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BULLETIN TECHNIQUE DE LA SUISSE ROMANDE 97'année 2 octobre 1971 N°20

Contribution au dimensionnement des ponts-biais
continus à rigidité torsionnelle de Saint-Venant
négligeable et à travées d'inertie variable1

Calcul des efforts intérieurs et des réactions d'appuis à l'aide de l'ordinateur

par JEAN-PAUL JACCOUD, ing. EPFL, et JEAN-CLAUDE BADOUX, Dr. se, professeur à l'EPFL

Introduction et sommaire

Dans le cadre des travaux de l'Institut de la Construction
métallique (ICOM), nous avons dû à plusieurs reprises
examiner le problème de l'influence du biais des appuis
sur le dimensionnement d'un pont à une ou plusieurs
travées. Le tracé des voies de communication au-dessus
d'obstacles naturels tels que les rivières ou au-dessus de
constructions existantes, telles que routes, voies ferrées

ou bâtiments, impose souvent l'implantation de piles,
palées ou exilées, biaises par rapport à l'axe longitudinal
des ouvrages d'art. L'ingénieur projeteur de tels ouvrages
est donc fréquemment amené à résoudre le problème de
l'influence du biais des appuis sur la structure, tant du
point de vue des efforts intérieurs et des réactions d'appuis,
que du point de vue des contraintes.

Dans cet article, nous présentons plus spécialement tuie
méthode de calcul des efforts et des réactions d'appuis
pour un pont-biais à section transversale ouverte à deux
poutres-maîtresses et à plusieurs travées. Cette méthode
a été développée à partir de l'excellent ouvrage de
Kollbrunner et Basler [2],2 dont la traduction en français est

parue depuis peu, et qui traite entre autres du calcul des

ponts-biais d'inertie constante en torsion non uniforme
pure. Nous avons utilisé le même modèle de calcul que
dans la réf. [2] : soit la barre prismatique à parois minces,
à section transversale ouverte et indéformable, à rigidité
torsionnelle de Saint-Venant nulle ou négligeable. Moyennant

certaines approximations, nous avons développé et
étendu l'application de ce modèle de calcul au cas de

ponts à inertie variable.
Au sommaire de cet article, tout d'abord quelques

rappels ou notions sur la coordonnée sectorielle, le
gauchissement et le bimoment de torsion, ainsi que sur le
calcul des contraintes dans les sections ; ensuite, nous
traitons la statique de la barre prismatique et du pont-
biais en torsion non uniforme pure, puis nous donnons
quelques éléments sur l'établissement de notre programme
de calcul des efforts intérieurs et des réactions d'appuis,
ainsi que sa description et ses règles d'emploi ; finalement,
nous présentons un exemple du dimensionnement d'un
pont-biais à trois travées inégales d'inertie variable, avec
biais différents des appuis.

1 Cet article reprend le sujet d'une conférence donnée en
novembre 1970 sous le titre « Dimensionnement des ponts
mixtes biais à l'aide de l'ordinateur et d'un approfondissement
de certaines données de statique et de résistance des matériaux »
dans le cadre des journées d'études organisées par le Groupe
spécialisé des ponts et charpentes de la Société suisse des
ingénieurs et architectes (SIA).

2 Les chiffres entre crochets renvoient à la bibliographie de
fin d'article.

1. Coordonnée sectorielle

Section droite d'un profil ouvert à parois minces
(fig. 1):

C centre de gravité de la section ;

D centre de cisaillement ou centre de rotation ;

s abscisse curviligne sur le contour de la section
à partir d'une origine O quelconque ;

t épaisseur des parois ;

dA t-ds;

pD distance de i) à la tangente au contour en A ;

dco dQ pD-ds deux fois l'aire du secteur
(AA'D).

Définition de la coordonnée sectorielle du point A
d'abscisse s :

Q=l<0dQ SlpD-ds (1.1)

La coordonnée sectorielle a donc la dimension d'une
aire : cm2 ou m2.

Définition de la coordonnée sectorielle normalisée ta:
(Normalisation translation du point origine des
coordonnées de manière que le moment statique sectoriel de la
section tout entière soit nul.)

co Q
UQdA

(1.2)

ÌS

~k dC.

Fig. 1. — Section droite d'un profil ouvert à parois minces.
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Fig. 2. — Systèmes d'axes de référence et déformations. Convention
de signes des efforts et déformations.
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2. Caractéristiques statiques de la section

Considérons le cas d'un profil possédant un axe de
symétrie (fig. 2). Si le système d'axes de référence x, y, z
est principal d'inertie, les grandeurs statiques suivantes
sont suffisantes.

Moments statiques du 1er ordre :

Sx ftx-dA [cm3] ; Sy ftydA [cm8] ;

Sw Sco-dA [cm*]

Moments statiques du 2e ordre :

Ixx — Sa x2 dA — laSx-dx [cm4] moments d'inertie

c)

Uy2dA= -IsSydy [cm4] de flexion

r « rrsjrfin moment d'inertie
4» U oß dA - U Sa, ¦ dco [cm«]

sector.el

Remarque : les notations adoptées dans le présent
article sont celles des références [2] et [5].

3. Notion de gauchissement — bimoment de torsion

Soit un profilé ouvert à parois minces, à rigidité de
torsion uniforme nulle ou négligeable, encastré parfaitement
à l'une de ses extrémités et soumis à un moment de torsion
extérieur Mr, à son autre extrémité, libre (fig. 3 a).

En torsion non uniforme pure, le moment de torsion
intérieur Ta dans une section droite quelconque d'une
barre (fig. 3 a), est repris par un couple d'efforts tranchants
Q, égaux et opposés, dans les deux ailes du profil (fig. 3 b).
Sous l'effet de ce couple de forces Q, chaque aile fléchit,
l'une vers le bas et l'autre vers le haut. A ce couple d'efforts
tranchants Q correspond dans les ailes un couple de
moments M, égaux et opposés (fig. 3 a). La résultante
statique de ce couple de moments est nulle dans chaque
section. Le bimoment de torsion Mœ dans la section
considérée désigne l'ensemble de ces deux moments M
égaux et opposés. Le bimoment est donc l'effort intérieur
qui provoque le gauchissement des sections.

Ces quelques lignes suffisent pour justifier les termes
de «torsion fléchie» ou de «flexion antimétrique» que
l'on emploie parfois en lieu et place de torsion non
uniforme.

La flexion antimétrique des deux ailes du profil (fig. 3 a)
entraîne, sous l'effet du bimoment Mm, une distorsion

0

0O
0

« v ou o

Fig. 3. — Gauchissement d'un profil soumis à un moment de
torsion.

de la section transversale initialement plane : c'est ce que
l'on appelle le gauchissement de la section. Il peut être
représenté visuellement à l'aide du diagramme des
coordonnées sectorielles co, du diagramme des déformations w
de la section hors de son plan ou du diagramme des
contraintes normales longitudinales a, les trois grandeurs co,
w et a étant proportionnelles dans une section considérée
(fig. 3 c).

4. Analogie des équations différentielles de la
flexion et de la torsion non uniforme pure —
calcul des contraintes

On peut montrer que l'équation différentielle de la
déformée en torsion non uniforme pure, grâce à la notation
définie ci-dessus, est analogue à l'équation différentielle
de la déformée en flexion pure.

Les définitions des systèmes d'axes, des déformations
et des efforts conventionnellement positifs sont données à
la figure 2. Rappelons que les axes x, y, z sont principaux
d'inertie (voir tableau 1).

