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BULLETIN TECHNIQUE DE LA SUISSE ROMANDE

97¢ année 16 octobre 1971 Ne° 21

Stabilité élasto-plastique des cadres'

par SRIRAMULU VINNAKOTA, Dr és sc.?

1. Généralités

L utilisation des moyens modernes de calcul, tels que les
ordinateurs, permet d’analyser des structures d’une fagon
précise et rapide. Cependant, les sciences de l'ingénieur
sont liées intimement aux réalités physiques et industrielles
et la précision maintenant possible dans les calculs pour-
rait étre illusoire, si elle n’était pas liée aux conditions
réelles des structures en question [1]3. La recherche [2]
qui est a la base de ce résumé étudie, en serrant la réalité
d’aussi prés que possible, le comportement élasto-plastique
des poutres-colonnes et des cadres plans jusqu’a ce que
leurs charges ultimes soient atteintes.

2. Définition du probléme

Les cadres plans envisagés sont constitués par des bar-
res droites de section constante soumis a des forces situées
dans ce plan. Les barres peuvent étre reliées aux nceuds,
qui sont considérés indéformables, soit par des assem-
blages rigides, soit par des articulations. Les charges sur
le cadre peuvent agir au droit des nceuds, ou encore, sur
les barres proprement dites ; mais nous supposerons que
I’effort normal est constant le long de chaque barre entre
les nceuds. Cette hypothése ne diminue pas la généralité,
car on peut introduire un nceud fictif dans toutes les sec-
tions ou I’effort normal varie.

On utilise deux systémes d’axes comme l’indique la
figure 1. Le systéme d’axes Y° Z°, dit systéme global, est
utilisé pour la structure entiére. Toute grandeur géo-
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Fig. 1. — Cadres plans (désignation et sollicitation).

métrique ou physique liée au nceud est repérée par rapport
a ce systéme global. En plus, un systéme d’axes YZ, dit
systéme local, est lié a chaque barre. L’origine de ce sys-
téme est attribuée arbitrairement a I'une des deux extré-
mités de la barre (désignée comme extrémité 1). L’axe Z
coincide avec I’axe longitudinal de la barre, et son sens
positif est obtenu en parcourant la barre de son extrémité 1
a son extrémité 2. Sur les figures, ce sens sera indiqué par
une fléeche dessinée sur la barre. L’axe Y sera positif s’il
coincide avec I'axe Z aprés une rotation de 90° dans le
sens des aiguilles d’'une montre.

Les charges extérieures, les efforts tranchants, les efforts
normaux et les déplacements sont tous considérés positifs
s’ils ont la méme direction que les axes. Les moments et
les rotations sont considérés positifs dans le sens opposé
au sens des aiguilles d’'une montre.

Les charges considérées sont non proportionnelles.
Chaque charge, Q par exemple, se compose de deux par-
ties. Une partie, Q,, caractérise la contribution des charges
permanentes. Elle reste constante. L’autre partie, Q,,
représente la contribution des surcharges. Elle augmente
proportionnellement & sa valeur initiale. Le coefficient 4,
unique pour toutes les charges agissant sur le cadre, repré-
sente I'intensité de I’augmentation des surcharges.

Si 'on augmente progressivement le paramétre A, le
cadre se déforme d’abord élastiquement. Pour une valeur
déterminée, A, de A, la limite élastique réduite? est
atteinte dans la fibre la plus sollicitée du cadre. La zone
plastique se développe ensuite en profondeur et de part

déformation p
>

Fig. 2. — Courbe charges-déformations d’une structure.

1 Conférence présentée a Lausanne, le 14 novembre 1970,
dans le cadre des Journées d’études du Groupe spécialisé des
ponts et charpentes de la Société suisse des ingénieurs et archi-
tectes.

2 Chercheur, Institut de la Construction métallique de I’Ecole
polytechnique fédérale de Lausanne, dirigé par le professeur
J.-C. Badoux.

3 Les numéros entre crochets renvoient a la bibliographie en
fin d’article.

4 Clest la limite élastique du matériel diminuée par la con-
trainte résiduelle.
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Fig. 4. — Etat de plastification d’un profil.
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Fig. 5. — Diagrammes des limites élastiques et des contraintes
résiduelles d’un profil.
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Fig. 6. — Etat de plastification d’une barre.
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et d’autre de cette section. D’autres zones de plastification
peuvent éventuellement se développer. Cette plastification
réduit progressivement la rigidité du cadre, tandis que A
augmente toujours. La variation d’une déformation repré-
sentative p avec le parametre A a donc I’allure montrée
sur la figure 2. A passe par un maximum 4, qui correspond
a la capacité ultime du cadre et celui-ci périt par excés
de fiexion.

