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BULLETIN TECHNIQUE DE LA SUISSE ROMANDE 96' année 14 novembre 1970 N" 23

Flambage par bifurcation des cadres rectangulaires plans
par Dr SRIRAMULU VINNAKOTA, chercheur et Dr J.-C. BADOUX, professeur à J'Ecole polytechnique fédérale, Lausanne

1. Introduction

Les cadres rectangulaires sont d'un emploi courant en
charpente métallique. Ils se présentent sous les formes les
plus variées et constituent des systèmes souvent hautement
hyperstatiques.

La capacité portante de tels cadres est limitéeg^lt par
leur résistance, soit par leur stabilité ou par leurs (formations.

Il y a en général interférence entre ces trois effets et
donc une théorie générale pour calculer la capacité
portante des cadres doit faire intervenir ces trois effets
simultanément, ce qui complique énormément les calculs.

A l'heure actuelle (1970), il existe très peu d'études
précises [1, 2, 3]1 qui permettent d'analyser jusqu'à la rupture

le comportement des cadres à plusieurs étages et à
plusieurs panneaux. Dans ces méthodes, les calculs sont
faits à l'aide de calculatrices électroniques et/ou à l'aide
d'abaques. Leur utilisation qui nécessite un temps de
calcul assez considérable, ne se justifie que pour vérifier
des projets définitifs ou pour étudier des cadres non usuels.
Pour déterminer les charges ultimes des cadres courants,
on se contente généralement de méthodes approchées qui
peuvent conduire à des résultats suffisamment justes.

En s'inspirant de la formule de Rankine, M. Merchant
a proposé une telle méthode pour le calcul de la charge
portante des cadres non contreventés à plusieurs étages,
méthode qui se résume à l'application de l'équation
suivante [4] :

1 1 1
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1 Les numéros entre crochets renvoient à la bibliographie
en fin d'article.
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Fig. 1. — Types de constructions qui peuvent être résolus à
l'aide de l'étude présente.

où P£ est la charge critique du flambage du cadre fait d'un
matériau à élasticité infinie.

Epiest la charge limite donnée par la théorie plastique du
premier ordre.

Pu est la charge portante du cadre.

Il a été démontré que la formule de Rankine généralisée

(1) donne des valeurs des charges portantes avec une
bonne sécurité en regard de la grande majorité des analyses
exactes effectuées. Mais, malheureusement, l'utilisation de

cette équation n'est pas aussi simple qu'il apparaît à
première vue, car la détermination de P%. entraîne des calculs
considérables.

Dans cet article, nous exposerons une méthode pratique,
basée sur la méthode des déformations, pour calculer Ja

charge critique P*' des cadres rectangulaires. Puis, nous
donnerons des exemples numériques.

2. Enoncé du problème étudié

Le présent exposé est consacré au calcul de la charge
critique des cadres rectangulaires plans formés de barres
droites d'inertie constante. Les colonnes du cadre, qui sont
verticales, s'élèvent sans interruption depuis la fondation
jusqu'à la partie supérieure de la structure. De même les

poutres (horizontales) sont continues de la gauche à la
droite de la structure. Ainsi, il n'y a aucune barre man-,
quante dans un panneau intérieur. Les colonnes du
premier étage peuvent être de longueurs différentes. Les barres
peuvent être reliées aux nœuds, qui sont considérés
indéformables, soit par des assemblages rigides, soit par des
articulations. Les pieds des colonnes peuvent être ou bien
articulés ou bien encastrés d'une manière rigide à la
fondation.
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Fig. 2. — Désignation et sollicitation du cadre.
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Les figures la à lg représentent quelques-unes des
constructions entrant dans le groupe considéré qui, au point
de vue pratique, est très important puisqu'il comprend les

portiques simples, les portiques continus, ainsi que les
cadres multiples à étages et réunit par conséquent les
constructions qui se rencontrent le plus fréquemment.

Les forces extérieures considérées dans la présente étude
sont telles que, avant la perte de stabilité, les barres ne
subissent qu'une compression axiale (ou traction) sans
Subir de flexion. A titre d'exemple, la figure 2 montre un
tel système de forces. Ici, les charges sont uniquement des
charges concentrées appliquées aux nœuds, agissant dans
l'axe des colonnes.

