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BULLETIN TECHNIQUE DE LA SUISSE ROMANDE

97° année 21 aolt 1971 N° 17

Programme STRIP

pour le calcul des structures en surface porteuse

par JOHN P. WOLF, ing. dipl. EPF

1. Introduction

Le programme STRIP (STRuctural Integrated Programs)
a été élaboré conjointement par les deux maisons DIGI-
TAL S.A., a Zurich, et Nordisk ADB AB, a Stockholm,
durant les années 1966 a 1969. Il se compose de trois pro-
grammes intégrés basés sur les mémes principes. Le premier
programme calcule des structures planes formées de barres,
le second des structures spatiales formées de barres et le
troisitme — nommé STEP-S — des structures en surface
porteuse (parois, plaques, membranes, coques). Pour cha-
cun de ces programmes, I'utilisateur dispose d’un manuel
d’emploi détaillé [1, 2, 3]2 qui décrit la formulation des
données et linterprétation des résultats et contient un
exposé de la théorie de méme que les hypothéses y relatives.
L’article général [4] est consacré & la préparation orientée
des données de STRIP ainsi qu’a la représentation des
résultats et comprend, outre certains aspects relatifs a la
technique de programmation, un apergu des problémes de
la statique pouvant étre résolus ainsi que des exemples et
des informations théoriques. STRIP a été présenté aux
ingénieurs suédois en janvier 1968 et en automne de la
méme année au Groupe professionnel des ingénieurs des
ponts et charpentes (GPPC) de la Société suisse des ingé-
nieurs et architectes (SIA) [5].

Le présent article constitue un complément de I’exposé [4]
relatif au programme de calcul des structures en surface
porteuse ; nous ne parlerons pas ici des deux programmes
traitant du calcul des structures formées de barres. STRIP
utilise la méthode des éléments finis qui, entre autres
choses, rend possible le calcul de structures en surface
porteuse quelconques. STRIP convient également a 1’ana-
lyse d’ossatures importantes. Ainsi, on a récemment cal-
culé une structure en surface porteuse comportant 3000
nceuds, ce qui conduit a un systéme d’équations présen-
tant environ 10000 inconnues. Les caractéristiques du
modele de calcul utilisé —nommé «modeéle hybride (fonction
de contrainte) » — seront briévement décrites par la suite.
Puis nous représenterons la précision des résultats obtenue
avec diverses divisions en éléments pour des systémes por-
teurs présentant en partie des singularités, dont les solutions
théoriques sont connues, et nous comparerons celle-ci a la
précision des deux éléments finis « purs», a savoir le
modéle de déplacement et le modeéle d’équilibre. Enfin,
apres une courte description du programme, nous présen-
terons les résultats obtenus pour trois exemples pratiques :
un pont-dalle, une piéce a profil fermé déformable et un
paraboloide hyperbolique. Ces résultats seront confrontés
soit a des valeurs théoriques, soit a des résultats de
mesures issus d’essais sur modéles.

L Conférence donnée le 3 février 1971 dans le cadre de la
journée d’étude organisée par la SVIA, a I’Ecole polytechnique
fédérale de Lausanne et consacrée aux ¢éléments finis.

2 Les chiffres entre crochets renvoient a la bibliographie, en
fin d’article.

2. Aspects théoriques

STRIP utilise un mode¢le hybride (fonction de contrainte)
que nous avons développé en été 1966 a partir d’un premier
article de Pian [6]. Depuis lors, plusieurs publications ont
paru a ce sujet [7 a 14]. Dans ce qui suit, nous discuterons
briévement les hypothéses relatives a ce modéle hybride et
mettrons en évidence les relations existant avec les deux
modeles « purs », les modeles de déplacement et d’équi-
libre. Nous suivrons en substance la présentation de la
référence [3] (p. 167-184), en utilisant pour I’illustration
I’élément de plaque fléchie.

De la méme maniére que dans le cas d’un modéle d’équi-
libre (voir par exemple [15]), nous partons d’une fonction
de contrainte sur 1’élément fini qui satisfait en chaque point
de I’élément les équations différentielles (en général inho-
mogenes) de 1’équilibre. Pour I’élément de plaque de la
figure 1, on peut utiliser, par exemple, la fonction d’efforts
intérieurs quadratique suivante (simplification : élément
non chargé) :

my (X, ) =P1+Pox+ sy + Pax®+ Bsxy + Lo
my (x,¥) = P74+ Ps x + o ¥ + Pro x*> + Pruxy + P27,

May(x,¥) = P13 + Prax + Pisy + Pig x> — (Bs + Pra)xy
e ﬂ17 yz_

Les 17 valeurs des coefficients £ sont des inconnues. Les
axes x-y constituent un systéme de coordonnées locales de
I’élément (voir fig. 1). Les deux efforts tranchants g, et g,
sont obtenus a 'aide des deux conditions d’équilibre des
moments :

Ga(X, ¥) = Mgz + Mgy, = ﬂz = .315 i (ﬂ4 = ,312))5 +
+ (s + 2B12)y,

qy(x, ) = Myy z + myy = By + Pra + (B + 2Bie)x +
== (—,34 o+ ﬂlz))’-

La condition de composantes
Gz + Qyy = Mgzg + My yy + 2Mgy oy = 0
est identiquement satisfaite.

Des conditions de bord statiques peuvent étre introduites
dans les fonctions d’efforts intérieurs des éléments de bord
de la construction et le long de joints. STRIP peut dans
tous les cas faire usage de cette possibilité. Comme cela
est montré plus loin, la précision obtenue peut, par ce
moyen, étre augmentée dans de nombreux cas pour une
division en éléments donnée (fig. 5 et 10). Par exemple, si
le bord 1-2 (fig. 1) est appuyé librement, nous avons
my, = m, = 0, et alors f;, fis et fip s’annulent. Il en
résulte que quatorze coefficients f seulement apparaissent
dans les calculs.
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En général, la répartition admise des efforts intérieurs ne
permet pas de déterminer un champ de déformation —
dans notre exemple, le déplacement vertical w — ordonné
sur I’élément, c’est-a-dire que les relations déformations-
efforts intérieurs ne peuvent pas étre intégrées.

My =—=DW o5 + VW4,
my =—DW,y + VW z2),
Myy =—1—=V):D-w 4y,
 Er )
12(1—v?)

En d’autres termes, la condition de compatibilité n’est
pas satisfaite :

My yy — VeMg gg + My 0 — Verly gy — 2(1 + V) Mgy o =
= 2f4 + 2f6 + 2P10 + 2B12 # 0.

Par ailleurs, dans le modéle hybride, une fonction de
déformation totalement indépendante de la répartition
admise des efforts intérieurs est introduite. Cette fonction
est ainsi choisie que chaque point de bord de deux éléments
voisins subit la méme déformation si les déformations aux
neceuds concordent. La méme exigence a été formulée pour
les modeéles du type déplacement conforme. Il est cepen-
dant beaucoup plus difficile de choisir des fonctions de
déformation satisfaisant a des exigences supplémentaires
sur I’élément [15], et non pas seulement le long des bords,
surtout lorsque — comme cela se présente dans la flexion
des plaques — la fléche et la pente transversale (rotation),
lesquelles ne peuvent présenter aucune discontinuité sur la
ligne de séparation, sont liées entre elles sur la base des
hypothéses de Kirchhoff. Dans le cas de I’élément de
plaque (voir fig. 1), trois degrés de liberté sont introduits
a chaque nceud : une fleche et deux rotations. Les déforma-
tions aux nceuds ont un effet seulement sur les déformations
des deux bords adjacents. La fleche w (fig. 1, a droite, en
haut) au nceud 2 entraine des déformations de bords don-
nées par des paraboles cubiques (nceud 2: fleche = w,
rotation = 0; nceuds 1 et 3: fleche = rotation = 0),
cependant que les pentes transversales sont nulles (rota-
tions). La rotation @ au nceud est décomposée vectorielle-
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Fig. 1. — Mod¢le hybride: on
choisit une fonction d’efforts
intérieurs en équilibre ainsi que
une fonction de déformations le
long des bords, totalement indé-
pendante de la premiére et
coincidant avec celle de I'élé-
ment voisin.

