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BULLETIN TECHNIQUE DE LA SUISSE ROMANDE 97e année 16 octobre 1971 H' 21

Stabilité élasto-plastique des cadres1

par SRIRAMULU VINNAKOTA, D' es se.2

1. Généralités

L'utilisation des moyens modernes de calcul, tels que les

ordinateurs, permet d'analyser des structures d'une façon
précise et rapide. Cependant, les sciences de l'ingénieur
sont liées intimement aux réalités physiques et industrielles
et la précision maintenant possible dans les calculs pourrait

être illusoire, si elle n'était pas liée aux conditions
réelles des structures en question [1] 3. La recherche [2]
qui est à la base de ce résumé étudie, en serrant la réalité
d'aussi près que possible, le comportement élasto-plastique
des poutres-colonnes et des cadres plans jusqu'à ce que
leurs charges ultimes soient atteintes.

2. Définition du problème

Les cadres plans envisagés sont constitués par des barres

droites de section constante soumis à des forces situées

dans ce plan. Les barres peuvent être reliées^ux nœuds,

qui sont considérés indéformables, soit par des assemblages

rigides, soit par des articulations. Les charges sur
le cadre peuvent agir au droit des nœuds, ou encore, sur
les barres proprement dites ; mais nous supposerons que
l'effort normal est constant le long de chaque barre entre
les nœuds. Cette hypothèse ne diminue pas la généralité,
car on peut introduire un nœud fictif dans toutes les
sections où l'effort normal varie.

On utilise deux systèmes d'axes comme l'indique la
figure 1. Le système d'axes Y0 Z°, dit système global, est
utilisé pour la structure entière. Toute grandeur géo¬

métrique ou physique liée au nœud est repérée par rapport
à ce système global. En plus, un système d'axes YZ, dit
système local, est lié à chaque barre. L'origine de ce
système est attribuée arbitrairement à l'une des deux extrémités

de la barre (désignée comme extrémité 1). L'axe Z
coïncide avec l'axe longitudinal de la barre, et son sens

positif est obtenu en parcourant la barre de son extrémité 1

à son extrémité 2. Sur les figures, ce sens sera indiqué par
tme flèche dessinée sur la barre. L'axe Y sera positif s'il
coïncide avec l'axe Z après une rotation de 90° dans le
sens des aiguilles d'une montre.

Les charges extérieures, les efforts tranchants, les efforts
normaux et les déplacements sont tous considérés positifs
s'ils ont la même direction que les axes. Les moments et
les rotations sont considérés positifs dans le sens opposé
au sens des aiguilles d'une montre.

Les charges considérées sont non proportionnelles.
Chaque charge, Q par exemple, se compose de deux parties.

Une partie, Qe, caractérise la contribution des charges
permanentes. Elle reste constante. L'autre partie, Qv,
représente la contribution des surcharges. Elle augmente
proportionnellement à sa valeur initiale. Le coefficient X,

unique pour toutes les charges agissant sur le cadre, représente

l'intensité de l'augmentation des surcharges.
Si l'on augmente progressivement le paramètre X, le

cadre se déforme d'abord élastiquement. Pour une valeur
déterminée, Xei, de X, la limite élastique réduite* est
atteinte dans la fibre la plus sollicitée du cadre. La zone
plastique se développe ensuite en profondeur et de part
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Fig, 1. — Cadres plans (désignation et sollicitation).
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ni

X
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Fig. 2. — Courbe charges-déformations d'une structure.

1 Conférence présentée à Lausanne, le 14 novembre 1970,
dans le cadre des Journées d'études du Groupe spécialisé des

ponts et charpentes de la Société suisse des ingénieurs et
architectes.

1 Chercheur, Institut de la Construction métallique de l'Ecole
polytechnique fédérale de Lausanne, dirigé par le professeur
J.-C. Badoux.

8 Les numéros entre crochets renvoient à la bibliographie en
fin d'article.

1 C'est la limite élastique du matériel diminuée par la
contrainte résiduelle.
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Fig. 3. — Diagramme de contraintes-dilatations du matériel.
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Fig. 4. — Etat de plastification d'un profil.
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Fig. 5. — Diagrammes des limites élastiques et des contraintes
résiduelles d'un profil.
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Fig. 6. — Etat de plastification d'une barre.

et d'autre de cette section. D'autres zones de plastification
peuvent éventuellement se développer. Cette plastification
réduit progressivement la rigidité du cadre, tandis que X

augmente toujours. La variation d'ime déformation
représentative p avec le paramètre X a donc l'allure montrée
sur la figure 2. X passe par un maximum Xy, qui correspond
à la capacité ultime du cadre et celui-ci périt par excès
de flexion.

