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BULLETIN TECHNIQUE DE LA SUISSE ROMANDE 97" année 21 août 1971 N° 17

Programme STRIP
pour le calcul des structures en surface porteuse

par JOHN P. WOLF, Ing. dipi. EPF

1. Introduction

Le programme STRIP (STRuctural Integrated Programs)
a été élaboré conjointement par les deux maisons DIGITAL

S.A., à Zurich, et Nordisk ADB AB, à Stockholm,
durant les années 1966 à 1969. Il se compose de trois
programmes intégrés basés sur les mêmes principes. Le premier
programme calcule des structures planes formées de barres,
le second des structures spatiales formées de barres et le
troisième — nommépitrEP-S ¦— des structures en surface
porteuse (parois, plaques, membranes, coques). Pour chacun

de ces programmes, l'utilisateur dispose d'un manuel
d'emploi détaillé [1, 2, 3]a qui décrit la formulation des
données et l'interprétaticà» des résultats et contient un
exposé de la théorie de même que les hypothèses y relatives.
L'article général [4] est consacré à la préparation orientée
des données de STRIP ainsi qu'à la représentation des
résultats et comprend, outre certains aspects relatifs à la
technique de programmation, un aperçu des problèmes de
la statique pouvant être résolus ainsi que des exemples et
des informations théoriques. STRIP a été présenté aux
ingénieurs suédois en janvier 1968 et en automne de la
même année au Groupe professionnel des ingénieurs des

ponts et charpentes (GPPC) de la Société suisse des
ingénieurs et architectes (SIA) [5].

Le présent article constitue un complément de l'exposé [4]
relatif au programme de calcul des structures en surface
porteuse ; nous ne parlerons pas ici des deux programmes
traitant du calcul des structures formées de barres. STRIP
utilise la méthode des éléments finis qui, entre autres
choses, rend possible le calcul de structures en surface
porteuse quelconques. STRIP convient également à l'analyse

d'ossatures importantes. Ainsi, on a récemment
calculé une structure en surface porteuse comportant 3000
nœuds, ce qui conduit à un système d'équations présentant

environ 10000 inconnues. Les caractéristiques du
modèle de calcul utilisé—nommé « modèle hybride (fo net i on
de contrainte) » — seront brièvement décrites par la suite.
Puis nous représenterons la précision des résultats obtenue
avec diverses divisions en éléments pour des systèmes
porteurs présentant en partie des singularités, dont les solutions
théoriques sont connues, et nous comparerons celle-ci àia
précision des deux éléments finis « purs », à savoir le
modèle de déplacement et le modèle d'équilibre. Enfin,
après une courte description du programme, nous présenterons

les résultats obtenus pour trois exemples pratiques :

un pont-dalle, une pièce à profil fermé déformable et un
paraboloide hyperbolique. Ces résultats seront confrontés
soit à des valeurs théoriques, soit à des résultats de

mesures issus d'essais sur modèles.

1 Conférence donnée le 3 février 1971 dans le cadre de la
journée d'étude organisée par la SVIA, à l'Ecole polytechnique
fédérale de Lausanne et consacrée aux éléments finis.

* Les chiffres entre crochets renvoient à la bibliographie, en
fin d'article.

2. Aspects théoriques

STRIP utilise un modèle hybride (fonction de contrainte)
que nous avons développé en été 1966 à partir d'un premier
article de Pian [6]. Depuis lors, plusieurs publications ont
paru à ce sujet [7 à 14]. Dans ce qui suit, nous discuterons
brièvement les hypothèses relatives à ce modèle hybride et
mettrons en évidence les relations existant avec les deux
modèles « purs », les modèles de déplacement et d'équilibre.

Nous suivrons en substance la présentation de la
référence f3»(p. 167-184), en utilisant pour l'illustration
l'élément de plaque fléchie.

De la même manière que dans le cas d'un modèle d'équilibre

(voir par exemple [15]), nous partons d'une fonction
de contrainte sur l'élément fini qui satisfait en chaque point
de l'élément les équations différentielles (en général
inhomogènes) de l'équilibre. Pour l'élément de plaque de la
figure 1, on peut utiliser, par exemple, la fonction d'efforts
intérieurs quadratique suivante (simplification : élément
non chargé) :

mx (x, y) ß1+ßzx + ß3y + ßix2 + ß6xy + ß6 /,
my (x,y) =ß7 + ßa x + ß9 y + ß10x* + ßnxy + ß12y*,

m^ix, y) ßls + ßux+ ßls y + ß1exz-(ßi + ß^y
+ ßny*.

Les 17 valeurs des coefficients ß sont des inconnues. Les
axes x-y constituent un système de coordonnées locales de
l'élément (voir fig. 1). Les deux efforts tranchants qx et qy
sont obtenus à l'aide des deux conditions d'équilibre des

moments :

qx(x, y) mx-x + mXVty ß* + ß15 + (ßi~ ßiz)x +
+ (ft + 2ßu)y,

Qv(x>M §§ %> + mv.v i ß» + ßu + (fti + 2/?io)* +

La condition de composantes

Q%,% i Qyty ¦ n%XtXX -\~ myyy

est identiquement satisfaite.

£mxytXy U

Des conditions de bord statiques peuvent être introduites
dans les fonctions d'efforts intérieurs des éléments de bord
de la construction et le long de joints. STRIP peut dans
tous les cas faire usage de cette possibilité. Comme cela
est montré plus loin, la précision obtenue peut, par ce
moyen, être augmentée dans de nombreux cas pour une
division en éléments donnée (fig. S et 10). Par exemple, si
le bord 1-2 (fig. 1) est appuyé librement, nous avons
m» my 0, et alors ßj, ßs et ßi0 s'annulent. Il en
résulte que quatorze coefficients ß seulement apparaissent
dans les calculs.
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Fig. 1. — Modèle hybride : on
choisit une fonction d'efforts
intérieurs en équilibre ainsi que
une fonction de déformations le
long des bords, totalement
indépendante de la première et
coïncidant avec celle de
l'élément voisin.

En général, la répartition admise des efforts intérieurs ne
permet pas de déterminer un champ de déformation ¦—
dans notre exemple, le déplacement vertical w — ordonné
sur l'élément, c'est-à-dire que les relations déformations-
efforts intérieurs ne peuvent pas être intégrées.

mx =—D(wiXX+v-wtyy),

rtiy =—D(wiVy + V'W<XX),

mXy=—(l—v)-D-w:Xy,

Et3
12(1-v2)'D

En d'autres termes, la condition de compatibilité n'est
pas satisfaite :

mx.vv — v-mx 2(1 + v)-mx

2ß4 + 2ß6 + 2ß10 + 2ß12 ^ 0.

Par ailleurs, dans le modèle hybride, une fonction de

déformation totalement indépendante de la répartition
admise des efforts intérieurs est introduite. Cette fonction
est ainsi choisie que chaque point de bord de deux éléments
voisins subit la même déformation si les déformations aux
nœuds concordent. La même exigence a été formulée pour
les modèles du type déplacement conforme. Il est cependant

beaucoup plus difficile de choisir des fonctions de

déformation satisfaisant à des exigences supplémentaires
sur l'élément [15], et non pas seulement le long des bords,
surtout lorsque — comme cela se présente dans la flexion
des plaques — la flèche et la pente transversale (rotation),
lesquelles ne peuvent présenter aucune discontinuité sur la
ligne de séparation, sont liées entre elles sur la base des

hypothèses de Kirchhoff. Dans le cas de l'élément de

plaque (voir fig. 1), trois degrés de liberté sont introduits
à chaque nœud : une flèche et deux rotations. Les déforma-
tions aux nœuds ont un effet seulement sur les déformations
des deux bords adjacents. La flèche w (fig. 1, à droite, en
haut) au nœud 2 entraine des déformations de bords données

