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Surle role de la théorie des déformations en hyperstatique

des systémes articulés’

par A. ANSERMET, ingénieur, professeur

Généralités

Le texte publié dans le Bulletin technigue n° 22, 1970,
devait étre le dernier d’une série consacrée & un important
probléme : le calcul de structures articulées. Mais des solu-
tions nouvelles surgissent, inspirées notamment par les
deux remarquables cours de statique (voir [1], [2]) % dont
il est fait mention dans le dit texte. On peut méme se
demander si la confrontation de deux solutions aussi diffé-
rentes que celles développées dans ces cours est a envisager.

Un des buts poursuivis ici est de montrer que 1’on peut
appliquer dans la pratique une méthode s’inspirant des
deux solutions. Citons la retentissante publication de
K. Friedrich de 1943 ; cet auteur opére des coupures en
faisant varier les coordonnées des nceuds ; en outre, il rem-
place les forces extérieures par des combinaisons de tempé-
ratures dans les barres et établit des équations valables
pour le calcul de déformations (voir [3]).

Dans son cours, ’éminent professeur de Zurich forme
successivement les équations d’élasticité et les matrices
conjuguées, solution qualifiée de classique par certains
auteurs. C’est un ouvrage considéré comme standard en
Suisse et a I’étranger, ce qui lui a valu d’étre traduit. Les
publications de Mayor lui étaient connues, sauf la derniere,
a certains égards la plus intéressante.?

La notion d’ellipsoide de déformation des nceuds devait
déja étre connue a Lausanne, mais, pour des raisons maté-
rielles, ce cours de 1926 fut publié sous une forme trés
condensée.

Il convient de signaler qu’outre-Rhin on dit plutot
« Verschiebungsellipsoid » et a Zurich « Formdnderungs-
ellipsoid ».

Le mieux pour se familiariser avec cette notion d’impor-
tance non contestable est de considérer un cas concret.
Celui choisi ci-aprés présente de l'intérét en ce sens que,
suivant le genre de solution, on obtient 15 équations
d’élasticité, une matrice de rigidité a 15 éléments diago-
naux ou 15 équations normales si le probléme est traité
comme extrémum lié, donc comportant 15 équations de
condition en v, vy, V3 ...

La littérature hyperstatique, du moins celle destinée a
I’enseignement supérieur, pourrait traiter de fagon plus
complete ces diverses faces du probléme. Un Prix Mayor
est créé a Lausanne pour encourager ces recherches.

Il faut ici rappeler certaines notations (sans indices) :

T Efforts axiaux dans les barres ;

v=mT Allongements ou raccourcissements de cel-
les-ci (si on connait les v on connait les 77) ;
Poids des barres (proportionnels a 1/m);

p

P Poids des barres a posteriori (somme
p/P = n) n inconnues ;

m Modules des barres ;

Mr Matrice de rigidité ;

Mi Matrice inverse ou de flexibilité (Federungs-
matrix) ;

Dx, Dy, Dz Variations coordonnées des nceuds (Mayor) ;

1 Texte rédigé en hommage a la chaire de statique de Zurich.

2 Les chiffres entre crochets renvoient a la bibliographie en
fin d’article.

% Publication qui fut soumise a I’Académie des Sciences
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dx, dy, dz  Variations coordonnées des nceuds apres
coupures ;

a, b, c... Coefficients des inconnues ;

f Termes absolus des équations aux déforma-
tions.

Le role de I’électronique fut judicieusement traité dans la
publication n° 104 EPUL (voir [4]), mais I'auteur n’a pas
confronté les deux solutions. Il a donc paru opportun de
faire des coupures pour le calcul de la coupole choisie
comme cas concret.

En outre, dans la publication n® 104 le probléme ne fut
pas traité spatialement et les ellipses de déformation des
nceuds pas calculées. Les lignes qui suivent portent sur une
solution plus générale.