ment en composantes perpendiculaire et parallele au bord
considéré : voir par exemple, pour le coté 2-3, la figure 1
en bas. L'une des composantes entraine une déformation
du bord donnée par une parabole cubique (nceud 2 : rota-
tion = composante, fleche = 0; nceud 3 : fléche = rota-
tion = 0), sans pente transversale, alors que I’autre com-
posante entraine une pente transversale décroissant linéai-
rement (nceud 2: pente transversale = composante ;
neeud 3 : pente transversale = 0), sans déformation verti-
cale du bord. Ainsi, par exemple, les déformations w, 6,
6, au nceud 2 produisent — le long du bord 1-2 d’orienta-
tion particuliére relativement au systéme de coordonnées
local x, y — la déformation verticale w;_, et la pente trans-
versale 0,,.5 ( = 0,) suivantes :

2 3
o= (o3 o [ (o
a a a a
On1-2(s) = f . gx'
a

La fleche le long d’un bord quelconque est représentée
par une parabole cubique dont les quatre coefficients sont
fixés par la fleche et la rotation — au moyen d’un vecteur
perpendiculaire au bord — des deux nceuds d’extrémité ;
la pente transversale varie linéairement et est déterminée
par la rotation dont le vecteur est paralléle au bord consi-
déré.

Etant donné que les nceuds n’ont pas été choisis comme
dans les modeéles d’équilibre, de maniére telle que les efforts
intérieurs agissant dans la surface commune a deux €lé-
ments voisins soient continus, des discontinuités des efforts
intérieurs apparaissent ; par conséquent, les conditions
d’équilibre sont — dans le modele hybride et bien que les
efforts intérieurs agissant sur I’élément soient en équilibre —
seulement macroscopiquement satisfaites. Il est & remar-
quer que, dans les modeles d’équilibre, les conditions
d’équilibre sont satisfaites microscopiquement mais que,
cependant, le champ d’efforts intérieurs n’est pas continu
puisque les efforts intérieurs le long d’un bord, agissant
dans une surface perpendiculaire, font apparaitre des dis-
continuités d’un élément a Pautre. Le nombre de degrés de
liberté est en général plus petit que pour le modele d’équi-
libre présentant une méme fonction d’efforts intérieurs
([16], p. 101). Par le fait que les termes des fonctions de



déformation et d’efforts intérieurs peuvent étre choisis indé-
pendamment les uns des autres, les instabilités apparaissant
dans certains modéles d’équilibre sont évitées [10].

Par I'application d’une forme modifiée du principe du
minimum de ’énergie complémentaire (principe des tra-
vaux virtuels), nous pouvons déterminer les matrices de
rigidité, les matrices « efforts intérieurs - déformations » et
les matrices des charges [6, 10, 11, 12]. Il en résulte que
les déformations choisies le long des bords constituent des
« poids » dans ’intégration des efforts intérieurs de bord
pour la détermination des efforts concentrés généralisés ;
I'indépendance des efforts intérieurs de bord vis-a-vis des
déformations de bord se manifeste donc favorablement
sur la précision. Un principe de variation est présenté dans
la référence [11] ; la convergence est strictement démontrée.
On s’apergoit que la convergence apparait également
lorsque la fonction d’efforts intérieurs ne tient pas compte
des conditions de bord statiques.

champ de déplacement équilibre équilibre
déplacament de bord | & Fintérieur de bord
a linterieur
modéle du type
déplacement oui oui . non non
conforme
®
- 5
mogele du type 2
déplacemen 2 T
(nombre infini de _ v
coeff.de déplace- H |
ments internes) E J
oul oul oui non ___§
modéle hybride £ pf:::m";n,
(nombre infini | @
de coeff. de con- &
fraintes internes) {3
BE T
£
s
modéle hybride non oui oui non R
H
L |3
c
2
Egele  ipe non $
E
vE
Fig. 2. — Propriétés physiques parfaitement satisfaites (indica-
tion oui) ou satisfaites seulement en moyenne — en vertu des
principes énergétiques — (indication non) des divers types

d’¢léments finis. Le modéle hybride est plus souple que le
modele de déplacement compatible, trop rigide, présentant la
méme fonction de déformation de bord et plus rigide que le
modele d’équilibre présentant la méme fonction d’efforts inté-
rieurs (tiré de la référence [12]).

Dans la figure 2, tirée de I'article [12], les propriétés du
modéle hybride ont été représentées d’'une maniére conden-
sée et comparées a celles du modele de déplacement
conforme et du modeéle d’équilibre. De Veubeke a montré
(voir, par exemple, la référence [15]) que pour le modéle
de déplacement conforme, respectivement le modéle d’équi-
libre, le travail de déformation ou, ce qui revient au méme,
le produit de toutes les charges et déplacements de la solu-
tion approximative est plus petit, respectivement plus
grand, que celui de la solution exacte ; le résultat est alors
trop rigide, respectivement trop souple. Avec le modéle
hybride, le résultat peut étre trop rigide ou trop souple.
Mais il apparait que le modéle hybride donne une solution
qui, d’une part, est plus rigide que celle trop souple du
modele d’équilibre présentant la méme fonction d’efforts
intérieurs et, d’autre part, plus souple que celle trop rigide
du modéle de déplacement conforme présentant la méme
fonction de déformation de bord. Ci-aprés, nous expose-
rons les motifs a la base de cette constatation ; la preuve
exacte est contenue dans la référence [14].

Dans un mode¢le d’équilibre, la fonction d’efforts inté-
rieurs détermine les efforts généralisés et, par conséquent,
les déformations généralisées. Le modeéle hybride présen-
tant la méme fonction d’efforts intérieurs est certainement
plus rigide, car les déformations de bord prescrites, indé-
pendantes de cette fonction, doivent étre satisfaites (fig. 2).

Dans un modéle de déplacement, des nceuds internes
peuvent étre introduits sans modifier pour cela la défor-
mation le long du bord (origine). Ils peuvent étre éliminés
au moyen du procédé statique de condensation (voir, par
exemple, [17]). Les écarts apparaissant dans les conditions
d’équilibre interne deviennent donc plus petits. La solution
s’approche de la solution exacte ; elle devient plus souple.
Si 'on choisit un nombre infini de nceuds, les conditions
d’équilibre interne sont satisfaites (fig. 2). Si, dans un
modele hybride, le nombre de coefficients de contraintes
est augmenté, I’erreur diminue dans la condition de compa-
tibilité et la solution devient plus rigide. Si un nombre
infini de coefficients de contraintes est introduit, la condi-
tion de compatibilité est satisfaite et il existe un champ de
déformation. Si, de plus, la déformation de bord du
modele hybride présentant un nombre infini de coefficients
d’efforts intérieurs concorde avec celle du modéle de dépla-
cement compatible et que celui-ci a été formé au moyen
d’un nombre infini de nceuds internes, les deux solutions
coincident (fig. 2). Il en résulte que le modéle hybride
(comportant un nombre fini de coefficients de contraintes)
est plus souple que le modéle de déplacement conforme
présentant la méme déformation de bord.