par des paraboles cubiques (nœud 2 : flèche w,
rotation 0 ; nœuds 1 et 3 : flèche rotation 0),
cependant que les pentes transversales sont nulles
(rotations). La rotation 6 au nœud est décomposée vectorielle-

ment en composantes perpendiculaire et parallèle au bord
considéré : voir par exemple, pour le côté 2-3, la figure 1

en bas. L'une des composantes entraîne une déformation
du bord donnée par une parabole cubique (nœud 2 : rotation

composante, flèche 0 ; nœud 3 : flèche rotation

0), sans pente transversale, alors que l'autre
composante entraîne une pente transversale décroissant
linéairement (nœud 2 : pente transversale composante ;

nœud 3 : pente transversale 0), sans déformation verticale

du bord. Ainsi, par exemple, les déformations w, 6X,

dy au nœud 2 produisent — le long du bord 1-2 d'orientation

particulière relativement au système de coordonnées
local x, y — la déformation verticale wx.z et la pente
transversale 0„i_2 9X) suivantes :

win(s) w + +

'B1-2W —

La flèche le long d'un bord quelconque est représentée

par une parabole cubique dont les quatre coefficients sont
fixés par la flèche et la rotation — au moyen d'un vecteur
perpendiculaire au bord — des deux nœuds d'extrémité ;
la pente transversale varie linéairement et est déterminée

par la rotation dont le vecteur est parallèle au bord considéré.

Etant donné que les nœuds n'ont pas été choisis comme
dans les modèles d'équilibre, de manière telle que les efforts
intérieurs agissant dans la surface commune à deux
éléments voisins soient continus, des discontinuités des efforts
intérieurs apparaissent ; par conséquent, les conditions
d'équilibre sont — dans le modèle hybride et bien que les

efforts intérieurs agissant sur l'élément soient en équilibre —
seulement macroscopiquement satisfaites. Il est à remarquer

que, dans les modèles d'équilibre, les conditions
d'équilibre sont satisfaites microscopiquement mais que,
cependant, le champ d'efforts intérieurs n'est pas continu
puisque les efforts intérieurs le long d'un bord, agissant
dans une surface perpendiculaire, font apparaître des

discontinuités d'un élément à l'autre. Le nombre de degrés de

liberté est en général plus petit que pour le modèle d'équilibre

présentant une même fonction d'efforts intérieurs

([16], p. 101). Par le fait que les termes des fonctions de
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déformation et d'efforts intérieurs peuvent être choisis
indépendamment les uns des autres, les instabilités apparaissant
dans certains modèles d'équilibre sont évitées [10].

Par l'application d'une forme modifiée du principe du
minimum de l'énergie complémentaire (principe des
travaux virtuels), nous pouvons déterminer les matrices de
rigidité, les matrices « efforts intérieurs - déformations » et
les matrices des charges [6, 10, 11, 12]. Il en résulte que
les déformations choisies le long des bords constituent des

« poids » dans l'intégration des efforts intérieurs de bord
pour la détermination des efforts concentrés généralisés ;

l'indépendance des efforts intérieurs de bord vis-à-vis des
déformations de bord se manifeste donc favorablement
surla précision. Un principe de variation est présenté dans
la référence [11] ; la convergence est strictement démontrée.
On s'aperçoit que la convergence apparaît également
lorsque la fonction d'efforts intérieurs ne tient pas compte
des conditions de bord statiques.

champ de
déplacement
à l'Intérieur

déplacement
de bord

équilibre
à l'intérieur

équilibre
de bord

modlle du type
déplacement

conforme
îfpfc* OUÏ

'
„ non

i i

S 1

¦o pliss

i
1?

modèle du type
déplacement

(nombre infini de
coeff de déplacements

internes)

modèle hybride

(nombre infini
de coe/f de
contraintes Internes)

oui oui «i ,m ou-
ement

modi le hybride non OUI oui non

même

fonction

de

contraintes

r

modèle du type
équilibre non non oui oui

1

Dans un modèle d'équilibre, la fonction d'efforts
intérieurs détermine les efforts généralisés et, par conséquent,
les déformations généralisées. Le modèle hybride présentant

la même fonction d'efforts intérieurs est certainement
plus rigide, car les déformations de bord prescrites,
indépendantes de cette fonction, doivent être satisfaites (fig. 2).

Dans un modèle de déplacement, des nœuds internes
peuvent être introduits sans modifier pour cela la
déformation le long du bord (origine). Ils peuvent être éliminés
au moyen du procédé statique de condensation (voir, par
exemple, [17]). Les écarts apparaissant dans les conditions
d'équilibre interne deviennent donc plus petits. La solution
s'approche de la solution exacte ; elle devient plus souple.
Si l'on choisit un nombre infini de nœuds, les conditions
d'équilibre interne sont satisfaites (fig. 2). Si, dans un
modèle hybride, le nombre de coefficients de contraintes
est augmenté, l'erreur diminue dans la condition de compatibilité

et la solution devient plus rigide. Si un nombre
infini de coefficients de contraintes est introduit, la condition

de compatibilité est satisfaite et il existe un champ de
déformation. Si, de plus, la déformation de bord du
modèle hybride présentant un nombre infini de coefficients
d'efforts intérieurs concorde avec celle du modèle de
déplacement compatible et que celui-ci a été formé au moyen
d'un nombre infini de nœuds internes, les deux solutions
coïncident (fig. 2). Il en résulte que le modèle hybride
(comportant un nombre fini de coefficients de contraintes)
est plus souple que le modèle de déplacement conforme
présentant la même déformation de bord.

3. Précision des résultats

Considérons, comme premier exemple (fig. 3), la plaque
carrée appuyée ©»renient, soumise à une charge concentrée

en son centre. Dans ce cas, la flèche sous la charge
représente une mesure du travail de déformation. Dans le
modèle hybride, la condjSon de bord statique m„ 0

Fig. 2. — Propriétés physiques parfaitement satisfaites (indication

oui) ou satisfaites seulement en moyenne — en vertu des
principes énergétiques — (indication non) des divers types
d'éléments finis. Le modèle hybride est plus souple que le
modèle de déplacement compatible, trop rigide, présentant la
même fonction de déformation de bord et plus rigide que le
modèle d'équilibre présentant la même fonction d'efforts
intérieurs (tiré de la référence [12]).

Dans la figure 2, tirée de l'article [12], les propriétés du
modèfenybride ont été représentées d'une manière condensée

et comparées à celles du modèle de déplacement
conforme et du modèle d'équilibre. De Veubeke a montré
(voir, par exemple, la référence [15]) que pour le modèle
de déplacement conforme, respectivement le modèle d'équi-

|flple, le travail de déformation ou, ce qui revient au même,
le produit de toutes les charges et déplacements de la solu-
tion approximative est plus petit, respectivement plus
grand, que celui de la solution exacte ; le résultat est alors
trop rigide, respectivement trop souple. Avec le modèle
hybride, le résultat peut être trop rigide ou trop souple.
Mais il apparaît que le modèle hybride donne une solution
qui, d'une part, est plus rigide que celle trop souple du
modèle d'équilibre présentant la même fonction d'efforts
intérieurs et, d'autre part, plus souple que celle trop rigide
du modèle de déplacement conforme présentant la même
fonction de déformation de bord. Ci-après, nous exposerons

les motifs à la base de cette constatation ; la preuve
exacte est contenue dans la référence [14].

exact

120
appuyé
librement116

114

112

ioe

charge
concentrée

I0G
104

025
1.02

IOC 0.92s;

098 STRIP H-12 (09B41.
096
094 u 03Q-19*/
092
090 n=4
ORfl
086
084
082

HCKLCCTORC

078 I

076
074

4 8
division en éléments

3 degrés da liberti
par nœud
en complément,
7 degrés de liberté
par élément carri