Contraintes dans le cas général : Flexion + Torsion non
uniforme pure :

M, M„ A4

x-t —
Qv

(4.5)
•&, •SL

Les équations (4.5) ne sont valables que dans le cas où
le système d'axes x, y, z est principal d'inertie. Dans le
cas contraire, on trouvera des équations analogues plus
compliquées dans l'ouvrage de Kollbrunner/Basler [2].
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Tableau 1

Calcul des contraintes

Flexion Torsion non uniforme pure

Loi des sections planes : Loi du gauchissement linéaire des sections :

w — u'X—v'Y + wq (z) W —tp'Sl + Wq (z)

Loi de Hooke : Loi de Hooke :

„dw
(7 E^r- „dw

o E^r-
dz

Normalisation des coordonnées : Normalisation des coordonnées :

v \AXdA t v UYdAx X — -—-— et y Y — -—-—A A
0 U® dA

a U — -—S—A

Des lois de Hooke, des sections planes et des conditions d'équi- Des lois de Hooke, du gauchissement linéaire des sect ons et des
libre, on tire : conditions d'équilibre, on tiÌM^

a —Eu'x—Ev'y o — E tp" co

MX My„=- et K - -=JL (4.1)
Ma

v =- eT~S-'10,0,
(4.1)

Mx et My moments de flexion [tm] (fig- 2) Mm bimoment de torsion [tm2] (fig- 2)

MX My
o — x + -ly1xx 1yy

(4.2)
Mœ

a -— w
'œco

(4.2)

Efforts tranchants : Moment de torsion :

^§mê^ oi (4.3) t dM°> r, iTa, —r- [tm]
dz

(4.3)

Flux de cisaillement : Flux de cisaillement :

q — Tt q =zt
t épaisseur des parois t épaisseur des parois

H ~ j °x &y
1xx *yy

(4.4) q — j— Sa, (4-4)

Dans chacune des équations (4.5), les deux premiers
termes sont ceux bien connus dus à la flexion, tandis que
le dernier terme, de forme tout à fait semblable, représente
l'influence de la torsion non uniforme pure.

Les efforts intérieurs étant connus, on peut aisément
calculer les contraintes en n'importe quel point d'une
section transversale à l'aide des équations (4.5). Les

caractéristiques des sections (Ixx, Iyy, Imm), ainsi que des

points où l'on calcule les contraintes (x, y, co, Sx, Sy, S^ à
introduire dans ces équations, sont définies au
paragraphe 2.

r^©

nr

flèches

rotation

Mentionnons qu'un programme, élaboré par M. P.-A.
Eperon, ing. EPUL-SIA, et disponible à FICOM, permet
de calculecSélectroniquement toutes les caractéristiques
statiques nécessaires d'ime section ouverte de forme
quelconque (Programme CME 2).

5. Statique de la torsion non uniforme. Analogie
avec la statique de la flexion

5.1 Poutre simple (fig. 4 et tableau 3).

Les diagrammes des efforts intérieurs dans le cas de la
poutre simple sont représentés sur la figure 5.

Tableau 2
Analogie de la statique de la torsion et de la flexion

Fig. 4. — Déformée d'une poutre.

Flexion Torsion non uniforme pure

Charge répartie: Moment tordant réparti

p =Py (extérieur) : ntr,

Charge concentrée : Moment tordant concentré :

P=>Py
MD

Flèche : v
Rotation : tp

v'
Bimoment :

Moment :
Ma, — .E/tota <t>"

My — Elyy if
Moment de torsion

intéEffort tranchant : rieur :

Qy M{, Ta Ma

Pv= -Qy - Elyyv" ma — Ti Elmo <f"
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Tableau 3

Cas de la poutre simple

Flexion Torsion non uniforme pure

v(z 0) =0 rp'z 0) =0
v(z L) 0 ç>(z =X) =0
My(z 0) 0 Ma,{z 0) 0 appuis à fourche

My(Z L) 0 ^^(z L) 0

Charge répartie uniformément : Moment tordant réparti uniformément :

5 Pv Li rVffia*
384 ^w [cm]

5 mflL4 1
_

fmai ïi7 ^7— [radian]
J84 Ü/(o(»

Pv 12
Mymlix ^~— [fm] (5-1) mfl£2

Momax —g— U»I2] (5.1)

Qymax — i —~— [A] (5.2) îœmax ± —=~ [""1 (5.2)

Charge concentrée à mi-portée : Moment tordant concentré à mi-portée :

Vmax
48 £/w Pmax

48 £7^

M -^£Jwymax — r (5.3) »^ MDL
J^comax — r— (5.3)

tij/max db ~~~ (5.4) T - + Md
(5.4)

a) Flexion

*ki " 2

k+l

P l>7*v 1
max 8

L^lHlH Qk+1^ - Q ki
L irap^p„ iz ±

P_ Ljï 1
max 4

m
tali

- Qk+l,i 'kl
_z

b) Torsion non uniforme pure

k+l

T2
m L.

ujmax 8

ài-MMl k+l,i kl

M=5ipp^-

"kl 2

6
MDLi

mmax A

I,k+l,i ki
T....Kl 2

Fig. 5. — Diagrammes des efforts intérieurs dans la poutre simple.
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Tableau 4

Cas de la poutre continue

Flexion Torsion non uniforme pure

v(zj 0) 0 Kz* 0) =0
v'zi =Lt) 0 <p(zi Li) 0

On pose : On pose :

«i v'(z« 0) a« p'(zj 0)

A — v'(z{ £|) b( — tp'lzi Lì)

Compatibilité des déformations : (flg. 6a) Compatibilité des déformations : (fig. 6b)

A-l + «f 0 (5.6) bi-i + <H 0 (5.6)

a« ««o + <*** Mm + at, k+i Af*+i. e (5.7) <*i <*io + a«* -ïjw + ai, ic+i Xk+i_, { (5.7)
où : Affcj et Mfc+i, i moment de continuité en k et k + 1 où : Xu et -i't+ii « bimoments de continuité en k et k + 1

a*s pente en fc due à un moment unitaire en k <Hk gauchissement en i dû à un bimoment unitaire
en k

&i, *+i pente en k due à un moment unitaire en k + 1 U(, k+l gauchissement en k dû à un bimoment unitaire
en k + 1

fffo pente en /c due aux charges extérieures sur la
travée / isostatique

"m gauchissement en fc dû aux moments extérieurs
sur la travée i isostatique (moments tordants)

de même : de même :

A Ao + A* Mn + ßu fc+i Af&+i, « (5.8) A Ao + A* -Sjw + b(, k+i Xk+i, i (5.8)

5.2 Poutre continue (fig. 6 et tableau 4).

Si l'on remplace ott,ßi-i, aj et A-i dans les équations
(5.6) par leurs valeurs données dans les équations (5.7) et
(5.8), on obtient une équation « des trois moments » pour
la flexion et une équation analogue « des trois bimoments »
pour la torsion non uniforme pure. On peut donc résoudre
un système hyperstatique en torsion non uniforme pure
par les mêmes méthodes statiques que l'on utilise dans le
cas de systèmes hyperstatiques en flexion.

5.3 Cas particuliers de la poutre continue d'inertie cons¬
tante (fig. 6 et tableau 5).

6. Ponts-biais en torsion non uniforme pure
6.1 Hypothèses

a) La rigidité de torsion uniforme ou torsion de Saint-
Venant est négligeable par rapport à la rigidité de
torsion non uniforme ou de gauchissement.

