des matériaux joue un
role important dans certains domaines qui préoccupent
I’ingénieur praticien. C’est notamment le cas en géotechni-
que et mécanique des roches et en particulier dans les
problémes de tunnels, de cavernes de centrales. Dans le
domaine des structures, on congoit que ce comportement
non linéaire puisse influencer de fagon non négligeable la
répartition des efforts dans les zones les plus sollicitées.

Il parait donc intéressant, voire indispensable dans
certains cas, de procéder a une analyse non linéaire de ces
structures en tenant compte des lois de contrainte-déforma-
tion des matériaux qui traduisent mieux leur comportement
que la loi de Hook. La méthode des éléments finis permet
d’effectuer une telle analyse. Cet outil permet par ailleurs
d’évaluer la charge de rupture des structures de forme
géométrique complexe. Il est important de noter que 1’on
obtient toujours par cette méthode la charge minimale
de rupture car les conditions cinématiques aussi bien que
celles de I’équilibre sont satisfaites lors de 1’analyse.

L’utilisation de la méthode des éléments finis dans le
domaine non linéaire est relativement récente (a notre
connaissance, les premiéres publications datent de 1965)
[1, 2, 3]2. Divers procédés ont été utilisés jusqu’a présent
pour tenir compte de la non-linéarité de la loi de contrainte-
déformation, sans que I’on puisse dire que 'on ait trouvé
un algorithme optimal pour une telle analyse. Dans ce qui
suit, nous donnerons donc tout d’abord les lois idéalisées
de déformation et de rupture de quelques matériaux. Puis
nous rappellerons brievement les divers procédés de calcul
auxquels nous avons fait allusion plus haut.

Nous traiterons enfin quelques exemples numériques
relatifs a des structures importantes: caisson en béton
précontraint pour réacteur nucléaire, barrage, tirant d’an-
crage dans massif rocheux. Ces calculs numériques ont été
effectués en collaboration avec la Chaire d’aménagements
de production d’énergie de I’Ecole polytechnique fédérale
de Lausanne et a I'aide d’un programme [4] établi par
M. B. Saugy, assistant, dans le cadre des travaux de
recherche dirigés par le professeur A. Gardel.

2. Lois idéalisées de rupture et de déformation
de quelques matériaux

Les lois idéalisées citées dans ce paragraphe concernent
le comportement des matériaux sous des charges rapides.
Ainsi, I'influence du temps et de la température ne sera pas
considérée ici.

Considérons un point P dans I’espace des contraintes
principales (fig. 1) et admettons que ce point caractérise
I’état de contrainte en un point quelconque d’un solide
isotrope. Les coordonnées du point P sont les contraintes

1 Exposé présenté au Séminaire sur les éléments finis dans
Pindustrie, organisé le 18 novembre 1970 par le Groupe des
ingénieurs de I’industrie de la SIA.

% Les numéros entre crochets renvoient a la bibliographie en
fin d’article.

principales ¢, o2 et g3. L'état de contrainte du point P
est également représenté par les trois grandeurs OL, LP
et I'angle o. OL est la longueur de la diagonale de 1’espace
(lieu des points gy = 0> = 0¢3) limitée par un plan perpen-
diculaire a elle-méme et passant par le point P (ce plan
est parfois appelé plan octaédral dans la littérature). o est
I’angle dans ce plan entre le vecteur LP et la ligne d’inter-
section de ce plan avec celui passant par I’axe 0gy.
On peut démontrer [5] que :

OL = \/3G ou (€Y
_0'1—!— Oy + O3
=

ERi=— \/g 1) 2 otl Q)

L=0.%+ 05>+ 032 — 0,05 — 0503 — 0301

g la pression moyenne

le déviateur des contraintes

/3 (05 — 0
ettg o0 = \’(Z__i (3)
20, — 0y — 03
Cette représentation de 1’état de contrainte d’un point
en fonction de g, I, et de a est intéressante pour la défini-
tion des surfaces de rupture des différents types de maté-
riaux.

2.1 Critéres de rupture

Pour les matériaux ductiles, tels que 1’acier, on constate
que la rupture est indépendante de la pression moyenne ¢.
Elle se produit dés que le déviateur des contraintes I,
dépasse une certaine valeur. Le critere de Von Misés admet
encore que la rupture est indépendante de I'angle «. On
obtient alors une surface symétrique de révolution par
rapport a la diagonale OL. C’est un cylindre dont I'axe
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Fig. 1. — Etat de contrainte dans 'espace des contraintes
principales.
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Fig. 2. — Formes des directrices des surfaces de rupture dans
’espace des contraintes principales.
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Fig. 3. — Génératrice de la surface tronconique de rupture [4].
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Fig. 4. — Surface tronconique de rupture du béton.
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coincide avec cette diagonale. Dans le plan perpendiculaire
a cette diagonale, le critére de Von Misés est représenté
par un cercle. La surface de rupture dans ce cas est donnée
par I’expression :

L=y
ou y est une constante scalaire de comparaison caracté-
ristique du matériau.