Un cadre faisant partie d'un bâtiment est, en pratique,
soumis à des charges dues au poids propre et aux sur-
charges. Pour simuler les conditions de sollicitation d'un
tel cadre, on a considéré un système de charges non pro-

||||ftionnelles dans lequel chaque force se compose de
deux parties. Ainsi, on a :

öi Qn + AQsi ; 02 Aß*2; (2)

La première partie, affectée de l'indice g, caractérise la
contribution du poids propre. Elle reste constante.

La deuxième partie, affectée de l'indice s, augmente
proportionnellement à sa valeur initiale. Elle représente la
contribution des surcharges dont l'intensité est définie par
le coefficient de proportionnalité ou paramètre de charge X.

La transformation des poids morts et des surcharges
agissant sur les barres horizontales en forces nodales se

fait par un procédé simple. On considère chaque poutre,
entre deux nœuds consécutifs, comme une poutre sur
appuis simples. Les charges concentrées équivalentes agissant

aux nœuds sont égales et de signe opposé aux réactions

de cette poutre simple. Quand il y a des forces
horizontales agissant aux nœuds, les forces axiales dans les
barres sont trouvées par un calcul préliminaire ou leur
effet sur la rigidité est négligé.

Si le paramètre de charge X augmente, pour une
certaine valeur critique de X — Xcr, la forme fondamentale
d'équilibre avec les barres rectilignes devient instable.
Cette valeur est caractérisée par le fait que le cadre peut,
sous cette charge, soit garder la forme fondamentale
d'équilibre, soit prendre une autre forme. Le passage d'un
état d'équilibre à un autre s'accompagne en général de

l'apparition dans les barres de déformations et d'efforts
complémentaires.

Afin d'évaluer la valeur critique de X, nous procédons
comme suit : pour un niveau de sollicitation X laissé constant,

nous imposons au cadre dans sa position initiale une
déformation générale (très petite) compatible avec les
conditions d'appuis. Nous étudions l'équilibre du cadre
dans cette position déplacée et analysons dans quelles
conditions une telle déformée peut se trouver dans le
voisinage de la déformée fondamentale du cadre. Dans le cas
des cadres étudiés, la déformée complémentaire peut être
obtenue par déplacement des poutres.

3. Hypothèses

La présente étude est basée sur les hypothèses suivantes :

I. Les matériaux qui constituent les barres sont supposés
parfaitement et infiniment élastiques.

II. Les nœuds sont supposés être rigides.
III. Les forces sont supposées conserver leur direction

initiale et leur point d'application initial pendant le
flambage.

IV. En plus, les forces extérieures sont telles que, avant
la perte de stabilité, les barres ne subissent qu'une
force axiale (compression ou traction) sans subir de
flexion.

V. Les déformations (à l'état déplacé) sont considérées
petites.

VI. Le cas de flambage étudié est celui du flambage par
flexion dans le plan du cadre. Il est supposé que le
flambage spatial accompagné de torsion et le vouement

local des parois sont empêchés.

De plus, on néglige les variations élastiques de longueur
dues aux efforts axiaux. Tous les nœuds d'une traverse
présentent donc le même déplacement transversal v.

4. Théorie

Considérons la construction représentée sur la figure 2
qui comprend N nœuds en dehors des appuis et E étages.
Dans la méthode des déformations, qu'on envisage d'utiliser

ici, on admet comme inconnues les déformations du
cadre. D'après les hypothèses du paragraphe 3, ce sont les
rotation de N nœuds et les déplacements de E étages. Pour
déterminer ces N + E M) inconnues, on a besoin de M
équations, que l'on va établir dans les paragraphes qui
suived||||

Faisons maintenant une remarque sur les indices et sur
la désignation des éléments. Les nœuds du cadre portent
chacun un numéro. Les indices dont on affecte les charges
et les rotations se rapportent toujours à ces numéros.
Normalement, il y a quatre barres qui aboutissent à un
nœud. Il est donc indiqué d'affecter chaque grandeur d'un
deuxième indice, qui donne le numéro du nœud de l'autre
extrémité de la barre. Ainsi Kjt est le coefficient K relatif
au nœud j de la barre ji.