Le phénoméne étudié est donc le flambage par divergence
dans le domaine élasto-plastique.

Cette étude est basée, entre autres, sur les hypothéses
suivantes :

1. Les forces appliquées a la structure conservent leurs
directions initiales ainsi que leurs points d’appli-
cations initiaux pendant le flambage.

2. Les déformations sont considérées comme petites.

3. Il n’y a nulle part inversion du sens des déformations
plastiques.

4. Le cas de flambage étudié est celui du flambage par
exces de flexion dans le plan du cadre. 11 est supposé
que le flambage spatial accompagné de torsion et le
voilement local des parois sont empéchés.

Le comportement €lasto-plastique d’un cadre dépend
de celui des barres, qui le constituent. A son tour, le
comportement d'une barre est influencé par le comporte-
ment élasto-plastique des profils. La suite de cet article
est donc organisée comme suit :

La déformation élasto-plastique d’un profil soumis a un
effort normal et a un moment de flexion, est considérée
au paragraphe 3, ou la notion de la rigidité équivalente
d’une section partiellement plastifiée est introduite. Au
paragraphe 4, nous donnons un résumé de la théorie néces-
saire pour déterminer la déformée élasto-plastique d’une
poutre-colonne. La déformée dun cadre plan, sollicité
dans le domaine élasto-plastique, est ensuite étudiée au
paragraphe 5. Le flambage élasto-plastique par divergence
est examiné dans le paragraphe 6. Enfin, nous donnons,
dans le paragraphe 7, deux exemples numériques pour
montrer la validité de la théorie développée.

3. Déformation élasto-plastique d’un profil

Les matériaux du cadre sont considérés « élastique-
parfaitement plastique ». Ils possédent chacun une limite
d’élasticité g, et un module d*élasticité E (fig. 3). La figure 4a
montre un profil de longueur unité sollicité par un effort
normal P et par un moment de flexion M. La courbure
qui en résulte est représentée par @. La figure 4b montre
les zones de plastification éventuelles de ce profil. On
remarque facilement que le profil réagit aux sollicitations
indiquées, sur la figure 4a, avec une rigidité E7,, plus
petite que la rigidité élastique, EI, du profil.

La courbure @ — ou la rigidité équivalente EI,, — qui
résulte d’'un moment M et d'un effort normal P est influen-
cée par tous les parameétres qui influencent la plastification
du profil, a savoir, la répartition géométrique du matériel
dans le profil (fonction f,), la variation géographique de
la limite élastique dans le profil (fonction f;), et la répar-
tition géographique des contraintes résiduelles dues au
laminage ou soudage du profil (fonction £,). A titre d’exem-
ple, ces fonctions sont représentées a la figure 5 dans le
cas d’un profil laminé HEA 100 [3].

La figure 6a montre une barre faisant partie d'un cadre
et la figure 6b montre les zones éventuelles de plastification
le long de cette barre. On constate que cette barre peut
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Fig. 7. — Répartition idéalisée des contraintes résiduelles.

étre analysée comme une barre de section variable, ou la
rigidité élastique a chaque section est remplacée par sa
rigidité équivalente. Le tableau I donne les formules pour
évaluer la pente et le déplacement v a Iabscisse z de la
barre, a partir de la courbure @. A gauche, on a donné
les relations valables pour les sections élastiques, et a
droite, celles pour les sections partiellement plastifiées.
On constate que les relations sont semblables dés que ’on
a les moments d’inertie équivalents des sections plasti-
fiées. Les relations P-M-® ou P-M-EI,, sont fondamen-
tales pour les calculs de stabilité é€lasto-plastique des
poutres-colonnes et des cadres.

TABLEAU I
Section Section
élastique partiellement plastifiée
Courbure @ =F(M) = F(M, P, fo, fg, fr)
M M
- EI "~ El,
M M
t = —adz -
Pente y ) EI d Eloy dz
"M "M
Déplacement v = .’f}ﬁ dz dz = ’fEch dz dz

Les références [2], [4] permettent de tracer les courbes
P-M-EI,, d’un profil en double té suivant I’hypothése que
les contraintes résiduelles varient bi-linéairement dans
I’ame et dans les semelles (fig. 7); tandis que les réfé-
rences [5], [6] permettent de tracer ces courbes dans le
cas d’une répartition quelconque des contraintes résiduel-
les et des limites élastiques (fig. 5).