Le critére de Tresca pour les matériaux ductiles fait
intervenir, en plus du déviateur I,, I'angle ¢z. Dans le plan
perpendiculaire & la diagonale OL, ce critére est représenté
par un hexagone inscrit dans le cercle de Von Misés (fig. 2).
La surface de rupture, dans ce cas, est alors un prisme
d’axe OL.

Pour les bétons, la surface de rupture dépend non seule-
ment du déviateur des contraintes, mais aussi de la pression
moyenne et de 'angle «. D’aprés I'étude de M. B. Saugy
[4], on peut négliger, lors d’une premiére approximation,
I'influence de I'angle «. Cela revient & admettre une direc-
trice circulaire pour la surface de rupture et se justifie
pour autant que la rupture découle d’'un phénoméne par-
faitement isotrope tel que le glissement. Par contre, si la
cause de la rupture est de nature anisotrope, la directrice
tendra vers le triangle montré a la figure 2 en traitillés.
Restons-en a la premiére approximation ; on définira donc
la surface de rupture en fonction de la pression moyenne
et du déviateur des contraintes. La loi approximative de ce
type, qui est la mieux connue actuellement, est celle de
Drucker [6] dans laquelle le rayon du cercle directeur de la
surface de rupture est une fonction linéaire de la pression
moyenne. Dans I’espace des contraintes principales, cette
surface est un cone dont I'axe coincide avec la diagonale
OL. Pour le béton, I’étude de M. B. Saugy [4] montre que
'angle d’ouverture du céne est différent suivant le type
de rupture: fragile ou par glissement. On peut donc
admettre pour génératrices deux droites présentées par la
figure 3. Cette surface est alors composée d’un tronc de
cone se coupant dans le plan des trois points de rupture
correspondant a des essais uniaxiaux (fig. 4).

Elle peut étre définie a l'aide des trois parametres :
résistances a la traction et a la compression uniaxiales et
la résistance a la compression biaxiale du béton. Si 'on
admet pour le béton :

fe = résistance a la compression uniaxiale
mf, = résistance a la traction uniaxiale
nfl, = résistance a la compression biaxiale,
la surface de rupture est décrite par I’expression :

n—11+ n
Dhe—lh - 2n — 1

AL fe=0 )
2 (5w

dans la zone de compression et par 1'expression :

I +m 2m

1
Io/2+ 5

2

ﬁc =0 (6)

I —m m — |

dans la zone de traction ot :

I, = 0, + 04 + 03le premier invariant du tenseur des con-
traintes.

Un tel critere de rupture peut étre également utilisé pour
certaines roches compactes dures telles que les granits ou
les calcaires par exemple. La figure 5 montre a titre indicatif
les résultats des essais triaxiaux effectués sur un calcaire
[7] qui sont représentés en fonction de la pression moyenne
et du déviateur des contraintes. De ces résultats, on peut
tirer les parametres qui définissent les droites génératrices
de la surface de rupture.
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Fig. 5. — Résultats des essais triaxiaux sur un calcaire [7].

Pour les roches altérées ou fissurées qui se comportent
dans I’ensemble de fagon isotrope et pour les sols, on constate
que le critére de Drucker [6] est le mieux connu a I’heure
actuelle. La surface de rupture dans ce cas se limite a un
cone dans 1'espace des contraintes principales.

2.2 Lois idéalisées de contrainte-déformation

Dans 1’établissement de ces lois pour les différents types
de matériaux, il est commode de représenter 1’état de
déformation dans un point quelconque d’un solide en
fonction de la déformation moyenne :

E_q+%+%
3
et de la distorsion
Iy = gt + 6 + 632 — €185 — Ep 85 — 361
ol &, &, & sont des déformations principales.

Pour un matériau parfaitement élastique et isotrope, on
a les relations suivantes entre les états de contraintes et de
déformations :

c=3Ke (7

I, = 2u I, ®)
ou K = module de compressibilité
p = module de glissement
En fonction du module d’élasticité E et du coefficient de

Poisson v, les valeurs de K et x sont données par les expres-
sions :

. E
3(1—2v)

O
F=20+o

Pour un corps ductile, tel que 1’acier, on peut admettre
que les valeurs de K et u restent constantes jusqu’au seuil
de plasticité.

Les corps ductiles se comportent donc de fagon élastique
pratiquement jusqu’a la plastification. On a donc :

K = constant
M = constant
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Pour les bétons, la loi de contrainte-déformation n’est
plus linéaire bien avant la rupture. Les valeurs de K et de
p varient donc en fonction des contraintes. L’étude de
M. B. Saugy [4], basée sur les résultats des essais méca-
niques qui semblaient étre les plus représentatifs [8], montre
que 'on peut admettre les deux hypothéses suivantes pour
définir la loi de contrainte-déformation :

—K est une fonction de la pression moyenne o
—u est une fonction des déviateurs de contrainte I,
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La figure 6, qui donne la variation du volume § = 3 € en
fonction de la pression moyenne ¢ pour quelques essais de
compression biaxiale [8] montre que, si I'on néglige le
foissonnement du béton qui intervient juste avant la rup-
ture, ’on peut admettre que la valeur de K est pratiquement
constante. La figure 7 montre, d’aprés un essai de com-
pression biaxiale du béton, la variation de la valeur du
module sécant de glissement x en fonction du déviateur
de contrainte J,. La loi idéalisée de contrainte-déformation
pour les bétons se résume donc par les expressions suivantes.