Fig. 3. — Comparaison de la convergence de la flèche (et par
conséquent, dans ce cas particulier, de l'énergie de déformation)
au droit d'une charge concentrée agissant sur une dalle appuyée
librement. Quelle que soit la division en éléments adoptée, le
comportement du modèle hybride est meilleur que celui d'autres
éléments finis comportant trois degrés de liberté par nœud.
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est introduite dans la fonction d'efforts intérieurs des élé-
ments finis qui confinent aux bords appuyés librement (voir
paragraphe 2). Nous avons reporté les valeurs non dimen-
sionnelles de la flèche pour les divisions en éléments données

à la figure 3. Dans le cas des éléments de forme carrée
H-12 du modèle hybride, les valeurs de la flèche (et par
conséquent celles du travail de déformation) sont soit trop
grandes (division en éléments n 1), soit trop petites
(n 2, n 4). A titre de comparaison, nous avons donné
les résultats d'autres éléments finis présentant trois degrés
de liberté à chaque nœud. Nous désignons par HCT [18]
un modèle de déplacement conforme de forme triangulaire
et Q-19 [19] un modèle de déplacement conforme de

forme carrée, constitué par quatre éléments triangulaires,
assemblés par élimination de sept degrés de liberté
(processus de condensation statique). Les notations Z [20],
respectivement ACM [18, 21] désignent un modèle de

déplacement non conforme, de forme triangulaire, respecti-
ment carrée. Ces derniers modèles ne convergent toutefois
pas nécessairement dans le domaine des solutions rigides.
M [22] caractérise un élément découvert sur la base de
réflexions physiques. De tous les éléments finis comportant
trois degrés de liberté par nœud, le modèle hybride est
celui dont le comportement est le meilleur.

Dans le but d'établir également une comparaison avec
d'autres éléments finis, reportons (voir fig. 4) en abscisse
le nombre d'équations avant l'introduction des conditions
de bord géométriques, qui constitue un étalon de mesure
du travail à effectuer pour le calcul. En plus des résultats
relatifs aux éléments finis HCT [18] et Q-19 [19] présentant
trois degrés de liberté par nœud, nous avons reporté ceux
obtenus par d'autres modèles de déplacement conforme
prenant en considération soit des nœuds supplémentaires
au milieu des côtés (modèles LCCT-12 [19] et CQ [23]), soit
des dérivées d'ordre supérieur constituant des degrés de
liberté supplémentaires aux nœuds (modèles Q-16 [24] et
T-18 [25]), soit encore les deux ensemble (modèle T-21
[25, 26, 27]). Les degrés de liberté de ces différents modèles
sont indiqués à la figure 4. Les résultats du modèle d'équilibre

EQT [28] présentant une répartition linéaire des

moments ainsi que de deux modèles mixtes reposant sur
le principe de Reissner — M-6 [29] dont la répartition des

moments est constante et celle de la flèche linéaire, et M-12
[30] comportant une répartition linéaire des moments et
une répartition quadratique de la flèche — sont également
représentés. En outre, parallèlement au modèle STRIP
H-12, apparaît un autre modèle hybride H-16 [12], lequel
travaille également avec une répartition quadratique des

W

W exact
modèles du type
déplacement conforme

modèles
mixtes

< HCT -I\ (LCCT-9) "«.y

I
w.v

W W(

w.u w/

Vn

w.y Kn)(w,n)STRIP H-gS8|</ M-12

lw,n) (w,n)

il
w w

HCT
LCCT

STR

T-18
100

[ > 10001nombre d operai

100 20 160 80

nombre d équations

*w*«lxy
Wy Wyy

modèle du type
équilibre

On} \&
z mn qn "in

"l:

"n | „X"""

modèles
hybrides

H-12
STRIP

Fig. 4. — Plaque appuyée librement, soumise à une charge concentrée. Comparaison de la flèche verticale au droit de la
charge — en fonction du nombre d'équations — obtenue à l'aide de divers éléments finis.
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moments ; toutefois, dans le cas de ce dernier élément,
une cubique a également été choisie pour la pente
transversale (rotation) 9n le long des bords et non pas seulement

pour la flèche w. Remarquons que la condition de bord
statique n'a pas été introduite dans la fonction d'efforts
intérieurs de ce modèle hybride. Il ressort de la figure 4
que les modèles hybrides conduisent environ à la même
précision que les modèles de déplacement conforme T-18
et T-21 présentant un polynôme du 5 e degré ; tous les
autres modèles fournissent des résultats de qualité
inférieure pour un nombre donné d'équations. Si nous cBSÏÈ:
sissons un étalon de mesure du travail plus sévère, à savoir
le nombre d'opérations essentielles intervenant au cours de
la résolution du système d'équations — lequel nombre est
égal au produit du nombre d'inconnues par le carré de la
largeur de bande — alors le comportement de H-12-est
meilleur que celui de T-18 (voir fig. 4, au milieu, en bas).
Il faut souligner que, pour le cas considéré, le modèle
hybride (fonction de contrainte) travaillant sans l'inclusion
des conditions de bord statiques fournit pratiquement les

mêmes résultats que le modèle hybride [31] (fonction de
déformation), lequel travaille avec une fonction de
déformation sur l'élément ainsi qu'avec une fonction de
déformation et une fonction d'efforts intérieurs le long du bord,
choisies indépendamment de la première.

La paroi en porte-à-faux ([3], vejjï p. 187-188),
représentée à la figure 5, a été calculée avec quatre éléments de

type hybride seulement, pour une charge extérieure verticale

parabolique et un moment fléchissant « réparti
linéairement », en tenant compte ou non des conditions de bord
statiques. Les valeurs exactes de la théorie de l'élasticité
sont données (selon le mode de formulation des conditions
de bord dans la section encastrée, on obtient des flèches
différentes pour l'un des cas de charge). H apparaît que
l'introduction des conditions de bord statiques, et par

Wo-â»3

H ©-

©

4 éléments

théorie
Telasti

de

cité

modèle hybr de STRIP

les conditions
de bord statiques

non incluses

les conditions
de bord statiques

incluses

cas de charge cas de charge cas de charge

déformation vert cale
A B A B A B

2160-r

au point 0 3120 270 0 1291 8 151 4 2426 3 262 9

contraintes "x 0 1 5 2.5 .8 0 1 5

au point d) 1 0 0. 2 -. 1 0. 0

1 0 0 - 3 - 4 0 0

contraintes ofx 18 0 1.S 7 4 .8 19 6 1 6

au point ® "v 0 0 1 0 0 0

T 0 0 4 9 .4 0 0

Fig. 5. — Dans le cas d'une paroi en porte-à-faux, l'introduction
des conditions de bord statiques dans le modèle hybride, c'est-à-
dire leur formulation dans la fonction d'efforts intérieurs,
améliore fortement les résultats.

modèle du type équilibre EQT

0408TMolAioo co — o
(O CM W CM

q- \T M" M"

O O O o
modèle hybride STRIPg

modèle du type déplacement conforme CQ

?ppuye
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U Q3VC
30°
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Fig- 6jg|-- Plaque biaise appuyée librement, soumise à une
charge uniforme. Comparaison de la flèche verticale au centre
de la plaque — en fonction du nombre d'équations — obtenue
à l'aide du modèle hybride avec conditions de bord statiques,
d'un modèle de déplacement conforme et d'un modèle d'équilibre.

conséquent d'une modification de la fonction d'efforts
intérieurs (voir paragraphe 2), améliore considérablement les
flèches et contraintes obtenues. Les fonctions d'efforts
intérieurs et de déformation de bord de l'élément de disque
utilisées dans STRIP sont données à la référence [3], p. 172 ff.