3. Précision des résultats

Considérons, comme premier exemple (fig. 3), la plaque
carrée appuyée librement, soumise a une charge concen-
trée en son centre. Dans ce cas, la fleche sous la charge
représente une mesure du travail de déformation. Dans le
modele hybride, la condition de bord statique m, = 0

1

|~ appuyé
| librement
| n=1
T‘} _charge
-1 concentrée
| n=2
096 | J
094 | Q-19., vL=03
092 | 7
090 ; v n=4

088
086 L/

084 ; 1
082 / ‘g% I‘
080 SHCT (LCCT —9) P | n=8
078
Q076 e
o74 __ 3degrés de liberté
— T par noeu’d
! 2 . 4 g 8 T %"dﬁ%m sleg;gl'l‘;'er'é
division en éléments par élément carré
Fig. 3. — Comparaison de la convergence de la fleche (et par

conséquent, dans ce cas particulier, de I’énergie de déformation)
au droit d’une charge concentrée agissant sur une dalle appuyée
librement. Quelle que soit la division en éléments adoptée, le
comportement du modele hybride est meilleur que celui d’autres
¢léments finis comportant trois degrés de liberté par nceud.
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est introduite dans la fonction d’efforts intérieurs des élé-
ments finis qui confinent aux bords appuyés librement (voir
paragraphe 2). Nous avons reporté les valeurs non dimen-
sionnelles de la fleche pour les divisions en éléments don-
nées a la figure 3. Dans le cas des éléments de forme carrée
H-12 du modéle hybride, les valeurs de la fléche (et par
conséquent celles du travail de déformation) sont soit trop
grandes (division en éléments n = 1), soit trop petites
(n = 2, n = 4). A titre de comparaison, nous avons donné
les résultats d’autres éléments finis présentant trois degrés
de liberté a chaque nceud. Nous désignons par HCT [18]
un modé¢le de déplacement conforme de forme triangulaire
et Q-19 [19] un modele de déplacement conforme de
forme carrée, constitué par quatre éléments triangulaires,
assemblés par élimination de sept degrés de liberté (pro-
cessus de condensation statique). Les notations Z [20],
respectivement ACM [18, 21] désignent un modéle de
déplacement non conforme, de forme triangulaire, respecti-
ment carrée. Ces derniers modéles ne convergent toutefois
pas nécessairement dans le domaine des solutions rigides.
M [22] caractérise un élément découvert sur la base de
réflexions physiques. De tous les éléments finis comportant
trois degrés de liberté par nceud, le modele hybride est
celui dont le comportement est le meilleur.

Dans le but d’établir également une comparaison avec
d’autres éléments finis, reportons (voir fig. 4) en abscisse
le nombre d’équations avant I'introduction des conditions
de bord géométriques, qui constitue un étalon de mesure
du travail a effectuer pour le calcul. En plus des résultats
relatifs aux éléments finis HCT [18] et Q-19 [19] présentant
trois degrés de liberté par nceud, nous avons reporté ceux
obtenus par d’autres modeles de déplacement conforme
prenant en considération soit des nceuds supplémentaires
au milieu des co6tés (modeles LCCT-12 [19] et CQ [23]), soit
des dérivées d’ordre supérieur constituant des degrés de
liberté supplémentaires aux nceuds (modeéles Q-16 [24] et
T-18 [25]), soit encore les deux ensemble (modele T-21
[25, 26, 27]). Les degrés de liberté de ces différents modéles
sont indiqués a la figure 4. Les résultats du modele d’équi-
libre EQT [28] présentant une répartition linéaire des
moments ainsi que de deux modeles mixtes reposant sur
le principe de Reissner — M-6 [29] dont la répartition des
moments est constante et celle de la fleche linéaire, et M-12
[30] comportant une répartition linéaire des moments et
une répartition quadratique de la flecche — sont également
représentés. En outre, parallelement au modeéle STRIP
H-12, apparait un autre modele hybride H-16 [12], lequel
travaille également avec une répartition quadratique des

L6 T L g modeles du type s
W exact Sy . modéles
U déplacemeni conforme P
/ ~
b ~
| \ M-6 - w
L4+ N e w, W Wy e
\ S w1 HCT Wx \ My T2l M-6
\ s (eet-9) My N-yv |\ o
\ ~. Wn Win Y
112 4 w L > W N
[ \ ~ . ‘~|x w i | XX W W
| \ . w, Wiy W Wyx Wn Wix Wory ﬁ;,
\ \ b w, W Wixy Wy iy
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\.\ Wy w
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\\‘ - _\\‘~~ W‘ W’ | m,
{ ‘\\\ _\\\\ Wiy ( in) (W) W mnz)?ﬁ. % -mS: Z"
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\ Pl ST
\‘\ B> e w w
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1.00 = = - Wy ’_ —’W-Y
; W ! W, £d
‘ Wl o w
098 T u- 5 \
H-16 :-x W a'x modeéles
4 " hybrides
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4 (LcCT-9) v way Q-6 d Y e
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/' ‘ //—”/ Wix Wix Wix Wix
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‘ Wixy Wy
092 + ¢Q 0.98 we w w
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Wy Moy
Fig. 4. — Plaque appuyée librement, soumise a une charge concentrée. Comparaison de la fleche verticale au droit de la
charge — en fonction du nombre d’équations — obtenue a I'aide de divers éléments finis.
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moments ; toutefois, dans le cas de ce dernier élément,
une cubique a également été choisie pour la pente trans-
versale (rotation) @, le long des bords et non pas seulement
pour la fleche w. Remarquons que la condition de bord
statique n’a pas été introduite dans la fonction d’efforts
intérieurs de ce modeéle hybride. Il ressort de la figure 4
que les modeles hybrides conduisent environ a la méme
précision que les modéles de déplacement conforme T-18
et T-21 présentant un polynéme du 5¢ degré; tous les
autres modeles fournissent des résultats de qualité infé-
rieure pour un nombre donné d’équations. Si nous choi-
sissons un étalon de mesure du travail plus sévére, a savoir
le nombre d’opérations essentielles intervenant au cours de
la résolution du systéeme d’équations — lequel nombre est
égal au produit du nombre d’inconnues par le carré de la
largeur de bande — alors le comportement de H-12-est
meilleur que celui de T-18 (voir fig. 4, au milieu, en bas).
Il faut souligner que, pour le cas considéré, le modéle
hybride (fonction de contrainte) travaillant sans I’inclusion
des conditions de bord statiques fournit pratiquement les
mémes résultats que le modeéle hybride [31] (fonction de
déformation), lequel travaille avec une fonction de défor-
mation sur I’élément ainsi qu’avec une fonction de défor-
mation et une fonction d’efforts intérieurs le long du bord,
choisies indépendamment de la premiére.

La paroi en porte-a-faux ([3], voir p. 187-188), repré-
sentée a la figure 5, a été calculée avec quatre éléments de
type hybride seulement, pour une charge extérieure verti-
cale parabolique et un moment fléchissant « réparti linéai-
rement », en tenant compte ou non des conditions de bord
statiques. Les valeurs exactes de la théorie de I’élasticité
sont données (selon le mode de formulation des conditions
de bord dans la section encastrée, on obtient des fléches
différentes pour 'un des cas de charge). Il apparait que
I’introduction des conditions de bord statiques, et par
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- J l® s de cas d
3 ca as de
: 3 : — . charge A charge B
v= |/3 4 éléments
E= |
[ 5 modéle hybride STRIP
| 2 o
théorie de les conditions | les conditions
I'élasticité de bord statiques | de bord statiques
non incluses incluses
cas de charge | cas de charge | cas de charge
A B A B A B
déformation verficale 2160+
au point (1) 3120 | 270.0 | 1291.8 | I51.4 |24263 | 262.9
contraintes dy 0 1.5 2.5 8 0 1.5
au point (2@ gy o 0. 2. =l 0. 0
T (0] 0o =3 -.4 0. [0}
contraintes (2% 18.0 1.5 7.4 8 19.6 1.6
au point (3 dy 0. 0. | 0 0. o]
T 0. (0] 4.9 4 0. [0}
Fig. 5. — Dans le cas d’une paroi en porte-a-faux, I'introduction

des conditions de bord statiques dans le modele hybride, c’est-a-
dire leur formulation dans la fonction d’efforts intérieurs, amé-
liore fortement les résultats.
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Fig. 6. — Plaque biaise appuyée librement, soumise a une
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charge uniforme. Comparaison de la fleche verticale au centre
de la plaque — en fonction du nombre d’équations — obtenue
a 'aide du modele hybride avec conditions de bord statiques,
d’un mode¢le de déplacement conforme et d’un modéle d’équi-
libre.

conséquent d’une modification de la fonction d’efforts inté-
rieurs (voir paragraphe 2), améliore considérablement les
fleches et contraintes obtenues. Les fonctions d’efforts inté-
rieurs et de déformation de bord de I’élément de disque uti-
lisées dans STRIP sont données a la référence [3], p. 172 fT.