Le phénomène étudié est donc le flambage par divergence
dans le domaine élasto-plastique.

Cette étude est basée, entre autres, sur les hypothèses
suivantes :

1. Les forces appliquées à la structure conservent leurs
directions initiales ainsi que leurs points d'applications

initiaux pendant le flambage.

2. Les déformations sont considérées comme petites.
3. Il n'y a nulle part inversion du sens des déformations

plastiques.
4. Le cas de flambage étudié est celui du flambage par

excès de flexion dans le plan du cadre. Il est supposé
que le flambage spatial accompagné de torsion et le
vouement local des parois sont empêchés.

Le comportement élasto-plastique d'un cadre dépend
de celui des barres, qui le constituent. A son tour, le
comportement d'une barre est influencé par le comportement

élasto-plastique des profus. La suite de cet article
est donc organisée comme suit :

La déformation élasto-plastique d'un profil soumis à un
effort normal et à tm moment de flexion, est considérée
au paragraphe 3, où la notion de la rigidité équivalente
d'une section partiellement plastifiée est introduite. Au
paragraphe 4, nous donnons un résumé de la théorie nécessaire

pour déterminer la déformée élasto-plastique d'une
poutre-colonne. La déformée d'un cadre plan, sollicité
dans le domaine élasto-plastique, est ensuite étudiée au
paragraphe 5. Le flambage élasto-plastique par divergence
est examiné dans le paragraphe 6. Enfin, nous donnons,
dans le paragraphe 7, deux exemples numériques pour
montrer la validité de la théorie développée.

3. Déformation élasto-plastique d'un profil

Les matériaux du cadre sont considérés «élastique-
parfaitement plastique ». Us possèdent chacun une limite
d'élasticité ae et un module d'élasticité£ (fig. 3). La figure 4a
montre un profil de longueur unité sollicité par un effort
normal P et par un moment -wjj flexion M. La courbure
qui en résulte est représentée par <f>. La figure 4b montre
les zones de plastification éventuelles de ce profil. On
remarque facilement que le profil réagit aux sollicitations
indiquées, sur la figure 4a, avec une rigidité EIeil plus
petite que la rigidité élastique, El, du profil.

La courbure <P — ou la rigidité équivalente EIn — qui
résulte d'un moment M et d'un effort normal P est influencée

par tous les paramètres qui influencent la plastification
du profil, à savoir, la répartition géométrique du matériel
dans le profil (fonction fg), la variation géographique de
la limite élastique dans le profil (fonction fa), et la répartition

géographique des contraintes résiduelles dues au
laminage ou soudage du profil (fonction fr). A titre d'exemple,

ces fonctions sont représentées à la figure 5 dans le
cas d'un profil laminé HEA 100 [3].

La figure 6a montre une barre faisant partie d'un cadre
et la figure 6b montre les zones éventuelles de plastification
le long de cette barre. On constate que cette barre peut
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Fig. 7. — Répartition idéalisée des contraintes résiduelles.

être analysée comme une barre de section variable, où la
rigidité élastique à chaque section est remplacée par sa

rigidité équivalente. Le tableau I donne les formules pour
évaluer la pente y/ et le déplacement v à l'abscisse z de la
barre, à partir de la courbure <P. A gauche, on a donné
les relations valables pour les sections élastiques, et à

droite, celles pour les sections partiellement plastifiées.
On constate que les relations sont semblables dès que l'on
a les moments d'inertie équivalents des sections plastifiées.

Les relations P-M-& ou P-M-EIea sont fondamentales

pour les calculs de stabilité élasto-plastique des

poutres-colonnes et des cadres.

Tableau I

Section Section
élastique partiellement plastifiée

Courbure 0 F (M) F(M,P,fa,fg,fr)
M M
El Elgq

Pente \p -s*
Déplacement v -/TA" -;/£**
Les références [2], [4] permettent de tracer les courbes

P-M-EIeq d'un profil en double té suivant l'hypothèse que
les contraintes résiduelles varient bi-linéairement dans
l'âme et dans les semelles (fig. 7) ; tandis que les
références [5], [6] permettent de tracer ces courbes dans le
cas d'une répartition quelconque des contraintes résiduelles

et des limites élastiques (fig. 5).
A titre d'exemple, on a tracé sur la figure 8, les courbes

M-EIgq pour différentes valeurs de l'effort normal P, pour
un profil américain 8 WF 31 (s» HEA 200). Les courbes
continues sont valables pour un profil sans contraintes
résiduelles ou pour un profil recuit. Les courbes en pointillés

sont valables pour un profil laminé, compte tenu
des contraintes résiduelles définies par are — 0,3 ae ;

ara orj ara — —0,191 a,. Sur cette figure, Pp représente

l'effort normal plastique et Me le moment élastique
maximum du profil sans contraintes résiduelles.

u

«VP- - 0.t

\ I

P/P. Ht

lOJ
P/P. » 0.6

00 O.' OS 0.3 0.4 0.5 0.0 0.7 0 6 0.9

Fig. 8. — Courbes P-M-EIeg (sans dimensions).

