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BULLETIN TECHNIQUE DE LA SUISSE ROMANDE

97° année 2 octobre 1971 N°20

Contribution au dimensionnement des ponts-biais
continus a rigidité torsionnelle de Saint-Venant
négligeable et a travées d’inertie variable'

Calcul des efforts intérieurs et des réactions d’appuis a I'aide de I'ordinateur

par JEAN-PAUL JACCOUD, ing. EPFL, et JEAN-CLAUDE BADOUX, Dr. sc., professeur a I'EPFL

Introduction et sommaire

Dans le cadre des travaux de 1’Institut de la Construction
métallique (ICOM), nous avons dii a plusieurs reprises
examiner le probléme de I'influence du biais des appuis
sur le dimensionnement d’un pont & une ou plusieurs
travées. Le tracé des voies de communication au-dessus
d’obstacles naturels tels que les riviéres ou au-dessus de
constructions existantes, telles que routes, voies ferrées
ou batiments, impose souvent I'implantation de piles,
palées ou culées, biaises par rapport a ’axe longitudinal
des ouvrages d’art. L’ingénieur projeteur de tels ouvrages
est donc fréquemment amené a résoudre le probléme de
I'influence du biais des appuis sur la structure, tant du
point de vue des efforts intérieurs et des réactions d’appuis,
que du point de vue des contraintes.

Dans cet article, nous présentons plus spécialement une
méthode de calcul des efforts et des réactions d’appuis
pour un pont-biais a section transversale ouverte a deux
poutres-maitresses et a plusieurs travées. Cette méthode
a été développée a partir de I’excellent ouvrage de Koll-
brunner et Basler [2],2 dont la traduction en frangais est
parue depuis peu, et qui traite entre autres du calcul des
ponts-biais d’inertie constante en torsion non uniforme
pure. Nous avons utilisé le méme modéle de calcul que
dans la réf. [2] : soit la barre prismatique a parois minces,
a section transversale ouverte et indéformable, a rigidité
torsionnelle de Saint-Venant nulle ou négligeable. Moyen-
nant certaines approximations, nous avons développé et
étendu ’application de ce modele de calcul au cas de
ponts a inertie variable.

Au sommaire de cet article, tout d’abord quelques
rappels ou notions sur la coordonnée sectorielle, le gau-
chissement et le bimoment de torsion, ainsi que sur le
calcul des contraintes dans les sections; ensuite, nous
traitons la statique de la barre prismatique et du pont-
biais en torsion non uniforme pure, puis nous donnons
quelques éléments sur ’établissement de notre programme
de calcul des efforts intérieurs et des réactions d’appuis,
ainsi que sa description et ses régles d’emploi; finalement,
nous présentons un exemple du dimensionnement d’un
pont-biais a trois travées inégales d’inertie variable, avec
biais différents des appuis.

1 Cet article reprend le sujet d’une conférence donnée en
novembre 1970 sous le titre « Dimensionnement des ponts
mixtes biais a I’aide de ’ordinateur et d’un approfondissement
de certaines données de statique et de résistance des matériaux »
dans le cadre des journées d’études organisées par le Groupe
spécialisé des ponts et charpentes de la Société suisse des ingé-
nieurs et architectes (SIA).

2 Les chiffres entre crochets renvoient a la bibliographie de
fin d’article.

1. Coordonnée sectorielle

Section droite d’un profil ouvert a parois minces
(fig. 1):

C = centre de gravité de la section ;
D = centre de cisaillement ou centre de rotation ;
s = abscisse curviligne sur le contour de la section
a partir d’'une origine O quelconque ;
t = ¢épaisseur des parois ;
dA = t-ds;
Pp = distance de D a la tangente au contour en A4 ;
do = dQ = pp-ds = deux fois l'aire du secteur

(AA'D).

Définition de la coordonnée sectorielle du point A4
d’abscisse s :

Q= [$dQ =[S pp-ds 1.1

La coordonnée sectorielle a donc la dimension d’une
aire : cm? ou m?2.

Définition de la coordonnée sectorielle normalisée @ :
(Normalisation = translation du point origine des coor-
données de maniére que le moment statique sectoriel de la
section tout entieére soit nul.)

QdA
o=0- (1.2)
A
b2
Fig. 1. — Section droite d’'un profil ouvert a parois minces.
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Fig. 2. — Systémes d’axes de référence et déformations. Conven-
tion de signes des efforts et déformations.

2. Caractéristiques statiques de la section

Considérons le cas d’un profil possédant un axe de
symétrie (fig. 2). Si le systéme d’axes de référence x, y, z
est principal d’inertie, les grandeurs statiques suivantes
sont suffisantes.

Moments statiques du 1€r ordre :

Sy = [5x-dA [cm®]; S, = [5y-dd4 [em®];

Sp = Jw-dA [cm?]
Moments statiques du 2¢ ordre :
Ly = [4ax*dd = — [;S;-dx [cm%]
Iy = [4 y?dA = — [;S,-dy [cm%]
I, = Js0*dAd = — [;S,-dw [cmf]

moments d’inertie
de flexion

moment d’inertie
sectoriel

Remarque : les notations adoptées dans le présent
article sont celles des références [2] et [5].

3. Notion de gauchissement — bimoment de torsion

Soit un profilé ouvert a parois minces, a rigidité de tor-
sion uniforme nulle ou négligeable, encastré parfaitement
a I'une de ses extrémités et soumis a un moment de torsion
extérieur My, a son autre extrémité, libre (fig. 3 a).

En torsion non uniforme pure, le moment de torsion
intérieur 7, dans une section droite quelconque d’une
barre (fig. 3 a), est repris par un couple d’efforts tranchants
Q, égaux et opposés, dans les deux ailes du profil (fig. 3 b).
Sous l'effet de ce couple de forces Q, chaque aile fléchit,
I'une vers le bas et I’autre vers le haut. A ce couple d’efforts
tranchants Q correspond dans les ailes un couple de
moments M, égaux et opposés (fig. 3a). La résultante
statique de ce couple de moments est nulle dans chaque
section. Le bimoment de torsion M, dans la section
considérée désigne I’ensemble de ces deux moments M
égaux et opposés. Le bimoment est donc I'effort intérieur
qui provoque le gauchissement des sections.

Ces quelques lignes suffisent pour justifier les termes
de «torsion fléchie » ou de «flexion antimétrique » que
I’on emploie parfois en lieu et place de torsion non uni-
forme.

La flexion antimétrique des deux ailes du profil (fig. 3 a)
entraine, sous I'effet du bimoment M,, une distorsion
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Fig. 3. — Gauchissement d’un profil soumis & un moment de
torsion.

de la section transversale initialement plane : c’est ce que
l’on appelle le gauchissement de la section. Il peut étre
représenté visuellement a I’aide du diagramme des coor-
données sectorielles w, du diagramme des déformations w
de la section hors de son plan ou du diagramme des
contraintes normales longitudinales ¢, les trois grandeurs w,
w et g étant proportionnelles dans une section considérée
(fig. 3c¢).

4. Analogie des équations différenticlles de Ila
flexion et de la torsion non uniforme pure —
calcul des contraintes

On peut montrer que I’équation différentielle de la
déformée en torsion non uniforme pure, grace a la notation
définie ci-dessus, est analogue a 1’équation différentielle
de la déformée en flexion pure.

Les définitions des systémes d’axes, des déformations
et des efforts conventionnellement positifs sont données a
la figure 2. Rappelons que les axes x, y, z sont principaux
d’inertie (voir tableau 1).