K = constante |
10
p=f, @y | (o

Pour quelques types de roches compactes dures, on peut
établir, comme pour le béton, une loi de variation de u
en fonction de , en admettant K comme constant.

Pour des roches altérées ou fissurées, dont le comporte-
ment dans ’ensemble peut étre admis isotropique, et pour
les sols, les lois idéalisées de contrainte-déformation seraient
du type :

Kzfl (5: ]2) }
ﬂ =f2 (a, 12)

Ces équations définissent des lois générales. Il est pos-
sible de les simplifier pour certains types de sols. Par
exemple, pour les matériaux argileux, on peut admettre une
loi du type suivant :

K = constant) }
,u = f]_ (6-, 12)

Certains auteurs [9] ont utilisés une loi parabolique de
contrainte-déformation proposée par Kondner [10] pour
I’analyse non linéaire des contraintes dans les sols. Cette
loi est du type suivant

(11

(12

e
Gl#a3:a+ba

(13)

ol oy et gy sont des contraintes principales maximale
respectivement minimale, ¢ est la déformation axiale, a et
b sont les constantes.

On constate que cette loi néglige 'effet de contrainte
intermédiaire g,.

Signalons ici que des essais systématiques sont actuelle-
ment effectués par M. F. Descceudres au Laboratoire de
géotechnique de I’Ecole polytechnique fédérale de Lausanne
qui ont pour but de dégager les lois du type de I’équation
(11), notamment pour les sables.

3. Procédés d’analyse non linéaire des structures
par la méthode des éléments finis

Notons tout d’abord que I’analyse non linéaire est
effectuée a I'aide d’une suite d’analyses linéaires dans
lesquelles les caractéristiques élastiques du matériel varient
en fonction de I’état de contrainte.

Nous ne rappelons pas ici les bases de la méthode des
éléments finis qui ont déja fait I'objet de nombreuses
publications *.

Divers procédés ont été utilisés jusqu’a présent pour
effectuer les calculs non linéaires par la méthode des ¢lé-
ments finis. Ils peuvent étre divisés en deux grands groupes,
soit :

— méthodes d’élacticité variable

— méthode de déformation ou de contrainte initiale.

1 On se reportera notamment a "ouvrage cité en référence [2]
de la présente communication.
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3.1 Méthodes d’élasticité variable

Ces méthodes sont caractérisées par le fait que l'on
modifie effectivement la matrice de rigidité des éléments
en fonction de leur état de contrainte calculé lors de I’ana-
lyse linéaire précédente. La figure 8 montre de facon
schématique les deux procédés qui ont été utilisés par divers
auteurs [3, 4].

Le premier (fig. 8 (a)) utilise le module sécant Es, variable
en fonction des contraintes. Les calculs sont effectués en
général en appliquant la charge par étapes que nous appelons
des pas. Plusieurs itérations sont effectuées lors d’un pas
pour suivre de prés la courbe de contrainte-déformation.
11 est possible d’appliquer la totalité de la charge dans un
seul pas. Un grand nombre d’itérations seront alors néces-
saires pour obtenir la méme précision que dans le cas
précédent. Le processus de calcul pour une augmentation
de charge peut étre résumé comme suit :

1) Les contraintes et les déformations sont évaluées
par une analyse linéaire utilisant les matrices de
rigidité des éléments déterminées lors de la derniére
itération du pas précédent.

2) Pour chaque élément ou la contrainte calculée dépasse
celle correspondant a la loi admise, une nouvelle
valeur du module sécant est évaluée d’apres le schéma
de la figure 8 (a). Les matrices d’élasticité et de
rigidité de I'élément sont ensuite déterminées.

3) Les contraintes et les déformations sont évaluées par
une nouvelle analyse linéaire utilisant les matrices
de rigidité calculées sous 2).

(o) A
V4 ; -
Nombre / | Ao suffisamment petit
d itérations 2
Ve |
7\ 7 | //‘]
Oy -——— e 7———jz=se —r— <
/A 77 o] e g
z
o, F-—-—-- e L --1+¢5 —+
- /' A7 | ////// | 83
g L7 > ////‘) | < o
€ ™, 54 I SBEs =y
g 4 i ao
= el 27 | ]
S Oy \[mo=A o] === |— —‘v—mcg +
Q v 7 05/ 2
x50 || g32
/'/, 7 | | 5°0 o
//4’ | | = g e <
7 | | Zovo
L L L I
€ €9 €3 Déformation €
a) Module sécant Es variable
)
N
Az . 6 7
Z
) /i 4
.[E’ /3 “~._Nombre des pas
g 2
o
1
Déformation €
b) Module tangente E! variable
Fig. 8. — Processus de calcul non linéaire par les méthodes

d’¢élasticité variable.



4) Les étapes 2) et 3) qui constituent une itération sont
répétées un certain nombre de fois fixés d’avance en
fonction de la nature de la courbe de la contrainte-
déformation.