GK^EIaa,
b) La section transversale Ipft indéformable. Le pont

porte ses charges à la manière d'une poutre rigide
et non pas à la manière d'une ossature plissée.

c) Le décalage des appuis en élévation est petit vis-à-vis
de la longueur des travées.

Tableau 5

Poutre continue d'inertie constante

Flexion Torsion non uniforme pure

a« PU *+l — -, zrrJ Elyy

«*'*+!= Ä*
6EIyy

Charge uniformément répartie :

- _ a Pv Lf««-«O- 24 Elyy

Charge concentrée à mi-portée :

„ _ o Py Li
«tO PiO c. ET

Li
3 ILI (dco

"ii t+i *><* f- j~.

Moment tordant uniformément réparti :

mDL3«o-Ao- 24 EIcoœ

Moment tordant concentré à mi-portée :

MDL\
16 Elan,,
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a) Flexion : b) Torsion non uniforme pure

1-1

k-1 1-1 k+l
i-1

1-1

k-1 i-1 k+l
i-1

i-1

vi ai

^n̂ 7Ö̂??L-l

n<m

i-1

i »¦
tp T 1

Fig. 6. — Compatibilité des déformations sur appuis des poutres continues.

d) Les appuis sont constitués de deux appareils d'appui
distincts qui n'entravent pas le gauchissement des
sections d'appuis.

e) La section transversale possède un axe de symétrie.

f) La section transversale est constante par travée. Le
pont est donc idéalisé comme ime barre prismatique.

Pour la plupart, les ponts métalliques ou mixtes à section
transversale ouverte satisfont ces hypothèses.

L'hypothèse a) restreint l'application sans autres de
cette théorie, aux ponts à section transversale ouverte en
béton et aux ponts à section transversale fermée, aussi
bien en métal qu'en béton. Les ponts-mixtes à section
ouverte sont en général à la limite du domaine d'application
de la théorie de la torsion non uniforme pure. Dans
certains cas, il est nécessaire de corriger quelque peu les
résultats des efforts en travée, afin de tenir compte de

l'influence non tout à fait négligeable de la rigidité
torsionnelle de Saint-Venant du tablier de béton. Pour plus
de détails, nous renvoyons le lecteur à l'ouvrage [2].

L'indéformabilité de la section transversale du pont est
généralement assurée de manière suffisante par les
entretoises.

Généralement, les ponts ont des sections transversales
présentant un axe de symétrie. L'influence du dévers de la
chaussée, par conséquent du tablier et parfois d'une faible
différence de hauteur des poutres-maîtresses, est le plus
souvent négligeable pour la symétrie du profil.

Normalement, l'hypothèse c) est toujours satisfaite

pour les ponts métalliques ou mixtes. Les ponts à travées
aussi larges que longues sont plutôt construits en béton.

L'hypothèse f) est la plus restrictive pour l'application
pratique. En effet, nous n'avons pour ainsi dire jamais
à calculer un pont métallique à section transversale
constante. Par souci d'économie, les poutres maîtresses
métalliques sont toujours dimensionnées au gré des efforts

(moments de flexion), qui varient fortement à l'intérieur
d'une même travée. Cependant, en faisant certaines
approximations, lors deRétablissement de notre
programme de calcul électronique, nous nous débarrasserons
de cette dernière hypothèse par trop restrictive.

6.2 Notations — systèmes fondamentaux

Définitions des notations utilisées (fig. 7) :

i indice de la travée ;

k indice de l'appui ;

ki indice de l'appui de gauche k de la travée i ;

k + 1, i indice de l'appui de droite k + 1 de la
travée /.

Les systèmes fondamentaux utilisés dans les calculs
sont les travées simples, biaises. Les hyperstatiques sont
les moments et les bimoments de continuité sur appuis.

k+l

appui k travée i appui k+l

k+l

&
©

©

h

Fig. 7. — Travée biaise : notations et conventions de signes.
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a) Flexion : b) Torsion

ELEVATION : (poutre droite)

i. Ilk
i .Ilk-

1

f

k+l k+l

k(iX. tJ^ k+l k+l
i ilk

1 i Dil

PLAN

I A i di d i a i d Di Di Dì Dl

:—4M--j—i •d—vi
Vvì

j—-j—S ek+l
i ek+l

i

i i

l
i

ELEVATION : (pont-Mais J

I

mUli2 2 mDi Di Di Di

Wi.i !*w

V|PPT^
û M mki ki
Fig. 8. — Statique du pont-biais : interaction flexion-torsion.

Les efforts intérieurs dans les systèmes fondamentaux
sont caractérisés par l'indice(0) et les angles de rotation
de flexion ou de torsion par les indices 0.
Par exemple :

Qta

m
(0) effort tranchant à l'appui k de la travée /,

indépendante ou isostatique,
moment de flexion sous les charges dans la
travée i indépendante.

7fc+i,i(0) moment de torsion intérieur à l'appui k+l
de la travée z indépendante.

aMj® — bimoment de torsion sous les moments exté¬

rieurs de torsion dans la travée / indépendante.

Les valenti des efforts intérieurs de flexion et de torsion
non umforme pure à utiliser pour les travées indépendantes
sont celles données, pour la poutre simple, au paragraphe
5.1.

6.3 Statique du pont-biais

Principe : on dissocie l'analyse en deux parties : analyse
de ce qui se passe en flexion seule et analyse de ce qui se

passe en torsion non uniforme seule. Puis, on superpose
et on exprime l'interaction entre les deux effets flexion
et torsion.

On raisonne (fig. 8), simultanément en plan et en
élévation, successivement pour la torsion seule et la
flexion seule.
Torsion seule :

mD et Md, pas de flexion due aux charges extérieures.

Xk bimoment de continuité à l'appui k.

AD( et Bm réact|g|is des appuis sur la poutre
(couples). L'effet de ces couples est de créer des moments de
continuité de flexion sur appuis :

AMk,
d

• ek (valeur théorique sur l'axe de l'appui).

En fait AMjd n'est pas introduit brutalement au droit
de l'axe de l'appui. AM croît linéairement comme représenté

en trai ti lié (fig. 8).
L'influence du biais des appuis, dans le cas de charges

extérieures de torsion uniquement, est donc d'introduire
de la flexion. Les deux réactions des appareils d'appui
décalés en élévation réalisent un certain encastrement
à la flexion.

Flexion seule :

p et P agissent sur l'axe de symétrie, pas de torsion
extérieure due aux charges.

Mj, moment de continuité à l'appui k.

Sur chaque appui, deux réactions égales. Ces deux
réactions provoquent des couples de torsion égaux et
opposés et réalisent ainsi un certain encastrement à la
torsion.

Par analogie avec ce que l'on avait pour la torsion,
ces ' paires de couples égaux et opposés introduisent un
certain gauchissement, d'où un bimoment :
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Ai d
Aa,Mu — • - • ek (valeur théorique sur l'axe de l'appui).

L'influence du biais des appuis dans le cas de charges
extérieures verticales centrées sur l'axe de symétrie du
pont est donc d'introduire de la torsion.

Appliquons maintenant les conditions de compatibilité
des déformations (5.6) au cas du pont-biais continu :

^$5 SSS5 55855

Travée : 1 2 3 i-
58555 ^fe

-1 i i+1 N-

58555 55558

-1 N

Hyper- [ M2 M3

statiquest Y v
L A2 H

Mi Mi+1

Xi Xi+1

M« moments

Xjj bimoments

Fig. 9. — Grandeurs surabondantes.