Contraintes dans le cas général : Flexion -+ Torsion non
uniforme pure :

M. M, M,
g = == X _Jr =Y -y + =2 0]
127.’!? Iyy I(U(J) (4 X 5)
e o Gy o T
I 2T ‘ I vy ! // ww ¢

Les équations (4.5) ne sont valables que dans le cas ou
le systéeme d’axes x, y, z est principal d’inertie. Dans le
cas contraire, on trouvera des équations analogues plus
compliquées dans I'ouvrage de Kollbrunner/Basler [2].



TABLEAU 1
Calcul des contraintes

Des lois de Hooke, des sections planes et des conditions d’équi-
libre, on tire :
o= —Eu"x—Ev'y

" My ” My

W= = et ¥'=— 4.1
Ely Elyy @1
M, et M, = moments de flexion [tm] (fig. 2)
o= % % Ey 4.2)
Igz Tyy
Efforts tranchants :
_dM, _dMy
O = = et Oy = 7 4.3)
Flux de cisaillement :
qg=T1t
t = épaisseur des parois
qz_glsz—IQsz .4)
zz vy

Flexion Torsion non uniforme pure
Loi des sections planes : Loi du gauchissement linéaire des sections :
w=—u'X—vY+ w (z) w= —¢'Q2 + wy (2)
Loi de Hooke : Loi de Hooke :
Iw Iw
o oz g 52
Normalisation des coordonnées : Normalisation des coordonnées :
JaX dA JaYdA [4QdA
x=X—"—"——e¢et y=Y— =Q —E——
X ¢tV 1 0= =

Des lois de Hooke, du gauchissement linéaire des sections et des
conditions d’équilibre, on tire :

c=—E¢ o
M,
P = — H—w“; .1
M,, = bimoment de torsion [tm?2] (fig. 2)
M,
e 4.2)
I(IJ(D
Moment de torsion :
dM,
Toi= =[] (4.3)
dz
Flux de cisaillement :
q =7t
t = épaisseur des parois
g=— 125, 4.9
ww

Dans chacune des équations (4.5), les deux premiers
termes sont ceux bien connus dus a la flexion, tandis que
le dernier terme, de forme tout a fait semblable, représente
I’influence de la torsion non uniforme pure.

Les efforts intérieurs étant connus, on peut aisément
calculer les contraintes en n’importe quel point d’une
section transversale a I’aide des équations (4.5). Les

Mentionnons qu’un programme, élaboré par M. P.-A.
Eperon, ing. EPUL-SIA, et disponible a I'ICOM, permet
de calculer électroniquement toutes les caractéristiques
statiques nécessaires d’une section ouverte de forme
quelconque (Programme CME 2).

5. Statique de la torsion non uniforme. Analogie

caractéristiques des sections (I, Iy, I,.), ainsi que des
points ot I’on calcule les contraintes (x, y, @, Sz, Sy, S,,) @
introduire dans ces équations, sont définies au para-
graphe 2.

I
rotations

2

Fig. 4. — Déformée d’une poutre.

avec la statique de la flexion

5.1 Poutre simple (fig. 4 et tableau 3).

Les diagrammes des efforts intérieurs dans le cas de la

poutre simple sont représentés sur la figure 5.

TABLEAU 2
Analogie de la statique de la torsion et de la flexion

Flexion

Torsion non uniforme pure

Charge répartie:
P =Py

Charge concentrée :

P =Py
Fleche : v
v
Moment :
My = —El;y V"

Effort tranchant :
Qy = My

py = —Qy = Elyyv"”

Moment tordant réparti
(extérieur) : mp

Moment tordant concentré :

Mp
Rotation: ¢
@

’

Bimoment :

My = — Elye 9"

Moment de torsion inté-
rieur :

To = Mg

mp = — T4 = Elpe "
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TABLEAU 3

Cas de la poutre simple

Flexion Torsion non uniforme pure
wz=10) =0 o(z =0) =0
Wz=1L) =0 o(z=1L) =0
My(z =0) =0 My(z=0) =0 appuis a fourche
My(z=1)=0 My(z=1L) =0
Charge répartie uniformément : Moment tordant réparti uniformément :
5 14 5 mplL4 ’
Ymax = m% [em] Pmax = 357 EIDwa) [radian]
L? mplL2
Mymax = 22 [m] 6.1 Momax = "2 [1m?] 5.1
L mpL
Oymax = = 2221 5.2 Tomax = £ 2= [tm] 5.2)
Charge concentrée a mi-portée : Moment tordant concentré a mi-portée :
" Py, I3 _ MpL3
T e ST T
Py L MpL
Mymax = =% (5.3) Momax = =~ (5.3)
2, M
Qymax = + = (5.4) Tomax = £+ —> G.4

a) Flexion :

LT TRAR TN >y
“

k k

&

il

[y

b) Torsion non uniforme pure :

L

\ S

Ly

M

M
S
III |ﬁ| "' Mpax = _YT'i
Q ‘ Ty
. ﬂﬂﬂﬂmm Q1,1 =~ Ui . Tee1,1
osey d gosey
% = 7 IS s = = LWIIA]
Fig. 5. — Diagrammes des efforts intérieurs dans la poutre simple.
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TABLEAU 4

Cas de la poutre continue

ol : My; et My, ; = moment de continuité en k et k + 1

ok = pente en k due a un moment unitaire en k
%, x+1 = pente en k due & un moment unitaire en k + 1
oo = pente en k due aux charges extérieures sur la
travée 7 isostatique
de méme :

Bi = Bio + bix Mii + Bi, k11 M1, ¢ (5.8)

Flexion Torsion non uniforme pure
wWz; =0) =0 p(z; =0) =0
Wz =L;) =10 o(zi =L;) =0
On pose : On pose :
oa; = Vi(z; =0) a; = 0¢'(z; = 0)
Bi=—v(z =Ly bi=—9¢(z=1L)
Compatibilité des déformations : (fig. 6a) | Compatibilité des déformations : (fig. 6b)
fii +a; =0 (5.6) bi-1+a; =0 (5.6)
o = o0 + ok Mig + %, k41 Mit1, 4 (5.7 a; = ajo + Ak Xgi + s, k+1 Xi+1, 1 5.7

ou: Xp; et Xgi1,; = bimoments de continuité en k et k + 1

ag = gauchissement en k& di a un bimoment unitaire
en k
a;, p+1 = gauchissement en A di 4 un bimoment unitaire
en k + 1
a;o = gauchissement en k di aux moments extérieurs
sur la travée i isostatique (moments tordants)
de méme :

by = bio + big Xii + b, k41 Xp41, 4 (5.8)

5.2 Poutre continue (fig. 6 et tableau 4).

Si I'on remplace o;,f;-1, a; et b;_; dans les équations
(5.6) par leurs valeurs données dans les équations (5.7) et
(5.8), on obtient une équation « des trois moments » pour
la flexion et une équation analogue « des trois bimoments »
pour la torsion non uniforme pure. On peut donc résoudre
un systéme hyperstatique en torsion non uniforme pure
par les mémes méthodes statiques que I’on utilise dans le
cas de systémes hyperstatiques en flexion.

5.3 Cas particuliers de la poutre continue d’inertie cons-
tante (fig. 6 et tableau 5).

6. Ponts-biais en torsion non uniforme pure

6.1 Hypothéses
a) La rigidité de torsion uniforme ou torsion de Saint-
Venant est négligeable par rapport a la rigidité de
torsion non uniforme ou de gauchissement.

GK < EI,,

b) La section transversale est indéformable. Le pont
porte ses charges a la maniére d’une poutre rigide
et non pas a la maniére d’une ossature plissée.