La deuxiéme méthode utilise le module tangent E, variable
en fonction de la contrainte. Ainsi que le montre la figure
8 (b), les calculs sont effectués en appliquant la charge en
plusieurs étapes. Le nombre de pas est donc augmenté.
Chaque pas correspond a une analyse linéaire effectuée en
modifiant la matrice de rigidité des éléments en fonction
de I’état de contrainte calculé dans le pas précédent.

L’augmentation des contraintes et les déformations ainsi
calculées sont ajoutées aux valeurs obtenues dans les pas
précédents. Il y a donc la un danger de cumuler les erreurs
au fur et 2 mesure de I’'augmentation de la charge.

Les deux méthodes citées ci-dessus ont le désavantage
que la matrice de rigidité est modifiée pour chaque analyse
linéaire augmentant ainsi le temps de calcul sur I’ordina-
teur.

Il n’est également pas possible d’aprés ces méthodes de
tenir compte lors d’une décharge de déformations plas-
tiques permanentes dans les éléments plastifiés.

Par contre, 'avantage de ces deux méthodes est qu’elles
permettent de mieux comprendre le phénoméne physique.
La méthode du module sécant variable permet, de plus,
de tenir compte d’une loi de contrainte-déformation a
dérivée localement négative, c’est-a-dire comportant une
diminution des contraintes pour une augmentation des
déformations, phénomeéne qui peut se présenter dans les
sols par exemple.

3.2  Moéthodes de déformation ou de contrainte initiale

Drapres ces méthodes, les calculs non linéaires sont
effectués sans modification des matrices de rigidité des
éléments. Lors des analyses successives lin€aires, on pro-
cede a une redistribution des efforts que les éléments
plastifiés ne peuvent pas supporter. La figure 9 montre,
de fagon schématique, les deux procédés qui ont été utilisés
par divers auteurs [1, 11 et 12]. Les calculs sont effectués
par itération pour une charge donnée. Il est souvent avan-
tageux d’appliquer la charge par étapes pour obtenir une
bonne précision avec un nombre raisonnable d’itérations
par étapes.

La figure 9 (a) schématise le processus pour la méthode
de déformation initiale [1]. Pour un pas donné, les con-
traintes et les déformations sont calculées par une analyse
¢lastique. Dans chaque élément, 1’état de déformation
ainsi calculé est comparé avec celui compatible selon la
loi de contrainte-déformation. L’écart de déformation est
alors introduit comme déformation initiale dans I’analyse
suivante. Les analyses linéaires sont répétées jusqu’a ce
que cet écart devienne négligeable. Dans la figure 9 (a), ce
processus est schématisé pour les calculs relatifs au pas
numéro 2 pour lequel quatre itérations sont nécessaires
pour annuler cet écart.

La figure 9 (b) montre le processus de calcul non linéaire
par la méthode de contrainte initiale congue par I’équipe
du professeur Zienkiewicz [11, 12]. Cette méthode differe
de la précédente par le fait que les contraintes calculées
dans les éléments par I’analyse linéaire sont comparées
avec celles compatibles avec la loi de contrainte-déforma-
tion. Pour les écarts de contraintes ainsi constatés, les
déformations plastiques correspondantes sont déterminées.
Ces déformations sont alors introduites comme déforma-
tions initiales dans ’analyse linéaire suivante. Ce processus

Nombre d’itérations pour

pas2 N, . _ P ___
Ve v
Vil -
e O
l v
Y ! =}
IS | ~ 2
< | B
- €p; / |
5 o S ____.;\__4___|__+£
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| ~ Z
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(o) 1| SEERE— %_,/_4___/_4/4,441 Airsee g
= Yo ] 11 o
N NV~ iiminint it Syl Mt o
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g 9740 52 | il @
< Aepy, /%% 1 by ! -
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b) Méthode de contrainte initiale
Fig. 9. — Processus de calcul non linéaire par les méthodes de

déformation et de contrainte initiale.

est répété jusqu’a ce que les écarts deviennent négligeables.
La figure 9 (b) schématise ce processus pour le pas numéro
2 pour lequel la déformation plastique ¢,; a été déterminée
a la quatrieme itération.

Les avantages de ces deux méthodes sont les suivants :

— gain de temps de calcul a I'ordinateur du fait que la
matrice de rigidité de la structure est déterminée une
fois pour toutes au départ et n’est pas modifiée au
cours des analyses linéaires ;

— possibilité de tenir compte lors d’une décharge de
déformations permanentes dans les éléments plas-
tifiés.

Le désavantage de la méthode de déformation initiale
est qu’elle n'est pas appliquable pour le cas de plasticité
idéale comportant un palier horizontal dans la courbe
de contrainte-déformation. Par contre, la méthode de con-
trainte initiale est en mesure de faire face a une telle situa-
tion, mais au prix d’un nombre élevé d’itérations (voir
schéma fig. 9 (b), pas numéro 3). Notons que pour une
courbe plate de contrainte-déformation, il semble que la
méthode de déformation initiale permette d’avoir une
convergence plus rapide, lors des itérations, que celle que
I’on obtient dans la méthode de contrainte initiale.