4. Déformation élasto-plastique d'une barre

L'étude du comportement élasto-plastique d'une barre
faisant partie d'un cadre — la barre At A] sur la figure lb,
par exemple ¦— peut être ramenée à celle d'un sous-
ensemble, composé de cette barre appuyée sur des ressorts
rotationnels et directionnels à ses deux extrémités (fig. 9).
L'appui rotationnel d'une extrémité représente la résistance
des barres adjacentes à la rotatior^pe l'extrémité considérée,

tandis qu'un appui directionnel représente la
résistance des barres adjacentes au déplacement transversal
de l'extrémité en question. Ces ressorts sont considérés
« élastique-parfaitement plastique ».

M

4Vx1 Q. q

Ljffi
y HM

i- L

SOLLICITATION

ç _

DEFORMEE

M* V"

V?M'

Vi _r t vK(
M

CARACTERISTIQUES DES RESSORTS

Fig. 9. — Poutre-colonne appuyée sur des ressorts et sa
déformée.
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extrémité 1 j-1 j j+1 extrémité 2 Ainsi :

i ' i«-1

7f

Fig. 10. — Désignation des segments et des jonctions.

Afin de déterminer la déformée de cette barre, on la
partage en un certain nombre de segments, de longueur
pas nécessairement égale, à l'intérieur desquels la rigidité
équivalente peut être considérée constante à chaque niveau
de sollicitation. (Cela est toujours possible à condition
de prendre assez d'intervalles dans les parties fortement
plastifiées. A titre d'exemple, les longueurs utilisées dans
les références [2], [7], [8] variaient entre ix et Aix, où
ix est le rayon de giration du profil par rapport à son axe
fort). On désigne, en partant de l'extrémité gauche de la
barre (extrémité 1), par 1,2, ,i, i+ 1, « les

segments et par 1, 2, j n + 1 les jonctions,

j étant la jonction des segments i et i + 1 (fig. 10).

On définit un vecteur d'état S, d'ordre (5x1), dont
les éléments sont le déplacement v, la pente y/, le moment
M, l'effort tranchant V et l'unité. Ce dernier élément est
introduit pour pouvoir inclure l'influence des charges
transversales agissant sur la barre entre les extrémités.

m

S {vy/MVl} (D

Alors, on peut écrire sans grande difficulté, [7], [8], la
relation matricielle :

S^ TnG„ T{+1 G}T{ Gz î\Si (2)

ou bien

où:

mmBSi W

Si est le vecteur d'état à l'extrémité 1 de la barre

Ag est le vecteur d'état à l'extrémité 2 de la barre

Tt est la matrice de transmission, d'ordre (5x5), qui lie
le vecteur d'état de l'extrémité droite du segment /
avec celui de son extrémité gauche

Gj est la matrice, d'ordre (5 x 5), qui lie le vecteur d'état
de l'extrémité gauche du segment i + 1 avec celui de
l'extrémité droite du segment i

B est la matrice de transmission de la barre élasto¬

plastique liant les vecteurs d'état S% et Si.

Les conditions aux limites, existant effectivement sous la
sollicitation considérée, fournissent à chaque extrémité
deux grandeurs parmi les paramètres v, \p, M, V de cette
extrémité ou deux relations entre ces quatre paramètres
s'il y a des ressorts non plastifiés. La figure 11 représente
les neuf types d'appuis que l'on peut rencontrer aux extrémités

d'une barre. Pour une combinaison quelconque de

ces appuis et pour des conditions effectives à ces extrémités

sous la sollicitation considérée, on peut aussi écrire
la relation (3) comme suit :

AX= H (4)

¦//////,

#

V77&,

®>¥

où X est le vecteur des quatre inconnues (deux à chaque
extrémité). La solution de ce système est donnée par :

A-1 H (5)

Fig. 11. — Types des conditions limites considérées.