On sait que le moment d’une dalle soumise a une charge
concentrée est infiniment grand au droit de cette charge.
Dans le premier exemple, cette singularité ne s’est pas
manifestée sur la précision de la fleche (fig. 3 et 4). Comme
autre exemple comportant une singularité, considérons la
plaque biaise appuyée librement et soumise a une charge
uniformément répartie. Selon la théorie de Kirchhoff, les
moments fléchissants sont infiniment grands a I’angle obtus
(voir fig. 8 [32, 33]). Cette singularité est trés marquée ;
méme dans la théorie des plaques de Reissner, 1'un des
moments principaux est infini dans le cas ou les mémes

rDcz’ 10° 2 &
Ra " appuye librement
o A
! o 4 .
\2( ? laa ) v=03
\ c
\ Sz % 30°

> modéle hybride STRIP

- 8
m, analytique

~~~=_modele
du type équilibre EQT

o e
modéle du type déplacement conforme CQ
» nombre
d'équations

100 200 300 400 500 600 700 8OO 900 1000 1100
Fig. 7. — Plaque biaise appuyée librement, soumise a une
charge uniforme. Moments principaux au centre de la plaque,
en fonction du nombre d’équations. La comparaison du modéle
hybride comportant les conditions de bord statiques avec un
modele de déplacement conforme et un modele d’équilibre
montre que le comportement du premier est le meilleur; en
outre, les résultats du modele hybride sont bons méme pour
de trés grossieres divisions en éléments.
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Fig. 8. — Plaque biaise appuyée librement, soumise a une
charge uniforme. Répartition des moments principaux, du
centre a l’angle obtus de la plaque. Le modele hybride avec
formulation des conditions de bord statiques réagit mieux
envers la singularité existant a 1’angle obtus que le modele
d’équilibre et surtout que le modéle de déplacement conforme
considérés.

appuyé
< librement

appuyé _- bord libre

librement

= 21-10% L,

- ¢ m
[Tl 1
(o]

0.075m

0.4424

«Q
"

mm
100 +

90 =
80

70 1

“thédrie des coques d faible courbure

“thédrie exacte des coques

100 200 300 400 500 600 700 800 900 1000 1100 1200 300 1400
nombre d'équations

Fig. 9. — Coque cylindrique appuyée librement aux deux extrémités, soumise a son
poids propre. Fléche au milieu d’un bord libre en fonction du nombre d’équations.
Le modele hybride a surface moyenne plane fournit, méme pour de grossieres divisions
en éléments, des résultats bien meilleurs que les modeles de déplacement conforme consi-

dérés, présentant une surface moyenne plane ou courbe.
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conditions de bord que Kirchhoff sont introduites [16],
p. 186. Il n’existe pas de solution exacte ; celle de Morley
[34], qui utilise un développement en séries dont les
coefficients sont déterminés au moyen de la méthode des
moindres carrés, est treés précise. Examinons de quelle
maniére le modele hybride STRIP, le modeéle de déplace-
ment conforme CQ [23] et le modele d’équilibre EQT [28]
réagissent face a cette singularité.

Dans le cas du modeéle hybride, cinqg divisions en élé-
ments — lesquels sont tous des parallélogrammes — ont
été introduites (fig. 6). Dans la fonction d’efforts intérieurs
des éléments de bord, la condition de bord statique m,, = 0
a ¢té introduite le long des bords appuyés librement. A la
figure 6, respectivement 7, nous avons représenté les
valeurs non dimensionnelles de la fléche, respectivement
des moments principaux au centre de la plaque, en fonc-
tion du nombre d’équations avant I’introduction des condi-
tions de bord géométriques. Les valeurs des modeles EQT
et CQ sont tirées de la référence [16]. Les résultats sont trés
frappants. Ainsi, dans le cas du modéle de déplacement
conforme et méme pour la division en éléments la plus fine
— un réseau 14 x 14 conduisant a 1095 inconnues — la
singularité se manifeste encore fortement sur les résultats
relatifs au centre de la plaque, lequel est pourtant trés
éloigné de I’angle obtus. La figure 8 met en évidence le
comportement de la méthode des éléments finis envers la
singularité. La variation des moments fléchissants princi-
paux le long du segment s’étendant du centre de la plaque
a I’angle obtus a été représentée pour le modele CQ (divi-
sion du réseau 14 x 14, 1095 inconnues), le modéle EQT
(division du réseau 6 x 6, 481 inconnues) et pour le modele
hybride STRIP (division du
réseau 16x 16, 867 inconnues).
Le modéle hybride présente le
meilleur comportement. Dans le
cas du modele de déplacement
conforme, de grandes valeurs du
moment m, apparaissent dans le
domaine de l'angle obtus. Les
discontinuités le long des bords
des éléments finis sont trés gran-
des et la valeur moyenne pré-
sente méme le mauvais signe !

Il est intéressant de constater
que des coques dont la surface
moyenne comporte une double
courbure peuvent étre calculées
par lintermédiaire d’éléments
finis plans. Un élément isolé fait
intervenir un effet de paroi et un
effet de plaque agissant indépen-
damment 1'un de [lautre. La
liaison de ces deux effets n’est
réalisée qu’au droit des nceuds.
On peut se poser la question de
savoir si les résultats de la coque
ainsi calculée— pour une division
en éléments toujours plus fine
— convergent ou non vers les
valeurs exactes. Dans la référen-
ce [35], il est montré qu’un arc
schématisé par une ligne polygo-
nale se comporte parfaitement
dans le cas limite d’éléments de
poutre infiniment petits. Si les
déformations inconnues appa-
raissant dans la condition d’équi-

O modele hybride STRIP
v autres éléments plans

O éléments @ une courbure



libre des éléments finis sont exprimées au moyen de déve-
loppements en séries de Taylor par les déformations et
leurs dérivées au point central, il résulte alors du passage
a la limite I’équation différentielle de I’arc avec axe courbe
et I’erreur commise par discrétisation s’annule.

Le fait de calculer des structures en coque a I'aide d’élé-
ments finis plans présente ’avantage, outre la formulation
simplifiée, d’éviter la difficulté qu’il y a & tenir compte des
termes relatifs au comportement rigide, difficulté appa-
raissant dans les éléments dont la surface moyenne com-
porte une double courbure. En revanche, il s’ensuit une
erreur supplémentaire de discrétisation due a 1’écart com-
pris entre le plan moyen des éléments finis et la surface
moyenne de la coque. Pour le calcul des coques et mem-
branes, STRIP utilise des ¢éléments finis plans.

La figure 9 montre une toiture cylindrique, librement
appuyée aux deux extrémités, pour laquelle nous avons
calculé le cas de charge « poids propre ». En raison de la
double symétrie, un quart du voile seulement doit étre
examiné. Les trois divisions en éléments introduites lors du
calcul avec le modéle hybride sont également données sur
la figure, ainsi que les conditions de bord statiques. De
plus, dans cette figure, nous avons représenté la fleche
verticale au milieu d’un bord libre en fonction du nombre
d’équations avant lintroduction des conditions de bord
géométriques. La valeur exacte de cette fleche, déterminée
sur la base de la théorie des coques a faible courbure [36]
et de la théorie compléte des coques [37] est également
reportée sur le graphique. De méme, a titre de comparai-
son, nous avons reproduit les résultats obtenus a I’aide
de différents éléments finis donnés dans la littérature ; la
classification de ces éléments est effectuée selon la nature
de leur surface moyenne, plane ou courbe [38, 39].

Le cylindre de la figure 10, appuyé librement et soumis a
deux charges concentrées radiales en équilibre, a été ana-
lysé a 'aide de STRIP pour diverses divisions en éléments.