3.3 Programme de calcul des structures massives et armées

Une description du programme mis au point par la
Chaire d’aménagements de production d’énergie de I’Ecole
polytechnique fédérale de Lausanne avec notre collabora-
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Coupe horizontale du [t

tion, a été donnée par M. Saugy dans une publication
récente [4]. Nous en rappellerons ici quelques éléments
principaux.

Le programme analyse les problémes & deux dimensions
a contraintes ou & déformations planes pour des structures
massives en béton ou en rocher armés ou non par des
barres métalliques. Le modele mathématique est basé sur
la méthode des éléments finis utilisant les éléments trian-
gulaires pour le béton ou le rocher et les éléments filiformes
pour les barres d’acier.

4
5 x10

kglem \

Déviateur principal des contraintes Iy

0 4 8 12 16 20 %104 kg/em?

Module de glissement M

Fig. 12. — Lois de variation de x en fonction de I,
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Fig. 11. — Caisson. Réseau des éléments finis.

Pour tenir compte de la non-linéarité, la méthode du
module sécant variable citée sous paragraphe 3.1 a été
utilisée pour ce premier programme étant donné qu’elle
permet de mieux suivre le phénoméne physique.

Les barres d’acier sont liées aux nceuds avec le béton
ou le rocher. Cela revient & admettre qu’il n’y a pas de
rupture d’adhérence entre ces deux matériaux.

A chaque analyse linéaire, un contréle de 1’état de rup-
ture des éléments est effectué. S’il y a rupture avec traction
dans un élément, le modeéle isotrope est transformé en un
modele orthotrope orienté selon les directions des con-
traintes principales. L’élément ne résiste plus a la traction
dans la direction perpendiculaire aux fissures. Par contre
sa résistance a la compression n’est pas modifiée dans la
direction paralléle aux fissures.

En ce qui concerne la durée d’une analyse non linéaire
d’une structure comportant environ 200 éléments triangu-
laires et une dizaine d’éléments filiformes, elle est de ’ordre
de une heure pour une dizaine d’itérations sur I’ordinateur
IBM 7040.

4. Exemples d’analyse du comportement
non linéaire des structures

4.1 Caisson en béton précontraint d’un réacteur rapide

La figure 10 représente la coupe horizontale du fit du
caisson qui a un diameétre extérieur de 25,5 m. Il comporte
une cavité centrale de 6,5 m de diamétre pour le réacteur
et six cavités de 4 m de diametre sont prévues dans la paroi
du caisson pour loger des turbines placées en cycle direct.

La présence des cavités de grandes dimensions pose des
problemes de concentration de contraintes que nous avons
déja eu I'occasion de traiter dans le domaine linéaire [13].
Dans le cas particulier de ce caisson, les dimensions des
cavités ont pris une telle importance qu’il a été jugé néces-
saire de procéder a une analyse non linéaire de son com-
portement sous les charges d’exploitation et sous une charge
croissante de pression jusqu’a sa rupture et ceci pour évaluer
le coefficient de sécurité. Nous avons donné les détails de
ces analyses dans deux publications récentes [14 et 15].
Nous nous limiterons donc a rappeler ici les hypothéses
de base et les principaux résultats.

Les calculs ont été effectués pour une tranche de la partie
médiane du fit de 1 m de hauteur. Les charges normales
sur cette tranche sont :

— une pression de 90 bars dans la cavité du réacteur et

de 80 bars dans les cavités des turbines ;

— un gradient thermique caractérisé par un écart de

température de 20° entre les parois intérieures et
extérieures du caisson ;

m
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— une force annulaire de précontrainte de 10 500 t
par metre courant du fat.

Il a été en outre tenu compte de l'influence de la pré-
contrainte axiale (parallele a I'axe du fit) en admettant
en premiere approximation une contrainte axiale de 100 kg/
cm? uniforme sur toute la section du fit.

Etant donné la symétrie de la géométrie du fat et des
charges, seul un douziéme de la section plane du fit
représentée a la figure 11 a été analysé. Le réseau des ¢élé-
ments finis comporte 183 éléments triangulaires de béton
et 7 éléments filiformes de cable de précontrainte.

En ce qui concerne la loi de contrainte-déformation du
béton, une loi d’aprés I'équation (10) a été admise avec la
valeur du module de compressibilit¢é X = 200 000 kg/cm?
et la valeur du module de glissement £ variable en fonction
du déviateur des contraintes selon la courbe 1 de la figure
12 qui est basée sur des essais [8].

Les figures 13 et 14 présentent les résultats des calculs
non linéaires des contraintes pour les cas de charges de
précontrainte seule et de précontrainte plus le gradient
thermique. Ces résultats sont comparés sur ces mémes
figures avec ceux des analyses linéaires. On constate que
la prise en considération de la non-linéarité du comporte-
ment du béton réduit les contraintes extrémes de 10 a
20 9, pour le cas de charge de précontrainte seule et de
I5 a 25 9, pour celui de précontrainte plus gradient ther-
mique. Il est important de remarquer que cette prise en
considération conduit a un état de contrainte tridimension-
nel beaucoup plus stable en réduisant pour les éléments les
plus sollicités la distorsion de 20 a 50 ¢, . Le béton s’adapte
donc mieux aux charges que le modele linéaire ne le laisse
supposer.