Connaissant le vecteur X, donc le vecteur d'état Si, on
détermine par la méthode des paramètres initiaux, le
déplacement, la pente, le moment et l'effort tranchant aux
deux extrémités de chaque segment et finalement la rigidité
équivalente de chaque segment. Les calculs de la déformée
sont répétés avec ces nouvelles valeurs de rigidité, en
introduisant les modifications éventuelles, dues à la
plastification d'un ressort directionnel ou rotationnel ou, encore,
dues à la formation d'une rotule plastique à une extrémité.

La déformée ainsi calculée est comparée à celle obtenue

par le calcul précédent. Si la différence obtenue n'est pas
négligeable, les calculs sont répétés avec les nouvelles
valeurs des rigidités, jusqu'à ce qu'une convergence
satisfaisante soit obtenue.

Une précision de ±0,002 à ±0,005 cm sur les
déplacements est utilisée dans les exemples des références [2],
[7], [8], Dans ces calculs, on avait besoin de 3 à 5 cycles
de calculs pour des valeurs de X ^0,90 A« et jusqu'à
8 cycles de calculs si 0,90 Xu < X < 0,95 Xu.
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(a)
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Fig. 12. — Types des liaisons d'extrémité d'une barre.

5. Déformation élasto-plastique d'une barre

Les calculs de la déformée d'un cadre, sous une
sollicitation donnée, s'exécutent de la façon suivante:

1. On calcule d'abord les matrices de rigidité de cha¬

cune des barres dans le système local des coordonnées

YZ. Ces matrices permettent d'exprimer les

forces internes agissant aux extrémités d'une barre
en fonction des déformations de ces extrémités et des

charges extérieures propres à cette barre.
2. On transforme ces matrices de rigidité relatives à

chaque barre suivant le système global des
coordonnées Y°Z°.

3. En assemblant ces matrices d'après la géométrie du
cadre, on obtient la matrice de rigidité du cadre
partiellement plastifié.

4. La résolution de la matrice de rigidité du cadre nous
donne sa déformée.

5.1 Matrices de rigidité d'une barre dans le système
local YZ

Considérons une barre Bb liant les nœuds Ai et A) du
cadre (fig. 1). Nous supposons que la sollicitation entraîne
une plastification de certaines parties de cette barre et donne
éventuellement naissance à des rotules plastiques aux
extrémités. Nous admettons, dans ce paragraphe, que
l'état de plastification des sections de cette barre est connu.

Il y a lieu d'examiner quatre cas de liaisons des extrémités

de cette barre comme l'indique la figure 12 :

Cas a) La barre est rigidement liée aux nœuds à ses deux
extrémités (fig. 12a).

Cas b) La liaison d'extrémité 2' au nœud A} est rigide
tandis que la liaison entre l'extrémité 1' de la
barre et le nœud At est constituée par une rotule
mécanique ou plastique (fig. 12b).

Cas c) La liaison d'extrémité 1' au nœud A( est rigide
tandis que la liaison entre l'extrémité 2' de la
barre et le nœud A} est constituée par une rotule
(fig. 12c).

©

S

rz ?b \

1b '2b

™ir~&^s

?b!S

2blSl

MlbtS)

(a)

(*)

(o)

vlb(S)

paga 13. — Forces et déformations aux extrémités d'une barre
(système local).

Cas d) Les liaisons des deux extrémités sont constituées

par des rotules (fig. 12d).

Les discontinuités — rotules mécaniques ou plastiques —
sont supposées voisines des nœuds. Dans le cas où ime
rotule plastique se forme loin des nœuds, on ajoute un
nœud fictif infiniment voisin de cette rotule plastique.
Les notations montrées sur la figure 12 permettent de
distinguer les moments de part et d'autre des discontinuités.

Ainsi, l'extrémité 1' de la barre Bb est supposée
reliée au nœud A{ par un segment At\ de longueur infiniment

petite. Si la liaison d'extrémité est rigide y/i<b

ipi}) et Myb Mu,. Ces deux relations sont remplacées,
dans le cas d'ime liaison constituée par une rotule (y/vt
7^ Wib)> P31 les deux relations Mi-b Mxyb et Mu

^SÊri-xib- Ici, Afci'i, et Mjift sont des moments imposés.
Dans le cas d'une rotule mécanique, ces moments sont
des grandeurs données (Mxib 0 en général), tandis que
dans le cas d'une rotule plastique ils sont égaux au moment
plastique Mp(p)1 en valeur absolue et leur signe est donné

par celui de la rotation y/n,.
Soient Flb et F2ft les vecteurs des forces agissant aux

points 1 et 2 représentés par (fig. 13) :