¢) Le décalage des appuis en €lévation est petit vis-a-vis
de la longueur des travées.

TABLEAU 5

Poutre continue d’inertie constante

Torsion non uniforme pure

Flexion
air = Bis k41 = 3 é[iyy
%4y k41 = P = 6 ngy
Charge uniformément répartie :
a0 = fio = %EL[iy
Charge concentrée 4 mi-portée :
oo = Bio = 1716%/151;;

it = b _ L
i = bis kel = 37—

L.

ai, k41 = b = GE;
ww

Moment tordant concentré a mi-portée :

Mp L}

== 15 B

aio
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a) Flexion :

b) Torsion non uniforme pure

Fig. 6. — Compatibilité des déformations sur appuis des poutres continues.

d) Les appuis sont constitués de deux appareils d’appui
distincts qui n’entravent pas le gauchissement des
sections d’appuis.

e) La section transversale possede un axe de symétrie.

f) La section transversale est constante par travée. Le
pont est donc idéalisé comme une barre prismatique.

Pour la plupart, les ponts métalliques ou mixtes a section
transversale ouverte satisfont ces hypothéses.

L’hypothése a) restreint I'application sans autres de
cette théorie, aux ponts a section transversale ouverte en
béton et aux ponts a section transversale fermée, aussi
bien en métal qu’en béton. Les ponts-mixtes a section
ouverte sont en général a la limite du domaine d’application
de la théorie de la torsion non uniforme pure. Dans
certains cas, il est nécessaire de corriger quelque peu les
résultats des efforts en travée, afin de tenir compte de
I’influence non tout a fait négligeable de la rigidité tor-
sionnelle de Saint-Venant du tablier de béton. Pour plus
de détails, nous renvoyons le lecteur a ’ouvrage [2].

L’indéformabilité de la section transversale du pont est
généralement assurée de maniére suffisante par les entre-
toises.

Généralement, les ponts ont des sections transversales
présentant un axe de symétrie. L’influence du dévers de la
chaussée, par conséquent du tablier et parfois d’une faible
différence de hauteur des poutres-maitresses, est le plus
souvent négligeable pour la symétrie du profil.

Normalement, I’hypothése ¢) est toujours satisfaite
pour les ponts métalliques ou mixtes. Les ponts a travées
aussi larges que longues sont plutét construits en béton.

L’hypothése f) est la plus restrictive pour I’application
pratique. En effet, nous n’avons pour ainsi dire jamais
a calculer un pont métallique a section transversale cons-
tante. Par souci d’économie, les poutres maitresses
métalliques sont toujours dimensionnées au gré des efforts
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(moments de flexion), qui varient fortement a l’intérieur
d’une méme travée. Cependant, en faisant certaines
approximations, lors de I’établissement de notre pro-
gramme de calcul électronique, nous nous débarrasserons
de cette derniére hypothése par trop restrictive.

6.2 Notations — systémes fondamentaux

Définitions des notations utilisées (fig. 7):

i = indice de la travée ;

k = indice de I'appui ;

ki = indice de "appui de gauche k de la travée i ;

k +1,i = indice de I'appui de droite k + 1 de la
travée i.

Les systémes fondamentaux utilisés dans les calculs
sont les travées simples, biaises. Les hyperstatiques sont
les moments et les bimoments de continuité sur appuis.

L.
v i
Sk 75k+1
B I R 4
— 7.
appui k traveée 1 appui k+1
ey €]

Fig. 7. — Travée biaise : notations et conventions de signes.



a) Flexion :
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k+1
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=
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b) Torsion :
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k K+l
! mp, My !
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b | |
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r
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Akai

Fig. 8. — Statique du pont-biais : interaction flexion-torsion.

Les efforts intérieurs dans les systémes fondamentaux
sont caractérisés par Iindice ¥ et les angles de rotation
de flexion ou de torsion par les indices ,.

Par exemple :

0, = effort tranchant a ’appui k de la travée i,
indépendante ou isostatique.

M;© = moment de flexion sous les charges dans la
travée i indépendante.

Tie+1,:” = moment de torsion intérieur a 'appui k + 1
de la travée / indépendante.

»M;@ = bimoment de torsion sous les moments exté-

rieurs de torsion dans la travée i indépendante.

Les valeurs des efforts intérieurs de flexion et de torsion
non uniforme pure a utiliser pour les travées indépendantes
sont celles données, pour la poutre simple, au paragraphe
5.,

6.3 Statique du pont-biais

Principe : on dissocie I’analyse en deux parties : analyse
de ce qui se passe en flexion seule et analyse de ce qui se
passe en torsion non uniforme seule. Puis, on superpose
et on exprime l'interaction entre les deux effets flexion
et torsion.

On raisonne (fig. 8), simultanément en plan et en
élévation, successivement pour la torsion seule et la
flexion seule.

Torsion seule :

myp et Mp, pas de flexion due aux charges extérieures.

X = bimoment de continuité a I’appui k.

Ap; et Bp; = réactions des appuis sur la poutre (cou-
ples). L’effet de ces couples est de créer des moments de
continuité de flexion sur appuis :

Ap; s
AMy; = % -ey (valeur théorique sur I’axe de I’appui).

En fait AMj; n’est pas introduit brutalement au droit
de I’axe de I’appui. AM croit linéairement comme repré-
senté en traitillé (fig. 8).

L’influence du biais des appuis, dans le cas de charges
extérieures de torsion uniquement, est donc d’introduire
de la flexion. Les deux réactions des appareils d’appui
décalés en élévation réalisent un certain encastrement
a la flexion.

Flexion seule :

p et P agissent sur I'axe de symétrie, pas de torsion
extérieure due aux charges.

M, = moment de continuité a I'appui k.

Sur chaque appui, deux réactions égales. Ces deux
réactions provoquent des couples de torsion égaux et
opposés et réalisent ainsi un certain encastrement a la
torsion.

Par analogie avec ce que l'on avait pour la torsion,
ces paires de couples égaux et opposés introduisent un
certain gauchissement, d’ou un bimoment :
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Akai =

Ai
) - ey (valeur théorique sur I’axe de I’appui).

NI

L’influence du biais des appuis dans le cas de charges
extérieures verticales centrées sur l’axe de symétrie du
pont est donc d’introduire de la torsion.

Appliquons maintenant les conditions de compatibilité
des déformations (5.6) au cas du pont-biais continu :

ﬁi—l + a; = 0 et bi—l + a; = 0.
Les angles de rotation de flexion et de gauchissement
dans le cas de travées biaises sont donnés par les expres-

sions suivantes :

o = M0 + My Oigrn + oo

effet des hyperstatiques effet des charges

4+ AM; o + AMyiq 3 Ogern
effet du biais

On a:
Ay = Qi = O & Myrs — My et
L;
Api = T + R,
: I
A
AMy; = % er = T+ tg Op

de méme AMji1,; = Thia,it8 Opsa

0 = Myl + Myyq- Oy + Qo + Ty O t8 Op +

+ T, Oligsr - 18 O 6.1
De méme :
Pi = M- fir + Mysy-Pigr + Pio + Tri- fur-te Or +
+ Tii1,i Pirsr -t Opaa (6.2)
On a:

A;-d d\2
A, My = ;{ ey = Qki(i) -tg O

d 2
et 4,Mpy1,:= Qk+1,i'<§> tg Op1
On montrerait de méme pour la torsion que :
d 2
a; = Xg-aiy + Xpy1- Q1 + <§> (Qiay-tg 0p +
1
+ Q1,1 Qites1 18 Oppi1) — I (0 tgdy + fi-tg Ops1) (6.3)
()

et by = Xp by + X1 bigyr + by +

d\2
+ (§> “(Qri-big -t O + Qrir,i-bigir-t€ Op1) +

\

1
= I (0 tg Op + fi-tg Opi1) (6.4)

influence du biais

Le dernier terme est ’effet d’une rotation de la section
d’appui due au biais.
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Appui 1 2 3 i 4+l N N+1
Travée: 1 2 3 i- i i+l N-1 N
Hyper- M2 M3 Mi Mi+l MN moments
statiques 3

X2 X3 Xi Xi+1 XN bimoments
Fig. 9. — Grandeurs surabondantes.