Si la liaison entre l'extrémité d'une barre et le nœud
correspondant est une articulation, ce fait est indiqué par
une prime sur l'indice correspondant. Ainsi fy est le
coefficient K relatif au nœud / de la barre ji, liée rigidement

au nœud j et articulée en 1

4.1 Relations de base

D'abord nous exprimons les efforts aux deux extrémités
des barres en fonction des déformations en ces mêmes
points. Nous examinerons quatre cas de liaisons aux
extrémités des barres :

— barre liée rigidement à ses deux extrémités ;
— barre liée rigidement à une de ses extrémités et arti¬

culée à l'autre ;

— barre articulée à ses deux extrémités et
— barre liée rigidement à ses deux extrémités mais dont

l'un des encastrements est libre de se déplacer
perpendiculairement à la barre.

1

-1ji
v,,*position initiale Ji 30

i3- i

1Jm%~:sx
ij

Fig. 3. — Déformée et sollicitation d'une barre ij dans la
position déplacée du cadre.
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Fig. 4. — Equilibre d'un élément (z, z + dz) de la barre ij.

fÊgh. 1 Barre liée rigidement à ses deux extrémités
Prenons une barre du système aboutissant aux nœuds /

et 1 et considérons cette barre avant et après sa déformation

(fig. 3). Considérons le cas général où les sections de
la barre subissent des rotations et des déplacements :
soient S la longueur de cette barre, //; le moment d'inertie
de la section, P# l'effort normal sollicitant cette barre.

Posons :

Vu. Vu angle de rotation des extrémités/respectivement/,
Vf/, v/; déplacements transversaux des extrémités de la

barre, perpendiculaire à sa position initiale ;

Mti, Mjt momerm de flexion aux extrémités de la barre ;

y». Vu efforts tranchants aux extrémités de la barre.

Signes
Angles de rotation des nœuds y/ : positif si la déformation

se fait dans le sens contraire des aiguilles d'une montre.
Déplacements v : positifs s'ils ont lieu de bas en haut

ou de droite à gauche.
Effort normal P : positif dans le cas d'une compression.
Les moments aux nœuds, agissant sur les extrémités des

barres, sont positifs s'ils tournent dans le sens contraire
des aiguilles d'une montre.

Les efforts tranchants aux nœuds, agissant sur les extrémités

des barres, sont positifs s'ils agissent de bas en haut
ou de droite à gauche.

L'équilibre d'un petit élément dz, situé à l'abcisse z,
donne, en négligeant les termes de second ordre (fig. 4) :

dM
dz -V+P„ V

on a également :

la pente V
dv

y lz

la courbure <*>
d2v

dz*

En plus 0 - M
Thi

(3)

(4)

(5)

(6)

On obtient d'après les équations (3) à (6) la relation

§111111
La solution générale de l'équation homogène (7) est

donnée par :

v ax + fl2ï + a3 sin (<pu I) + a4 cos {(pu ~z) (8)

1 Afin de simplifier l'écriture, nous supprimons les indices

// des grandeurs L, I, P et (p.

7 P,-T2„
v — z 9 J II ^ Iloù z — ; tpi.

*-41 *-* Llt
(9)

et ûj, a2, «3 et «4 sont les quatre constantes d'intégration
à déterminer.