On sait que le moment d'une dalle soumise à une charge
concentrée est infiniment grand au droit de cette charge.
Dans le premier exemple, cette singularité ne s'est pas
manifestée sur la précision de la flèche (fig. 3 et 4). Comme
autre exemple comportant une singularité, considérons la
plaque biaise appuyée librement et soumise à une charge
uniformément répartie. Selon la théorie de Kirchhoff, les
moments fléchissants sont infiniment, grands à l'angle obtus
(voir fig. 8 [32, 33]). Cette singularité est très marquée ;
même dans la théorie des plaques de Reissner, l'un des
moments principaux est infini dans le cas où les mêmes

\ appuyé librement
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Fig. 7. — Plaque biaise appuyée librement, soumise à une
charge uniforme. Moments principaux au centre de la plaque,
en fonction du nombre d'équations. La comparaison du modèle
hybride comportant les conditions de bord statiques avec un
modèle de déplacement conforme et un modèle d'équilibre
montre que le comportement du premier est le meilleur ; en
outre, les résultats du modèle hybride sont bons même pour
de très grossières divisions en éléments.
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Fig. 9. — Coque cylindrique appuyée librement aux deux extrémités, soumise à son
poids propre. Flèche au milieu d'un bord libre en fonction du nombre d'équations.
Le modale hybride à surface moyenne plane fournit, même pour de grossières divisions
en éléments, des résultats bien meilleurs que les modèles de déplacement conforme considérés,

présentant une surface moyenne plane ou courbe.

conditions de bord que Kirchhoff sont introduites [16],
p. 186. Il n'existe pas de solution exacte ; celle de Morley
[34], qui utilise un développement en séries dont les
coefficients sont déterminés au moyen de la méthode des
moindres carrés, est très précise. Examinons de quelle
manière le modèle hybride STRIP, le modèle de déplacement

conforme CQ [23] et le modèle d'équilibre EQT [28]
réagissent face à cette singularité.

Dans le cas du modèle hybride, cinq divisions en
éléments — lesquels sont tous des parallélogrammes — ont
été introduites (fig. 6). Dans la fonction d'efforts intérieurs
des éléments de bord, la condition de bord statique mn 0
a été introduite le long des bords appuyés librement. A la
figure 6, respectivement 7, nous avons représenté les
valeurs non dimensionnelles de la flèche, respectivement
des moments principaux au centre de la plaque, en fonction

du nombre d'équations avant l'introduction des conditions

de bord géométriques. Les valeurs des modèles EQT
et CQ sont tirées de la référence [16]. Les résultats sont très
frappants. Ainsi, dans le cas du modèle de déplacement
conforme et même pour la division en éléments la plus fine
— un réseau 14x14 conduisant à 1095 inconnues — la
singularité se manifeste encore fortement sur les résultats
relatifs au centre de la plaque, lequel est pourtant très
éloigné de l'angle obtus. La figure 8 met en évidence le

comportement de la méthode des éléments finis envers la
singularité. La variation des moments fléchissants principaux

le long du segment s'étendant du centre de la plaque
à l'angle obtus a été représentée pour le modèle CQ (division

du réseau 14x14, 1095 inconnues), le modèle EQT
(division du réseau 6x6, 481 inconnues) et pour le modèle

hybride STRIP (division du
réseau 16x16, 867 inconnues).
Le modèle hybride présente le
meilleur comportement. Dans le
cas du modèle de déplacement
conforme, de grandes valeurs du
moment mx apparaissent dans le
domaine de l'angle obtus. Les
discontinuités le long des bords
des éléments finis sont très grandes

et la valeur moyenne
présente même le mauvais signe

Il est intéressant de constater
que des coques dont la surface

moyenne comporte une double
courbure peuvent être calculées

par l'intermédiaire d'éléments
finis plans. Un élément isolé fait
intervenir un effet de paroi et un
effet de plaque agissant
indépendamment l'un de l'autre. La
liaison de ces deux effets n'est
réalisée qu'au droit des nœuds.
On peut se poser la question de
savoir si les résultats de la coque
ainsi calculée—pour une division
en éléments toujours plus fine
— convergent ou non vers les

valeurs exactes. Dans la référence

[35], il est montré qu'un arc
schématisé par une ligne polygonale

se comporte parfaitement
dans le cas limite d'éléments de

poutre infiniment petits. Si les
déformations inconnues
apparaissant dans la condition d'équi-

o modèle hybride STRIP

v autres éléments plans

a éléments à une courbure
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libre des éléments finis sont exprimées au moyen de
développements en séries de Taylor par les déformations et
leurs dérivées au point central, il résulte alors du passage
à la limite l'équation différentielle de l'arc avec axe courbe
et l'erreur commise par discrétisation s'annule.

Le fait de calculer des structures en coque à l'aide
d'éléments finis plans présente l'avantage, outre la formulation
simplifiée, d'éviter la difficulté qu'il y a à tenir compte des

termes relatifs au comportement rigide, difficulté
apparaissant dans les éléments dont la surface moyenne
comporte une double courbure. En revanche, il s'ensuit une
erreur supplémentaire de discrétisation due à l'écart compris

entre le plan moyen des éléments finis et la surface
moyenne de la coque. Pour le calcul des coques et
membranes, STRIP utilise des éléments finis plans.

La figure 9 montre une toiture cylindrique, librement
appuyée aux deux extrémités, pour laquelle nous avons
calculé le cas de charge « poids propre ». En raison de la
double symétrie, un quart du voile seulement doit être
examiné. Les trois divisions en éléments introduites lors du
calcul avec le modèle hybride sont également données sur
la figure, ainsi que les conditions de bord statiques. De
plus, dans cette figure, nous avons représenté la flèche
verticale au milieu d'un bord libre en fonction du nombre
d'équations avant l'introduction des conditions de bord
géométriques. La valeur exacte de cette flèche, déterminée
sur la base de la théorie des coques à faible courbure [36]
et de la théorie complète des coques [37] est également
reportée sur le graphique. De même, à titre de comparaison,

nous avons reproduit les résultats obtenus à l'aide
de différents éléments finis donnés dans la littérature ; la
classification de ces éléments est effectuée selon la nature
de leur surface moyenne, plane ou courbe [38, 39].

Le cylindre de la figure 10, appuyé librement et soumis à
deux charges concentrées radiales en équilibre, a été analysé

à l'aide de STRIP pour diverses divisions en éléments.
L'analyse a été exécutée avec et sans formulation des conditions

de bord statiques dans la fonction d'efforts intérieurs
des éléments de bord. Les conditions de bord statiques ont
été introduites comme cela a été démontré plus haut ; le
long des deux côtés de l'élément fini voisins de la charge,
nous avons utilisé une fonction normale d'efforts
intérieurs. Par ce moyen, une introduction judicieuse de la

charge est rendue possible. La valeur exacte de la flèche au
droit de la charge est tirée de la référence [40]. Le même
exemple a été analysé par Key et Beisinger [41] à l'aide de
leur modèle de déplacement parfaitement conforme qui
travaille avec une surface moyenne courbe, prend en
considération le comportement rigide et admet une géométrie
quelconque. Les deux graphiques de la figure 10 portent,
en ordonnée, la flèche au droit de la charge concentrée et,
en abscisse, soit la division en éléments soit le nombre
d'équations. Il apparaît que les deux analyses avec le
modèle hybride à surface moyenne plane sont plus
favorables — à précision égale et en regard du temps de calcul,
mesuré par le nombre d'équations — que l'analyse par le
modèle de déplacement conforme à surface moyenne
courbe. Si le temps de calcul était mesuré en prenant pour
étalon le nombre d'opérations nécessaires à l'obtention de
la solution du système d'équations — comme cela a été
fait dans la figure 4 — cette tendance serait encore plus
marquée. Une autre comparaison intéressante est contenue
dans la référence [42]. En outre, il est à remarquer que
l'introduction des conditions de bord statiques exerce une
influence favorable sur la précision, ceci également pour
une division en éléments plus fine. La division en éléments
8x8, conduisant à 486 équations donne, avec introduction
des conditions de bord statiques, la valeur 0,0121 ; cette
valeur n'est atteinte sans modification de la fonction
d'efforts intérieurs que pour ime division en éléments 20 X 20,
conduisant à 2646 équations (ce cas n'est pas représenté
à la fig. 10).