A titre d’exemple, on a tracé sur la figure 8, les courbes
M-EI,, pour différentes valeurs de I’effort normal P, pour
un profil américain 8 WF 31 (A~ HEA 200). Les courbes
continues sont valables pour un profil sans contraintes
résiduelles ou pour un profil recuit. Les courbes en poin-
tillés sont valables pour un profil laminé, compte tenu
des contraintes résiduelles définies par o,. = 0,3 0,;
Ors = Opj = Orq = —0,191 o,. Sur cette figure, P, repré-
sente I’effort normal plastique et M, le moment élastique
maximum du profil sans contraintes résiduelles.

0.0 [ 0,2 0.3 0.4 05 06 07 0.6 09 10

P/% =00 —,

“o0 ot 0z 03 04 05 08 o7 08 09 10
l,”/l

Fig. 8. — Courbes P-M-El,, (sans dimensions).

4. Déformation élasto-plastique d'une barre

L’étude du comportement élasto-plastique d'une barre
faisant partie d’un cadre — la barre A4; A; sur la figure 1b,
par exemple — peut étre ramenée a celle d’'un sous-
ensemble, composé de cette barre appuyée sur des ressorts
rotationnels et directionnels a ses deux extrémités (fig. 9).
L’appui rotationnel d’une extrémité représente la résistance
des barres adjacentes a la rotation de I’extrémité consi-
dérée, tandis qu’un appui directionnel représente la résis-
tance des barres adjacentes au déplacement transversal
de I'extrémité en question. Ces ressorts sont considérés
« élastique-parfaitement plastique ».

Q* q V“T M.
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DEFORMEE
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p
K (&?3“’ k V% ““ rv
T My T
CARACTERISTIQUES DES RESSORTS

Fig. 9. — Poutre-colonne appuyée sur des ressorts et sa
déformée.
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Fig. 10. — Désignation des segments et des jonctions.

Afin de déterminer la déformée de cette barre, on la
partage en un certain nombre de segments, de longueur
pas nécessairement égale, a l'intérieur desquels la rigidité
équivalente peut étre considérée constante a chaque niveau
de sollicitation. (Cela est toujours possible a condition
de prendre assez d’intervalles dans les parties fortement
plastifiées. A titre d’exemple, les longueurs utilisées dans
les références [2], [7], [8] variaient entre i, et 4i,, ou
i, est le rayon de giration du profil par rapport a son axe
fort). On désigne, en partant de I’extrémité gauche de la
barre (extrémité 1), par 1,2, ...,7, i+ 1,..., n les
segments et par 1,2, ..., j,..., n+ 1 les jonctions,
j étant la jonction des segments i et i + 1 (fig. 10).

On définit un vecteur d’état S, d’ordre (5x 1), dont
les éléments sont le déplacement v, la pente i, le moment
M, Veffort tranchant ¥ et I'unité. Ce dernier élément est
introduit pour pouvoir inclure l’influence des charges
transversales agissant sur la barre entre les extrémités.

1

: 4

777
s ®
o
Fig. 11. — Types des conditions limites considérées.
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Ainsi :
S={yMVi) (9]

Alors, on peut écrire sans grande difficulté, [7], [8], la
relation matricielle :

S2 — Tn Gn ..... Ti+1 Gj Tl e Gg Tl Sl (2)

Sz = BSI (3)

S est le vecteur d’état a I’extrémité 1 de la barre
Ss est le vecteur d’état a I'extrémité 2 de la barre

T; est la matrice de transmission, d’ordre (5x5), qui lie
le vecteur d’état de I’extrémité droite du segment i
avec celui de son extrémité gauche

G; est la matrice, d’ordre (5x5), qui lie le vecteur d’état
de D’extrémité gauche du segment 7 + 1 avec celui de
I’extrémité droite du segment 7

B est la matrice de transmission de la barre élasto-
plastique liant les vecteurs d’état S, et Sj.

