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Sur le rôle de la théorie des déformations en hyperstatique
des systèmes articulés1

par A. ANSERMET, ingénieur, professeur

Généralités
Le texte pubUé dans le Bulletin technique n° 22, 1970,

devait être le dernier d'une série consacrée à un important
problème : le calcul de structures articulées. Mais des
solutions nouveUes surgissent, inspirées notamment par les

deux remarquables cours de statique (voir [1], [2])a dont
il est fait mention dans le dit texte. On peut même se

demander si la confrontation de deux solutions aussi
différentes que celles développées dans ces cours est à envisager.

Un des buts poursuivis ici est de montrer que l'on peut
appUquer dans la pratique une méthode s'inspirant des

deux solutions. Citons la retentissante publication de

K. Friedrich de 1943 ; cet auteur opère des coupures en
faisant varier les coordonnées des nœuds ; en outre, il
remplace les forces extérieures par des combinaisons de
températures dans les barres et étabUt des équations valables

pour le calcul de déformations (voir [3]).
Dans son cours, réminent professeur de Zurich forme

successivement les équations d'élasticité et les matrices

conjuguées, solution qualifiée de classique par certains
auteurs. C'est un ouvrage considéré comme standard en
Suisse et à l'étranger, ce qui lui a valu d'être traduit. Les

pubUcations de Mayor lui étaient connues, sauf la dernière,
à certains égards la plus intéressante.3

La notion d'ellipsoïde de déformation des nœuds devait
déjà être connue à Lausanne, mais, pour des raisons
matérielles, ce cours de 1926 fut pubUé sous une forme très
condensée.

Il convient de signaler qu'outre-Rhin on dit plutôt
« VerschiebungselUpsoid » et à Zurich « Formänderungs-
el lip so id ».

Le mieux pour se familiariser avec cette notion d'importance

non contestable est de considérer un cas concret.
Celui choisi ci-après présente de l'intérêt en ce sens que,
suivant le genre de solution, on obtient 15 équations
d'élasticité, une matrice de rigidité à 15 éléments diagonaux

ou 15 équations normales si le problème est traité
comme extrémum Ué, donc comportant 15 équations de

condition en v, v%, v%

La Uttérature hyperstatique, du moins ceUe destinée à

l'enseignement supérieur, pourrait traiter de façon plus
complète ces diverses faces du problème. Un Prix Mayor
est créé à Lausanne pour encourager ces recherches.

Il faut ici rappeler certaines notations (sans indices) :

T Efforts axiaux dans les barres ;

v mT Allongements ou raccourcissements de cel¬

les-ci (si on connaît les v on connaît les T) ;

p Poids des barres (proportionnels à 1 /m) ;

P Poids des barres a posteriori (somme

p/P — n) n inconnues ;

m Modules des barres ;

Mr Matrice de rigidité ;

Mi Matrice inverse ou de flexibilité (Federungs-
matrix) ;

Dx, Dy, Dz Variations coordonnées des nœuds (Mayor) ;

1 Texte rédigé en hommage à la chaire de statique de Zurich.
2 Les chiffres entre crochets renvoient à la bibliographie en

fin d'article.
8 Publication qui fut soumise à l'Académie des Sciences

dx, dy, dz Variations coordonnées des nœuds après

coupures ;

a, b, c Coefficients des inconnues ;

/ Termes absolus des équations aux déforma¬
tions.

Le rôle de l'électronique fut judicieusement traité dans la
pubUcation n° 104 EPUL (voir [4D, mais l'auteur n'a pas
confronté les deux solutions. E a donc paru opportun de

faire des coupures pour le calcul de la coupole choisie

comme cas concret.
En outre, dans la pubUcation n° 104 le problème ne fut

pas traité spatialement et les ellipses de déformation des

nœuds pas calculées. Les Ugnes qui suivent portent sur une
solution plus générale.