L’analyse a été exécutée avec et sans formulation des condi-
tions de bord statiques dans la fonction d’efforts intérieurs
des éléments de bord. Les conditions de bord statiques ont
été introduites comme cela a été démontré plus haut ; le
long des deux cotés de I’élément fini voisins de la charge,
nous avons utilisé une fonction normale d’efforts inté-
rieurs. Par ce moyen, une introduction judicieuse de la
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charge est rendue possible. La valeur exacte de la fléche au
droit de la charge est tirée de la référence [40]. Le méme
exemple a été analysé par Key et Beisinger [41] a I’aide de
leur modéle de déplacement parfaitement conforme qui
travaille avec une surface moyenne courbe, prend en consi-
dération le comportement rigide et admet une géométrie
quelconque. Les deux graphiques de la figure 10 portent,
en ordonnée, la fléche au droit de la charge concentrée et,
en abscisse, soit la division en éléments soit le nombre
d’équations. Il apparait que les deux analyses avec le
modele hybride a surface moyenne plane sont plus favo-
rables — a précision égale et en regard du temps de calcul,
mesuré par le nombre d’équations — que I’analyse par le
modéle de déplacement conforme a surface moyenne
courbe. Si le temps de calcul était mesuré en prenant pour
étalon le nombre d’opérations nécessaires a 1’obtention de
la solution du systéme d’équations — comme cela a été
fait dans la figure 4 — cette tendance serait encore plus
marquée. Une autre comparaison intéressante est contenue
dans la référence [42]. En outre, il est a remarquer que
I’introduction des conditions de bord statiques exerce une
influence favorable sur la précision, ceci également pour
une division en éléments plus fine. La division en éléments
8 % 8, conduisant a 486 équations donne, avec introduction
des conditions de bord statiques, la valeur 0,0121 ; cette
valeur n’est atteinte sans modification de la fonction d’ef-
forts intérieurs que pour une division en éléments 20 x 20,
conduisant a 2646 équations (ce cas n’est pas représenté
a la fig. 10).

4. Description du programme

Dans ce chapitre, nous donnerons un apergu technique
des problemes de la statique pouvant étre résolus a 1’aide
du programme STRIP relatif aux structures en surface
porteuse. Cet apergu est suivi d’une description montrant
de quelle maniere 1'ingénieur peut utiliser ce moyen de
calcul ; nous étudierons plus particuliérement la prépara-
tion orientée des données et la représentation des résultats.
Ces explications sont données en complément et comme
illustration de la référence [4].

Types de construction : Des éléments tels que parois
(états plans de contraintes et dilatations), plaques, mem-
branes et coques peuvent étre traités.

—_._analytique_

Fig. 10. — Fleche au droit d’une des
charges radiales sollicitant un cylin-
dre appuyé librement a ses deux
sections d’extrémité. Les résultats
donnés par le mode¢le hybride (sur-
face moyenne plane) avec formula-
tion des conditions d’efforts inté-
rieurs de bord sont plus précis que
ceux obtenus sans ces mémes condi-
tions ; cependant, ces derniers sont
encore meilleurs que les résultats
d’un modele de déplacement confor-
me comportant une surface moyen-
ne courbe.

modéle du t¥pe
déplacement conforme
(surface moyenne a

une courbure)

600 700 800
nombre d'équations

500
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Fig. 11. — STRIP admet simultanément des éléments de surface en forme de
rectangles, trapézes isoctles, parallélogrammes, triangles quelconques ainsi
que des éléments de poutres.
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ressort Cg a C4¢— orientée dans I'espace au moyen des trois angles o, f, 7
et reliée au point de réaction par les excentricités Adx, 4y, 4z.




5050 Géométrie du systéme complet

5052 Introduction des données
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Fig. 13. — Formulaire de donnée, en langage orienté, pour la description de la géométrie du systeme complet.
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Fig. 14. — Structure dont la géométrie et les conditions d’appuis sont décrites sous

forme condensée a la figure 13.

Géométrie et matériau : La
forme de la surface moyenne et
du bord peut étre quelconque.
Des évidements peuvent étre pris
en considération. L’épaisseur de
la construction peut étre varia-
ble. Des joints, présentant éga-
lement des liaisons élastiques,
peuvent étre prévus dans des
directions quelconques. Des pou-
tres de bord et des poutres inter-
médiaires, comportant également
des articulations (élastiques) peu-
vent étre introduites. Un compor-
tement orthotrope du matériau
peut étre envisagé; les quatre
constantes et les directions dans
lesquelles elles sont définies peu-
vent changer a [lintérieur du
systéeme porteur. Des éléments
finis en forme de rectangles, de
trapézes isocéles, de parallélo-
grammes, de triangles quelcon-
ques d’épaisseur variable ainsi
que des poutres peuvent étre
combinés (fig. 11). Par ce moyen,
une division du réseau bien
adaptée au probléme a résoudre
peut étre choisie. Les conditions
d’appuis comprenant des appuis
ponctuels et des appuis linéaires
sont quelconques ; ces appuis
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Fig. 15. — La description de la direction des composantes et

des surfaces de référence des charges agissant sur les éléments
peut étre effectuée en se référant soit au systéme local de coor-
données 1, 2, 3 des €léments, soit au systéme global x, y, z, soit
a la direction g.

peuvent également étre élastiques. Des éléments finis, des
poutres et des réactions peuvent étre reliés excentriquement
aux nceuds. Ainsi, des zones rigides sont introduites
(voir également fig. 14). Dans la figure 12, a titre
d’exemple, un mécanisme de réactions déterminé par six
constantes de ressort (Cg a C 4 ¢) et orienté dans I'espace a
I'aide des trois angles «,f3,y est relié au nceud-réaction avec
des excentricités Ax, Ay et Az. De plus, il est possible de

spécifier des matrices de rigidité et des matrices « efforts
intérieurs-déformation ».

Cas de charge : Des efforts et moments variables, concen-
trés aux nceuds, des charges réparties orientées de maniére
quelconque (voir également fig. 15), des variations de
température (uniforme, gradient) et des déformations au
droit des appuis peuvent agir sur la construction.

Combinaisons de charges : 1l est possible de calculer des
sommes algébriques et des valeurs limites des efforts inté-
rieurs, ainsi que des réactions et des déformations au
moyen des cas de charge isolés qui peuvent étre multipliés
par des facteurs et également définis alternativement les
uns par rapport aux autres (fig. 16).

Résultats : Les résultats obtenus en des points préalable-
ment choisis sont les efforts intérieurs et les efforts inté-
rieurs principaux, les contraintes principales ainsi que leur
orientation sur la surface moyenne et sur les fibres supé-
rieure et inférieure, les déformations et enfin les réactions
d’appuis. En ce qui concerne les efforts intérieurs aux
nceuds (d’autres résultats peuvent étre obtenus au centre
et au milieu des cotés des éléments), il est possible d’obtenir
soit des valeurs moyennes soit les résultats aux nceuds des
éléments isolés (fig. 19). Sur demande, I'utilisateur peut
obtenir les surfaces d’influence des efforts intérieurs et des
réactions dues a une charge verticale, ainsi qu’a des efforts
normaux et des moments fléchissants internes, ce qui est