Ensuite on remplace dans les équations (6.1) a (6.4)
les termes Qy; Ty, ... etc. par leurs valeurs données
plus haut. On écrit les conditions de compatibilité des
déformations. On a deux conditions par appui inter-
médiaire. Les seules inconnues sont les grandeurs sur-
abondantes M, et X}, soient deux par appui intermédiaire.
On a donc autant d’équations que d’inconnues et le
probléme est déterminé (fig. 9).

Si I'on effectue le travail de substitution et que ’on
ordonne convenablement les termes des équations de
compatibilité, on obtient un systéme de (2-N—2) équa-
tions linéaires a (2- N—2) inconnues, si N est le nombre
de travées.

Ce systéme d’équations est comparable au systéme
d’équations « des trois moments », si ce n’est que dans
notre cas, chaque équation comporte trois termes relatifs
aux moments et trois termes relatifs aux bimoments.

Ecrivons ce systeme d’équations sous forme matricielle :

[D)o-wv-2) % (2.5-2)* [X]2.5-2) = [Cl2.n-2) 6.5)

ou: [D] = matrice des coefficients qui ne dépendent que
des caractéristiques du pont.

[X] = matrice des grandeurs surabondantes (fig. 9).
[X]T - [Mg, MSa M4a s olely MN’ X‘l, X3a X4a R ) XN]
[C] = matrice des termes de charge qui dépendent

des caractéristiques du pont et des charges

appliquées.

Nous n’expliciterons pas plus les termes de ces différentes
matrices, car cela serait trés long et fastidieux et n’ajoute-
rait rien a la compréhension de ce texte. Il est bien évident
que nous avons di effectuer ces développements pour
I’établissement de notre programme de calcul €lectronique.

Par conséquent, on obtient les efforts hyperstatiques :

[X]= [D]*-[C] (6.6)

Ayant déterminé les efforts hyperstatiques M; et Xj,
on obtient facilement les efforts intérieurs et les réactions
d’appuis résumés dans le tableau 6.

Pour calculer tous les efforts de ce tableau, on commence
au coin gauche en haut. Il faut supposer a priori des
valeurs pour Tp; et Tj41,4, d’ou un travail par approxima-
tions successives jusqu’a ce que les Tj; et T}y q; résultant
des calculs (en bas a droite du tableau) soient égaux aux
valeurs supposées. Kollbrunner et Basler dans leur ouvrage
[2] ont effectué une fois pour toutes ce travail et donnent
les valeurs de Tj; et Tyyp,; @ introduire a priori dans les
calculs.

Certains cas particuliers simples sont traités dans 1’ou-
vrage de Kollbrunner et Basler [2]: Ponts-biais d’inertie
constante avec méme biais des appuis, pont-biais a une
travée, pont-biais a deux travées égales avec appuis inter-
médiaires biais uniquement.



TaBLEAU 6

Calcul des efforts intérieurs et des réactions d’appuis

Flexion

Torsion

Moments sur appuis :

My; = My + Ty tg O
ki (8 %k
AM;

Mpi1, ¢ = Mgi1 + Ti1, 018 Ok

Moment de flexion :

zy
L;

Zi

M; = MO + My (1 = ) + M1, i 7
(]

Effort tranchant :

(My41, 1 — M)

0= 0 + :

Réaction d’appuis :

Fi = Qri — Qks i—1

Bimoments sur appuis :

d\2
oMpi = X + Qi (E) tg Ok

S )

Aoy My

d\2
oMp+1, 1 = Xp+1 + Ok+1s 4 (5) tg Op+1
Bimoment de torsion :
Zj

Zi
oM = a)Mi(O) + oMk (1 - —1> + wMgi+1s 4 f
i

L;
Moment de torsion :

(wMpr11, ¢ — M)

Ti = TO + .
i

Couple réaction d’appuis :

Tk = Tgi — Tks i1

Réactions sur les appareils d’appuis :

Fy Tk
2l =X
2 — d

7. Programme CMJA 1 de calcul des efforts inté-
rieurs et des réactions d’appuis

Pour résoudre le probléme du calcul des efforts inté-
rieurs et des réactions d’appuis dans un pont-biais continu
a rigidité torsionnelle de Saint-Venant négligeable, nous
avons élaboré un programme en langage Fortran pour
I’ordinateur ; ce programme construit les matrices inter-
venant dans I’équation (6.6), il résout cette équation et il
calcule les efforts intérieurs et les réactions d’appuis du
tableau 6.

Lors de I’établissement de ce programme, nous avons
étendu la théorie et les équations du pont-biais en torsion
non uniforme pure, données au paragraphe 6, au cas d’un
pont & poutres-maitresses de hauteur constante, mais a
section transversale d’inertie variable par sauts, compte
tenu de I’approximation suivante.

Ce programme n’est exact que pour un pont idéal,
assimilable a2 une barre prismatique, pour lequel on peut
appliquer en toute rigueur la théorie et les équations du
pont-biais en torsion non uniforme données au paragra-
phe 6. Dans le cas tout a fait général d’une barre non
prismatique chargée de maniére quelconque, les équations
différentielles de la déformée ne sont plus celles, simples et
indépendantes les unes des autres, données au paragra-
phe 6. Il intervient des termes qui s’annulaient dans le cas
de la barre prismatique et en fait, nous avons a résoudre un
systéme de trois équations différentielles liées [1].

E. Karamuk a montré [4], dans le cas particulier d’une
barre non prismatique a section transversale symétrique en
torsion non uniforme pure, chargée de maniere quelcon-
que, que non seulement les sections d’appuis tournent
autour d’un axe horizontal et gauchissent, mais qu’égale-
ment ces sections tournent autour d’un axe vertical a;,

ceci a cause de la variation du niveau de la fibre neutre
d’une section transversale a une autre (fig. 10).

Si les sections A et B (fig. 10) ne sont pas libres de tourner
autour de 1’axe vertical a;, par exemple a cause de I’effet
de continuité d’une travée adjacente, on devrait en toute
rigueur, a cause de cette rotation empéchée, exprimer
également la compatibilité des déformations correspon-
dantes en plus des conditions de compatibilité des angles
de rotation autour d’un axe horizontal et des angles de
gauchissement. Cette condition supplémentaire aurait
pour conséquence l'introduction de moments hyperstati-
ques de flexion dans le plan horizontal.

Cependant, dans le cas de ponts mixtes ou orthotropes
a poutres maitresses de hauteur constante (cas le plus
fréquent pour les ouvrages biais), les variations d’inertie
des sections transversales n’entrainent que des variations

Fig. 10. — Conditions d’appuis d’une travée simple, non pris-
matique.
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minimes du niveau de la fibre neutre. La fibre neutre est
la fibre ou la contrainte normale est nulle. Par conséquent,
les rotations des sections d’appuis des travées libres,
autour d’axes verticaux a;, seront faibles et I’on pourra
négliger en premiére approximation les efforts de flexion
horizontaux qui en résultent. Pour I'application de notre
programme de calcul électronique, nous avons fait cette
approximation, ce qui nous permet d’appliquer la théorie
et les équations de la barre prismatique biaise et continue
au cas du pont a section transversale d’inertie variable.