Le déplacement transversal, la pente, le moment de
flexion et l'effort tranchant en un point z de la barre
s'écrivent * à l'aide des relations (3) à (6) et (7) :

a2 z + Og sin ç> z + a4cos <p z

V a0 Oa
<P Icos g> z — ai — smç> z* L * L T * L

M a3 P sin (p z + a4 P cos <p z

P
V a*L

(10)

(11)

(12)

(13)

Les constantes d'intégration sont déterminées par les

conditions aux extrémités de la barre, à savoir :

V— Vu'' v — vu en ^lëiïBi

V Vu'' v v/i en z L
(14)

qui peuvent être exprimées, à l'aide des relations (10)
et (U), sous forme matricielle :

Va

Vi

0
1

Z
|
L

0 «1

1 0 0 1 a2

0
i
L - cosç>

V ¦
— — sm m

L <*3

1 1 sin <p cos ç> «4

(15)

D'où on obtient :

-1

»1

«2

«3

ai

0 - iL L

1 0 0

— — COSfi>
L L Y

sm <p

<P ¦
¦— sm œ

L

cosip

Vu

Vu

(16)

Le signe —1 indique l'inverse de la matrice.
Les moments et les efforts tranchants aux extrémités

peuvent être obtenus à l'aide des relations (12) et (13).
Ainsi nous avons, en tenant compte des signes...

- — —

M„ ;P~" 0 0 P ai

Vt, *op -o lo 1
L

a2

M„ 0 0 —Psinp —Pcosçi «S

y«\ 0
L

a4

(17)
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En remplaçant dans le système ci-dessus les constantes
d'intégration par leurs valeurs données par la relation
matricielle (16) on obtient après des transformations
simples :

M„

Vu

M„

Vn

Ra D„ Kji C„ —Du

Du Gu Du —Gn

Kii Cu Du K;i —Du

-D„ -Gu —Dji Gu

Vu

(18)

où les fonctions de stabilité C, D, G et K sont définies

[5] par

S«

Q,

ç> (sin (p — <p cos (p)

(2—2 cos tp — <p sin çp)

(jp — sin tp)

(sin tp — I cos tp)
Q,

K„ El
¦ Su ', Kjt

El

U § d + m

'« — mm
1 m

¦Su

Dlt

(19)

Lorsque P a une valeur trèssltible, ou quand les effets
de deuxième ordre de la charge directe sont négligés, les
valeurs de K, C, D et G s'obtiennent à partir des équations
correspondantes ci-dessus, en faisant tendre P vers zéro.

mm K„ Q, Q,

Dii=6—2^D„; G» 12 —j Gjt

(20)

Interprétation statique des coefficients K, G, C et D

Si dans la relation (18) on fait v,, — v,i 0 et y/,, 0,
on a:

Mi, K„ i//u ; Mji Ki, Ci, y/i,.

Nous voyons que AT a la dimension d'un moment,
\fi étant un nombre et Ki, — Mi, pour y/g 1.

La grandeur Kt, est le moment à l'extrémité i de la
barre ij, rigidement encastrée à ses deux extrémités et
soumise à l'effort normal centré P„ (fig. 5), provoqué par
une rotation unitaire du nœud i.

K s'appelle « le facteur de rigidité ».

*=1 ji ij ij
Y^

i»l]"KU

Fig. 5. — Désignation des coefficients K et C.
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H.. D..

v l ji j]

Ji jii i
Fig. 6. — Désignation des coefficients D et G.

C„ Mn_

M„

La grandeur Ci, est le rapport du moment M„ transmis
à l'extrémité y au moment Mi, agissant à l'extrémité i pour
les conditions mentionnées ci-dessus. C s'appelle « le
facteur de transmission».

Pour avoir l'interprétation de G et D, nous faisons dans
la relation (18) :

Vu — Vu 0 et v,t =0, on a :

V„ ¦ V,i Gi, vi, :

Du Mu j pour vt

Mi, M„ D„

1

La grandeur G„ est l'effort tranchant nécessaire aux
extrémités de la barre ij, soumise à un effort normal
centré Pu, pour déplacer transversalement les deux extrémités

d'une unité de longueur lorsque les rotations des
extrémités sont empêchées (fig. 6). G^ s'appelle « la
rigidité à l'effort tranchant».

D,, est le moment à l'extrémité i de la barre pour ce
dernier cas de charge.