Le comportement du fat lors d’une augmentation de
pression intérieure jusqu’a la rupture de celui-ci a été
analysé pour plusieurs hypothéses. D’abord les charges dues
a la précontrainte et au gradient thermique ont été appli-
quées. Puis la charge due a la pression de service a été
appliquée et augmentée par palier d’environ 10 9, de cette
pression jusqu’a la rupture.

Deux séries d’analyses ont été effectuées, en admettant
une résistance a la compression, sur cylindres du béton de
350 kg/cm? et une valeur n = 1,25 du rapport entre les
résistances a la compression biaxiale et uniaxiale.

Dans la premiére série d’analyses, nous avons fait varier
la loi de variation de px en fonction de /,. La figure 12
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Fig. 15. — Influence de la loi de variation de x sur la fissuration
et la rupture du fut.

présente les deux lois utilisées, la loi numéro 2 correspon-
dant a un béton plus déformable. Pour ces analyses, la
résistance a la traction du béton a été admise égale a
18 kg/cm? soit environ 5 9, environ de la résistance a la
compression.

La figure 15 présente les zones fissurées pour les fac-
teurs de pression de 1,6, 1,9 et 2,2 et pour les trois analyses
effectuées ; la premiere avec une valeur constante de u et
les deux suivantes avec les lois de variation de pu citées
ci-dessus. Comme 1’on pouvait s’y attendre, il y a trés peu
de différences dans 'extension des zones fissurées a I'exté-
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Fig. 17. — Barrage. Réseau des éléments finis.
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rieur des cables de précontraintes dans les trois cas. Par
contre la fissuration autour des cavités est limitée a de
petites zones dans le cas du béton déformable. La pression
de rupture peut étre considérée comme celle pour laquelle
on obtient une zone fissurée continue depuis la cavité du
réacteur jusqu’a la paroi extérieure du caisson. Sa valeur,
rapportée a la pression de calcul, est de 2,2 pour les deux
premiéres analyses et de 2,3 pour la troisiéme.

Une deuxieme série d’analyses non linéaires a été effec-
tuée pour évaluer I'influence de la résistance a la traction
du béton sur la fissuration et la rupture du fat. La loi
numéro 1 de variation de x en fonction de I, a été admise.
Trois valeurs de la résistance a la traction: 0, 18 et 26 kg/cm?
ont €té utilisées. La figure 16 présente les zones fissurées
pour les facteurs de pression de 1,6, 1,9 et 2,2 pour ces
trois analyses.

Pour les cas de résistance a la traction nulle (fig. 16 (a)),
on constate que la fissuration autour de la cavité des tur-
bines commence déja pour un facteur de pression de 1,6.
La pression de rupture peut étre admise égale & deux fois
la pression de calcul dans ce cas.

Pour les cas des résistances a la traction de 18 et 26 kg/
cm?, les zones fissurées pour les trois facteurs de pression
de 1,6, 1,9 et 2,2 diminuent considérablement. Le coefficient
de sécurité a la rupture par rapport a la pression de calcul
peut étre admis a 2,2 respectivement 2,3 pour ces deux cas.

On constate donc que la variation de la surface de rupture
dans la zone de traction a une influence non négligeable sur
la fissuration et la résistance a la rupture du fit.

4.2  Barrage et massif rocheux de fondation

La figure 17 présente un barrage existant d’environ 40 m
de hauteur, fondé sur des roches de géologie complexe.
La retenue étant partiellement envasée, ce barrage doit
étre surélevé d’environ 15 m et stabilisé a ’aide de tirants
d’ancrage précontraints. La force de précontrainte est de
I’ordre de 650 t par métre linéaire du barrage.

Etant donné I’hétérogénéité des roches de fondations et
la nécessité d’évaluer d’une fagon précise les déformations
du barrage surélevé, nous avons procédé a une analyse
non linéaire pour différents cas de charge.

Le réseau de calcul comporte 130 éléments triangulaires
et 12 éléments filiformes. Les caractéristiques mécaniques
admises pour les bétons et les roches sont les suivantes :

Module de Module de
compressibilité glissement
K en kg/cm* en kg/cm?
Béton existant . 95 000 87 000
Béton neuf S 71 000 65 000
Calcaire . . . . . . . . 71 000 65 000
Gres . D Ei s s @ 67 000 33 000
Schistes, gres et poudingue . 33 000 17 000

La surface de rupture admise pour les calculs est celle
des gres. Une résistance a la compression de 100 kg/cm?
et a la traction de 5 kg/cm? est admise.

La figure 18 présente les contraintes principales et la
zone fissurée pour le cas de charge du lac plein. La zone
fissurée se trouve adjacente au pied amont du barrage.
La contrainte maximale est de I'ordre de 20 kg/cm2. Le
déplacement horizontal de la créete du déversoir est de
6 mm environ vers I’aval.