Fib^iPibVibMu} Fu, {PibV^Mu,} (6)

Soient également Dlb et D2b les vecteurs des déformations

de ces extrémités :

Du, {wu vlb iplb} D» {wm va6 y/gt,} (7)

Ces vecteurs des forces et des déformations sont reliés

par les relations matricielles :

Rll Dlb + ^12 ^26 + Fi

Ru D\b 4- ^22 -Dgj + F%

lb(S)
(8)

b(S)

1 C'est le moment plastique d'un profil modifié pour la
présence de l'effort normal P.
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où

— RiV R\2< R2v -$22 sont les matrices de rigidité de la
barre (système local) ;

— Fib(S) et F2b,s) sont les vecteurs des forces qui reflètent
l'influence des charges extérieures agissant sur la barre
entre ses extrémités, sur les vecteurs Fib et F2b.

Dans leur forme développée, les relations (8) se présentent

comme suit :

P
V
M

ru 0 0 W

0 /*22 »"23 V

0 r32 raS y_

P
V
M

hi 0 0 W 0
0 7"22 /"23 V + /¦
0 >"32 rZ& y_ ÌAÌ

hi 0 0 W

0 ^22 ^23 V

0 r32 ''SS JL

lb(S)

(9)

Les éléments des vecteurs Flb(S) et F2b(s) s°nt les efforts
aux extrémités de la barre sous les charges extérieures
toutes les déformations étant empêchées (fig. 13 c).

Dans le cas où il y a des rotules plastiques ou mécaniques,
on doit tenir compte de leur présence dans les calculs
ci-dessus. La théorie développée au paragraphe 4 permet
d'évaluer ces éléments d'une façon rationnelle. Pour plus
de détails, il faut consulter la référence [2].

5.2 Matrice de rigidité d'une barre dans le système
global Y°Z°

Dans les relations (8), les forces et les déformations se

rapportent toutes au système local de coordonnées de la
barre. Soient F%, F2b, D\b et D%, les composantes de ces
forces et de ces déformations suivant les axes Y°Z° du
système global.

On a d'après la figure 14 :

Fit, {Fzo16 Fyoi

no _ /„,o „o \ulb — \wlb vlb Vlbj

Mi„} F%, {Fzoai. Fyo2b M26} (10)

{*&&¥»} (»)u2,b

Soit ab l'angle que fait l'axe Z de la barre avec l'axe Z°.
Soit Tb la matrice de transfert des axes, définie par :

(12)
cos ab sm txb 0

sin ab
0

cos ab
0

0
1

fn 0 0 W 0
0 ^22 ^23 V + h
0 ?32 ^33 * LaJ

266S;

On constate facilement que les éléments des matrices R,
à l'état de plastification considéré, peuvent être identifiés
et calculés comme les efforts qui naissent aux extrémités
de la barre en posant successivement une des déformations
(parmi vib, w16, y/lb, v2b, w2b, et y/zb) égale à l'unité,
toutes les autres étant nulles. Les forces extérieures agissant

sur la barre n'interviennent pas dans ces calculs.
A titre d'exemple, les éléments (fzs)ir fàs)«.» (^3)11 et
(^83)21 sont respectivement les forces transversales Vu, et
V2b et les moments Mu, et M2b qui résultent d'une rotation
unitaire de l'extrémité 1 ; c'est-à-dire yiib 1 ; vlb v2b

h>1b w2b y/2b 0.

F.-oV"2b

yuv°

F..«

K^t z-t b

>-

Fig. 14. — Forces et déformations aux extrémités d'une barre
(système global).

En résolvant les vecteurs des forces Fib, F& et les
vecteurs des déformations Dib et D2b suivant les axes Y°
et Z° et en y introduisant les notations :

*?, T?Ê.n Tb R°i2 T?Aa Tb F°ib(s) I TjFjlb(S)
(13)

¦^ai — T~b -$21 Tb R22 Tb R22 Tb F2b(S) T~b F.¦2b(S)

on obtient, d'après les relations (8), les équations matricielles

suivantes :

F1B Ru Du, + Ri2 D2b + FlbfS)

F2/, R%i Dy, + i?22 D2b + Faftcs;
(14)

Ces équations peuvent encore être simplifiées comme
suit :

Désignons par t l'extrémité voisine du nœud en étude,
t] étant le numéro de l'autre extrémité. Par exemple, sur
la figure 12, nous avons pour le nœud Ait t 1, tj 2
tandis que pour le nœud Aj, x 2 et tj 1. Les équations

(14) se réduisent donc à la seule relation :

Ft6 R„ Dt6 »0 n0
zb(S) (15)

5.3. Matrice de rigidité du cadre et sa déformée

Soit un nœud quelconque (At par exemple) du cadre plan
représenté sur la figure la. La déformation de ce nœud
peut être représentée par une matrice colonne Z)< dont
les trois composantes sont les déplacements if, w° suivant
les axes Y0 respectivement Z° et la rotation y/f.