ß{-! + o>{ 0 et A-i + <H 0.

Les angles de rotation de flexion et de gauchissement
dans le cas de travées biaises sont donnés par les expressions

suivantes :

cet Mk-a(k + Mk+1 Oift+i + al0

effet des hyperstatiques effet des charges

+ AMk{ tXik + AMk+xA aft+i
effet du biais

On a:

Ai Qu Q,rx» Mk Mk

^m — ¦'uTki(oi +
Xk+\ Xk

et

Lt

àMki —— ek Tiw-tg èk
d

de même AMk+1,= Tk+urtgök+1

(Xi Mk-CCik + Mjfc+i-flCtt+i + OLio + TkrCCik-tgÖk +
+ Tk+Uf cCik+1 .tgôk+1 (6.1)

De même :

ßt Mk.ßlk + Mk+1.ß{k+1 + ßta + Tu-ßa-tg ök

On a

Tk+i,fßik+i'tg ök+i

Avd fd\z
AB,Mki —j- -ek QkA - I -tg ök

et A(ttMk+i,i= «2*+i,r(2J -tg^+i

On montrerait de même pour la torsion que :

(6.2)

<*i — Xk'Ckk + -Sft+fûiJ
d\*
X, •(ôwû**-tgo* +

+ Qk+l,i • Oik+l • tg Ök+i) — -zrQXf tgJfc + ßftg Sk+]) (6.3)
Li

et bt Xfba + Xk+i-hik+l "f oio

+¦ » -(ÖwAftg ök + ßs,+i,r A*+i-tg (5»+i) -+

-z-(oti-tgàk + ßi-tgSk+1)
Lt

influence du biais

(6.4)

Le dernier terme est l'effet d'une rotation de la section
d'appui due au biais.

Ensuite on remplace dans les équations (6.1) à (6.4)
les termes Qkit Tklt... etc. par leurs valeurs données
plus haut. On écrit les conditions de compatibilité des

déformations. On a deux conditions par appui
intermédiaire. Les seules inconnues sont les grandeurs
surabondantes Mk et Xk, soient deux par appui intermédiaire.
On a donc autant d'équations que d'inconnues et le
problème est déterminé (fig. 9).

Si l'on effectue le travail de Substituten et que l'on
ordonne convenablement les termes des équations de

compatibilité, on obtient un système de (2-iV—2) équations

linéaires à (2-N—2) inconnues, si N est le nombre
de travées.

Ce système d'équations est comparable au système
d'équations « des trois moments », si ce n'est que dans
notre cas, chaque équation comporte trois termes relatifs
aux moments et trois termes relatifs aux bimoments.

Ecrivons ce système d'équations sous forme matricielle :

[D],(2-N-2) X (2-N-2) [X](2.ir-2) — [C]f2. N-2) (6.5)

où : [D] matrice des coefficients qui ne dépendent que
des caractéristiques du pont.

[X] matrice des grandeurs surabondantes (fig. 9).

[Xf [M2, M3) M4, MN, X2, X3, X4 XN]

[C] matrice des termes de charge qui dépendent
des caractéristiques du pont et des charges
appliquées.

Nous n'expliciterons pas plus les termes de ces différentes
matrices, car cela serait très long et fastidieux et n'ajouterait

rien à la compréhension de ce texte. Il est bien évident
que nous avons dû effectuer ces développements pour
l'établissement de notre programme de calcul électronique.

Par conséquent, on obtient les efforts hyperstatiques :

m=[Z)]1.[C] (6.6)

Ayant déterminé les efforts hyperstatiques Mk et Xk,
on obtient facilement les efforts intérieurs et les réactions
d'appuis résumés dans le tableau 6.

Pour calculer tous les efforts de ce tableau, on commence
au coin gauche en haut. Il faut supposer à priori des

valeurs pour 7^ et 7Vu,i, d'où un travail par approximations

successives jusqu'à ce que les 7« et Tt+,u résultant
des calculs (en bas à droite du tableau) soient égaux aux
valeurs supposées. Kollbrunner et Basier dans leur ouvrage
[2] ont effectué ime fois pour toutes ce travail et donnent
les valeurs de 7« et Tk+iti à introduire à priori dans les
calculs.

Certains cas particuliers simples sont traités dans
l'ouvrage de Kollbrunner et Basier [2] : Ponts-biais d'inertie
constante avec même biais des appuis, pont-biais à une
travée, pont-biais à deux travées égales avec appuis
intermédiaires biais uniquement.
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Tableau 6

Calcul des efforts intérieurs et des réactions d'appuis

Flexion Torsion

Moments sur appuis :

Mk{ Mf + Tkl tg ôk

AMki

Bimoments sur appuis :

a,MH Xk + QM fê) tgSk

Aa,Mk{

Mk+i, i Mfc+i + Tk+1, i tg ôk+i a)Mk+l, t Xk+i + Qk+i, * I
2 lg "k+l

Moment de flexion : Bimoment de torsion :

Mt M«» + MM (l - ZA + Mk+1, ^ aMi | a,Mf> + a,MM {\ - j\ + a,Mk+i, « |-

Effort tranchant : Moment de torsion :

e€_e<o) + <M*+i'«-M«>
* Li t Tim i

(wMk+i, i — oiMm)
Ti - Tft + ^

Réaction d'appuis : Couple réaction d'appuis :

Fk Qki — Qk, i-1 Tk Tm — Tk, i-i

Réactions sur les appareils d'appuis :

F*±
Fk Tje

7. Programme CMJA 1 de calcul des efforts inté¬
rieurs et des réactions d'appuis

Pour résoudre le problème du calcul des efforts
intérieurs et des réactions d'appuis dans un pont-biais continu
à rigidité torsionnelle de Saint-Venant négligeable, nous
avons élaboré un programme en langage Fortran pour
l'ordinateur ; ce programme construit les matrices
intervenant dans l'équation (6.6), il résout cette équation et il
calcule les efforts intérieurs et les réactions d'appuis du
tableau 6.

Lors de l'établissement de ce programme, nous avons
étendu la théorie et les équations du pont-biais en torsion
non uniforme pure, données au paragraphe 6, au cas d'un
pont à poutres-maîtresses de hauteur constante, mais à

section transversale d'inertie variable par sauts, compte
tenu de l'approximation suivante.

Ce programme n'est exact que pour un pont idéal,
assimilable à une barre prismatique, pour lequel on peut
appliquer en toute rigueur la théorie et les équations du

pont-biais en torsion non uniforme données au paragraphe

6. Dans le cas tout à fait général d'une barre non
prismatique chargée de manière quelconque, les équations
différentielles de la déformée ne sont plus celles, simples et
indépendantes les unes des autres, données au paragraphe

6. Il intervient des termes qui s'annulaient dans le cas
de la beirre prismatique et en fait, nous avons à résoudre un
système de trois équations différentielles liées [1].

E. Karamuk a montré [4], dans le cas particulier d'une
barre non prismatique à section transversale symétrique en
torsion non uniforme pure, chargée de manière quelconque,

que non seulement les sections d'appuis tournent
autour d'un axe horizontal et gauchissent, mais qu'également

ces sections tournent autour d'un axe vertical at,

ceci à. cause de la variation du niveau de la fibre neutre
d'une section transversale à une autre (fig. 10).