4.1.2 Barre liée rigidement à une de ses extrémités et
encastrée à Vautre

Soit une barre ij liée rigidement au nœud i et articulée
en | (figure 7b). Nous avons \/r,t ¥= y/,. Nous pouvons
exprimer l'angle de rotation à l'articulation en fonction de
l'angle de rotation au nœud rigide i. De ce fait, nous
diminuons le nombre des équations de rotation, les angles de
rotation aux articulations se calculant en fonction des

angles de rotation des nœuds rigides.
En effet, en substituant M„ 0 dans le système (18) et

en l'ordonnant, nous obtenons :

B — —

Mi, Kir DiV -D,.,
Vt, g Dtr Gir -Gn
Vit H -G,,. G,.,

„

Vu

(21)

EI
Su' Su (1 — C a) ; Kt,- — ~y~ Stl'l K,'t 0 Ctl,

D K,,'
(22)

Drtl r - ArG,<t -— L - GnL "' " L

Nous avons en plus la relation

y/,>, - [K„ Ci, y/u + D„ (vB - y,,)] /K,t

qu'on peut calculer une fois qu'on a y/g, vw et v,t.

(23)
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Fig. 7. — Cas particuliers des conditions aux limites.

4.1.3 Barre articulée à ses deux extrémités

Considérons maintenant une barre ij articulée aux
nœuds i et y du cadre (fig. 7e). Nous avons M,, M,i 0.
En introduisant ces valeurs dans le système de base (18)
et en le simplifiant, on obtient la relation :

Vu

Vit

Gr,- — Gj-r

G,r Gn
(24)

G,r
P
L G>'"

(25)

Kr,- — Kj'i' — Cf,i C,>r — Dt-r — Dj-v 0

En plus, on a pour les rotations aux extrémités de la
barre (rappelons que y/t>r ¥* V : Vi'f ^ Vf> '•

Vir Vn (vit— vèlL

qu'on peut calculer une fois qu'on a v,t et v,,.

4 1.4 Barre liée rigidement à ses deux extrémités mais
dont Pun des encastrements est libre de se déplacer
perpendiculairement à la barre (fig. 8)

Soit une barre ij à liaison rigide dans le nœud / et dont
l'extrémité/' est encastrée parfaitement sur un appui dépla-
çable dans le sens perpendiculaire à l'axe de la barre1.
Donc, on a les conditions :

Vu 0 ; V,i 0 V»

En substituant ces valeurs dans la relation matricielle (18)
et en la simplifiant, nous avons :

M„ K,,- V» + D

Kti" K„- Di, D„

U" ni

El

(26)

Gn

G,, D,,
Dr D„ - -—¦ 0

(27)

Nous avons en plus les relations :

D„ D,r
M„ K-u Cn

v„

G,t

Dt, y/„ + Gt, v,i

y/,, + Dr v„

IG„

Fig. 8. — Barre liée rigidement à ses deux extrémités, mais
dont l'un des encastrements est libre de se déplacer
perpendiculairement à la barre.

qu'on peut calculer une fois qu'on a yii, et v„. Lorsque P
a une valeur très faible, ou quand les effets de deuxième
ordre de la charge directe sont négligés, la valeur de Sq-
s'obtient à partir des relations (19) et (27), en faisant
tendre P vers zéro. Ainsi Su- 1.

4.2 Equations de nœud

Considérons maintenant un nœud j situé à l'étage e et
liant quatre barres entre elles. Soient i, l, k, m les nœuds
adjacents liés par une barre avec le nœud y (fig. 2).

Ecrivons les équations des moments :

M„ K,i y/, + K„ C,, y/, + D„ v-i — D„ ve

M,k K,k y/, + Kic Ck, Vk + D,k ve—Dk, ve+1

M„ Kn y/, + K„ Q, y/, (28)

M,m K,m y/, + K„j Cm, y/m

Or, pour que le nœud soit en équilibre (fig. 9), il faut que
L M, 0.

En faisant la somme de ces quatre expressions et en
l'égalant à zéro, on a :

K„ y/j+ZKg Ci, y/i+D„ve.i-\- (D,k—D,d ve

avec Kn — £ Km.

Dk, ve+1 0
(29)

Les sommations s'étendent à tous les nœuds adjacents
au nœud j considéré. L'équation (29) est appelée l'équation

de nœud.