Au lieu d’introduire dans les équations (6.1) a (6.4) les
valeurs données au paragraphe 5.3 pour les angles de
rotation de flexion et de gauchissement, on calcule ces
valeurs, dans le cas de travées a inertie variable, en appli-
quant le théoréme de Maxwell (fig. 11).

Les données numériques a introduire dans le pro-
gramme, pour chaque application particuliére, sont les
caractéristiques géométriques du pont (nombre et longueur
des travées, nombre et longueur des intervalles par travée,
et décalage des appuis biais, qui peut varier d’un appui a
I’autre), les caractéristiques statiques des sections trans-
versales du pont (rigidité a la flexion et au gauchissement,
aux extrémités de chaque intervalle) et les caractéristiques

TABLEAU 7 — Organigramme

relatives aux charges extérieures (charges uniformément
réparties et concentrées a mi-portée, par travée, excentri-
cités de ces différentes charges par rapport a I’axe de symé-
trie).

Les résultats des calculs a 1’ordinateur sont fournis sous
forme de tableaux (voir exemple). Pour chaque travée
nous obtenons les valeurs au droit de 1’axe des appuis,
aux extrémités gauche et droite respectivement, des
moments, des efforts tranchants, des bimoments et des
moments de torsion. Pour chaque appui nous obtenons
les réactions sur les appareils d’appui gauche et droite
de la section droite transversale (fig. 12).

Les conventions de signes suivantes sont a respecter :

— Pour le biais des appuis, selon (fig. 7 b).

— Pour les charges et moments extérieurs, selon (fig. 4).

— Pour les efforts intérieurs, selon (fig. 2).

— Pour les réactions sur les appareils d’appui, selon

(fig. 12).

Pour tracer les diagrammes des efforts intérieurs,
il suffit maintenant de « suspendre » les diagrammes des
efforts intérieurs des travées isostatiques (fig. 5) aux valeurs
des efforts au droit de I’axe des appuis (voir exemple
ci-apres).

du programme CMJAI

L

Lecture des données ]

y

Calcul des coefficients de souplesse

des travées isostatiques :
Sous-programme de calcul ::::::::::;; Qi o Bik y wee ELE a5y s bik 5 sse ete
de 1'intégrale de Maxwell :
V! S
N, Calcul des rotations de flexion et de gauchissement
NS
\\: des travées isostatiques sous les charges

%0 » Pip » 210 ®% Pig

y

Calcul des réactions des travées isostatiques

sous les charges

(0) (0)

ki ki 2 ete

Q ) T

s e

Y

Calcul des termes de la matrice des coefficients D et
des termes de la matrice des charges C. Eq.

(6.5)

Sous-programme d'inversion

Y

e

de matrice IMGC

Inversion de D

)

\ 4

Calcul

de la matrice des grandeurs surabondantes

Calcul des efforts intérieurs au droit des appuis

et des réactions, selon le tableau 6.

Y

Impression des résultats I
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a) Flexion : b) Torsion :

Mu?) =1 tm?
M=1t M'=1tm m
: S
[T
F— F——=
k * k+1 X = k+1
L, L;
———— 7 — 7,
. . . o R S,
b | | R
v o | |
%k Pi | T Pig |
i | L.
| . ! l
11 B Wi
|
1 tm | | 21
! : | 4(0) D Ly
I [ I Twmax 8 1
| I
| | | 1
1 1
M! ] : M!
1tm il ’(:m2

L. L. M M!

i M M! i w " w
B = —— dz Hern, = = A2z
ik J\O EI(z) i0 IO Elww(z)

Fig. 11. — Deux applications particulieres du théoreme de
Maxwell.

Cartes de données — Input :

Notations :

< = numéro du cas de charge.

N = nombre de travées, N = 20 au maxi-
mum, 2 = N = 20.

M (i) = nombre d’intervalles par travée i,
M (i) = 20 au maximum.

d = écartement des poutres maitresses [m].

e (k) = biais des appuis, signe selon (fig. 7 b),
[m].

L (i) = longueur de la travée i [m].

AZ (i, )) = longueur de l'intervalle j de la travée i
[m].

EI., = rigidité de référence a la flexion [tm?3]

EIL . = rigidité de référence au gauchissement
[tm?].

A (i, J) = facteur de multiplication des rigidités
de référence.

EIY,-2.(i,j) = rigidité a la flexion de la section j de
la travée i.

EIS, .2 (i,j) = rigidit¢ au gauchissement de la sec-
tion j de la travée i.

P (i) = charge concentrée au milieu de la
travée i [t].

ep (i) = excentricité de la charge P (i) par rap-
port a l'axe de symétric [m], signe
selon (fig. 4).

p (i) — charge linéaire uniformément répartie
sur la travée 7 [t/m].

ey (i) = excentricité de p (i) par rapport a I’axe

de symétrie [m].

v
appuli  appui L * |
de de = = 2z
gauche droite . '// Sl - -
l \
I

ELEVATION v

Fig. 12. — Réactions sur les appareils d’appui.

Remarques :

a) Dans le cas de ponts a inertie constante par trongons,
ce qui est pratiquement toujours le cas pour les ponts
métalliques, il faut introduire un intervalle de lon-
gueur 4Z = 0 au droit de chaque discontinuité.

b) 1l faut prendre au minimum 5 intervalles par travée

(non compris les intervalles de longueur nulle) pour
obtenir une précision suffisante sur la valeur des
efforts calculés, ceci méme dans le cas d’inertie
constante.
Cela est dit au processus approché de calcul de
I'intégrale de Maxwell par intégration numérique
(tableau 7). Pour M(i) = 5 intervalles par travée,
la précision sur la valeur des efforts est de 1'ordre
de 5 a 6 %, pour M(i) = 10 intervalles la précision
est de I'ordre de 2 %, ce qui est tres suffisant.

¢) Un seul facteur de multiplication A pour les rigidités
de flexion et de gauchissement suffit; en effet, on
peut montrer que ces deux rigidités varient pratique-
ment selon un méme facteur de proportionnalité
pour toutes les sections transversales d’'un méme
pont.

d) Par souci de simplification de notre programme,
nous n’avons pas cherché a placer les charges
concentrées dans les positions les plus défavorables
longitudinalement, car pour cela il aurait fallu cher-
cher ces positions extrémes au moyen des lignes
d’influence. Il nous a paru suffisamment exact de ne
considérer qu'une seule position des essieux, soit
dans la section a mi-portée de chaque travée. Cette
simplification est acceptable, I'influence du cas de
charge des essieux étant généralement négligeable
pour le dimensionnement global de I'ouvrage.

Ajoutons que dans le cas limite d’'un pont droit a quatre

travées inégales d’inertie variable, les résultats du pro-
gramme CMIJA 1 ont été confrontés avec les résultats
donnés par le programme GC 5 du Centre de calcul élec-
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tronique de I'EPFL pour le calcul des poutres continues :
ces résultats sont absolument identiques (pour l’effet de
flexion uniquement, bien entendu).

Drautre part, notre programme a ét¢ testé de maniére
positive sur les exemples de ponts-biais d’inertie constante
(barre prismatique) de I’ouvrage de Kollbrunner/Basler

[2].

TABLEAU 8

Input du programme Fortran CMJA 1

Carte 1 : texte quelconque (référence a l'ouvrage par
exemple)

Carte 2 : C, N selon Format 2 110

Carte 3 : M@ i=1, N selon Format 8 110

Carte 4 : d selon Format F10.