Fractionnement des structures

L’ampleur prise par certaines structures améne parfois
des praticiens a opérer un fractionnement ; théoriquement,
ce n’est pas toujours possible. La forme de la matrice de
rigidité du systéme joue un role ; elle ne se préte pas tou-
jours a un fractionnement, car le calcul des ellipsoides de
déformation des nceuds ne s’y préterait pas. Le probleme
relatif au fractionnement éventuel de structures est plus
complexe.

Cas concret. Dans la pratique, on peut toujours calculer
les ellipsoides de déformation des nceuds méme si les
inconnues sont celles dites hyperstatiques, mais il faut alors
changer de variables et de nombreux praticiens choisiront
les inconnues pour éviter un tel changement.

Considérons de nouveau la structure (coupole) a 5 neuds
libres.

Nceuds x y z Nceuds x y z

libres fixes
1 —0,62 0 +1,3 6 —2,00 0 0 | Unité
2 —0,19 | 40,59 1,3 74 —0,62 +1,90 0 |de
3 +0,50 | 40,365 | +1,3 8 +1,62 | +1,18 0 | mesure
L +0,50 | —0,365 | +1,3 9 +1,62 | —1,18 0 | arbi-
5 —0,19 | —0,59 | +1,3 10 —0,62 | —1,90 0 | traire

On déduit de ces valeurs les coefficients a, b, ¢ des incon-
nues dv, dy, dz.

Quant aux termes absolus f, ils sont fournis par le sys-
téme fondamental (Grundsystem).

En principe, on coupe des barres de poids faible.

Tableau des poids a priori
(inversement proportionnels aux modules des barres)

Neeuds 1 2 3 4 5 6 7 8 ) 10
1 0,7 1,15 1 0,8 0,8 1
2 0,7 1 1,15 1 0,8 0,8
3 0,7 0,8 1 1,13 1 0,8
4 0,7 0,8 0,8 1 1,15 1
5 0,7 1 0,8 0,8 1 1,15

Il y a donc 30 barres dont 15 surabondantes et 15 varia-
tions de coordonnées inconnues ; en éliminant celles-ci dans
les 30 équations aux déformations, on obtient 15 équations,
dites de condition, en vy vy vy . v30. Clest un extrémum
lié. En général, on ne pratiquera pas de cette fagon.

On forme successivement les matrices de rigidité et
inverse, puis on détermine les poids des barres a posteriori
qui interviennent par leurs valeurs relatives comme ceux
a priori. Le choix des axes x, y, z est ais¢ ici.



Matrice inverse (calcul par Centre électronique EPFL)

0,51 | 0 0 -+0,05 | +0,08 | O Les termes absolus
0,44 | 0 40,06 | +0,09 | O des équations  aux
0,66 0 0 0 déformations fournis
0,44 | —0,02 | O par le syst¢tme fonda-
0,51 0 ... | mental (Grundsystem)
0,66 ... | n’interviennent pas.
neeud 1 neceud 2

Les longueurs des axes principaux de I’ellipsoide de défor-
mation pour le nceud 1 sont proportionnelles a :

40,44 = 0,66 +4/0,66= 0,81

ce qui est admissible. La somme (0,51 + 0,44 4 0,66) est
invariante quand ’orientation des axes x, y, z varie.

4/0,51 = 0,71

Poids a posteriori
p

7 5x0,7 x0,6
1

3 En moyenne :
5%x1,15x0,58

1

3

p/P = 0,5 quels que

5 barres p 21
35
212 soient les p
27
95

=0
5 » 1,15
1 10x1 x0,5
0,8 10x0,8 x0,5
Somme p/P =1
théoriquement 1

10 »
10 »

Pour les barres 1-6, 1-7, 1-8 on a :

1/ 0,58 = 0,76

Ces trois valeurs sont proportionnelles aux distances du
centre de l’ellipsoide aux trois paires de plans tangents
normaux aux barres. Les poids a posteriori présentent un
intérét manifeste ; ils sont amplifiés d’autant plus qu’il y
a de barres surabondantes, d’ou un avantage. Pour les
systemes statiquement déterminés p = P bien entendu.
Cette notion de poids a posteriori devient familiére. Le
cas d’un seul nceud libre est particulierement intéressant ;
il faut rendre le travail de déformation non pas minimum,
mais constant. En faisant varier cette constante, on obtient
des surfaces concentriques dont la nature est manifeste.