Remarques

1. Pour les barres articulées au nœud j (voir par exemple
fig. 7b et 7e), il est à remarquer qu'elles n'apportent
aucune contribution de moment et par conséquent elles
n'interviennent pas dans l'équation de nœud correspondante.

2. Si l'un des nœuds voisins, le nœud i par exemple, est
un nœud d'appui à encastrement rigide (fig. 7a), les termes
(Kg Ci, y/,), (Da ve_j) correspondants disparaissent du
fait de y/i 0 et Vg-i 0.

3. Si le nœud d'appui i est au contraire articulé (fig. 7d),
le terme Dr, ve -i disparaît de nouveau du fait de
v« _; 0, ainsi que le terme (K,>, Cf, y/i) du fait de

Kf, 0 ; les coefficients K„ et Dn sont à remplacer par
les coefficients K„- et D,f conformément aux relations (22).

4. Pour un nœud complètement articulé (fig. 7d,
nœud /), il n'y a pas d'équation de nœud parce qu'il en a
déjà été tenu compte dans le système (22) et elles sont ainsi
éliminées du calcul.

1 Ce fait est indiqué par le signe " placé à côté de l'indice de
l'extrémité correspondante j. (Voir les équations 26 et 27.)
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5. Pour les nœuds parfaitement encastrés, l'angle de
rotation est nul et l'équation de nœud correspondante
disparaît également.

Si nous avons N nœuds intermédiaires (en dehors des
appuis), nous avons donc N équations de nœud. Cet
ensemble de N équations peut être mis sous la forme matricielle,

comme suit :

n r\
y/lit *^y/ RyV D, 0 (30)

Dans laquelle :

D,„ est le vecteur colonne dont les N éléments sont les
rotations des nœuds Vl> V2> Vi' Vi Vn

Dv est le vecteur colonne dont les E éléments sont les
déplacements des étages { vj, vu ve, ve }

Rvw est une matrice carrée d'ordre Nx N et

Rvv est une matrice rectangulaire d'ordre Nx E.

^K-dessous nous indiquerons la manière d'établir les
matrices Rww et Rvv.

Matrice Rvv :

Pour un nœud quelconque /, on commence par écrire,
sur la jme ligne qui lui correspond, r„ K„ dans la
colonne y/j, puis on considère successivement l'extrémité i
de toutes les barres aboutissant en j (sauf si cette extrémité
est un appui ou une articulation) et on écrit r„ Kq C„
dans chaque colonne y/,. Si l'extrémité est un appui, ou
une articulation ou si les nœuds i et y ne sont pas reliés par
une barre, l'élément r,i dans l'expression de la matrice RW¥
doit ê® pris égal à zéro. En vertu du principe de réciprocité,

la matrice RVI// est symétrique.

Matrice Rw, :

Il faut remarquer que seules les barres verticales
aboutissant au nœud en considération fournissent des
contributions à l'équation de nœud [voir l'équation (29)].

Pour le nœud j situé à l'étage e, on écrit sur la jme ligne
de la sous-matrice R,„ Dlk -Du dans la
colonne ve, puis on écrit successivement r,, e-i Ay dans
la colonne v«_i (sauf si e 1) et r,re+1 — Dk, dans
la colonne ve+j (sauf si e E où le nœud k correspondant

à j n'existe pas). Tous les autres éléments sur la
jme ligne (je ja sous-matrice doivent être pris égaux à zéro.
Dans le cas où certaines barres sont articulées, il faut
tenir compte des modifications indiquées dans les
paragraphes 4.1.2 et 4.1.3.

I
Mjt ^fIMJkJ1 ^T* ST

jmi

L

'»ai-a
Fig. 10. — Equilibre d'une traverse.

4.3 Equations d'étage

Nous obtenons les équations d'étage en écrivant l'équilibre

des forces horizontales. Si nous coupons le cadre par
des paires de plans horizontaux, très près de chaque poutre
(fig. 10), il faut que pour la partie isolée :

EH 0

équation que nous pouvons expliciter en

EV„+EV* 0

dans laquelle

(31)

(32)

27 V,i est la somme des efforts tranchants le long de la
coupure inférieure et

E V,k est la somme des efforts tranchants le long de la
coupure supérieure.