Considérons une barre Bb dont l'extrémité r est liée au
nœud Ai, l'autre extrémité tj étant liée au nœud Aj. Les
forces internes F% à l'extrémité t de la barre Bb, par
rapport aux axes Y0 Z°, sont données par l'équation (15).
Cette barre exerce donc sur le nœud A, un système de
forces dont les éléments de réduction, par rapport aux
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Fig. 15. — Equilibre d'un nœud.

y
V 'Z"2 5

PY°2 51 '

PZ°2 2 —1)

Dans le cas où l'une, deux ou toutes les trois composantes
des déformations d'un nœud sont empêchées, on

apporte les modifications nécessaires dans la matrice R et
le vecteur F. Par exemple, si le déplacement horizontal
du nœud At est empêché (c'est-à-dire W{ 0 ou
l'élément du-z du vecteur D est égal à zéro), on fait :

r3«-2,fc — 0

rk,3{-2 0

/an 0.

pour tous k ^ 3j—2
pour tous k 7^= 3i—2

avons donc des équations analogues pour toutes les autres
barres qui convergent au nœud At (fig. 15). Si F°est la
matrice colonne des forces extérieures agissant sur ce nœud,
alors l'équilibre des forces agissant au nœud A{ s'exprime
par l'équation :

0 (16)

dans laquelle la somme s'étend à toutes les barres Bb dont
une extrémité t est liée au nœud A{.

La condition de compatibilité des déformations, au
nœud Ai, s'exprime par :

D°i=D%= (17)

A l'aide des relations (15) et (17), l'équation (16) devient :

¦ER°rr
b

D°i + E</>? F? - IF?W
1 b

que l'on peut écrire sous forme :

RuD°i + E RtjD^Fi

(18)

(19)

L'équation d'équilibre ci-dessus, qui a été écrite pour le
nœud Ai seul, peut aussi l'être pour les autres nœuds de
la structure. Nous obtenons ainsi autant d'équations que
de nœuds, c'est-à-dire d'inconnues D°.

Les équations (19) peuvent encore être condensées.
Supposons que le nombre de nœuds soit égal à N. Désignons
par Z) et F les matrices colonnes :

D= {D\Dl D°i

F {FxFa F{

et par R la matrice carrée d'ordre 3JV :

Ru Riz • • ¦ Ru • ¦ ¦ Ri} •

Fy}

(20)

(21)

R2i R2

Rii Ri2

Rji R*

Rni R*

Rz

Ru

Ri,

R*

R2)

Ru

Rt.

RlN
R2Df

Ri

R¦]N

RNj R*

(22)

R est la matrice de rigidité du cadre sous la sollicitation
donnée. Dans l'expression (22) de cette matrice,
l'élément Rij doit être pris égal à zéro si les nœuds Ai et Aj
ne sont pas reliés par une barre. Les équations (19) écrites

pour / 1,2, N se réduisent donc à la seule équation

matricielle :

RD F (23)

Le vecteur des déformations D s'obtient par la résolution
du système (23) ainsi modifié. On a, en effet

D RT1F (24)

Possédant les déformations des nœuds défîmes par le
vecteur D, on calcule les moments, les forces longitudinales
et transversales agissant aux extrémités de chaque barre
à l'aide des équations (8). Connaissant ces grandeurs,
on calcule les moments de flexion et l'effort normal aux
extrémités de chaque segment de chaque barre, à l'aide
de la théorie développée sous paragraphe 4. De ces valeurs
on détermine, à l'aide des courbes P-M-EI^ décrites au
paragraphe 3, les rigidités effectives dans chaque segment.

On répète les calculs de la déformée du cadre avec ces
nouvelles valeurs des rigidités. On répète ces calculs
jusqu'à ce qu'ils convergent avec une précision voulue.

6. Flambage élasto-plastique par divergence

La théorie, exposée dans les paragraphes précédents,
permet de déterminer la déformée d'une poutre-colonne ou
d'un cadre sous une charge donnée. En répétant ces calculs
pour des valeurs croissantes de la charge extérieure, on
arrive à la charge ultime de la structure, au-delà de laquelle
les calculs ne convergent plus.