4. Description du programme
Dans ce chapitre, nous donnerons un aperçu technique

des problèmes de la statique pouvant être résolus à l'aide
du programme STRIP relatif aux structures en surface
porteuse. Cet aperçu est suivi d'une description montrant
de quelle manière l'ingénieur peut utiliser ce moyen de
calcul ; nous étudierons plus particulièrement la préparation

orientée des données et la représentation des résultats.
Ces explications sont données en complément et comme
illustration de Ig référence [4].

Types de construction : Des éléments tels que parois
(états plans de contraintes et dilatations), plaques,
membranes et coques peuvent être traités.
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Fig. 10. — Flèche au droit d'une des
charges radiales sollicitant un cylindre

appuyé librement à ses deux
sections d'extrémité. Les résultats
donnés par le modèle hybride (surface

moyenne plane) avec formulation
des conditions d'efforts

intérieurs de bord sont plus précis que
ceux obtenus sans ces mêmes conditions

; cependant, ces derniers sont
encore meilleurs que les résultats
d'un modèle de déplacement conforme

comportant une surface moyenne
courbe.
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Fig. 12. — Réaction ponctuelle élastique comportant six constantes de
ressort Cr à C<C — orientée dans l'espace au moyen des trois angles a, ß, y
— et reliée au point de réaction par les excentricités Ax, Ay, Ax.
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5050 Géométrie du système complet 5052 introduction des données •"'^H^'^Lr^
Position du noeud 1) Eléments .„„cur, p„„«iSe plane ». pou». ». te.ctlon ,..„. ». tendon lin. 51. |ol„> 6I„ „tfcol.Uon pone.7'

Numéro
du de rèié-

Coordonnées relatives
de l'élé-

Réaction linéaire/
Joint antre

Désignation
de i'éié-
ment-type

Numéro
du

Excentricités Angle d'orientation réaction ponct. poutre

xrel Vrai «m Ax Av Az a° 6° Y °

-«¦ mm cm m mm cm m mm cm m mm cm m

ÉTArT Jl 36 36 46 st 56 61 66 71 ' 16 26 36

10 4.30 2.14 6.25 1000 i |C| i 2
1100 iC, 1

1001 ,B, i 4
MOI t ,B, 3
100 i A 3 0.63
200 A, i 1 0.63

P,R,R,0,T -0.63 0. 0. 0.
ÏTAR" i i i i

II 8.03 2.14 6.25 100 A, 4
101 i ,A, 3
200 A, 2
201 i A, ;

1

ENDE i i i i

1 3.10 1
i i i i

REP 3
15 20.43 2.14 6.25 104 A 4

204 i A j 2
104 RANC S.P.F.R.E

204 RAND S,P|F,R,E
ENDE iitiIO 4.25 100 100 i i i i

REP 4 i i i i

i i i i

START 81
ENDE 8)
REP 8)

Fig. 13. — Formulaire de donnée, en langage orienté, pour la description de la géométrie du système complet.

fm
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ponctuelle
(PRROT)
rotation autour«^
de l'axe y
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Fig. 14. — Structure dont la géométrie et les conditions d'appuis sont décrites sous
forme condensée à la figure 13.

Géométrie et matériau : La
forme de la surface moyenne et
du bord peut être quelconque.
Des évidements peuvent être pris
en considération. L'épaisseur de
la construction peut être variable.

Des joints, présentant
également des liaisons élastiques,
peuvent être prévus dans des
directions quelconques. Des poutres

de bord et des poutres
intermédiaires, comportant également
des articulations (élastiques) peuvent

être introduites. Un comportement

orthotrope du matériau
peut être envisagé ; les quatre
constantes et les directions dans
lesquelles elles sont définies peuvent

changer à l'intérieur du
système porteur. Des éléments
finis en forme de rectangles, de
trapèzes isocèles, de
parallélogrammes, de triangles quelconques

d'épaisseur variable ainsi
que des poutres peuvent être
combinés (fig. 11). Par ce moyen,
une division du réseau bien
adaptée au problème à résoudre
peut être choisie. Les conditions
d'appuis comprenant des appuis
ponctuels et des appuis linéaires
sont quelconques ; ces appuis
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Fig. 15. — La description de la direction des composantes et
des surfaces de référence des charges agissant sur les éléments
peut être effectuée en se référant soit au système local de
coordonnées 1, 2, 3 des éléments, soit au système global x, y, z, soit
à la direction g.

peuvent également être élastiques. Des éléments finis, des

poutres et des réactions peuvent être reliés excentriquement
aux nœuds. Ainsi, des zones rigides sont introduites
(voir également fig. 14). Dans la figure 12, à titre
d'exemple, un mécanisme de réactions déterminé par six
constantes de ressort (Cç à C^ç) et orienté dans l'espace à
l'aide des trois angles <x,ß,y est relié au nœud-réaction avec
des excentricités Ax, Ay et Az. De plus, il est possible de

spécifier des matrices de rigidité et des matrices «efforts
intérieurs-déformation ».

Cas de charge : Des efforts et moments variables, concentrés

aux nœuds, des charges réparties orientées de manière
quelconque (voir également fig. 15), des variations de
température (uniforme, gradient) et des déformations au
droit des appuis peuvent agir sur la construction.

Combinaisons de charges : Il est fusible de calculer des

sommes algébriques et des valeurs limites des efforts
intérieurs, ainsi que des réactions et des déformations au
moyen des cas de charge isolés qui peuvent être multipliés
par des facteurs et également définis alternativement les

uns par rapport aux autres (fig. 16).
Résultats : Les résultats obtenus en des points préalablement

choisis sont les efforts intérieurs et les efforts
intérieurs principaux, les contraintes principales ainsi que leur
orientation sur la surface moyenne et sur les fibres
supérieure et inférieure, les déformations et enfin les réactions
d'appuis. En ce qui concerne les efforts intérieurs aux
nœuds (d'autres résultats peuvent être obtenus au centre
et au milieu des côtés des éléments), il est possible d'obtenir
soit des valeurs moyennes soit les résultats aux nœuds des
éléments isolés (fig. 19). Sur demande, l'utilisateur peut
obtenir les surfaces d'influence des efforts intérieurs et des
réactions dues à ime charge verticale, ainsi qu'à des efforts
normaux et des moments fléchissants internes, ce qui est
très utile pour la détermination de la précontrainte.

L'ingénieur a la possibilité de formuler ses problèmes
dans son langage technique tout en restant éloigné le plus
possible des instructions propres au computer. Celui-ci ne
doit pas seulement exécuter le calcul effectif mais doit
également décharger efficacement l'utilisateur dans la préparation

des données et l'exploitation des résultats.
L'ingénieur décrit le problème à résoudre sur des

formulaires de données en langage orienté, établis de telle
manière qu'ils permettent de suivre les réflexions
habituelles de la statique. Les mêmes formulaires sont utilisés
pour tous les types de construction (fig. 13). Les têtes des

tableaux, les figures et les remarques guident l'utilisateur ;

5100 Combinaisons de charges ' '

Com bi n ai ion de chsrga 2} Cai de charge à combiner

Désignation Mode de combinaison
3) 4

Mode Mo,*,*.,.,,,
5)

CH.tTOTALE 16 PDS,.PROPRE-36 41 SI

ISOLATI ,0N 1.9
REAME G,R\AJMX

i CHOC, l, IWÄ ALTER
GRWMY i i CiHOCi2i i i i i NUTZ, ALTER
INTER i C,H,QC,3 MUTZ ALTER