Si les sections A et B (fig. 10) ne sont pas libres de tourner
autour de l'axe vertical Cj, par exemple à cause de l'effet
de continuité d'une travée adjacente, on devrait en toute
rigueur, à cause de cette rotation empêchée, exprimer
également la compatibilité des déformations correspondantes

en plus des conditions de compatibilité des angles
de rotation autour d'un axe horizontal et des angles de

gauchissement. Cette condition supplémentaire aurait
pour conséquence l'introduction de moments hyperstatiques

de flexion dans le plan horizontal.
Cependant, dans le cas de ponts mixtes ou orthotropes

à poutres maîtresses de hauteur constante (cas le plus
fréquent pour les ouvrages biais), les variations d'inertie
des sections transversales n'entraînent que des variations

%

appui directionnel I

a„

Fig. 10. — Conditions d'appuis d'une travée simple, non
prismatique.
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minimes du niveau de la fibre neutre. La fibre neutre est
la fibre où la contrainte normale est nulle. Par conséquent,
les rotations des sections d'appuis des travées libres,
autour d'axes verticaux ais seront faibles et l'on pourra
négliger en première approximation les efforts de flexion
horizontaux qui en résultent. Pour l'application de notre
programme de calcul électronique, nous avons fait cette
approximation, ce qui nous permet d'appliquer la théorie
et les équations de la barre prismatique biaise et continue
au cas du pont à section transversale d'inertie variable.

Au lieu d'introduire dans les équations (6.1) à (6.4) les
valeurs données au paragraphe 5.3 pour les angles de
rotation de flexion et de gauchissement, on calcule ces
valeurs, dans le cas de travées à inertie variable, en
appliquant le théorème de Maxwell (fig. 11).

Les données numériques à introduire dans le
programme, pour chaque application particuUère, sont les
caractéristiques géométriques du pont (nombre et longueur
des travées, nombre et longueur des intervalles par travée,
et décalage des appuis biais, qui peut varier d'un appui à
l'autre), les caractéristiques statiques des sections
transversales du pont (rigidité à la flexion et au gauchissement,
aux extrémités de chaque intervalle) et les caractéristiques

relatives aux charges extérieures (charges uniformément
réparties et concentrées à mi-portée, par travée, excentricités

de ces différentes charges par rapport à l'axe de symétrie).

Les résultats des calculs à l'ordinateur sont fournis sous
forme de tableaux (voir exemple). Pour chaque travée
nous obtenons les valeurs au droit de l'axe des appuis,
aux extrémités gauche et droite respectivement, des

moments, des efforts tranchants, des bimoments et des
moments de torsion. Pour chaque appui nous obtenons
les réactions sur les appareils d'appui gauche et droite
de la section droite transversale (fig.' 12).

Les conventions de signes suivantes sont à respecter :

— Pour le biais des appuis, selon (fig. 7 b).
— Pour les charges et moments extérieurs, selon (fig. 4).
— Pour les efforts intérieurs, selon (fig. 2).
— Pour les réactions sur les appareils d'appui, selon

(fig. 12).
Pour tracer les diagrammes des efforts intérieurs,

il suffit maintenant de «suspendre» les diagrammes des
efforts intérieurs des travées isostatiques (fig. 5) aux valeurs
des efforts aü droit de l'axe des appuis (voir exemple
ci-après).

Tableau 7 — Organigramme du programme CMJA1

Lecture des données

Sous-programme de calcul
de l'intégrale de Maxwell :

v M M1 ;a E Ej- Az

Calcul des coefficients de souplesse
des travées isostatiques :

etc Mk » *1ik etc

"-il
Calcul des rotations de flexion et de gauchissement

des travées isostatiques sous les charges :

a10 ' ßi0 ' ai0 et bi0

Calcul des reaSaions des travées isostatiques
sous les charges :

etcn(0) ™«^ki ' xki

Calcul des termes de la matrice des coefficients D et
des termes de la matrice des charges C. Eq. (6.5)

Sous-programme d'inversion
de matrice IMGC Inversion de D

j '

Calcul de la matrice des grandeurs surabondantes :

X D"1 C

j r

Calcul des efforts intérieurs au droit des appuis
et des réactions, selon le tableau 6.

j r

Impression des résultats
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a) Flexion : b) Torsion

M ' 1 tnr
ui

PLAN

M l tm

k+l

v
a Ik ik

1 tm

¦"¦«

M'

ltm 1 tm

k+l

£ '
iO 10

o

ED Li
uumax

si
u*

fi M M1
3ik - J0 ËÎÛT dz

M M1
ni cu

MO ~ J_ El (z)0 mu)
J1 dz

Fig. 11. — Deux applications particulières du théorème de
Maxwell.

Cartes de données ¦— Input,

Notations :

C

N

M(i)

d
em

L(i)
AZ(i,f)

£7°Cllyy
El0

|fti
Ely-yXUJ)

EI°a.X(i.j)

P{l)

eP (i)

PU)

ep (/)

numéro du cas de charge.

nombre de travées, JV= 20 au
maximum, 2 ^ N ^ 20.

nombre d'intervalles par travée i,
M(i) 20 au maximum.
écartement des poutres maîtresses [m].
biais des appuis, signe selon (fig. 7 b),
[m].

longueur de la travée i [m].
longueur de l'intervalle / de la travée i
[m].
rigidité de référence à la flexion [tm2]

rigidité de référence au gauchissement
[tm4].

facteur de multiplication des rigidités
de référence.

rigidité à la flexion de la section j de
la travée i.
rigidité au gauchissement de la sec¬

tion / de la travée /.

charge concentrée au milieu de la
travée / [t].
excentricité de la charge P (i) par rap¬
port à l'axe de symétrie [m], signe
selon (fig. 4).
charge linéaire uniformément répartie
sur la travée i [t/m].
excentricité de p (i) par rapport à l'axe
de symétrie [m].

COUPE TRANSVERSALE M97^ h—-f}

i
y

appui appui
de de

gauche droite N
!/

tm

we=u.
^fe WW

ELEVATION

y

Fig. 12. — Réactions sur les appareils d'appui.

Remarques :

a) Dans le cas de ponts à inertie constante par tronçons,
ce qui est pratiquement toujours le cas pour les ponts
métalliques, il faut introduire un intervalle de
longueur AZ 0 au droit de chaque discontinuité.

b) Il faut prendre au minimum 5 intervalles par travée
(non compris les intervalles de longueur nulle) pour
obtenir une précision suffisante sur la valeur des
efforts calculés, ceci même dans le cas d'inertie
constante.
Cela est dû au processus approché de calcul de

l'intégrale de Maxwell par intégration numérique
(tableau 7). Pour M(i) — 5 intervalles par travée,
la précision sur la valeur des efforts est de l'ordre
de 5 à 6 %, pour M(i) =10 intervalles la précision
est de l'ordre de 2 %, ce qui est très suffisant.

c) Un seul facteur de multiplication A pour les rigidités
de flexion et de gauchissement suffit; en effet, on
peut montrer que ces deux rigidités varient pratiquement

selon un même facteur de proportionnalité
pour toutes les sections transversales d'un même

pont.

d) Par souci de simplification de notre programme,
nous n'avons pas cherché à placer les charges
concentrées dans les positions les plus défavorables
longitudinalement, car pour cela il aurait fallu chercher

ces positions extrêmes au moyen des lignes
d'influence. Il nous a paru suffisamment exact de ne
considérer qu'une seule position des essieux, soit
dans la section à mi-portée de chaque travée. Cette
simplification est acceptable, l'influence du cas de
charge des essieux étant généralement négligeable
pour le dimensionnement global de l'ouvrage.