Les conditions aux limites, existant effectivement sous la
sollicitation considérée, fournissent a chaque extrémité
deux grandeurs parmi les paramétres v, v, M, V de cette
extrémité ou deux relations entre ces quatre parametres
s’il y a des ressorts non plastifiés. La figure 11 représente
les neuf types d’appuis que I’on peut rencontrer aux extré-
mités d’une barre. Pour une combinaison quelconque de
ces appuis et pour des conditions effectives a ces extré-
mités sous la sollicitation considérée, on peut aussi écrire
la relation (3) comme suit :

AX=H “)

ou X est le vecteur des quatre inconnues (deux a chaque
extrémité). La solution de ce systéme est donnée par :

X=A1H ®)

Connaissant le vecteur X, donc le vecteur d’état S;, on
détermine par la méthode des parameétres initiaux, le
déplacement, la pente, le moment et I’effort tranchant aux
deux extrémités de chaque segment et finalement la rigidité
équivalente de chaque segment. Les calculs de la déformée
sont répétés avec ces nouvelles valeurs de rigidité, en
introduisant les modifications éventuelles, dues a la plasti-
fication d’un ressort directionnel ou rotationnel ou, encore,
dues a la formation d’une rotule plastique a une extrémité.

La déformée ainsi calculée est comparée a celle obtenue
par le calcul précédent. Si la différence obtenue n’est pas
négligeable, les calculs sont répétés avec les nouvelles
valeurs des rigidités, jusqu’a ce qu’une convergence satis-
faisante soit obtenue.

Une précision de 40,002 a 40,005 cm sur les dépla-
cements est utilisée dans les exemples des références [2],
[71, [8]. Dans ces calculs, on avait besoin de 3 & 5 cycles
de calculs pour des valeurs de A =0,90 4, et jusqu’a
8 cycles de calculs si 0,90 1, << 4 < 0,95 A,.
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Fig. 12. — Types des liaisons d’extrémité d’une barre.

5. Déformation élasto-plastique d'une barre

Les calculs de la déformée d’un cadre, sous une solli-
citation donnée, s’exécutent de la fagon suivante:

1. On calcule d’abord les matrices de rigidité de cha-
cune des barres dans le systéme local des coordon-
nées YZ. Ces matrices permettent d’exprimer les
forces internes agissant aux extrémités d’une barre
en fonction des déformations de ces extrémités et des
charges extérieures propres a cette barre.

2. On transforme ces matrices de rigidité relatives a
chaque barre suivant le systéme global des coor-
données Y° Z°.

3. En assemblant ces matrices d’aprés la géométrie du
cadre, on obtient la matrice de rigidité du cadre
partiellement plastifié.

4. La résolution de la matrice de rigidité du cadre nous
donne sa déformée.

5.1 Matrices de rigidité d’une barre dans le systéme
local YZ

Considérons une barre B, liant les nceuds A; et 4; du
cadre (fig. 1). Nous supposons que la sollicitation entraine
une plastification de certaines parties de cette barre et donne
éventuellement naissance a des rotules plastiques aux
extrémités. Nous admettons, dans ce paragraphe, que
I’état de plastification des sections de cette barre est connu.

Il y a lieu d’examiner quatre cas de liaisons des extré-
mités de cette barre comme I'indique la figure 12 :

Cas a) La barre est rigidement liée aux nceuds a ses deux
extrémités (fig. 12a).

Cas b) La liaison d’extrémité 2" au nceud A; est rigide
tandis que la liaison entre Iextrémité 1’ de la
barre et le nceud A; est constituée par une rotule
mécanique ou plastique (fig. 12b).

Cas ¢) La liaison d’extrémité 1° au nceud A; est rigide
tandis que la liaison entre 'extrémité 2’ de la
barre et le nceud A; est constituée par une rotule
(fig. 12c).

Mibrs)

Yip(s)

Fig. 13. — Forces et déformations aux extrémités d’une barre
(systeme local).

Cas d) Les liaisons des deux extrémités sont constituées
par des rotules (fig. 12d).

Les discontinuités — rotules mécaniques ou plastiques —
sont supposées voisines des nceuds. Dans le cas ou une
rotule plastique se forme loin des nceuds, on ajoute un
neeud fictif infiniment voisin de cette rotule plastique.
Les notations montrées sur la figure 12 permettent de
distinguer les moments de part et d’autre des disconti-
nuités. Ainsi, ’extrémité 1’ de la barre B, est supposée
reliée au nceud A4; par un segment 4;1 de longueur infini-
ment petite. Si la liaison d’extrémité est rigide wy, =
= yyp et My, = My,. Ces deux relations sont remplacées,
dans le cas d’une liaison constituée par une rotule (¥1:
# Y1), par les deux relations My, = My, et My, =
= M. Ici, M1y et My, sont des moments imposés.
Dans le cas d’une rotule mécanique, ces moments sont
des grandeurs données (M, = 0 en général), tandis que
dans le cas d’une rotule plastique ils sont égaux au moment
plastique M,p)! en valeur absolue et leur signe est donné
par celui de la rotation wp.