PRESSION £;nutz, 2.2 i i 1 i

D.UVERT GRiWMX CH0C4 MUTZ, ALTER
GRWMY, CHOG5 MUTZ, ALTER
INTER PRESS,ION £S NUTZ, 1.9 i i i i

1 1 J 1 1 1 1 1 PRESS,ION NUTZ, i i i i

EN, .SERVICEGiRWMX i CH.TOTALE ,ii
GiRWMY FERME NUTZ, ALTER
11111(11 QUVE RT, NUTZ, ALT ER
1 1 1 1 1 I 1 1 ¦ 1 1 ..1 1

1 1 1 1 1 1 1 1 1 111 i

1 1 1 1 1 1 1 1 ¦ III,. i

1 III 1111 | 1

¦ III. 1 1 1 1 i 1

1 1 1 1 i 1 i I...J Il 1 1 1 1 1 till 1 I I 1 I i i 1 i |

ÖRWNXGRWNY GRWNXY GRWN1
GRWMX GRWMY GRWMXY GRWM1
GRWT GRWM ORWQ GRWMB2
GRWQ2 GRW03 GRWDX OBWDV
GRWRXI GRWRET GRWRZE ORWRMX
INTER

GRWN2
GRWM2 GRWM13
GRWMB3 GRWN
GRWDZ GRWR
GRWRME GRWRMZ

1)2)4)5}

3) Laissé

strip
Addition algébrique des

liane: isolément (mode de chai

"ER: Résuliais intermédiaires d

(leni some imprimée), laq

que "cas de charge" dans <

définie plut bSS.

IGReruWenlime) Ligne d.

NUTZ),

e construction:

Introduction des données
rêsul iati des cas de charge prit
ge STANDI

GRWDX

GRWMX

GRWDY

GRWMY

GRWNXY Efforts Intérieur!

i Réactions

Déformations

GRWMXY Efforts intérieurs
Eléments de struc

GRWRZE GRWRMX
GRWR
GRWOZ
GRWT GRWM

MEMBRAN GRWN1 GRWN2 GRWN12 Effort
(membrane) GRWRXI GRWRET GRWRZE 1

GRWR
GRWDX GRWDY GRWDZ Déformations

Réactions

i Intéri«

ALTER GRWR
GRWDX GRWDY
GRWT GRWMB2
GRWN GRWQ2

QRWDZ
GRWMB3 "]

GRW03 J

Fig. 16. — Formulaire de donnée, en langage orienté, pour Je choix des combinaisons des charges.
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Fig. 17. Contrôle de la géométrie et annonce d'erreur.

il n'est pas nécessaire d'apprendre un langage spécialisé de
programmeur ou un langage orienté présentant une grammaire

rigoureuse. Les expressions techniques sont reportées
directement. Les valeurs à introduire, dont les unités sont
laissées au libre choix de l'utilisateur, peuvent être disposées

de manière quelconque à l'intérieur d'une colonne ;
les points décimaux ne sont pas nécessaires pour les
nombres entiers. A titre d'exemple, considérons le tableau
de données intitulé «géométrie du système complet»
(fig. 13). Les nœuds de la construction (fig. 14) sont inscrits
les uns à la suite des autres avec leurs coordonnées, les
éléments finis qui leur sont rattachés ainsi que d'éventuelles
réactions ponctuelles et conditions de bord statiques.

Ainsi, au nœud 10, apparaissent six éléments 1000,1001,
1100, 1101, 100 et 200 de trois types différents et une
réaction ponctuelle. Cette dernière est reliée excentrique-
ment, tout comme les éléments 100 et 200. Les types
d'éléments A, B, C, de la réaction ponctuelle PRROT
ainsi que de la condition d'efforts intérieurs de bord

GEOMETRIE DES T0TALSY5TEMES FORTS Ì

IKH0TEI
1 NR I
1 1

I 1

KOORDINATEN DES KNOTLNSI
RELATIV ZUM URSPRUNG I

Y ZI
ELEMÉNTI FUGE Zw.l
HUMMER I ELEMENT I

I NUMMERN I
1 1-_—1

TYP
IECKENR
I IN
IKMOTEN

I EXZE»
I IN
I X

TRIZITAET
KNOTEN

Y Z ]
——-I—

ORIENTIERUUGS 1

WINKEL I
ALPHA BETA GAMMA I

1 1 T

10 4.300 2.1*0 6*250 1000
1100
1O01
1101

100
200

C

c
6
B
A

A

PRROT

2
1

3
3
1

•630
•630

-.630

.000 .000

.000 .000

.000 .030 0 0 0

li 8*030 2.140 6*250 100
101
200
201

A
A

A
A

4
3
2
1

12 11*130 2.1<*0 6*250 101
102
201
202

A
A
A
A

4
3
2
1

19 14*230 2*140 6*250 102
103
202
203

A
A
A
A

4
3
2
1

14 17*330 2*140 6*250 103
104
203
2014

A

A
A

A

4
3
2
1

15 20*430 2*140 6.250 104
204

104
204

RAhO
RAND

A

A
SPFRt
SPFRE

2

20 4*300 6*390 6*250 1100
1200
1101
1201

200
300

C

C

B
B

A

PRROT

2
1

3
3
1

• 630
.630

-•630

•000 .000
.000 .000
.000 .000 0 0 0

21 8*030 6*390 6*250 200
201
300
301

A
A
A

3
2
1

Fig. 18. — « Echoprint amplifié» de la géométrie de la construction représentée à
figure 14, qui a été décrite de manière condensée à la figure 13.

SPFRE introduite au nœud 15, sont définis dans d'autres
tableaux. Puisque l'on est en présence d'une division régulière

du réseau, la géométrie peut être décrite de manière
simplifiée. Le long d'une ligne de nœuds semblables, il est
suffisant d'en décrire un seul, dans ce cas, par exemple,
le nœud 11 ; le début, respectivement la fin de cette ligne
est indiqué par l'instruction START, respectivement
ENDE. A la ligne suivante, on inscrit les valeurs de
progression qui modifient — à chaque répétition — le numéro
des nœuds (1), les coordonnées (3,10 ; 0 ; 0) et le numéro
des éléments (1) de la ligne de nœuds semblables. A l'aide
de l'instruction REP, c^fflvaleurs de progression sont
ajoutées aux valeurs de l'origine de la ligne des nœuds
considérée et la description des nœuds ainsi obtenue est
prise en considération dans l'exécution des calculs. Le
chiffre (3) inscrit dans la seconde colonne prescrit le nombre
de fois que l'opération doit être effectuée. Au moyen
d'une double application de ce procédé, il est possible de
décrire la géométrie de l'ensemble de la construction

représentée en traits pleins à la
figure 14 par les seules instructions

données dans le tableau de
la figure 13.

Pour éviter tout calcul manuel
préalable à l'utilisateur, il existe
des possibilités de description
alternatives. A titre d'exemple,
nous avons reproduit à la figure
15 les directions des composantes
et les surfaces de référence des

charges agissant sur les éléments.
Les formulaires de données

sont remplis pour la géométrie,
les constantes des matériaux, les

charges ainsi que pour la sélection
désirée des résultats. Celle-ci
comprend, outre le format du
papier, la langue des commentaires

associés aux résultats, le
nombre de décimales après la
virgule ainsi que le plus petit
nombre à imprimer, la formulation

des combinaisons des cas de
charges pour lesquels les résultats
doivent être calculés, le genre de
résultats — généralement des
valeurs limites — ainsi que le
choix des sections. De cette
manière, une impression inutile

la
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PLATTEN MOMENTE GRENZWERTLINIEN (ABSOLUTES KOORDINATENSYSTEM)

I I I EN SERVICE GRWMY MAX I EN SERVICE GRWMY Mill I
I KNOTENIELEMENTI I I
I NR. I NR. I MX I MY I MXT 1 MX I MY I MXY I
I 1 1 j 1 1 j j 1

1 .0933 • 0366 -.0741 -.1494 - 0586 .1187

-.2657 .0065 -.2574 .4254 - 0104 .4122

-.0091 • 0138 -.1966 • 0146 - 0221 .3140

-.5377 .2101 .6794 .3358 - 1312 -.4243
• 1608 • 2243 -.0058 -.2574 - .3591 .0093

• 1392 .1655 .3696 -.0869 - 1158 -.2308
.2138 .2386 .3570 -.1335 - 1490 -.2229
.2194 • 1938 .3479 -.1370 - 1210 -.2173
.1276 .1767 .3656 -.0797 - 1104 -.2283

1*4066 • 9208 .0278 -.6785 - .5750 -.0174

.0094 • 0157 .0096 -.0151 - .0251 -.0154

Fig. 19. — Résultats. Les valeurs des enveloppes de l'effort
intérieur rrty ainsi que celles correspondantes de mx et nixy sont
imprimées pour les nœuds commandés par l'utilisateur.