Ajoutons que dans le cas limite d'un pont droit à quatre
travées inégales d'inertie variable, les résultats du
programme CMJA 1 ont été confrontés avec les résultats
donnés par le programme GC 5 du Centre de calcul élec-
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tronique de l'EPFL pour le calcul des poutres continues :

ces résultats sont absolument identiques (pour l'effet de
flexion uniquement, bien entendu).

D'autre part, notre programme a été testé de manière
positive sur les exemples de ponts-biais d'inertie constante
(barre prismatique) de l'ouvrage de Kollbrunner/Basler
m.

Tableau 8

Input du programme Fortran CMJA 1

Carte 1

Carte 2

Carte 3

Carte 4

Carte 5

N cartes
suivantes :

Carte
suivante :

N cartes
suivantes :

N cartes
suivantes :

texte quelconque (référence à l'ouvrage par
exemple)

C, N selon Format 2 110

M(î) i l,N selon Format 8 110

d selon Format FIO.

e'k) k l,N+l
selon Format 8 FIO.

L'î),Az'i,î) /=1, MO)
i 1, N selon Format 8 FIO.
L (i) étant toujours au début d'une carte

pro prOJ^Iyy, Ejia,a>
selon Format 2 E20.

ift/) /= l.Af + 1

i 1, N selon Format 8 FIO.
A (i, 1) étant toujours au début d'une carte

^(0, eP (i), p (0 et ep (/)
i 1, N selon Format 4 FIO.
P (i) étant toujours au début d'une carte

Tableau 9

Caractéristiques des sections transversales du pont
Sections homogènes avec n m 5

Section
type n"

Ivy
[m'] Dn'l

X

moyenIyV Im,

1

2
"ï.;
4"M
5

• - «i-
7

0,32686
0,46207
0,54636
0,30957
0,52123
0,72972
0,79271

8,2207
11,647
13,784
7,7832

13,149
18,474
20,083

0,598
0,846
1,000
0,567
0,954
1,336
1,451

0,596
0,845
1,000
0,565
0,954
1,340
1,457

0,597
0,846
1,000
0,566
0,954
1,338
1,454

pour les surcharges permanentes et les surcharges mobiles;
il agit sur la section mixte uniquement.

Les caractéristiques des sections transversales, calculées
à l'aide du programme CME 2, sont données au tableau 9.
A titre d'exemple, nous avons fait figurer les valeurs du
rapport k des inerties de flexion et de gauchissement.
Nous voyons bien que ces deux rapports sont pratiquement

identiques pour une même section transversale.
Nous avons pris la section en travée, type 3, comme
référence, pour laquelle :

I$y= 0,54636 m4

Comme E 2,1 • 107 t/m2 :

ETyy 0,11474-IO8 tm2

1°

et El0

13,784 m6

0,28946-109 tm4

8. Exemple

8.1 Caractéristiques de l'ouvrage

Soit le para-biais continu à trois travées inégales (45 +
55 + 50 m) (fig. 13). L'ouvrage est constitué d'un tablier
de béton armé (BS 450) de 18 m de largeur d'épaisseur
variable avec goussets au droit, des poutres maîtresses;
pour les calculs, on admet un tablier d'épaisseur constante
égale à 30 cm. Les poutres maîtresses métalliques, au
nombre de deux, sont de hauteur constante égale à 2,20 m
sur toute la longueur de l'ouvrage.

La répartition de la matière des poutres-maîtresses
métalliques constituées d'acier 52, ainsi que la répartition
de l'armature longitudinale du tablier sont données à la
figure 14. Les appuis de l'ouvrage sont constitués d'appareils

d'appui distincts, décalés en élévation de façon
irrégulière (3,00, 3,00, 10,00 et 0,00 m).

Pour calculer les efforts intérieurs, nous avons admis
toutes les sections transversales homogènes (également

sur appuis) avec n — — 5, que ce soit pour les sur-
Eb

charges mobiles ou pour les surcharges permanentes.
Notons qu'en ce qui concerne le calcul des efforts
intérieurs ou des réactions d'appuis, cette hypothèse
simplificatrice est suffisamment exacte.

Nous avons implicitement admis que le poids propre
du tablier est repris par les poutres maîtresses métalliques
seules. L'effet du biais des appuis n'intervient donc que

8.2 Charges sur l'ouvrage :

Surcharges permanentes :

Bordures préfabriquées : 0,530 t/m'
Mortier d'égalisation : 0,080 t/m'
Glissières de sécurité : 0,046 t/m'
Revêtement bitumineux :

(ép. 7 am ô 2,2 t/ms

largeur: 18,00-2-0,65= 16,70 m)
0,07-16,70-2,2 2,572 t/m

Total pour le pont : 3,228 t/m' gs 3,23 t/m'

Surcharges mobiles : cas de charge / de la Norme
SIA 160 (1970)

p 400 kg/m2
JSLeux de 18 t * *™»«1'»

45.002 + 55.002 + 50.002L l^S :— 50,40 m
45,00 + 55,00 + 50,00

| 100 + /„ l 150,40
ç> 5

10 + lm 60,40

p (1 + <p) 400-1,125 450 kg/ms

P(l+p)= 18-1,125= 20,3 t

2,5 %
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appui : 1

travée :

45,00

,'-!' 3,00 7h'

2

55,00

PLAN

ELEVATION

50,00

10,00 appareils
d'appuis

150,00

COUPE TRANSVERSALE

(section schématisée admise

pour les calculs)
E£Z

ép. moyenne =0,30

tablier de béton armé

4,00

XS2SSS2 jwxxmzxmzsxxpxxzxsszsxxmzl szxszzsa

10,00

18,00

4,00

Fig. 13. — Exemple d'un pont-biais à trois travées : caractéristiques géométriques.

armature longitudinale
du tablier :

semelle supérieure

longueur [m]

section [cm ]

longueur [m]

^section [mm]

longueur [m]

épaisseur [mm]

8 1; 12t * t "T-

120 20Q 300 200

25

120 200

16
i<—,L

300
—l— 200

34

120

35

11

12

SsS^S

semelle inférieure
section [mm]

longueur [m]

type de section transversale :

longueur des travées [m] :

longueur totale [m] :

24

10

m

12

12

12 14 U

33 A

iH1

33

10

m

16

16

12 16
;<-<<¦

12

38

oo

27

10

11

12

o o o ooo o oo oo o o ooo o oo o
vo oo oo co ^o oo o oo vo oo

o o' o oo oooœ co vo oo
ooo o o oooo o o o
00 vu 00 CO CO vu

^11^10WI12W8I10I7W 16 ffl6!11!6!11^
© © © ©@D © (D©© © ©0© © ©©© © © ©

45 I 55 I 50

150

y^y;

Fig. 14. — Répartition de la matière rapportée à l'axe longitudinal du pont : armature du tablier et poutre maîtresse.
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18,00
0,7 lin,

1,00 /,8 1,8
20.3 t4 X ^ hfl

w

450 kg/m

SSp A

7,10

14,50
,'-,'¦

~ 0,09

'- 0,91

Fig. 15. — Répartition transversale des charges en travée.

On admet la loi de répartition transversale des charges
représentée à la figure 15. La publication [6] permet
d'évaluer de manière précise la loi de répartition
transversale pour un tel profil.