Soient Fy, et Fop, les vecteurs des forces agissant aux
points 1 et 2 représentés par (fig. 13):

Fip = {P1 Vie My} Fap = {Pay Vop Moy} (6)

Soient également Dy, et Dy, les vecteurs des déforma-
tions de ces extrémités :

Dyp = {W1b Vip l//u;} Dy = {Wzb Vap !//zz;} @)

Ces vecteurs des forces et des déformations sont reliés
par les relations matricielles :

Fip = Ru1 Dy + Riz Dy + Fuyes)

®)
Fap = Ryy Dy + Roo Doy + Fays)

1 C’est le moment plastique d’un profil modifi¢ pour la pré-
sence de I'effort normal P.

495

e



ou

= Rll' ngv Rzlv Rgg sont les matrices de rlgldlté de la
barre (systéme local) ;

— Fiyes) et Fyyes) sont les vecteurs des forces qui reflétent
I’influence des charges extérieures agissant sur la barre
entre ses extrémités, sur les vecteurs Fy; et Fop.

Dans leur forme développée, les relations (8) se présen-
tent comme suit :

P Fll 0 0 w
V| = |0 Fo Fo v |
M 0 fgo f33 174
1 11 10
fp 0 0| [w 0
+ |0 Fay Fog v+ |
0 7o Fag v /3
12 2b 16(S)
©)
P fll 0 0 | w
Vv = 0 fﬁg fzg v +
M 0 I;32 F33 74
20 21 i)
fp 0 0 | [w] 0
+ |0 Fop Fog v + | fo
0 /g F 33 | v f: 3 |
22 2p 20(S)

On constate facilement que les éléments des matrices R,
a I’état de plastification considéré, peuvent étre identifiés
et calculés comme les efforts qui naissent aux extrémités
de la barre en posant successivement une des déformations
(parmi viy, Wip, Wib, Ven, Wap, €t Wop) égale a Ilunité,
toutes les autres étant nulles. Les forces extérieures agis-
sant sur la barre n’interviennent pas dans ces calculs.
A titre d’exemple, les éléments (Fog)110 (Fog)err (Fug)ii et
(F33)21 sont respectivement les forces transversales Vi, et
Vo, et les moments My, et Moy, qui résultent d’une rotation
unitaire de I'extrémité 1 ; c’est-a-dire w1, = 1; vy, = vey =
= Wip = Wap = Wa = 0.

Fig. 14. — Forces et déformations aux extrémités d’une barre
(systeme global).
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Les éléments des vecteurs Fy, s, et Fayes) sont les efforts
aux extrémités de la barre sous les charges extérieures
toutes les déformations étant empéchées (fig. 13 c).

Dans le cas ou il y a des rotules plastiques ou mécaniques,
on doit tenir compte de leur présence dans les calculs
ci-dessus. La théorie développée au paragraphe 4 permet
d’évaluer ces €éléments d’une facon rationnelle. Pour plus
de détails, il faut consulter la référence [2].

5.2 Matrice de rigidité d’une barre dans le systéme
global Y° Z°

Dans les relations (8), les forces et les déformations se
rapportent toutes au systéme local de coordonnées de la
barre. Soient FY,, FY,, DY, et DY, les composantes de ces
forces et de ces déformations suivant les axes Y°Z° du
systéeme global.

On a d’apres la figure 14 :

F{y = {FZ"lb Fyorp Mw} FS = {FZ°2b Fyoy MZb} (10)

0o _ 0 0 f,0 0
DYy, = (W v w1n) DY, = (W v Was) (11)

Soit «, 'angle que fait ’axe Z de la barre avec I’axe Z°.
Soit T, la matrice de transfert des axes, définie par :

Ty = cos oy sine, O
—sinoy cosog O (12)
0 0 1

En résolvant les vecteurs des forces Fy,, Fs, et les vec-
teurs des déformations Dy, et D, suivant les axes Y°
et Z°% et en y introduisant les notations :

RhW=TRuT, Ry = T;'Ris Ty, Flys) = Ty'Fuys)
(13)
Rgl = Tz_;an Ty Rgz = Tz_;lRZZ T, ng(S) = T;;lFZl)(S)

on obtient, d’aprés les relations (8), les équations matri-
cielles suivantes :

Fy = R}, DY, + RY; DY, + Flys) (14
F$, = RY, DY, + RY, DYy + Fys)

Ces équations peuvent encore étre simplifiées comme
suit :