'

Fractionnement des structures
L'ampleur prise par certaines structures amène parfois

des praticiens à opérer un fractionnement ; théoriquement,
ce n'est pas toujours possible. La forme de la matrice de

rigidité du système joue un rôle ; eUe ne se prête pas
toujours à un fractionnaient, car le calcul des eUipsoïdes de

déformation des nœuds ne s'y prêterait pas. Le problème
relatif au fractionnement éventuel de structures est plus
complexe.

Cas concret. Dans la pratique, on peut toujours calculer
les eUipsoïdes de déformation des nœuds même si les

inconnues sont celles dites hyperstatiques, mais U faut alors
changer de variables et de nombreux praticiens choisiront
les inconnues pour éviter un tel changement.

Considérons de nouveau la structure (coupole) à 5 nœuds

libres.

Uniti
de
mesure

arbitraire

On déduit de ces valeurs les coefficients a, b, c des inconnues

dx, dy, dz.
Quant aux termes absolus /, üs sont fournis par le

système fondamental (Grundsystem).
En principe, on coupe des barres de poids faible.

Tableau des poids a priori
(inversement proportionnels aux modules des barres)

10

i
0.8
0,8
1

1.15

Il y a donc 30 barres dont 15 surabondantes et 15 variations

de coordonnées inconnues ; en éliminant celles-ci dans
les 30 équations aux déformations, on obtient 15 équations,
dites de condition, en i'i v2 v3 v30. C'est un extrémum
Ué. En général, on ne pratiquera pas de cette façon.

On forme successivement les matrices de rigidité et
inverse, puis on détermine les poids des barres a posteriori
qui interviennent par leurs valeurs relatives comme ceux
a priori. Le choix des axes x, y, z est aisé ici.

Nœuds x y z Nœuds X y z
libres fixes

j I VVr -0.62 0 + 1.3 6 —2.00 0 0
2 -0,19 + 0.59 +1.3 7 -0.62 +1,90 0
3 + 0.50 +0.365 + 1.3 8 + 1,62 + 1.18 0
4 +0,50 -0.365 + 1.3 9 + 1.62 -1,18 0

5 —0,19 -0.59 + 1.3 10 —0,62 — 1,90 0

cuds 1 2 3 4 «P? 6 7 8 9

1 0,7 1,15 1 0.8 0.8
2 0.7 1 1.15 1 0,8
3 0.7 0.8 1 1.15 1

4 0.7 0,8 0.8 1 1.15
5 0,7 1 0.8 0.8 1
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Matrice inverse (calculpar Centre électronique EPFL)

0.51 0 0 +0,05 +0.08 0
0,44 0 +0,06 +0,09 0

0,66 0
0,44

0
-0,02

0,51

i.0'''y
0
0
0,66

nœidl nœud 2

Les termes absolus
des équations aux
déformations fournis
par le système
fondamental (Grundsystem)
n'interviennent pas.

Les longueurs des axes principaux de l'eUipsoïde de
déformation pour le nœud 1 sont proportionneUes à :

Vo,51 0,71 Vo,44 0,66 V^66 0,81

ce qui est admissible. La somme (0,51 + 0,44 + 0,66) est
invariante quand l'orientation des axes x, y, z varie.

Poids a posteriori

Vp
5 barres p 0,7
5 » 1.15

10 » 1

10 » 0,8

5x0,7 X0.63 ¦

5x1,15x0,58
10x1 X0.51 j
10X0,8 X0.53 s

Somme plP
théoriquement

2.21
3,35
5,12
4.27

14,95
15

En moyenne :
plP *= 0,5 quels que
soient les p

Pour les barres 1-6, 1-7, 1-8 on a :

VO,58 0,76 Vo,51 0,71 Vo,53 0,73 ¦\f\~\P

Ces trois valeurs sont proportionneUes aux distances du
centre de l'eUipsoïde aux trois paires de plans tangents
normaux aux barres. Les poids a posteriori présentent un
intérêt manifeste ; Us sont amplifiés d'autant plus qu'U y
a de barres surabondantes, d'où un avantage. Pour les

systèmes statiquement déterminés p P bien entendu.
Cette notion de poids a posteriori devient famuière. Le
cas d'un seid nœud libre est particulièrement intéressant ;

U faut rendre le travaü de déformation non pas minimum,
mais constant. En faisant varier cette constante, on obtient
des surfaces concentriques dont la nature est manifeste.