8.3 Cas de charge

Nous avons envisagé huit cas de charge (fig. 16). Les
conventions de signe de l'excentricité des charges par
rapport à l'axe longitudinal du pont, sont celles définies
au paragraphe 7. Les valeurs des charges et de leur excentricité

sont déduites de la (fig. 15).
Le cas de charge n° 1 est celui de la surcharge permanente

uniformément répartie. Les cas de charge n0B 2,
3 et 4 sont quelques cas de surcharges mobiles réparties
donnant les moments et bimoments maximaux. Le cas de
charge n° 5, surcharges mobiles réparties en damier, est
celui donnant les moments de torsion maximaux. Les cas
de charge n08 6, 7 et 8 sont les cas analogues pour les
essieux.

Les résultats du calcul des efforts intérieurs et des réactions

d'appuis à l'aide du programme CMJA 1 sont donnés

Tableau 10

Efforts intérieurs théoriques à l'axe des appuis

Cas
de charge Travée

Moment
Itm]

Effort tranchant
M

Bimoment
Um']

Moment de torsion
Itm]

gauche droite gauche droite gauche droite gauche droite

1

1

2
3

- 7,25

- 831,51
-1048,83

- 822,62
-1051,77

0

+ 54,56
+ 84,82
+ 101,73

- 90,79

- 92,83
- 59,77

+ 409,17
+ 638,36
+2543,17

- 678,75
-2320,74

0,

- 24,18

- 53,80

- 50,86

- 24,18

- 53,80

- 50,86

2
1

2
3

+ 29,30

- 475,08

- 923,86

- 545,31
-1003,38

0

+ 133,93

- 9,61
+ 181,48

-159,47
- 9,61
-144,52

+ 1004,48

- 737,47
+ 4536,93

-1861,44
- 240,14

0

+ 97,68
+ 9,04
+ 88,56

-225,06
+ 9,04
-270,04

3
1

2
3

+ 9,29
-1228,90
-1188,00

-1121,26
-1109,49

0

- 25,12
+ 181,47
+ 23,76

- 25,12
-177,13
+ 23,76

- 188,42
+2754,93
+ 594,00

+ 1205,47
-4428,22

0

+ 30,98
-327,83
- 11,88

+ 30,98
+ 66,63

- 11,88

4
1

2
3

+ 10,09

- 907,56
-2540,16

- 796,01
-2197,67

0

- 17,91

+ 155,84
+213,80

- 17,91
-202,76
-112,20

- 134,35
+ 2682,83
+ 5345,08

+ 1379,65
-5068,91

+ 33,64
-338,17
-286,20

+ 33,64
+ 56,29
+ 72,40

5

1

2
3

+ 108,08
-1023,79
-1209,36

- 970,83
-1202,01

0

+ 60,62
+ 100,16
+ 118,19

-108,58
-106,64
- 69,81

+ 454,68
+ 2338,48
+ 2954,68

+ 772,97
-2666,01

0

+ 360,28
-522,69
+333,36

-346,13
+340,70
-451,54

6
1

2
3

+ 0,21

+ 82,78

- 170,75

+ 83,78

- 280,31
0

+ 1,86
6,60

+ 23,72

+ 1,86
6,60

- 16,88

+ 13,93

- 18,57
+ 592,88

+ 44,87
- 165,04

+ 0,69

- 2,66
+ 106,90

+ 0,69
2,66

-130,61

7
1

2
3

+ 8,89
- 233,13
- 224,31

- 177,90
- 139,01

0

- 4,15
+ 22,01
+ 4,49

- 4,15
- 18,59

+ 4,49

- 31,13
+ 1498,69
+ 112,15

+ 1302,47

- 464,72
0

+ 29,64
-154,45
— 2 24

+ 29,64
+ 83,06

- 2,24

8

1

2
3

+ 5,55
77,78

- 195,28

44,04
- 210,14

0

1,10
+ 7,74
+ 14,06

- 1,10
- 12,56

6,24

8,27
+ 890,11
+ 351,39

+ 823,77
- 313,91

¦¦'- ôv
+ 18,49
- 93,96
+ 65||I

+ 18,49
+ 50,17
- 79,09
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x 1 essieu de 20,3 t
p [t/m'] P [t]

[m]
P '

e ± 0,00

e + 1,10
P ' 1,10

« o

e - 1,10

-£
«o

- 1,10

p 3,76 p 3,76 p 3,7
ie + 4,1751 e - 4,175 le + 4,175

P ' P P '

25,00 25,001 '—-* —,

-*—+ ^ Jb=

27,50 27,50> Jf ' *

+ ^—e^f

P 40,6
Sp r + 5,85

4:
40,6

- 5,85

27,50 27,50

-f=t
25,00 25,00^, „

Fig. 1

P 20,3

ep - 7,10

Cas de charge envisagés.

P 20,3

5p + 7,10

dans les tableaux 10 et 11, pour les différents cas de charge
envisagés (fig. 16). Pour chaque travée, nous avons les
valeurs des efforts intérieurs, respectivement à l'axe des

appuis gauche et droite de la travée. Pour chaque appui,

Tableau 11

Réactions sur les appareils d'appui en tonnes

Cas
de charge Appui

Appareil d'appui

gauche droite

1

1

2
3

4

+ 24,86
+ 84,84
+ 97,57
+ 34,97

+ 29,70
+ 90,70
+ 96,98
+ 24,80

2
XI ¦¦

2
3

4

+ 76,73
+ 98,34
+ 103,49
+ 99,27

+ 57,20
+ 51,52
+ 87,59
+ 45,26

3

V
2
3

4

- 9,46
+ 67,42
+ 92,59

- 10,69

- 15,66
+ 139,18
-108,30
- 13,07

4

1

2
3

4

- 9,59
+ 49,70
+ 174,03
+ 48,86

- 12,32
+ 124,06
+242,53
+ 63,34

5

1

2
3

4

+ 66,34
+ 86,71
+ 111,68
+ 80,06

- 5,72
+ 122,02
+ 113,15

- 10,25

6

¦1'. *¦

2
¦".>£?•

4

+ 1,00
— 4,56
+ 26,11
+ 21,50

+ 0,86

- 3,89
+ 4,20

- 4,62

7

1

2
- ..3

'"

4

+ 0,89

- 5,33
+ 3,01

2,02

- 5,04
+ 31,49
+ 20,07

- 2,47

8

1

2
O-'fix

4

+ 1,30

- 6,82
+ 14,79
+ 11,03

- 2,40
+ 15,67
+ 11,82

4,79

nous avons la valeur des réactions sur les appareils d'appui,
gauche et droite respectivement, comme définis à la
figure 12.

Pour obtenir les efforts maximaux, par exemple dans la
section au droit de la pile la plus biaise (appuis n° 3), on
voit qu'il faut cumuler, outre les efforts dus au poids
propre des poutres maîtresses et du tablier agissant sur
la section des poutres maltresses métalliques seules, les
efforts dus aux cas de charge nos 1, 4 et 7.

Si, d'autre part, on désire obtenir la réaction maximale,
par exemple à l'appareil d'appui gauche de la culée droite
(appuis n° 4), on doit cumuler, outre les valeurs de la
réaction due au poids propre d'une poutre métallique
et de la demi-largeur du tablier, les valeurs de cette réaction
dues aux cas de charge n03 1 et 2, ainsi que celle due aux
essieux placés au droit de cet appu i.
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4 x

18 ,00

1,00
0,70

„1,8; i,8

20.3 t
• '

2

J' ,r ' ' '

1 5,85

| 5,00
1

5,00
4 1 1

1 l

-«' 1 ,00

^^ 1p

axe de la resultante
des deux essieux

\ ' 1»00 îïïtM i'085

Fig. 17. — Répartition transversale des charges sur appuis.