Dans le programme, les données sont soumises à un
contrôle sévère. Ce contrôle ne comprend pas seulement
les erreurs formelles telles que, par exemple, deux points
décimaux dans un nombre, mais également des incohérences

physiques, par exemple lorsque, dans une plaque,
une poutre de bord présentant une excentricité a été introduite

perpendiculairement à la surface moyenne. Comme
il est possible d'introduire des données surabondantes dans
la description du problème, on veillera à ce qu'aucune
contradiction n'apparaisse à l'intérieur de certaines limites.
Un exemple de cette nature peut se présenter dans
l'introduction des coordonnées des nœuds pour la géométrie du
système total (fig. 14) et dans celle des dimensions des
éléments bidimensionnels. Si une erreur est découverte dans
le programme apparaissent également, en plus d'une
annonce, les grandeurs données qui l'ont causée. Un
exemple d'annonce d'erreur est donné à la figure 17 ; les

—35

!2 73

^^— cncostré élastiquement
bord libre

• appui ponctuel

.O«! 4J3 ; 135 ] 125,

Fig. 20. —• Plan, conditions d'appuis et division en éléments (rectangles, triangles et trapèzes isocèles) d'un pont-
dalle de chemin de fer, présentant une épaisseur variable.

est évitée, si bien que l'ingénieur n'obtient que les résultats
aussi poussés que possible qu'il a lui-même choisis et dont
il a besoin pour traiter la suite de son problème.

Dans l'exemple de la figure 16, nous avons donné une
sélection de résultats pour les combinaisons des charges

.^Bolées CH. TOTALE et EN SERVICE. La combinaison

CH. TOTALE consiste en la somme algébrique des

cas de charges PDS. PROPRE et ISOLATION, ce dernier
multiplié par le facteur 1,9. La combinaison EN SERVICE
implique la détermination des valeurs limites dans
lesquelles, par exemple, l'instruction GRWMY conduit à

l'impresion des valeurs de my et des valeurs de

mx et mXy correspondantes. La combinaison CH. TOTALE
apparaîtra comme la superposition des charges perma-
nentcs, alors que les cas de charge OUVERT et FERME
seront pris en considération seulement si leur valeur extrême
est la plus grande (type de charge NUTZ). En effet, en
raison de l'instruction ALTER, une des deux combinaisons

au plus peut se présenter. Les deux combinaisons
internes de charges OUVERT et FERME sont également
issues des valeurs limites.

elements
Finis

STRIP

sur modele

Nt R
1 IIUS
Z Ma7
3 I65S
4 ¦ili
S uni
6
7
8

2287i
SIS'
-ieo|

» compression
- traction

Fig. 21. — Cas de charge «poids propre». Répartition des
moments fléchissants dans la section du pont-dalle mise en
évidence à la figure 20 et valeurs des réactions d'appuis. Les
valeurs des moments de flexion sont en bon accord avec le
résultat d'une mesure effectuée sur un modèle.
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Fig. 22. — Pièce à contour fermé déformable comportant trois cellules, encastrée à gauche et appuyée librement à droite,
soumise à une courte charge répartie excentrique, et division en éléments adoptée pour le calcul avec STRIP.

numéros 1,2,3,4 des angles sont définis à la figure 11. Le
reste des données est autant que possible également
contrôlé. Dans un tel cas, le calcul proprement dit n'est pas
exécuté.

Les résultats du calcul statique se composent de ce que
l'on nommipK echoprint », des résultats intermédiaires, si
ceux-ci sont désirés, et des résultats eux-mêmes. L'echo-
print constitue la véritable donnée du calcul statique. Il est
généralement directement issu des données, de sorte que
les différentes possibilités de description alternatives sont
réduites à une seule et, en particulier, les grandeurs données

sous forme condensée sont restituées dans leur totalité.

J L

i -IL

Fig. 23. — Répartition des moments transversaux dans la section située
au milieu de la travée de la pièce. Comparaison des résultats obtenus à l'aide
d'un calcul par éléments finis et d'un développement en séries de Fourier.

A la figure 18, nous avons reproduit un extrait de l'echo-
print de la géométrie du système total, qui a été décrite de
manière condensée dans le tableau de la figure 13. Les
résultats eux-mêmes, requis par l'ingénieur dans les
formulaires de données, sont imprimés de manière parfaitement

claire. La figure 19 montre les valeurs limites obtenues

Mur la combinaison des charges intitulées EN
SERVICE, décrite à la figure 16. Au nœud 20, des valeurs
moyennes ont été commandées alors qu'au nœud 12, les
résultats dans les angles des éléments contigus à ce nœud
ont été désirés. Une table des matières est également
imprimée. L'echoprint, les résultats intermédiaires éven¬

tuels ainsi que les résultats proprement dits
constituent un calcul statique fermé.

L'ingénieur doit continuellement prendre
des décisions techniques lorsqu'il remplit les
formulaires de données en langage orienté et
peut définir la statique de son système porteur
qu'il connaît parfaitement en vue des résultats
à obtenir par la suite. Il exerce un contrôle
constant sur l'analyse statique ; le système de

programmes ne se charge que du calcul.

5. Exemples pratiques

Le pont-dalle de chemin de fer de la figure

20 (auteur du projet et essai sur modèle :
bureau d'ingénieurs H. Hossdorf, Bâle) a
été analysé à l'aide de STRIP. La dalle
accuse une épaisseur constante dans sa partie
approximativement trapézoïdale et une épaisseur

variant linéairement dans le domaine
triangulaire. Tout le contour de la plaque est

en bord libre, à l'exception d'une portion
assez courte encastrée élastiquement; on note
également la présence d'appuis ponctuels.
La division en éléments, qui prend en
considération l'épaisseur variable du pont,
comporte des rectangles, des triangles et des
trapèzes isocèles. La répartition des moments
fléchissants dus au poids propre — dans la
section mise en évidence à la figure 20 — a
été tracée à la figure 21. Elle est en bon accord
avec la valeur donnée par un essai sur modèle.
Cette dernière figure comporte également un
tableau des réactions d'appuis.

éléments finit coqui

analytique
(series de Fourier)
coque
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éléments finis memorai

analytique (séries defôarii

ihéone des barres
en torsion mine

contraintes. La figure 23 montre la répartition
des moments transversaux au milieu de la travée

résultant du calcul avec effet de coque ; la
concordance avec la solution analytique (séries
de Fourier) est très bonne, sauf au point
d'application de la charge. Pour chacune des

analyses, nous avons tracé la répartition des
contraintes normales agissant sur la surface

moyenne dans la section d'encastrement
(fig. 24) et dans la section située au milieu de
la travée (fig. 25). On remarque que cette
répartition n'est flbs linéaire ; comme prévu,
les poutres longitudinales provoquent des
concentrations de contraintes (problème de

la largeur de participation). Les valeurs obtenues

par la méthode analytique sont très
voisines de celles découlant de l'emploi de

la méthode des éléments finis, avec l'effet de

coque. Dans le but d'établir une comparaison,
nous avons également reporté les résultats
donnés par la théorie des barres, prenant
en considération la torsion de Saint-Venant
et la torsion non uniforme. Comme cela
était prévisible, il apparaît que les valeurs
données par cette théorie sont fort différentes.
Contrairement au cas des sections à profil

Fig. 24. — Contraintes normales dans la section
d'encastrement de la pièce. La concordance des
résultats du calcul par éléments finis prenant en
considération l'effet de coque avec ceux du
développement en séries de Fourier est bonne. Atitre
de comparaison, nous avons également représenté
les résultats obtenus à l'aide d'un calcul par
éléments finis avec le seul effet de membrane, ainsi
que ceux donnés par la théorie des poutres en
torsion mixte.