trés utile pour la détermination de la précontrainte.

L’ingénieur a la possibilité de formuler ses problémes
dans son langage technique tout en restant éloigné le plus
possible des instructions propres au computer. Celui-ci ne
doit pas seulement exécuter le calcul effectif mais doit éga-
lement décharger efficacement I'utilisateur dans la prépa-
ration des données et 1’exploitation des résultats.

L’ingénieur décrit le probléme a résoudre sur des for-
mulaires de données en langage orienté, établis de telle
maniére qu’ils permettent de suivre les réflexions habi-
tuelles de la statique. Les mémes formulaires sont utilisés
pour tous les types de construction (fig. 13). Les tétes des
tableaux, les figures et les remarques guident I'utilisateur ;
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Fig. 16. — Formulaire de donnée, en langage orienté, pour le choix des combinaisons des charges.
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KONTROLLE DER GEOMETRIE (FORTS.)

T ELEMENT 1 1 I VERBUNDEN MIT KNOTENNUMMERN I EINGABE GROESSEN 1 BERECHNETE GROESSEN 1
1 NUMMER 1 TYP I FORM 1 ECKE I ECKE 2 ECKE 3 ECKE 4 I LAENGE BREITE  WINKEL 1 LAENGE BRETTE WINKEL I
P Toommme S | e Immem- B e e ) Tommommmm lomomemem O O 1
774 T17 TRAP 282 283 292 293 <288 <499 87.499 .288 J499  87.497
775 T17 TRAP 283 284 293 294 .288 <499 87.499 «288 W499  87.540
776 TiT TRAP 284 285 294 295 .288 <499 87.499 .288 <499 87.507
777 T17 TRAP 285 286 295 296 .288 499 87,499 .288 «500  87.491
KA AR KA g A K K A KR AR R R AR OR Ok OR FOR K A OR K ok R OR R KR ok b k0K R K A ok R ROR S oF K ok ok K R Kk K s R Rk ok o kR ok ok ok R ok Kok ok ok ok R Rk ko kR K
778 Ti8 PARAL 287 228 297 298 o244 202 64334 244 .282 644334
FEHLER DIESES ELEMENT PASST NICHT IN DEN RAUM» DER IN DER KONSIRUKTION ZUR VERFUEGUNG STEHT
DIE DISTANZEN DES ZUR VERFUEGUNG STEMEHENDEN RAUMES SIMDus.
1-2 = Q244 3-4 = 700 1-3 = 400 2-4 = <250 1-4 = 462 2-3 = <459

KK AR AR F AR F & AR A ROR R K KO Ak R b ok ok A ORGSR K ok YR g oK o R R R Ok oR R S OK SR h xR ok A K R KK K R K K Aok K sk koK s ok ook ok Kok K ok R KR ok kR kR ok

Fig. 17. — Controle de la géométrie et annonce d’erreur.

il n’est pas nécessaire d’apprendre un langage spécialisé de
programmeur ou un langage orienté présentant une gram-
maire rigoureuse. Les expressions techniques sont reportées
directement. Les valeurs a introduire, dont les unités sont
laissées au libre choix de l'utilisateur, peuvent étre dispo-
sées de maniére quelconque a I'intérieur d’une colonne ;
les points décimaux ne sont pas nécessaires pour les
nombres entiers. A titre d’exemple, considérons le tableau
de données intitulé « géométrie du systéme complet »
(fig. 13). Les nceuds de la construction (fig. 14) sont inscrits
les uns a la suite des autres avec leurs coordonnées, les
éléments finis qui leur sont rattachés ainsi que d’éventuelles
réactions ponctuelles et conditions de bord statiques.
Ainsi, au nceud 10, apparaissent six éléments 1000, 1001,
1100, 1101, 100 et 200 de trois types différents et une
réaction ponctuelle. Cette derniére est reliée excentrique-
ment, tout comme les €léments 100 et 200. Les types
d’éléments A, B, C, de la réaction ponctuelle PRROT
ainsi que de la condition d’efforts intérieurs de bord

SPFRE introduite au nceud 15, sont définis dans d’autres
tableaux. Puisque I’on est en présence d’une division régu-
liere du réseau, la géométrie peut étre décrite de maniére
simplifiée. Le long d’une ligne de nceuds semblables, il est
suffisant d’en décrire un seul, dans ce cas, par exemple,
le nceud 11 ; le début, respectivement la fin de cette ligne
est indiqué par Iinstruction START, respectivement
ENDE. A la ligne suivante, on inscrit les valeurs de pro-
gression qui modifient — & chaque répétition — le numéro
des nceuds (1), les coordonnées (3,10 ; 0; 0) et le numéro
des éléments (1) de la ligne de nceuds semblables. A I’aide
de Pinstruction REP, ces valeurs de progression sont
ajoutées aux valeurs de l'origine de la ligne des nceuds
considérée et la description des nceuds ainsi obtenue est
prise en considération dans I’exécution des calculs. Le
chiffre (3) inscrit dans la seconde colonne prescrit le nombre
de fois que l'opération doit étre effectuée. Au moyen
d’'une double application de ce procédé, il est possible de
décrire la géométrie de I’ensemble de la construction

représentée en traits pleins a la

figure 14 par les seules instruc-

tions données dans le tableau de

GEOMETRIE DES TOTALSYSTEMES ( FORTS. ) la ﬁgure 13.
IKNOTEI KOGROINATEN DES KNOTLNSI ELEMENTI FUGE Zw,I TECKENR 1 EXZENTRIZITAET 1 ORIENTIERUNGS 3 > o

1 NR I RELATIV 2UM URSPRUNG 1 NUMMER I ELEMENT I TYP I IN 1 IN KNOTEN 1 WINKEL 1 Pour éviter tout calcul manuel

1 1 by Y z I 1 NUMMERN I IKMOTEM I X Y z 1 ALPHA BETA GAMMA T F & oqs . .
O 1ommeeee I O 1----1- B e T--mome Lomeene lememeen Immomeme O [oemsims 1 préalable a I'utilisateur, il existe
101 e300 igaitn | by 4400 < 2 des possibilités de description
1001 g - alternatives. A titre d’exemple,
200 i HIE - nous avons reproduit a la figure
PRROT SHE30 w00 <000 0 g g 15 les directions des composantes
O L A : et les surfaces de référence des
2o A H charges agissant sur les éléments.
2 slle 2k sEB0 W 5 4 Les formulaires de données
201 A 3 sont remplis pour la géométrie,
45 1iest BG | Beas8 463 A % les constantes des matériaux, les
205 A 3 charges ainsi que pour la sélection
- h ! désirée des résultats. Celle-ci
ks . sl zgz 2 § comprend, outre le format du
204 A 1 papier, la langue des commen-
15: TEDNS0 B0 Teuzsl D8 A 4 taires associés aux résultats, le
200 KANO SeFRE nombre de décimales aprés la
20 4.300 6,390 6.250 1100 ¢ 2 virgule ainsi que le plus petit
{101 5 3 nombre & imprimer, la formula-
1500 " 3 .ese i00n w0t tion des combinaisons des cas de
e PRRoT  ©  -ieay Ciom  en 0 0 0 charges pour lesquels les résultats
21 184030 (6:300, ledRED  Z0g A % doivent étre calculés, le genre de
0 4 2 résultats — généralement des
L 1N valeurs limites — ainsi que le
Fig. 18. — «Echoprint amplifié » de la géométrie de la construction représentée a la choix des sections. De cette

figure 14, qui a été décrite de maniére condensée a la figure 13.

maniére, une impression inutile
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Dans le programme, les données sont soumises a un
controle sévére. Ce contréle ne comprend pas seulement
les erreurs formelles telles que, par exemple, deux points
décimaux dans un nombre, mais également des incohé-
rences physiques, par exemple lorsque, dans une plaque,
une poutre de bord présentant une excentricité a été intro-
duite perpendiculairement a la surface moyenne. Comme
il est possible d’introduire des données surabondantes dans
la description du probléme, on veillera a ce qu’aucune
contradiction n’apparaisse a 'intérieur de certaines limites.
Un exemple de cette nature peut se présenter dans I’intro-
duction des coordonnées des nceuds pour la géométrie du
systeme total (fig. 14) et dans celle des dimensions des élé-
ments bidimensionnels. Si une erreur est découverte dans
le programme apparaissent également, en plus d’une

PLATTEN MOMENTE GRENZWERTLINIEN (ABSOLUTES KOORDINATENSYSTEM)
1 1 I EN SERVICE GRWMY ®MAX 1 EN SERVICE GRWMY MIN I
I KNOTENIELEMENTI I 1
I NRe 1 NRe I MX 1 MY I MXY 1 MX I MY I MXY I
I I I s B § T I I 1
1 «0933 0366 =.0741 =+1494% =.0580 1187
2 =+2657 0085 =.2574 4254 =.0104% h122
3 -+0091 «0138 =-.1%00 <0146 =.0221 3148
10 4 =+5377 «2101 6794 #3358 =41312 -.4243
8 +1608 02243 -.0058 =-.2574% =.3391 <0093
1z 5 «1392 #1855 3696 =-.0869 =—.1158 =.2308