Désignons par 7 I'extrémité voisine du nceud en étude,
n étant le numéro de I'autre extrémité. Par exemple, sur
la figure 12, nous avons pour le nceud 4;, 7 =1, = 2
tandis que pour le neeud A;, 7 = 2 et 7 = 1. Les équa-
tions (14) se réduisent donc a la seule relation :

F?b = R?r ng + Rg” ng + ng(s) (15)

5.3. Matrice de rigidité du cadre et sa déformée

Soit un neeud quelconque (A4; par exemple) du cadre plan
représenté sur la figure la. La déformation de ce nceud
peut étre représentée par une matrice colonne DY dont
les trois composantes sont les déplacements v, w? suivant
les axes Y respectivement Z° et la rotation ;.

Considérons une barre B, dont I’extrémité 7 est liée au
neeud A;, autre extrémité # étant liée au nceud A4;. Les
forces internes FY, a lextrémité 7 de la barre B,, par
rapport aux axes Y° Z° sont données par I’équation (15).
Cette barre exerce donc sur le neeud A4; un systéme de
forces dont les éléments de réduction, par rapport aux
axes Y°Z° forment une matrice colonne —FY,. Nous



Fig. 15. — Equilibre d’un nceud.

avons donc des équations analogues pour toutes les autres
barres qui convergent au nceud 4; (fig. 15). Si FYest la ma-
trice colonne des forces extérieures agissant sur ce neceud,
alors 1’équilibre des forces agissant au nceud A; s’exprime
par I’équation :

F) —ZF% =0 (16)
b

dans laquelle la somme s’étend a toutes les barres B, dont
une extrémité ¢ est liée au nceud A;.
La condition de compatibilité des déformations, au
neeud A;, s’exprime par :
D)= D% = ...:. a7

T

A Taide des relations (15) et (17), I’équation (16) devient :
[ Z Ry, } D} + L Ry, D} = F} — ZFlys  (18)
b i b

que ’on peut écrire sous forme :

Ry DY + Z Ry D} =F, (19)

J

L’équation d’équilibre ci-dessus, qui a été écrite pour le
neeud A; seul, peut aussi 1’étre pour les autres nceuds de
la structure. Nous obtenons ainsi autant d’équations que
de nceuds, c’est-a-dire d’inconnues DY,

Les équations (19) peuvent encore étre condensées.
Supposons que le nombre de nceuds soit égal & N. Désignons
par D et F les matrices colonnes :

D= {DYDY} ... D} ... DY} (20)

et par R la matrice carrée d’ordre 3N :

[Riy Ris ... Ry ... Ry ... Ruy
Rgl Rzg .o Rgi oo jo e RgN
Ril Rzg .. Rii oo R,‘j B RiN
(22)
le Rjg ‘e Rﬂ .o Rjj e RJN
_RNI RN2 e RNi “ae RNj e RNN_

R est la matrice de rigidité du cadre sous la sollicitation
donnée. Dans I’expression (22) de cette matrice, 1’élé-
ment R;; doit étre pris égal a zéro si les noceuds A; et A;
ne sont pas reliés par une barre. Les équations (19) écrites
pour i = 1,2, ..., N se réduisent donc a la seule équa-
tion matricielle :

RD = F (23)

Dans le cas ou I'une, deux ou toutes les trois composan-
tes des déformations d’un nceud sont empéchées, on ap-
porte les modifications nécessaires dans la matrice R et
le vecteur F. Par exemple, si le déplacement horizontal
du nceud A; est empéché (c’est-a-dire w) = 0 ou I’élé-
ment ds;_ du vecteur D est égal a zéro), on fait :

rgi—ox = 0 pour tous k # 3i—2
resi-2 = 0 pour tous k # 3i—2
f3i—-2 = 0.

Le vecteur des déformations D s’obtient par la résolution
du systéme (23) ainsi modifié. On a, en effet

D=R'F (24)

Possédant les déformations des nceuds définies par le
vecteur D, on calcule les moments, les forces longitudinales
et transversales agissant aux extrémités de chaque barre
a l'aide des équations (8). Connaissant ces grandeurs,
on calcule les moments de flexion et I’effort normal aux
extrémités de chaque segment de chaque barre, a l'aide
de la théorie développée sous paragraphe 4. De ces valeurs
on détermine, a I'aide des courbes P-M-EI,, décrites au
paragraphe 3, les rigidités effectives dans chaque segment.

On répéte les calculs de la déformée du cadre avec ces
nouvelles valeurs des rigidités. On répéte ces calculs
jusqu’a ce qu’ils convergent avec une précision voulue.