Le second exemple pratique est consacré à

une pièce à profil fermé déformable comportant

trois cellules, encastrée à une extrémité
et appuyée librement à l'autre (fig. 22). Une
courte charge répartie agit au milieu de la
travée sur l'une des poutres longitudinales
extérieures. Il existe une solution particulière
due à Scordelis [43], laquelle repose sur la
base de la théorie complète des ossatures
plissées (avec effet de parois et effet de plaques
dans les deux directions). Dans cette solution,
on s'est basé sur l'étude de Goldberg et
Leve [44]. Quelque 99 termes de Fourier,
dont 50 différents de zéro, ont été introduits.
Cette structure a été calculée au moyen de
STRIP en considérant les effets de coque ou
les seuls effets de membrane. La division en
éléments adoptée est représentée à la figure 22 ;

dans le voisinage de l'encastrement et du lieu
d'application de la charge, cette division a
été choisie plus fine dans la direction longitudinale

en prévision d'importants gradients de

éléments finit coque

éléments finis membrane

analytique (series de Fourier) m»
tfcéoho dei barrai
en »mon mixte

Fig. 25. — Contraintes normales dans la section située au milieu de la
travée. La concordance des résultats du calcul par éléments finis prenant en
considération l'effet de coque avec ceux du développement en séries de Fourier
est bonne. A titre de comparaison, nous avons également représenté les résultats
obtenus à l'aide d'un calcul par éléments finis avec le seul effet de membrane,
ainsi que ceux donnés par la théorie des poutres en torsion mixte.
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Fig. 26. — Couverture en coque hyperbolique à Hambourg, composée de deux parabololdes hyperboliques adossés l'un à
l'autre et présentant des poutres de bord reposant sur trois appuis. La distance séparant les deux appuis extérieurs A et A'
(voir également la fig. 27) est égale à 95,72 m ; au premier plan, on distingue le point le plus haut D (cliché tiré de [45]).

ouvert (voir [4]), il n'est donc plus permis de négliger la
déformation du contour et l'influence de la distorsion due

aux contraintes tangentielles secondaires, comme cela est
fait dans la théorie des barres.

A titre de dernier exemple, effectuons à l'aide de STRIP
l'analyse de la couverture — un voile hyperbolique — de
la piscine couverte Sechlingspforte à Hambourg (construction

et statique : Leonhardt et Andra, bureau d'ingénieurs-
conseils, Stuttgart). Le projet et l'étude du comportement
de la structure sont décrits de manière détaillée dans la
référence [45]. La couverture est constituée de deux
parabololdes hyperboliques adossés l'un à l'autre et appuyés
en trois points seulement (voir fig. 26 et 27). Les poutres de
bord ne sont pas supportées de manière continue, mais sont

~O50^

rr-

Fig. 27. — Vue d'ensemble de la coque hyperbolique, a) plan,
b) élévation côté B, c) élévation côté D, d) élévation côté A,
respectivement A' (tiré de [45]).

en porte-à-faux. Le tracé de leurs axes est situé sur la
surface moyenne de la coque. Cesjlpoutres de bord, de
section triangulaire, présentent une transition continue avec
le voile proprement dit (voir fig. 28). Par conséquent, elles
sont gauches et comportent des dimensions variables (section

pleine et tubulaire).
En raison du fait que seuls des cas de charge symétriques

relativement à l'arête BD ont été menés dans le calcul par
éléments finis, l'analyse a pu é|ge limitée à la moitié de la
construction. Des charges quelconques pourraient être
décomposées en des composantes symétrique et antimétrique

à l'aide du principe de réduction des charges. La
composante antimétrique pourrait être appliquée au même
modèle de calcul (division en éléments), en remplaçant les
conditions de symétrie le long de l'arête BD par des conditions

d'antimétrie. La figure 28 montre la division en
éléments choisie. Les poutres de bord ont également été
discrétisées à l'aide d'éléments bidimensionnels. Au lieu
de transition section pleine — section tubulaire, les nœuds
des éléments finis des faces supérieure et inférieure du
tronçon tubulaire on t été reliés excentriquement aux nœuds
de la section pleine, lesquels sont disposés sur la surface

moyenne de la coque proprement dite. Les éléments
d'appuis, qui ne sont pas représentés à la figure 28, ont été
introduits comme des éléments de barre. Le modèle discret
adopté présente 754 nœuds et 792 éléments. Le système
d'équations obtenu pgnalement après introduction des
conditions de bord géométriques comprend 4457 inconnues;
la demi-largeur de bande en comporte 245.

Un essai sur modèle à grande échelle a été effectué à
l'Institut de statique sur modèles de l'Université de Stuttgart
(directeur : prof. Dr R.K. Müller) [46].

Le modèle en matière synthétique, à l'échelle 1: 26,67
(plus grande dimension distance séparant les deux points
les plus bas A et A' (fig. 27) 4 m), a servi, outre la
détermination des efforts intérieurs nécessaires au dimensionne-
ment final, à une analyse de l'effet esthétique de la coque.

Les résultats du calcul par éléments finis ont été confrontés

à ceux de l'essai sur modèle pour le cas de charge poids
propre. Dans la figure 29, respectivement la figure 30,
nous avons reporté l'effort normal principal «j dans la
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Fig. 28. — Division en éléments de
la coque proprement dite et de la
poutre de bord. Au lieu de transition

section pleine — section tubulaire

de la poutre de bord, les
nœuds des éléments finis des faces
supérieure et inférieu^Mu tronçon

ÎSpilaire ont été reliés excentrique-
ment aux nœuds de la section pleine,
lesquels sont disposés sur la surface
moyenne de la coque proprement
dite.

X*
éléments finis
essai sur modale

^A4476
594 7^'

370 2

œ.2 \
230 3

Eig. 29.— Comparaison des résultats obtenus à l'aide de l'analyse
par éléments finis et un essai sur modèle. Valeurs de l'effort
normal principal nj [kg/cm] dans la coque elle-même, le long de
la ligne BA, pour le cas de charge poids propre.

éléments ffros^sr
essai sur modèle

éléments finis
essai sur modèle

face inférieure

face supérieure

106 9

lace intérieure

Foce supérieure72 0

lace intérieure

-¦462

26 8

3-9 _*•
—; 12.2
14 5

19 4

CT/ 37.8

43 7

Fig. 30. — Comparaison des résultats obtenus à l'aide de l'analyse
par éléments finis et un essai sur modèle. Valeurs des contraintes
normales longitudinales [kg/cm2] le long de l'arête BD sur les
faces supérieure et inférieure de la poutre de bord, pour le cas de
charge poids propre.

coque elle-même le long de la ligne BA, respectivement la
contrainte normale dans la direction longitudinale le long
de l'arête BD sur les faces supérieure et inférieure de la
poutre de bord. Les résultats des mesures ont été tirés de la
figure 22, respectivement la figure 18, de l'article [46].
L'allure générale des résultats est la même. A certains
endroits, la concordance est bonne. Ainsi, au milieu de

chaque paraboloide hyperbolique (intersection des deux
diagonales AB et CD), l'effort normal principal du calcul
par éléments finis, défini comme valeur moyenne des résultats

au centre des éléments finis voisins (fig. 28), est égal à

387,0 kg/cm. La valeur mesurée s'élève, elle, à 394,7 kg/cm
(voir fig. 29).
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