6 «2138 22386 3570 =.1335 =.1490 =.2229
9 «2194 +1938 3479 =.1370 =-.1210 =-.2173
10 «1276 1767 3656 =.0797 =.1104 =-.2283
cu 1.4068 «9208 0278 =.6785 =.5750 =.0174
el «N094 0157 +UU96 -40151 =,0251 =.0154

Fig. 19. — Résultats. Les valeurs des enveloppes de l'effort

intérieur my ainsi que celles correspondantes de my et nzy sont
imprimées pour les nceuds commandés par 'utilisateur.

140

16.40

annonce, les grandeurs données qui l'ont causée. Un
exemple d’annonce d’erreur est donné a la figure 17 ; les

_1=130

9.65

1=2.00

— encosiré élastiquement

7.5

——  bord libre
® appui ponctuel
082 a3 13525,
Fig. 20. — Plan, conditions d’appuis et division en éléments (rectangles, triangles et trapezes isoceles) d’un pont-
g _ pp \ , g g p p
dalle de chemin de fer, présentant une épaisseur variable.
est évitée, si bien que I'ingénieur n’obtient que les résultats
aussi poussés que possible qu’il a lui-méme choisis et dont / } <] R
il a besoin pour traiter la suite de son probléme. s 's,:" = e
. elemen | 7|
Dans I’exemple de la figure 16, nous avons donné une finis > | E%T
sélection de résultats pour les combinaisons des charges STRIE 1 = [_._A‘ %%g
intitulées CH. TOTALE et EN SERVICE. La combinai- ‘ l ) [7re7es|

son CH. TOTALE consiste en la somme algébrique des
cas de charges PDS. PROPRE et ISOLATION, ce dernier
multiplié par le facteur 1,9. La combinaison EN SERVICE
implique la détermination des valeurs limites dans les-
quelles, par exemple, I'instruction GRWMY conduit a
I'impresion des valeurs de 42, Mymin €t des valeurs de
my et my, correspondantes. La combinaison CH. TOTALE
apparaitra comme la superposition des charges perma-
nentes, alors que les cas de charge OUVERT et FERME
seront pris en considération seulement si leur valeur extréme
est la plus grande (type de charge NUTZ). En effet, en
raison de I'instruction ALTER, une des deux combinai-
sons au plus peut se présenter. Les deux combinaisons
internes de charges OUVERT et FERME sont également
issues des valeurs limites.
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essai
sur modéle

= — 81550
- + compression
| - fraction

my 1omt/m'

Fig. 21. — Cas de charge « poids propre». Répartition des
moments fléchissants dans la section du pont-dalle mise en
évidence a la figure 20 et valeurs des réactions d’appuis. Les
valeurs des moments de flexion sont en bon accord avec le
résultat d’'une mesure effectuée sur un modele.
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T = -] [ +
0.20 0.20 | 1 0.90m
0.1375 I
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Fig. 22. — Piéce a contour fermé déformable comportant trois cellules, encastrée a gauche et appuyée librement a droite,

soumise a une courte charge répartie excentrique, et division en éléments adoptée pour le calcul avec STRIP.

numeéros 1, 2, 3, 4 des angles sont définis a la figure 11. Le
reste des données est autant que possible également con-
trolé. Dans un tel cas, le calcul proprement dit n’est pas
exécuté.

Les résultats du calcul statique se composent de ce que
I’on nomme « echoprint », des résultats intermédiaires, si
ceux-ci sont désirés, et des résultats eux-mémes. L’echo-
print constitue la véritable donnée du calcul statique. Il est
généralement directement issu des données, de sorte que
les différentes possibilités de description alternatives sont
réduites a une seule et, en particulier, les grandeurs don-
nées sous forme condensée sont restituées dans leur totalité.

A la figure 18, nous avons reproduit un extrait de I’echo-
print de la géométrie du systéme total, qui a été décrite de
maniere condensée dans le tableau de la figure 13. Les
résultats eux-mémes, requis par l’ingénieur dans les for-
mulaires de données, sont imprimés de maniére parfaite-
ment claire. La figure 19 montre les valeurs limites obte-
nues pour la combinaison des charges intitulées EN
SERVICE, décrite a la figure 16. Au nceud 20, des valeurs
moyennes ont ét¢ commandées alors qu’au nceud 12, les
résultats dans les angles des éléments contigus & ce nceud
ont été désirés. Une table des matiéres est également
imprimée. L’echoprint, les résultats intermédiaires éven-
tuels ainsi que les résultats proprement dits
constituent un calcul statique fermé.
L’ingénieur doit continuellement prendre
des décisions techniques lorsqu’il remplit les
formulaires de données en langage orienté et
peut définir la statique de son systéme porteur
qu’il connait parfaitement en vue des résultats

J]

=

mt
0.0/

Fig. 23. — Répartition des

élements finis

analytique
(séries de Fourier)

coque

moments transversaux dans la section située
au milieu de la travée de la piece. Comparaison des résultats obtenus a I'aide
d’un calcul par éléments finis et d’un développement en séries de Fourier.

a obtenir par la suite. Il exerce un contréle
constant sur I’analyse statique ; le systéme de
programmes ne se charge que du calcul.

5. Exemples pratiques

Le pont-dalle de chemin de fer de la figu-
re 20 (auteur du projet et essai sur modele :
bureau d’ingénieurs H. Hossdorf, Bale) a
été analysé a l’aide de STRIP. La dalle
accuse une épaisseur constante dans sa partie
approximativement trapézoidale et une épais-
seur variant linéairement dans le domaine
triangulaire. Tout le contour de la plaque est
en bord libre, & I'exception d’une portion
assez courte encastrée élastiquement; on note
également la présence d’appuis ponctuels.
La division en éléments, qui prend en consi-
dération ['épaisseur variable du pont, com-
porte des rectangles, des triangles et des tra-
pézes isoceles. La répartition des moments
fléchissants dus au poids propre — dans la
section mise en évidence a la figure 20 — a
été tracée a la figure 21. Elle est en bon accord
avec la valeur donnée par un essai sur modele.
Cette derniére figure comporte également un
tableau des réactions d’appuis.

coque
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= — élements finis  coque
—— éléments finis  membrane
analytique (séries deFourier) coque

fthéorie des barres
en torsion mixte

,/ contraintes. La figure 23 montre la répartition
/ des moments transversaux au milieu de la tra-
/ vée résultant du calcul avec effet de coque ; la
/ concordance avec la solution analytique (séries
de Fourier) est trés bonne, sauf au point
d’application de la charge. Pour chacune des
analyses, nous avons tracé la répartition des
contraintes normales agissant sur la surface
moyenne dans la section d’encastrement
(fig. 24) et dans la section située au milieu de
la travée (fig. 25). On remarque que cette
répartition n’est plus linéaire ; comme prévu,
les poutres longitudinales provoquent des
concentrations de contraintes (probléme de

Fig. 24. — Contraintes normales dans la section
d’encastrement de la piéce. La concordance des
résultats du calcul par éléments finis prenant en
considération l'effet de coque avec ceux du dé-
veloppement en séries de Fourier est bonne. Atitre
de comparaison, nous avons également représenté
les résultats obtenus a I'aide d’un calcul par él¢-
ments finis avec le seul effet de membrane, ainsi
que ceux donnés par la théorie des poutres en
torsion mixte.

Le second exemple pratique est consacré a
une piéce a profil fermé déformable compor-
tant trois cellules, encastrée a une extrémité
et appuyée librement a "autre (fig. 22). Une
courte charge répartie agit au milieu de la
travée sur 'une des poutres longitudinales
extérieures. Il existe une solution particuliére
due a Scordelis [43], laquelle repose sur la
base de la théorie compléte des ossatures