Carte: 5 ; e(k) k=1,N +1
selon Format 8 F10.

L), dzG,j) j=1, M3
gxii'illsz:s .3 i=1, N selon Format 8 F10.
" | L (i) étant toujours au début d’une carte
Carte BTy Bl
suivante : selon Format 2 E20.
LG, ) j=1,M+1
2’1 fsames 1 i=1,N sclon Format 8 F10.
“ | 4@, 1) étant toujours au début d’une carte
P (i), ep (i), p (i) et e, (i)
Neartes 1 i='[, N sclon Format 4 F10.
* | P (i) étant toujours au début d’une carte
8. Exemple

8.1 Caractéristiques de I’ouvrage

Soit le pont-biais continu a trois travées inégales (45 +
55 4+ 50 m) (fig. 13). L’ouvrage est constitué d’un tablier
de béton armé (BS 450) de 18 m de largeur d’épaisseur
variable avec goussets au droit, des poutres maitresses;
pour les calculs, on admet un tablier d’épaisseur constante
égale a 30 cm. Les poutres maitresses métalliques, au
nombre de deux, sont de hauteur constante égale a 2,20 m
sur toute la longueur de I’ouvrage.

La répartition de la matiére des poutres-maitresses
métalliques constituées d’acier 52, ainsi que la répartition
de I’armature longitudinale du tablier sont données a la
figure 14. Les appuis de 1’ouvrage sont constitués d’appa-
reils d’appui distincts, décalés en élévation de fagon
irréguliére (3,00, 3,00, 10,00 et 0,00 m).

Pour calculer les efforts intérieurs, nous avons admis
toutes les sections transversales homogénes (également

| E, ;
sur appuis) avec n = E‘f = 5, que ce soit pour les sur-
b

charges mobiles ou pour les surcharges permanentes.
Notons qu’en ce qui concerne le calcul des efforts inté-
rieurs ou des réactions d’appuis, cette hypothése simpli-
ficatrice est suffisamment exacte.

Nous avons implicitement admis que le poids propre
du tablier est repris par les poutres maitresses métalliques
seules. L’effet du biais des appuis n’intervient donc que
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TABLEAU 9

Caractéristiques des sections transversales du pont
Sections homogénes avec n = 5

Section Tvy Ioo _— A
type n° [m*] [m°] moyen
IVH Iww

0,32686 8,2207 | 0,598 0,596 0,597
0,46207 | 11,647 0,846 0,845 0,846
0,54636 | 13,784 1,000 1,000 1,000
0,30957 7,7832 | 0,567 0,565 0,566
0,52123 | 13,149 0,954 0,954 0,954
0,72972 | 18,474 1,336 1,340 1,338
0,79271 | 20,083 1,451 1,457 1,454

N U AW

pour les surcharges permanentes et les surcharges mobiles
il agit sur la section mixte uniquement.

Les caractéristiques des sections transversales, calculées
a I'aide du programme CME 2, sont données au tableau 9.
A titre d’exemple, nous avons fait figurer les valeurs du
rapport A des inerties de flexion et de gauchissement.
Nous voyons bien que ces deux rapports sont pratique-
ment identiques pour une méme section transversale.
Nous avons pris la section en travée, type 3, comme réfé-
rence, pour laquelle :

19,= 0,54636 m? 18, = 13,784 m®

Comme E = 2,1-107 t/m?2:

EIY, = 0,11474-10% tm? et EIY, = 0,28946-10° tm*

8.2 Charges sur I'ouvrage :

Surcharges permanentes :

Bordures préfabriquées : 0,530 t/m’
0,080 t/m’
0,046 t/m’

Mortier d’égalisation :
Glissiéres de sécurité :

Revétement bitumineux :
ép. 7Tcm; 0 = 2,2 t/m®
largeur : 18,00—2-0,65 = 16,70 m)
0,07-16,70-2,2 = 2,572 t/m’
Total pour le pont : 3,228 t/m’ =~ 3,23 t/m’

Surcharges mobiles: cas de charge I de la Norme
SIA 160 (1970)

p = 400 kg/m?

2 essieux de 18 t } ¢ dynamique

_45,00% + 55,00 4 50,002

_ — 50
™~ 45,00 + 55,00 + 50,00 40 m
100 + 1, 150,40
—5 = 5 — 12,59
¢ 10+ 17, 60,40 %

p (1 + @) =400-1,125 = 450 kg/m?

P(l1+¢)= 18-1,125= 20,3 t



appui: 1 2 3 4
travée : 1 2 3
45,00 55,00 50,00
0]
+
Bl
() B
8 Z H ,/‘\ g
i | MR B
— ’ ’ )
B e em——————————— S e T i
Q
3
5y
3,00 , 3,00 PLAN 10,00 appareils
d'appuis
ELEVATION
|
N N & N
) 150,00 %
A L
wn
COUPE TRANSVERSALE o
X S
(section schématisée admise . 17676264 0707076207674 T
pour les calculs) y E— I 2
ép. moyenne = 0,30 - % o
N i «
e, I e o
tablier de béton armé — e—fm=m— | —
4,00 10,00 4,00
18,00
Fig. 13. — Exemple d’un pont-biais a trois travées : caractéristiques géométriques.
longueur [m] 31 8 12 8 25 8 16 8 34
armature longitudi-
nale du tablier :
. 2 300 300
section [em“] 120 20 JI 200l 1p0 200 - 200 120
i 1
longueur [m] 35 4 12 4 33 4 16 4 38
semelle supérieure : o o o |« o o v |n o
™ | O =T ™ < (Vo) < o
section [mm] S ol & ld o ot et o
o (@] o O o (@] o (@] (@)
0 ~ ®© | 0 ~ @© ~ 0
l i
L L 5
i i
. longueur [m] il 24 4] 12 |4 38 41 16 |4 21 11
ame : -
épaisseur [mm] 12 10 1] 14 [i2 10 14 16 |2 10 12
! |
(a2] A wny T M wn TN o< wny T NS O SO S (g} T ™
SeCtiOn [mm] . . . . . . . . . . . -‘ - . . . . - . . .
semelle inférieure : S 8 3 238 8 3383 8 838 8 B3I 8 3@ ©
— —
longueur [m] 11 |5] 10 [5[a]a] 12 [4]a] 8 |10 |7 [4]a] 16 [a]a|e |11 |6] 11
LI T4 14 L | L] TS I § A A A L
type de section transversale : DO ® OO ® O ® GO ® @ ©
longueur des travées [m] 45 , 55 | 50
L§ L
longueur totale [m] : 150

Fig. 14. — Répartition de la matiere rapportée a I’axe longitudinal du pont :

armature du tablier et poutre maitresse.
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On admet la loi de répartition transversale des charges