La figure 19 présente les contraintes principales pour
le cas de charge du lac vide jusqu'au niveau de la vase
existante. On constate que grice aux tirants d’ancrages
existant dans le bassin d’amortissement, il n’y a pas de
zone fissurée dans la fondation du barrage.

Les deux analyses permettent de constater qu’il n’y a
pas de traction dans la roche autour de la zone du scel-
lement du cable,
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4.3  Tirant d’ancrage dans un massif rocheux

Le tirant d’ancrage du barrage cité au paragraphe pré-
cédent a été analysé en détail dans le but d’examiner les
problémes de profondeur d’ancrage a prévoir sous le bar-
rage et de la longueur de scellement a donner a cet ancrage.
Ces problemes sont relativement complexes et des recherches
dans ce domaine sont actuellement poursuivies au Labo-
ratoire de géotechnique de I'Ecole polytechnique fédérale
de Lausanne par M. F. Descceudres, en collaboration avec
le bureau d’études Bonnard & Gardel Ingénieurs-conseils
SA. Nous nous limiterons ici a la description des résultats
d’une analyse non linéaire que nous avons effectuée en
collaboration avec le laboratoire cité ci-dessus et la Chaire
d’aménagements de production d’énergie de I'EPFL.

Le réseau des éléments finis est présenté a la figure 20.
Il comporte 165 éléments triangulaires et 12 éléments fili-
formes. Une zone d’environ 11 m de largeur et de 20 m
de hauteur comportant un ancrage d’une longueur de 6 m
a été analysée. La profondeur d’ancrage peut étre modifiée
par I'application d’une surcharge uniforme correspondant
au poids du terrain au-dessus de cette zone.

L’analyse dont les résultats sont décrits ici est effectuée
pour le cas d’un ancrage scellé dans la plus mauvaise roche
située sous le barrage. Il s’agit d’un schiste argileux dont
les caractéristiques mécaniques ont été déterminées par
des essais in situ et des essais triaxiaux. Les résultats sont
résumeés ci-apres :

— résistance a la compression simple = 17 kg/cm?

— résistance a la traction simple = 8 kg/cm?

— module de compressibilité K = 4500 kg/cm?

— coefficient initial de glissement = 2000 kg/cm?
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Fig. 19. — Barrage. Tensions principales. Lac vide.
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Le critere de Drucker [6] a été admis pour la surface de
rupture qui est alors un cone défini par I’équation (6).

La loi de contrainte-déformation est du type donné par
I’équation (12) et établie par des essais. La figure 21 qui
la représente donne la variation du module de glissement
L en fonction de la distorsion et de la pression moyenne.

Les calculs ont été effectués pour 1’état de déformation
plane. La force nominale du tirant de 585 t par meétre
linéaire (perpendiculairement au plan de la figure) est
d’abord appliquée puis augmentée par palier de 5 9
environ jusqu’a la rupture de I’ancrage. La figure 22 pré-
sente les zones fissurées ou écrasées de la roche en fonction
de la force dans le tirant. On constate que pour un facteur
de charge de 1,2, la zone fissurée ou écrasée est limitée a
une hauteur d’environ 2 m adjacente a la partie supérieure
du tirant. Pour un facteur de charge de 1,3, cette zone
progresse vers le haut, ainsi que vers le bas pour atteindre
la moitié de la longueur du tirant. La fissuration commence
également a I’extrémité inférieure du tirant pour ce facteur
de charge. On peut considérer que la rupture de I’ancrage
est atteinte pour un facteur de 1,4 pour lequel il apparait
une zone fissurée ou écrasée tout autour de I’ancrage.

5. Conclusions

Le recours a I’'ordinateur pour le calcul des structures dans
le domaine élastique permet de résoudre économiquement
un grand nombre de problémes pratiques aussi bien des
structures classiques que complexes.

Toutefois, I’étude qui précéde montre qu’il est intéres-
sant, voire indispensable dans certains cas, de faire un pas
de plus et analyser les structures dans le domaine non
linéaire pour évaluer, de fagon plus précise, leur compor-
tement sous les charges qui les sollicitent. Cette analyse
permet également de déterminer directement le coefficient
de sécurité a la rupture des structures. Il est clair qu'une
meilleure connaissance de ce coefficient permettrait d’en
proposer la diminution et, partant, de réduire le colt de
I’ouvrage.

La méthode des éléments finis s’adapte bien pour les
analyses non linéaires. Parmi les divers procédés utilisés
pour introduire la non-linéarité des lois de contrainte-
déformation dans les calculs, celui de déformation initiales
semble étre le plus satisfaisant si le probléme n’est pas du
domaine de plasticité parfaite.
~ Remarquons enfin que si la technique du calcul et de
la programmation n’est pas sans complexité, I'important
réside surtout dans les hypothéses relatives aux caracté-
ristiques des matériaux et essentiellement de la loi de
contrainte-déformation jusqu’a la rupture et de la défi-
nition du critére de rupture. Des recherches récentes [4, 5]
ont permis de dégager des lois simplifiées pour certains
matériaux. Ces recherches sont actuellement poursuivies,
notamment a I’Ecole polytechnique fédérale de Lausanne,
pour établir des lois plus précises de rupture et de contrainte-
déformation pour les bétons ainsi que pour les sols. Un
programme de calcul non linéaire des structures tridimen-
sionnelles est également en cours d’élaboration. Nous
sommes convaincus qu'il y a dans le domaine de mécanique
des sols et des roches notamment un vaste champ d’appli-
cation du calcul non linéaire par la méthode des éléments
finis.