Marche à suivre pour le calcul de la charge ultime Xu :

1. On commence les calculs avec une valeur initiale
de X Xo qui est plus petite que la valeur ultime
cherchée. En pratique X0 est choisi de sorte que la
structure (le cadre en la barre en question) soit
partout dans le domaine élastique. Ainsi, les calculs
peuvent être commencés avec les rigidités élastiques.

2. On détermine la déformée de la structure sous la
sollicitation X considérée, en utilisant la théorie
donnée sous paragraphe 4, si c'est une barre ; ou
la théorie donnée sous paragraphe 5, si c'est un
cadre.

3. Puis, X est augmenté par étapes de <5i et le calcul
indiqué ci-dessus est répété, jusqu'à ce que l'on
arrive à des valeurs X Xiai et X
de la valeur ôi, de sorte que

pour Xint les calculs convergent

pour ABup les calculs divergent.
Ceci indique que la charge ultime de la structure se
situe entre Ami et Aaup (fig. 2).

4. On continue les calculs au-delà de la valeur A^ avec
des accroissements réduits (5a> Sa, •.., Sm (avec
Sm < < ô2 < <5i), pour améliorer l'exactitude
dans la détermination de la charge ultime.

5. On trouve ainsi les valeurs raffinées de Ai„t et Asup

différentes de ô,„. Xu est alors pris égal à
Winf + ^Bup)/2.

Asup différentes
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Fig. 16. — Exemple 1 : Poutre-colonne.

Il est recommandé, avan|||e commencer les calculs
ci-dessus, d'effectuer une analyse plastique (du 1er

ordre) de la structure pour déterminer XP. Ce calcul
facilitera le choix des grandeurs A0, ai, <52, Sm.

7. Exemples d'application

La méthode qui viep|d'être exposée est utilisée, dans les
références [2], [7], [8], pom évaluer les charges ultimes et
les caractéristiques cfcarges-déformations des nombreuses
poutres-colonnes et des cadres. Ces résultats sont ensuite
confrontés avec ceux des théories antérieures et avec ceux
des nombreux essais sur modèles, de grandeur nature,
effectués à l'universalité Lehigh aux Etats-Unis. Cette
comparaison a montré que la méthode développée donne,
avec une précision satisfaisante, non seulement la charge
ultime des poutres-colonnes et des cadres, mais également
les relations charges-déformations jusqu'à la rupture; ceci
dans tous les cas où les conditions des structures
correspondent aux hypothèses de l'étude.

Dans ce qui suit, on donnera deux exemples numériques
qui ont faS'objet d'essais à Lehigh. Tout d'abord, on
étudiera une poutre-colonne articulée à ses deux extrémités

et puis un cadre plan non-contreventé d'un seul

étage. On comparera les solutions numériques aux résultats

expérimentaux de Lehigh.

FLAMBAGE D'UN CADRE NON-CONTREVENTE

1

H — ESSAI

8 x VINNAKOTA

6 A

en t.
1

4
/

/

/ S

1

• (V

2

1

' ' 1 1 1 A en cm.

0 12 4 6 8 10 12

COURBE CHARGE-DEFORMATION

3W
W W

3W

¦-"m T 228
»I. „ >

uc
=265 cm.

10125,4 A 36

5WF185 A441

Ig!»
ESSAI LEHIGH

Fig. 17. — Exemple 2 : Cadre rectangulaire non-contrevente.
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7.1 Poutre-colonne articulée à ses extrémités

Cet essai a été exécuté sur une colonne d'élancement 55,
composée d'un profil 8 WF 31 (^ HEA 200) en acier
doux A 7 («a Ac 37). Elle était articulée à ses deux extrémités

et guidée latéralement en son milieu pour éviter le
déversement. En plus d'un effort normal P, la colonne
était soumise à un moment XMP à l'une de ses extrémités.
Le plan de ce moment coïncidait avec le plan de l'âme
du profil. La charge axiale de 0,326 PP fut maintenue
constante pendant l'essai, tandis que l'on fit croître le
moment de zéro à sa valeur maximum. On a observé que
la colonne a effectivement péri par excès de flexion.

Les contraintes résiduelles dans le profil ont été mesurées

et leurs effets inclus dans les calculs théoriques. Le
diagramme moments-rotations relatif à cet essai est confronté
sur la figure 16, avec ceux, tirés de la référence [9] et
déduits de la présente étude.

On constate que l'accord entre les résultats de la
pressente étude et l'étude théorique de la référence [9] est
très bon, tandis que l'accord avec l'essai est bop.