6. Flambage élasto-plastique par divergence

La théorie, exposée dans les paragraphes précédents,
permet de déterminer la déformée d’une poutre-colonne ou
d’un cadre sous une charge donnée. En répétant ces calculs
pour des valeurs croissantes de la charge extérieure, on
arrive a la charge ultime de la structure, au-dela de laquelle
les calculs ne convergent plus.

Marche a suivre pour le calcul de la charge ultime 2, :

1. On commence les calculs avec une valeur initiale
de A = Jy qui est plus petite que la valeur ultime
cherchée. En pratique A, est choisi de sorte que la
structure (le cadre ou la barre en question) soit par-
tout dans le domaine élastique. Ainsi, les calculs
peuvent étre commencés avec les rigidités élastiques.

2. On détermine la déformée de la structure sous la
sollicitation A considérée, en utilisant la théorie
donnée sous paragraphe 4, si c’est une barre; ou
la théorie donnée sous paragraphe 5, si c’est un
cadre.

3. Puis, A est augmenté par étapes de J; et le calcul
indiqué ci-dessus est répété, jusqu’a ce que l'on
arrive a des valeurs 4 = Ajyp et 4 = Agy, différentes
de la valeur J;, de sorte que
pour Ay les calculs convergent
pour Ag,p les calculs divergent.

Ceci indique que la charge ultime de la structure se
situe entre Aiyp et Agyp (fig. 2).

4. On continue les calculs au-deld de la valeur A;,; avec
des accroissements réduits ds, s, ..., O, (avec
Om << ... << 0y < 01), pour améliorer I’exactitude
dans la détermination de la charge ultime.

5. On trouve ainsi les valeurs raffinées de Aj et Agyp
différentes de o,,. A, est alors pris égal a
U»inl‘ = ’lsup)/z-
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Fig. 16. — Exemple 1 : Poutre-colonne.

FLAMBAGE D'UN CADRE NON-CONTREVENTE
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Il est recommandé, avant de commencer les calculs
ci-dessus, d’effectuer une analyse plastique (du 1er
ordre) de la structure pour déterminer 4,. Ce calcul
facilitera le choix des grandeurs Ag, d1, Js, ..., Op.

7. Exemples d’application

La méthode qui vient d’étre exposée est utilisée, dans les
références [2], [7], [8], pour évaluer les charges ultimes et
les caractéristiques charges-déformations des nombreuses
poutres-colonnes et des cadres. Ces résultats sont ensuite
confrontés avec ceux des théories antérieures et avec ceux
des nombreux essais sur modeéles, de grandeur nature,
effectués a I'universalité Lehigh aux Etats-Unis. Cette
comparaison a montré que la méthode développée donne,
avec une précision satisfaisante, non seulement la charge
ultime des poutres-colonnes et des cadres, mais également
les relations charges-déformations jusqu’a la rupture; ceci
dans tous les cas ou les conditions des structures corres-
pondent aux hypothéses de 1’étude.

Dans ce qui suit, on donnera deux exemples numériques
qui ont fait I’objet d’essais a Lehigh. Tout d’abord, on
étudiera une poutre-colonne articulée a ses deux extré-
mités et puis un cadre plan non-contreventé d’un seul
étage. On comparera les solutions numériques aux résul-
tats expérimentaux de Lehigh.

7.1 Poutre-colonne articulée a ses extrémités

Cet essai a été exécuté sur une colonne d’élancement 55,
composée d’un profil 8 WF 31 (~ HEA 200) en acier
doux A 7 (&2 Ac 37). Elle était articulée a ses deux extré-
mités et guidée latéralement en son milieu pour éviter le
déversement. En plus d’un effort normal P, la colonne
était soumise a un moment 1M, a I'une de ses extrémités.
Le plan de ce moment coincidait avec le plan de I'dme
du profil. La charge axiale de 0,326 P, fut maintenue
constante pendant I’essai, tandis que 1'on fit croitre le
moment de zéro a sa valeur maximum. On a observé que
la colonne a effectivement péri par exces de flexion.

Les contraintes résiduelles dans le profil ont été mesurées
et leurs effets inclus dans les calculs théoriques. Le dia-
gramme moments-rotations relatif 4 cet essai est confronté
sur la figure 16, avec ceux, tirés de la référence [9] et
déduits de la présente étude.

On constate que ’accord entre les résultats de la pré-
sente étude et I’étude théorique de la référence [9] est
trés bon, tandis que ’accord avec I'essai est bon.