Certains pratieîais attribuent trop tôt un rôle aux forces
extérieures, c'est-à-dire aux termes absolus des équations
aux déformations.

Détermination des éléments du problème indépendants des

forces extérieures

1. Choix des axes de coordonnées et éventueUement
des barres surabondantes à couper. Ce n'est pas
toujours simple.

2. Détermination des poids, pour lesquels on a une cer¬
taine Uberté ; on peut arbitrairement attribuer le
poids p 1 à une certaine barre. Ce sont les valeurs
relatives (Verhältniszahlen) qui interviennent.

3. Formation des matrices de rigidité et inverse et des

poids à posteriori.

C'est le moment critique lorsque, pour un nœud, l'eUipsoïde

de déformation est trop aplati ; U suffit de modifier
les poids de certaines barres, mais parfois cela ne suffit pas
et U faut modifier la structure. Avant d'inverser la matrice
de rigidité, on constate parfois la forme défavorable de

l'eUipsoïde.
Quant aux poids a posteriori, leur détermination permet

d'effectuer un contrôle bienvenu.

On peut donc pousser dans une large mesure les calculs
sans se préoccuper des forojgj extérieures. En ce qui
concerne les efforts axiaux T, U suffit de déterminer les v
puisque v mT.

Cas où certains nœuds sont astreints à se déplacer sur des

surfaces

Ce cas fut traité en particuUer par B. Mayor ; en réaUté,
le problème est vaste : des équations de condition Uent
certaines inconnues. Plusieurs solutions furent envisagées et
on se bornera à en développer ici une seule très succinctement.

Solution par calcul en deux phases (Zweistufige) qui est
la plus connue. On fait d'abord abstraction des conditions,
ce qui fournit des valeurs v' et non v. La seconde phase
fournit des appoints v" pour tenir compte des conditions :

v v' + v" et on verra que [vv] [v'v'j + [v'V] minimum

car [v'v"] 0 ce qui justifie la solution.
Pour simplifier, admettons p 1 pour toutes les barres

et formons les dérivées de l'énergie : [av'] 0, [bv1] 0,
[cv'] 0 en considérant trois inconnues. Les valeurs dx,
dy, dz obtenues ne sont plus définitives (voir [5]) ; la
seconde phase donne Ueu à des appoints (dx), (dy), (dz)
qu'il faut ajouter aux dx, dy, dz. Ce sont ces dérivées de

l'énergie, nuUes, qui rendent aussi nuUe la somme des
v'v". Ici, U ne suffit en général pas d'éliminer des inconnues.

Dans les équations de condition seules subsistent, après
la première phase comme inconnues, les (dx), (dy), (dz),
ce qui donne Ueu à un extrémum Ué en exprimant ces
inconnues en fonction des v" (voir [5], [6]).

H résulte de ce qui précède que les forces extérieures ne
jouent aucun rôle pour une étape importante des calculs,
puisque les termes absolus / n'interviennent pas dans la
formation des matrices de rigidité et inverses.

En conclusion, on peut dire que les solutions avec ou
sans coupures des barres surabondantes des éminents
professeurs de Zurich et Lausanne sont également importantes,

surtout si on a recours à la théorie des déformations.

On calculera les ellipsoïdes de déformation de
certains nœuds que le praticien saura en général choisir. On
peut aussi calculer les déformations d'autres éléments de
la structure et surtout les poids des barres a posteriori.
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