Du tableau 11 on tire :

Cas de charge n° 1 : F4 Gauohe
n° 2 : F4 Gauche :

Essieux : (fig. 17).

34,97 t
99,27 t

20,31 20,3
4—|- tjP 4- -^--1,085 44,00 t

178,24 t
Valeur maximale de F4 Gauche sous les surcharges : 178,24 t

8.5 Diagrammes des efforts intérieurs pour le cas de
charge n° 4 (fig. 18).

Les valeurs des efforts au droit des axes des appuis sont
lues sur le tableau 10.

Contraintes normales :

a dues à M a dues a M
eu u

0
©O 0

© ^©
Flux de cisaillement :

qy t Ty dus à Qy q t t dus à T
nu m m

0
0

0
©

0
©

©

Fig. 19. — Diagrammes des contraintes dans une section
transversale du pont, en travée.

Efforts dans les travées isostatiques selon les formules
(5.1):

6,52-552
Afa^max -^-5 2465,4 tm

M,<°>

ayLV±2 max

6,52-502
2037,5 tm

6,52-l,10-552 - 2711,2 tma

M^°K -6,52-1,10 -502

- 2240,6 tm2

AM

Diagrammes des efforts au droit des appuis :

6,52-102
appui 3 81,5 tm

AJA
6,52-1,10-102

arvl appui 3 89,7 tm2

Au droit de chaque appareil d'appui le diagramme des
efforts tranchants présente une discontinuité égale à la
valeur de la réaction d'appui que l'on lit sur le tableau 11.

De même, au droit de chaque appareil d'appui, le
diagramme des moments de torsion présente une discontinuité
égale au couple de torsion dû à la réaction d'appui.

Par exemple :

Tm= + 33,6 tm.
F*Gauche 49,71 => AT 49,7-5,00 j 248,5 tm
Tw à droite de l'appareil d'appui 2 Gauche :

33,6 + 248,5 281,1 tm.

8.6 Calcul des contraintes dans la section au droit de
l'appui 3 Droite sous le cas de charge n° 4

Les efforts sont lus sur la figure 18 :

My - 1525 tm Mx 0
Qy - 62,5 t ß* 0

Mm + 3950 tm2
T + 969,7 tm

Les caractéristiques de la section type 7,1e tablier de
béton armé tendu étant admis fissuré, ont été calculées à
l'aide du programme CME 2. Quelques résultats sont
donnés au tableau 12.

Tableau 12

Quelques résultats du programme CME 2

pour la section type 7

Point n° y 1ml t» Im'] S„ [m*] 5» lm']

N 9 (âme)
N 10
N 13

+ 1,349
+ 1,349
-1,146

- 6,801

- 8,616
+ 10,213

-0,081
~0

0

+0,408
~0

0

0,42149 m4 ; la, 10,748 m1*

On a représenté des diagrammes donnant l'allure des

contraintes dans les sections transversales ouvertes d'un
pont à deux poutres maîtresses (fig. 19).

Nous donnons ci-dessous le calcul des contraintes en
quelques points de la section représentée schématiquement
à la figure 20. On applique les formules (4.5).
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-134,4

45,00

M [tm]

55,00 50,00

2540,2

-2197,7

- 1300

307,6

+ 767,4+ 912, + 950
(max)t

L76 •

112,2
0 iJM- 17,9tmiiiinmm

+ 22, + 31,8

¦« + 147155,
180

+ 213,

5150

M [tur]

0
100 ^itunniningin»

+ 431,9
+ 1379,7

+ 3950

I [tm] + 5345,1

338,2

'«— - 243

028

¦^""525—*< + 56,3© ©

l 3,00 3,00

+ 895,2 —>
'.— + 969,7

10,00

Fig. 18. — Diagrammes des efforts intérieurs ; cas de charge n° 4.

477



Le sens des flux de cisaillement positifs est indiqué par
les flèches (fig. 20).

N12
o—

Ell N5

E3'

E5 N6

m=

E10|
o—l-

N4
N3

N7
N8

^Tx

+ E2

El

Nil N2 NI

E12

H—
E7

N13
-^3

E8-f:

E9
o | i-

N10 N9 N14

El 3

Fig. 20. — Numérotation des points d'une section transversale
selon le programme CME 2.

Contraintes au nœud N9 dans l'âme

1525
•1,349

3950
•(-6,801)

0,42149 10,748

-7380 t/m2 -0,738 t/cm2

Q
-62,5 969,7

— • (-0,081) — • 0,408
0,42149 10,748

— 49 t/m - 0,49 t/cm

51 -2499

-12 -37

d'où t
0,49

1,6
0,306 t/cm2

résultats obtenus au moyen de cette théorie et à l'aide de
notre programme électronique, ainsi que la manière
d'exploiter ces résultats. Nous espérons ainsi avoir apporté
une aide efficace aux ingénieurs des bureaux techniques
en leur donnant des informations à la fois nouvelles
et directement utilisables.

Compte tenu de certaines approximations justifiées par
les simplifications qu'elles ont apporté à notre étude, nous
avons appliqué la théorie et les équations de la barre
prismatique en torsion non uniforme au cas de la barre
non prismatique, c'est-à-dire au cas du pont à section
transversale d'inertie variable. Nous espérons qu'un
travail de doctorat entrepris depuis peu, sous la direction
du professeur Jean-Claude Badoux, apportera des
renseignements nouveaux et plus précis quant à l'exactitude
d'une telle approximation par rapport aux méthodes de
calcul dites exactes, comme celle des éléments finis.
On pourrait penser qu'une étude telle que la nôtre, même
suffisamment approchée, à l'aide d'un modèle de calcul
relativement simple, ne présente aucun intérêt face aux
possibilités énormes de méthodes de calcul plus exactes,
comme celle des éléments finis. Cependant, dans la plupart
des cas, un calcul par décomposition de la structure en
éléments finis est de loin beaucoup plus coûteux qu'un
calcul à l'aide d'un modèle simple, dont la barre par
exemple, qui malgré les approximations qu'il comprend,
est suffisamment exact pour les besoins de l'ingénieur dans
la majorité des cas.

Remerciements

Contrainte au nœud N10 :
'

— 1525 3950
1,349 H (-8,616)= -4881 -3166>

0,42149 10,748

- 8047 t/m2 4 - 0,805 t/cm2

t est nul à l'extrémité des semelles.

Contrainte au nœud N13 :
-1525

"
3950

(-1,146) +——-(+ 10,213) 4146
0,42149 10,748

+ 3753 + 7899 t/m2 + 0,790 t/cm2 -> traction dans
les armatures du tablier à l'extrémité du porte-à-faux.

t est nul à l'extrémité du porte-à-faux du tablier.

9. Conclusion

Dans cet article, nous avons rappelé aussi clairement et
brièvement que possible, la théorie de la torsion non
uniforme des barres prismatiques, puis nous avons appliqué
cette théorie à l'étude du comportement des ponts-biais.
Nous avons présenté succinctement un programme de
calcul pour l'ordinateur, outil de travail quasi indispensable

à l'étude des ponts-biais continus. A l'aide d'un
exemple, nous avons montré de manière concrète, les

Les auteurs remercient tous les collaborateurs de
PICOM qui ont contribué à la rédaction de cet article,
plus particulièrement M.ffliaux qui a préparé et dessiné
les tableaux et les figures, et Mlle Dubois qui a dactylographié

le texte.
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