7.2 Cadre rectangulaire

Le cadre rectangulaire choisi a une hauteur d’environ
2,65 m et une portée d’environ 4,56 m. La poutre hori-
zontale est constituée d’un profil américain 10 1 25,4
(~ IPER 240), tandis que les colonnes sont faites de
profils américains 5 WF 18,5 (&~ HEB 200). Les colonnes
sont en acier a haute résistance A 441 (&~ Ac 52), tandis
que la poutre horizontale est en acier de construction A 36
(A Ac 37). Les charges verticales sont laissées constantes,
a la valeur W = 9 tonnes, tandis que la charge horizontale
H est augmentée de fagon continue et progressive.

La courbe charges-déformations d’aprés 1’essai est mon-
trée sur la figure 17. Sur la méme figure, on a montré les
points obtenus d’aprés la présente étude. L’accord entre
la théorie et I’essai est de nouveau satisfaisant.
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L’évacuation d'immeubles en cas d'urgence

par REMO A. SPEHLER, Stafa, et WERNER G. PEISSARD, Zurich

Introduction

Chaque fois qu’un incendie éclate dans un immeuble ou
se trouve un public nombreux, on se pose de nouveau la
question combien de temps il faudrait compter pour éva-
cuer la maison entiérement occupée. Ce probléme ne
concerne pas seulement les grands magasins et les centres
d’achats, mais également les dancings, les discothéques,
les salles de théatre et de concerts etc. Ce rapport a pour
but d’examiner les expériences faites et les réflexions qui
en découlent, afin de créer les fondements théoriques déter-
minant les données architecturales et influengant I’ensemble
des installations nécessaires a permettre une évacuation
rapide sans panique. Dans ce sens, les spécialistes sont
tous d’accord que nulle alerte aussi immédiate soit-elle
ne contribue d’une fagon décisive au succes de I’évacuation.
Pour en illustrer toutes les éventualités, nous avons choisi
I’exemple d’un grand magasin.

Une conflagration dans un immeuble occupé par un grand
nombre de personnes pose toujours le probléme d’une
évacuation assez rapide. Ce probléme ne saurait étre résolu
par des réflexions faites aprés coup au sujet de ce que tel et
tel avait fait faux ou négligé de faire. Il n’y a qu’un seul
point de départ valable: s’il faut faire sortir a temps
une foule donnée, c’est-a-dire dans un délai fixe, il faut
que I'on dispose de chemins d’évacuation suffisamment
larges et nombreux, et sans obstacles. Il va de soi qu'’il
faut veiller a ce que les sorties de secours puissent étre
facilement ouvertes par n’importe qui et qu’elles ne soient
pas encombrées de dehors, de sorte que les foules puissent
se disperser rapidement. Mais il est tout aussi important
de tenir compte du fait que, méme en cas d’urgence, une
foule ne s’achemine vers les sorties de secours qu’apres
un certain temps de réaction. Mentionnons en passant que
pendant cette phase, la fumée peut trés bien produire une
panique.

Notre étude a pour but d’éclaircir combien de temps il
faut pour évacuer, en cas d’urgence, un immeuble encombré
d’une grande foule. Nous essayerons de trouver une formule
simple et universellement valable, basée sur des réflexions
tenant compte du temps d’évacuation tout entier. Les

données qui en résulteront devront permettre un examen
logique et conséquent de I’organisation d’alarme, des
possibilités d’évacuation et des autres mesures de sécurité
existantes.

11 faudra surtout examiner les conditions dans les grands
magasins et les établissements a self-service ou le désir
d’accroitre le chiffre d’affaires et le besoin de sécurité
adéquate se contestent mutuellement les zones de ventes
plus intensives, et ou les stands temporairement arrangés
au milieu des chemins d’évacuation sont a ’ordre du jour.

Nous examinerons donc en premier lieu I’évacuation de
personnes non handicapées qui sont en mesure de se sauver
elles-mémes. Nos réflexions sont, en partie, également
valables pour I’évacuation de foyers et d’hopitaux, a
condition qu’on tienne compte de prémisses et notamment
de délais différents.

Phase d’évacuation

La phase d’évacuation dans son ensemble se compose de
quatre facteurs qui peuvent étre clairement distingués. La
nécessité d’une évacuation est presque toujours la consé-

Phase totale d'évacuation (Eph)

E

A, ]

A vV Ev

E = temps de détection du feu
A = temps d'alarme
V = temps de préparation

Ev = temps d'évacuation

nombre de personnes

phase totale d'évacuation

Fig. 1.
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