Adresse de 'auteur :

M. Hussain Khan, c/o Bonnard et Gardel, ingénieurs-
conseils S.A.

10, av. de la Gare, 1000 Lausanne
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Realizzazioni italiane in cemento armato precompresso
1966/70. Volume réalis¢é par le Dr ing. Gaetano Bologna,
avec la collaboration de Germana Bonelli et Galileo Tarantino.
Supplément au numéro 6 de juin 1970 de la revue « L’Indu-
stria Italiana del Cemento». — Un volume 22x31 cm,
356 pages, 384 photographies (dont 6 en couleurs), 376 des-
sins. Prix : relié, 15 dollars.

Cet intéressant volume a été édité a I’occasion du
6¢ Congres international du béton précontraint de Prague,
par 'AITEC (Associazione Italiana Tecnico Economica
del Cemento). Les textes sont présentés en italien, en
francgais et en anglais.

I1 donne une vue d’ensemble des réalisations italiennes
en béton précontraint les plus remarquables, exécutées au
cours de la période comprise entre le 5¢ et le 6¢ Congrés de
la Fédération internationale de la précontrainte, c’est-
a-dire de 1966 a 1970. On y trouvera notamment la des-
cription de 31 ponts et viaducs, de 6 ouvrages divers et de
11 structures de batiments. Une étude est consacrée a la
production en série.

Architektur und das Phédnomen des Wandels, par S. Gie-

dion. Verlag Ernst Wasmuth, Tiibingen 1969.

L’historien d’art bien connu Sigfried Giedion, décédé
en 1968, n’a pu assister a la parution de son dernier
ouvrage sur I’« Architecture et le phénomeéne de I’évolu-
tion ». Ses ouvrages sur « L’Architecture en France »,
«L’Eternel Présent » (Les Commencements de I’art, les
Commencements de I’architecture) et le plus connu
« Espace, Temps et Architecture », ses monographies sur
Gropius et sur Utzon ont porté son renom a travers tous
les pays du monde.

Dans le présent ouvrage, Giedion offre un apergu sur
trois conceptions de I’espace. La premiére, I’architecture
congue comme sculpture, comprend I’architecture égyp-
tienne, sumérienne et grecque ; la seconde, I’architecture,
espace intérieur, commence avec les vofites de Campanie,
systétme qui s’est répandu sur tout I’Empire romain :
la troisiéme, I’architecture sculpture et espace intérieur,
n’a fait que s’esquisser au cours de notre siécle.

Giedion illustre d’une maniére fort pertinente toutes les
périodes de D’architecture et en décrit les méthodes de

construction et I’évolution des formes griace auxquelles
notre époque a trouvé son expression propre dans I’archi-
tecture.

Le choix des illustrations, qui sont dues en grande partie
a lauteur lui-méme, apporte aux développements
théoriques et critiques des images vivifiantes.

Par tous ces ouvrages 1'auteur s’est assuré, selon sa pro-
pre définition, une «éternelle présence ».

H.R.V.d M.

Le Corbusier, volume 8: Les derniéres ceuvres, par
Willy Boesiger. Les Editions d’architecture Artemis, Zurich
1970.

Lors de la publication du septiéme volume, 1'éditeur
d’alors, M. Girsberger, pensait que ce serait Je dernier,
la mort de Le Corbusier en 1965 ayant mis un terme a
’activité de cet architecte de génie. Entre-temps, un certain
nombre de constructions et de projets ont été réalisés ou
mis au point. Ce sont ces ceuvres qui, admirablement
présentées avec de riches illustrations, dont un grand
nombre en couleurs, ce qui leur confere un éclat particu-
lier, figurent au sommaire :

Firminy-Vert : Unité d’habitation, la Maison de la Culture,
I’église, le stade.

L’écluse de Kembs, en Alsace.

Chandigarh : le Capitole, le Musée, la Tour des Ombres, les
batiments annexes du palais de Justice, le club nautique,
I’Ecole des beaux-arts, les habitations, les tapisseries dans
les palais des Assemblées et de la Justice.

Le nouvel hopital de Venise.

Le pavillon de Zurich.

Le barrage de Bhakra, aux Indes.

Le Musée du XXe¢ siécle.

Le texte du « testament spirituel ».

L’hommage d’André Malraux lors des funérailles nationales.

Un hommage a Pierre Jeanneret, son cousin et collaborateur
durant de longues années.

Les ceuvres de Le Corbusier excédent le domaine de
I’architecture et de I'urbanisme ; elles exaltent les qualités
humaines et sont une glorification de I’étre lorsqu’il vise
a dépasser la condition terrestre.

Les éditeurs ont élevé, par la publication de I'ccuvre
complet, un monument magnifique et durable a la mémoire
de notre grand compatriote adopté par la France.

H, R, V.d. M.
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