Certains praticiens attribuent trop tét un role aux forces
extérieures, c’est-a-dire aux termes absolus des équations
aux déformations.

0,51 = 0,71 /0,53 = 0,73 = \/1/P

Détermination des éléments du probléme indépendants des
forces extérieures

1. Choix des axes de coordonnées et éventuellement
des barres surabondantes a couper. Ce n’est pas
toujours simple.

2. Détermination des poids, pour lesquels on a une cer-
taine liberté; on peut arbitrairement attribuer le
poids p = 1 a une certaine barre. Ce sont les valeurs
relatives (Verhiltniszahlen) qui interviennent.

3. Formation des matrices de rigidité et inverse et des
poids a postériori.

C’est le moment critique lorsque, pour un nceud, 1’ellip-
soide de déformation est trop aplati ; il suffit de modifier
les poids de certaines barres, mais parfois cela ne suffit pas
et il faut modifier la structure. Avant d’inverser la matrice
de rigidité, on constate parfois la forme défavorable de
I’ellipsoide.

Quant aux poids a posteriori, leur détermination permét
d’effectuer un contréle bienvenu,

On peut donc pousser dans une large mesure les calculs
sans se préoccuper des forces extérieures. En ce qui
concerne les efforts axiaux 7, il suffit de déterminer les v
puisque v = mT.

Cas ou certains neuds sont astreints a se déplacer sur des
surfaces

Ce cas fut traité en particulier par B. Mayor ; en réalité,
le probléme est vaste : des équations de condition lient cer-
taines inconnues. Plusieurs solutions furent envisagées et
on se bornera a en développer ici une seule trés succincte-
ment.

Solution par calcul en deux phases (Zweistufige) qui est
la plus connue. On fait d’abord abstraction des conditions,
ce qui fournit des valeurs v’ et non v. La seconde phase
fournit des appoints v" pour tenir compte des conditions :
v =" + v" et on verra que [vw] = [v'v'] + ["v"] = mini-
mum car [v'v"] = 0 ce qui justifie la solution.

Pour simplifier, admettons p = 1 pour toutes les barres
et formons les dérivées de 1’énergie : [av'] = 0, [bv'] = 0,
[cv'] = 0 en considérant trois inconnues. Les valeurs dx,
dy, dz obtenues ne sont plus définitives (voir [5]); la
seconde phase donne lieu a des appoints (dx), (dy), (dz)
qu’il faut ajouter aux dx, dy, dz. Ce sont ces dérivées de
I’énergie, nulles, qui rendent aussi nulle la somme des
v'v". Ici, il ne suffit en général pas d’éliminer des inconnues.

Dans les équations de condition seules subsistent, apres
la premiére phase comme inconnues, les (dx), (dy), (dz),
ce qui donne lieu & un extrémum lié en exprimant ces
inconnues en fonction des v" (voir [5], [6]).

11 résulte de ce qui précede que les forces extérieures ne
jouent aucun réle pour une €tape importante des calculs,
puisque les termes absolus f n’interviennent pas dans la
formation des matrices de rigidité et inverses.

En conclusion, on peut dire que les solutions avec ou
sans coupures des barres surabondantes des éminents pro-
fesseurs de Zurich et Lausanne sont €galement impor-
tantes, surtout si on a recours a la théorie des déforma-
tions. On calculera les ellipsoides de déformation de cer-
tains nceuds que le praticien saura en général choisir. On
peut aussi calculer les déformations d’autres éléments de
la structure et surtout les poids des barres a posteriori.
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