plissées (avec effet de parois et effet de plaques
dans les deux directions). Dans cette solution,
on s’est basé sur I'’étude de Goldberg et
Leve [44]. Quelque 99 termes de Fourier,
dont 50 différents de zéro, ont été introduits.
Cette structure a été calculée au moyen de
STRIP en considérant les effets de coque ou
les seuls effets de membrane. La division en
éléments adoptée est représentée a la figure 22 ;
dans le voisinage de I’encastrement et du lieu
d’application de la charge, cette division a
été choisie plus fine dans la direction longitu-
dinale en prévision d’importants gradients de
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la largeur de participation). Les valeurs obte-
nues par la méthode analytique sont trés
voisines de celles découlant de I’emploi de
la méthode des éléments finis, avec 'effet de
coque. Dans le but d’établir une comparaison,
nous avons également reporté les résultats
donnés par la théorie des barres, prenant
en considération la torsion de Saint-Venant
et la torsion non uniforme. Comme cela
était prévisible, il apparait que les valeurs
données par cette théorie sont fort différentes.
Contrairement au cas des sections a profil

——  éléments finis  coqus
———— bléments finis membrane
] analytique (séries deFourier) coque

......... théori des barres
on forsion mixte

[l
‘m’

Fig. 25. — Contraintes normales dans la section située au milieu de la
travée. La concordance des résultats du calcul par éléments finis prenant en
considération I'effet de coque avec ceux du développement en séries de Fourier
est bonne. A titre de comparaison, nous avons également représenté les résultats
obtenus a aide d’un calcul par éléments finis avec le seul effet de membrane,
ainsi que ceux donnés par la théorie des poutres en torsion mixte.



Fig. 26. — Couverture en coque hyperbolique a Hambourg, composée de deux paraboloides hyperboliques adossés I'un a
lautre et présentant des poutres de bord reposant sur trois appuis. La distance séparant les deux appuis extérieurs A et A’
(voir également la fig. 27) est égale a 95,72 m ; au premier plan, on distingue le point le plus haut D (cliché tiré de [45]).

ouvert (voir [4]), il n’est donc plus permis de négliger la
déformation du contour et I'influence de la distorsion due
aux contraintes tangentielles secondaires, comme cela est
fait dans la théorie des barres.

A titre de dernier exemple, effectuons a 1’aide de STRIP
I’analyse de la couverture — un voile hyperbolique — de
la piscine couverte Sechlingspforte 8 Hambourg (construc-
tion et statique : Leonhardt et Andrd, bureau d’ingénieurs-
conseils, Stuttgart). Le projet et I’étude du comportement
de la structure sont décrits de maniere détaillée dans la
référence [45]. La couverture est constituée de deux para-
boloides hyperboliques adossés I'un a I’autre et appuyés
en trois points seulement (voir fig. 26 et 27). Les poutres de
bord ne sont pas supportées de maniére continue, mais sont

- — 4766 — 4786 =4 = 1670-

Fig. 27. — Vue d’ensemble de la coque hyperbolique. a) plan,
b) élévation coté B, ¢) élévation coté D, d) élévation coté A,
respectivement A’ (tiré de [45]).

en porte-a-faux. Le tracé de leurs axes est situé sur la
surface moyenne de la coque. Ces poutres de bord, de
section triangulaire, présentent une transition continue avec
le voile proprement dit (voir fig. 28). Par conséquent, elles
sont gauches et comportent des dimensions variables (sec-
tion pleine et tubulaire).

En raison du fait que seuls des cas de charge symétriques
relativement a I’aréte BD ont ét¢ menés dans le calcul par
éléments finis, I’analyse a pu étre limitée a la moitié de la
construction. Des charges quelconques pourraient étre
décomposées en des composantes symétrique et antimétri-
que a l’aide du principe de réduction des charges. La
composante antimétrique pourrait étre appliquée au méme
modele de calcul (division en éléments), en remplagant les
conditions de symétrie le long de I’aréte BD par des condi-
tions d’antimétrie. La figure 28 montre la division en élé-
ments choisie. Les poutres de bord ont également été
discrétisées a 1’aide d’éléments bidimensionnels. Au lieu
de transition section pleine — section tubulaire, les nceuds
des éléments finis des faces supérieure et inférieure du
trongon tubulaire ont été reli€s excentriquement aux nceuds
de la section pleine, lesquels sont disposés sur la surface
moyenne de la coque proprement dite. Les éléments
d’appuis, qui ne sont pas représentés a la figure 28, ont été
introduits comme des éléments de barre. Le modele discret
adopté présente 754 nceuds et 792 éléments. Le systéme
d’équations obtenu finalement aprés introduction des
conditions de bord géométriques comprend 4457 inconnues;
la demi-largeur de bande en comporte 245.

Un essai sur modele a grande échelle a été effectué a
I'Institut de statique sur modeles de I'Université de Stuttgart
(directeur : prof. DT R.K. Miiller) [46].

Le modele en matiere synthétique, a 1’échelle 1: 26,67
(plus grande dimension = distance séparant les deux points
les plus bas A et A’ (fig. 27) = 4 m), a servi, outre la déter-
mination des efforts intérieurs nécessaires au dimensionne-
ment final, a une analyse de I'effet esthétique de la coque.

Les résultats du calcul par éléments finis ont été confron-
tés a ceux de ’essai sur modele pour le cas de charge poids
propre. Dans la figure 29, respectivement la figure 30,
nous avons reporté l'effort normal principal n; dans la
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Fig. 28. — Division en ¢léments de
la coque proprement dite et de la
poutre de bord. Au lieu de transi-
tion section pleine — section tubu-
laire de la poutre de bord, les
nceuds des éléments finis des faces
supérieure et inférieure du trongon
tubulaire ont été reliés excentrique-
ment aux nceuds de la section pleine,
lesquels sont disposés sur la surface
moyenne de la coque proprement
dite.

———  é&léments finis
essai sur modéle

B A

Fig. 29. — Comparaison des résultats obtenus a I’aide de I'analyse
par éléments finis et un essai sur modele. Valeurs de I'effort
normal principal ny [kg/cm] dans la coque elle-méme, le long de
laligne BA, pour le cas de charge poids propre.

éléments finis

; . face inférieur
essai sur modéle CHEE

éléments  finis

; ; face supérieure
essai sur modéle

face supérieure
foce inférieure

foce supérieure
==
face inférieure

B =8|
N7 ,'/378
¥ 437

Fig. 30. — Comparaison des résultats obtenus a I'aide de I'analyse

par éléments finis et un essai sur modele. Valeurs des contraintes
normales longitudinales [kg/cm?] le long de I'aréte BD sur les
faces supérieure et inférieure de la poutre de bord, pour le cas de
charge poids propre.
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coque elle-méme le long de la ligne BA, respectivement la
contrainte normale dans la direction longitudinale le long
de I'aréte BD sur les faces supérieure et inférieure de la
poutre de bord. Les résultats des mesures ont été tirés de la
figure 22, respectivement la figure 18, de larticle [46].
L’allure générale des résultats est la méme. A certains
endroits, la concordance est bonne. Ainsi, au milieu de
chaque paraboloide hyperbolique (intersection des deux
diagonales AB et CD), I’effort normal principal du calcul
par éléments finis, défini comme valeur moyenne des résul-
tats au centre des éléments finis voisins (fig. 28), est égal a
387,0 kg/cm. La valeur mesurée s’éléve, elle, a 394,7 kg/cm
(voir fig. 29).
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