0,7 min. représentée a la figure 15. La publication [6] permet
1,00} ,1,8,,1,8 d’évaluer de maniére précise la loi de répartition trans-
A i &;_t 4 : versale pour un tel profil.
= ' | yiY
450 g/m* —HTIITTTrTTET o 8.3 Cas de charge
ol g ogs 5.00 Nous avons envisagé huit cas de charge (fig. 16). Les
[ }'[ 2 ’ + conventions de signe de I’excentricité des charges par
i 17,10 i rapport a 1’axe longitudinal du pont, sont celles définies
# : : au paragraphe 7. Les valeurs des charges et de leur excen-
0,65 : 14,50 ll tricité sont déduites de la (fig. 15).
: } 4 Le cas de charge n° 1 est celui de la surcharge perma-
1 . . . .
: ') nente uniformément répartie. Les cas de charge n°s 2,
| L 3 et 4 sont quelques cas de surcharges mobiles réparties
donnant les moments et bimoments maximaux. Le cas de
~ 0,09 : N .
charge n° 5, surcharges mobiles réparties en damier, est
celui donnant les moments de torsion maximaux. Les cas
de charge n° 6, 7 et 8 sont les cas analogues pour les
~ 0,91 essieux.
Les résultats du calcul des efforts intérieurs et des réac-
Fig. 15. — Répartition transversale des charges en travée. tions d’appuis a I’aide du programme CMJA 1 sont donnés
TABLEAU 10
Efforts intérieurs théoriques a I’axe des appuis
Moment Effort tranchant Bimoment Moment de torsion
Cas ) [tm] [1] [tm?] [tm
de charge Travée
gauche droite gauche droite gauche droite gauche droite
1 — 725 | — 822,62 | + 54,56 | — 90,79 | + 409,17 | — 678,75 | — 24,18 | — 24,18
1 2 — 831,51 | —1051,77 + 84,82 — 92,83 + 638,36 | —2320,74 — 53,80 — 53,80
3 —1048,83 0 +101,73 — 59,77 +2543,17 0 — 50,86 — 50,86
1 + 29,30 | — 545,31 +133,93 —159,47 +1004,48 | —1861,44 + 97,68 —225,06
2 2 — 475,08 | —1003,38 | — 9,61 | — 9,61 | — 737,47 | — 240,14 | + 9,04 | + 9,04
3 — 923,86 0 +181,48 — 144,52 +4536,93 0 + 88,56 —270,04
1 - 9,29 | —1121,26 — 25,12 — 25,12 — 188,42 | +1205,47 + 30,98 + 30,98
3 2 —1228,90 | —1109,49 | +181,47 | —177,13 | +2754,93 | —4428,22 | —327,83 | -+ 66,63
3 —1188,00 0 + 23,76 +23,76 + 594,00 0 — 11,88 — 11,88
1 + 10,09 | — 796,01 — 17,91 — 17,91 — 134,35 | +1379,65 + 33,64 + 33,64
4 2 — 907,56 | —2197,67 | +155,84 | —202,76 | -+2682,83 | —5068,91 | —338,17 | + 56,29
3 —2540,16 0 +213,80 —112,20 +5345,08 0 —286,20 + 72,40
1 + 108,08 | — 970,83 + 60,62 —108,58 + 454,68 | + 772,97 +360,28 —346,13
5 ) —1023,79 | —1202,01 | +100,16 | —106,64 | +2338,48 | —2666,01 | —522,69 | -340,70
3 —1209,36 0 +118,19 — 69,81 +2954,68 0 +333,36 —451,54
1 -4 0,21 + 83,78 + 1,86 + 1,86 + 13,93 + 44,87 + 0,69 + 0,69
6 2 + 82,78 | — 280,31 | — 6,60 | — 6,60 | — 18,57 | — 165,04 | — 2,66 | — 2,66
3 — 170,75 0 + 23,72 — 16,88 + 592,88 0 +106,90 —130,61
| + 8,89 | — 177,90 — 4,15 — 4,15 — 31,13 | +1302,47 + 29,64 + 29,64
7 2 — 233,13 | — 139,01 + 22,01 — 18,59 +1498,69 | — 464,72 — 154,45 -+ 83,06
3 — 224,31 0 + 4,49 + 4,49 + 112,15 0 — 2,24 — 2,24
1 + 555 | — 4404 | — 1,00 | — 1,00 | — 827 | + 823,77 | + 1849 | + 18,49
8 2 — 77,78 | — 210,14 7,74 — 12,56 -+ 890,11 — 313,91 — 93,96 + 50,17
3 — 195,28 0 I 14,06 — 6,24 + 351,39 0 + 65,04 — 79,09
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TABLEAU 11

nous avons la valeur des réactions sur les appareils d’appui,

) x = 1 essieu de 20,3 t
:‘-*: = [t/m'] , P = [t] Réactions sur les appareils d’appui en tonnes
S e,y €p = [m]
%; . 45,00 55,00 50,00 " ) Cl‘zlas Ao Appareil d’appui
S DS ! auche roite
A2 A 11X MMM 2 . Bk R
p = 3,23 " 3 +-g§§; + 90,70
3 + 97, + 96,98
4 + 34,97 + 24,80
\\\\\\\\\\\§\\\\\\§ W\SH ?1 1 + 76,73 + 57,20
AW SOOI | 7, 2 2 Tt * 1.2
1 1 99.27 1 456
1 — 69,46 — 15,66
R &\&\\ Q 3 2 + 67,42 1139,18
L — P A A
| p = 6,52 '
| o A A
' ' 3 174,03 242,53
) z —__EEE 4 + 48,86 + 63,34
] A \\\\\\\\&\\\\\\\\\\\\\\\\\\‘\\\\\\\ =
! g : 1 + 66,34 ~ ;2
| " e ‘ 5 2 + 86,71 +122,02
ey = - L . 3 4 111,68 +113,15
| { ’ _| o 4 + 80,06 — 10,25
AN\ ZAAMHNANMMNMIIIN o ; + ‘1{(5)(6’ + 08
p=3,7 | p=3,76 p = 3,76 < 0 3 + 26,11 + 420
% - +4;7ﬂ °p = ~HLT5 | o = +4;75’ # F 2100 = 482
| ‘ |,25,00 , 25,00 1 0,89 — 5,04
. f 7 2 - 53 + 31,49
3 0 + 20,
o s A
: | P - 40,6 1 + 1,30 — 2,40
l ep = + 5,85 8 2 — 6,82 + 15,67
, 3 + 14,79 + 11,82
| 27,50 27,50 4 + 11,03 — 4,79
/A > ~ — @
! i
P - 40,6
i ep = - 5,85 |

25,00

; 21,50 , 27,50 125,00

| il :
8% -AI _ X -

P = 20,3 P = 20,3
= - 7,10 ep =+ 17,10

7,10

7,10

°p

Fig. 1 — Cas de charge envisagés.

dans les tableaux 10 et 11, pour les différents cas de charge
envisagés (fig. 16). Pour chaque travée, nous avons les
valeurs des efforts intérieurs, respectivement a I’axe des
appuis gauche et droite de la travée. Pour chaque appui,

gauche et droite respectivement, comme définis a la
figure 12.

Pour obtenir les efforts maximaux, par exemple dans la
section au droit de la pile la plus biaise (appuis n° 3), on
voit qu’il faut cumuler, outre les efforts dus au poids
propre des poutres maitresses et du tablier agissant sur
la section des poutres maitresses métalliques seules, les
efforts dus aux cas de charge n°¢ 1, 4 et 7.

Si, d’autre part, on désire obtenir la réaction maximale,
par exemple a I'appareil d’appui gauche de la culée droite
(appuis n° 4), on doit cumuler, outre les valeurs de la
réaction due au poids propre d’une poutre métallique
et de la demi-largeur du tablier, les valeurs de cette réaction
dues aux cas de charge n°s 1 et 2, ainsi que celle due aux
essieux placés au droit de cet appui.
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18,00

0,70
l,00| .1,8 1,8
4 % 20,23t
y 4 4 |
l B
| |
1 5,85 :
i I
5,00 5,00 |
k! i
I I
I I
I |
0
1,00
/ p
axe de la résultante
des deux essieux
10,85
= =—31-= =
Np 1,00 10,00 1,085
Fig. 17. — Répartition transversale des charges sur appuis.