7.2 Cadre rectangulaire

Le cadre rectangulaire choisi a une hauteur d'environ
f^pfe m et une portée d'environ 4,56 m. La poutre hori-
»SÉËtale est constituée d'un profil américain 10 I 25,4
(«* IPER 240), tandis que les colonnes sont faites de

profils américains 5 WF 18,5 (sa HEB 200). Les colonnes
sont en acier à haute résistance A 441 (w Ac 52), tandis

que la poutre horizontale est en acier de construction A 36

(«a Ac 37). Les charges verticales sont laissées constantes,
à la valeur W 9 tonnes, tandis que la charge horizontale
H est augmentée de façon continue et progressive.

La courbe charges-déformations d'après l'essai est montrée

sur la figure 17. Sur la même figure, on a montré les

points obtèfps d'après la présente étude. L'accord entre
"fîffHiéorie et l'essai est de nouveau satisfaisant.
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L'évacuation d'immeubles en cas d'urgence
par REMO A.SPEHLER, Stâfa, et WERNER G. PEISSARD, Zurich

Introduction

Chaque fois qu'un incendie éclate dans un immeuble où
se trouve un public nombreux, on se pose de nouveau la
question combien de temps il faudrait compter pour
évacuer la maison entièrement occupée. Ce problème ne
concerne pas seulement les grands magasins et les centres
d'achats, mais également les dancings, les discothèques,
les salles de théâtre et de concerts etc. Ce rapport a pour
but d'examiner les expériences faites et les réflexions qui
en découlent, afin de créer les fondements théoriques
déterminant les données architecturales et influençant l'ensemble
des installations nécessaires à permettre une évacuation
rapide sans panique. Dans ce sens, les spécialistes sont
tous d'accord que nulle alerte aussi immédiate soit-elle
ne contribue d'une façon décisive au succès de l'évacuation.
Pour en illustrer toutes les éventualités, nous avons choisi
l'exemple d'un grand magasin.

Une conflagration dans un immeuble occupépar un grand
nombre de personnes pose toujours le problème d'une
évacuation assez rapide. Ce problème ne saurait être résolu

par des réflexions faites après coup au sujet de ce que tel et
tel avait fait faux ou négligé de faire. Il n'ylÉjqu'un seul

point de départ valable : s'il faut faire sortir à temps
une foule donnée, c'est-à-dire dans un délai fixe, il faut
que l'on dispose de chemins d'évacuation suffisamment
larges et nombreux, et sans obstacles. Il va de soi qu'il
faut veiller à ce que les sorties de secours puissent être
facilement ouvertes par n'importe qui et qu'elles ne soient

pas encombrées de dehors, de sorte que les foules puissent
se disperser rapidement. Mais il est tout aussi important
de tenir compte du fait que, même en cas d'urgence, une
foule ne s'achemine vers les sorties de secours qu'après
un certain temps de réaction. Mentionnons en passant que
pendant cette phase, la fumée peut très bien produire une
panique.

Notre étude a pour but d'éclaircir combien de temps il
faut pour évacuer, en cas d'urgence, un immeuble encombré
d'une grande fouis. Nous essayerons de trouver une formule
simple et universellement valable, basée sur des réflexions
tenant compte du temps d'évacuation tout entier. Les

données qui en résulteront devront permettre un examen
logique et conséquent de l'organisation d'alarme, des

possibilités d'évacuation et des autres mesures de sécurité
existantes.

Il faudra surtout examiner les conditions dans les grands
magasins et les établissements à self-service où le désir
d'accroître le chiffre d'affaires et le besoin de sécurité
adéquate se contestent mutuellement les zones de ventes
plus intensives, et où les stands temporairement arrangés
au milieu des chemins d'évacuation sont à l'ordre du jour.

Nous examinerons donc en premier lieu l'évacuation de

personnes non handicapées qui sont en mesure de se sauver
elles-mêmes. Nos réflexions sont, en partie, également
valables pour l'évacuation de foyers et d'hôpitaux, à
condition qu'on tienne compte de prémisses et notamment
de délais différents.

Phase d'évacuation

La phase d'évacuation dans son ensemble se compose de

quatre facteurs qui peuvent être clairement distingués. La
nécessité d'une évacuation est presque toujours la consé-

Phase totale d'évacuation (Ephl

_E i a M

Ar

t ' temps de détection du feu

A • temps d'alarme

V * temps de préparation

Ev * temps d'évacuation

phase totale d'évacuation

Fig. 1.
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