Du tableau 11 on tire :

Cas de charge n° 1 F; Gauche = 3497t
ne 2 : F4 Gauche — 99,27 [
Essieux : (fig. 17).
4-M Hp =4 @'1,085 = 44,00t
2 2
178,24 t

Valeur maximale de F gaucne SOUS les surcharges: 178,24 t

8.5 Diagrammes des efforts intérieurs pour le cas de
charge n° 4 (fig. 18).

Les valeurs des efforts au droit des axes des appuis sont
lues sur le tableau 10.

Contraintes normales :

o dues a4 M
y

o dues a M
w w

Fig. 19. — Diagrammes des contraintes dans une section trans-
versale du pont, en travée.
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Efforts dans les travées isostatiques selon les formules

(5.1):

- 6,52.552
My© e =t = 24654 tm
© 6,52-502
M3 max = = 2037,5 tm
i —6,52-1,10-552 )
oMo' Pmax = B — 2711,2 tm
) —6,52-1,10-502 )
M3V max = _8 = — 2240,6 tm

Diagrammes des efforts au droit des appuis :

6,52.10%

AMa.ppuia = —8 = 81,5 tm
6,52-1,10-10%

AM s = 22— — 89,7 m?

Au droit de chaque appareil d’appui le diagramme des
efforts tranchants présente une discontinuité égale a la
valeur de la réaction d’appui que I’on lit sur le tableau 11.

De méme, au droit de chaque appareil d’appui, le dia-
gramme des moments de torsion présente une discontinuité
égale au couple de torsion di a la réaction d’appui.

Par exemple :

7T, =+ 33,6 tm,
F, caucne = 49,7t => AT = 49,7-5,00 = 248,5 tm
T,, a droite de I’appareil d’appui 2 Gauche:

33,6 + 248,5 = 281,1 tm.

8.6 Calcul des contraintes dans la section au droit de
l’appui 3 Droite sous le cas de charge n° 4

Les efforts sont lus sur la figure 18:

M, = — 1525 tm M, =0
0, = —625¢t 0,=0
M, = + 3950 tm?
T, = + 969,7 tm

Les caractéristiques de la section type 7, le tablier de
béton armé tendu étant admis fissuré, ont été calculées a
l'aide du programme CME 2. Quelques résultats sont
donnés au tableau 12.

TABLEAU 12

Quelques résultats du programme CME 2
pour la section type 7

Point n° vy [m] o [m*] Sy [m°] Sw [m']
N 9 (dme) +1,349 — 6,801 —0,081 +0,408
N 10 +1,349 — 8,616 ~0 ~0
N 13 —1,146 410,213 0 0

Iy = 0,42149 m4; I, = 10,748 m®

On a représenté des diagrammes donnant ['allure des
contraintes dans les sections transversales ouvertes d'un
pont a deux poutres maitresses (fig. 19).

Nous donnons ci-dessous le calcul des contraintes en
quelques points de la section représentée schématiquement
a la figure 20. On applique les formules (4.5).



1 45,00 55,00

1

| -2197,7

|

‘| ‘ -1300 I

| -1796,0 -907,6

‘ | - 769 ] - 650 l
i : W |
!

| Wmm %ﬁ MW
|| J +950 1 +912,8
| | e
- 176 -
‘ by
=20 = . = 17,2 MNWW
| +22,9 % T WUW -2 < 1
l 31,8 ﬁm S
| + 1558 +147 '
—
ll L +213,8——!—
' N
I, — ’ '
- 5200 -
] I (max)
2
‘| M, [tn®] - 3904,2
W
® |
-134,4; |4 O ‘ i
! WMMMM\ ' !
| +1379,7 it +1375 ’ :
i )4 +2100 ' l
|| i +2682,8 l |
| 7, [tm] ‘ , +5345,1 |
|| ‘338’2—L - 324 o ’ | |
|' = 2864t - 243 :
_xljlo @ | |
I LT UL o [
. — +33,6 + 25 } + 56,3
|_ Ol - , +72,4 ®
| gl € l
N © '
|| Al i~
| h i =
—AI'—|-43’OO 3,00!]: - i 3
” g H:':l —
@ “FH
895
+ a2 i J,L J,‘ r—+969,7
10,00 : -

Fig. 18. — Diagrammes des efforts intérieurs; cas de charge n° 4.
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Le sens des flux de cisaillement positifs est indiqué par
les fleches (fig. 20).

v
v

N11 N2 N1 N10 N9 N14

Fig. 20. — Numérotation des points d’une section transversale
selon le programme CME 2.

— Contraintes au neud N9 dans [’dme :
—1525 3950
=——1,3499 + ———(—6,801) = —4881—2499 =
7~ 0,42149 10,748 ¢ )= —4

= —7380 t/m? = —0,738 t/cm?>

_ 95 o081y — 297 0408 = —12 37—
1= 7042149 ’ 10,748 70 T -
= —49t/m = — 0,49 t/cm

— 0,49

d’ou 7 = = — 0,306 t/cm?

1,6

— Contrainte au neud NI0 :

— 1525 3950
= 77 1349 + 22 (—8.616) — — 4881 — 3166 —
'~ 0.42149 T 10.7a8° e e

= — 8047 t/m? = — 0,805 t/cm?>
7 est nul a 'extrémité des semelles.

— Contrainte au naweud NI13 :

SR (—1,146) + 3950 (+ 10,213) = + 4146 +
0,42149 ’ 10,748 ’

~+ 3753 = + 7899 t/m? = + 0,790 t/cm? => traction dans

les armatures du tablier a I'extrémité du porte-a-faux.

7 est nul a I’extrémité du porte-a-faux du tablier.

9. Conclusion

Dans cet article, nous avons rappelé aussi clairement et
brievement que possible, la théorie de la torsion non
uniforme des barres prismatiques, puis nous avons appliqué
cette théorie a I’étude du comportement des ponts-biais.
Nous avons présenté succinctement un programme de
calcul pour l'ordinateur, outil de travail quasi indispen-
sable a [’étude des ponts-biais continus. A I’aide d’un
exemple, nous avons montré de maniére concréte, les
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résultats obtenus au moyen de cette théorie et a 1’aide de
notre programme électronique, ainsi que la maniére
d’exploiter ces résultats. Nous espérons ainsi avoir apporté
une aide efficace aux ingénieurs des bureaux techniques
en leur donnant des informations a la fois nouvelles
et directement utilisables.

Compte tenu de certaines approximations justifiées par
les simplifications qu’elles ont apporté a notre étude, nous
avons appliqué la théorie et les équations de la barre
prismatique en torsion non uniforme au cas de la barre
non prismatique, c’est-a-dire au cas du pont a section
transversale d’inertie variable. Nous espérons qu’un
travail de doctorat entrepris depuis peu, sous la direction
du professeur Jean-Claude Badoux, apportera des rensei-
gnements nouveaux et plus précis quant a I’exactitude
d’une telle approximation par rapport aux méthodes de
calcul dites exactes, comme celle des éléments finis.
On pourrait penser qu’une étude telle que la notre, méme
suffisamment approchée, a I'aide d’un modeéle de calcul
relativement simple, ne présente aucun intérét face aux
possibilités énormes de méthodes de calcul plus exactes,
comme celle des éléments finis. Cependant, dans la plupart
des cas, un calcul par décomposition de la structure en
€éléments finis est de loin beaucoup plus coliteux qu’un
calcul a l'aide d’'un modele simple, dont la barre par
exemple, qui malgré les approximations qu’il comprend,
est suffisamment exact pour les besoins de I’ingénieur dans
la majorité des cas.
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