Les efforts tranchants V,i et V,k peuvent être remplacés
par leur expression en fonction de y/ et v,

V,, —Dt, y/i — D,i y/,—G,, ve _j + G„ ve (33)

V,k D,k y/, + Dk, Vk + G,k ve — Gk, ve+1

Nous obtenons

E —Di, Vi §j (D,k—D,i) y/. + kADk,y/k

1 m V„-l -\ m u + G,k) ve — EGkl ve+l

dans laquelle :

E s'étend à tous les nœuds inférieurs des barres reliant

l'étage e à l'étage e—l.

s'étend à tous les nœuds supérieurs des barres reliant

les étages e et e—l et à tous les nœuds inférieurs des barres
reliant les étages e et e+1.

k
E s'étend à tous les nœuds supérieurs des barres reliant

les étages e et e+1.

Dans le cas où le système comprend des barres articulées

à certains nœuds, il y a lieu d'en tenir compte à l'aide
des indications des paragraphes 4.1.2 et 4.1.3.

Pour chaque étage nous pouvons écrire une équation
d'étage. Pour le cadre en étude de E étages, nous avons
ainsi E équations d'étage liant les rotations y/ et les
déplacements v du cadre. Comme dans le cas des équations de
nœud, l'ensemble des équations d'étage peut être écrit
sous forme matricielle de la manière suivante :

Fig. 9.

340

Equilibre d'un nœud. Ä,,n, + Ä„D, 0 (35)



Dans laquelle :

R,v est une matrice rectangulaire d'ordre Ex N
Rvv est une matrice carrée d'ordre ExE.

Les vecteurs Dv et D„ ont déjà été définis dans le
paragraphe 4.2.

Les matrices RVy/ et Rw s'établissent concrètement de la
façon suivante :

D'abord on constate que l'équation (34) relative à
l'étage e permet de remplir la eme ligne de ces deux matrices.
On note également que seules les barres verticales
aboutissant à l'étage e fournissent des éléments dans cette ligne.

2' '<
^^

^§S
sss (a)

2' m$

s 3

sas (b)

Fig. 11. — Cadre considéré pour la matrice S.

Matrice Rv :

Pour chaque nœud i, correspondant à l'extrémité
inférieure d'une barre liant l'étage e en question avec celui de
l'étage inférieur, on écrit dans la ime colonne ra — Dq.

Pour chaque nœud j, situé à l'étage e, on écrit dans la
y'me colonne re, (D,k—D,i).

Enfin, correspondant à chaque nœud k, correspondant
à l'extrémité supérieure d'une barre liant l'étage e en
question avec celui de l'étage supérieur, on écrit dans la
kme colonne rek Dk,.

Matrice Rvv :

On remarque d'après l'équation (34) que la eme ligne
correspondante à l'étage e, contient tout au plus trois
éléments non nuls, à savoir re -u re et te. e+1' Le

terme diagonal re, e vaut „ (G,, + G,k). La sommation

s'étend à toutes les extrémités supérieures des barres
reliant les étages e et e—1, si e < E, à toutes les extrémités
inférieures des barres reliant les étages e et e + 1. Puis on

i
a re_ e-, — —EGi, où la sommation s'étend à toutes les

extrémités inférieures des barres reliant l'étage e à l'étage
e-1.

k
' £'

tion s'étend à toutes les extrémités supérieures des barres
reliant l'étage e + 1 à l'étage e.

Enfin, on a, si e < E, re_ e+i

4.4 Matrice de rigidité du cadre

La matrice complète de la structure qui comprend les
déplacements des étages aussi bien que les rotations angulaires

des nœuds peut être écrite comme suit :

*^y/y/ "\f/ RV,D,

RVa Dw + Rw D,

0

0

(36)

ou bien

Rv„ Rv,

—>
Dl

D,

(37)

soit D le vecteur déformation de la structure défini par

D {D¥ Dv) {y/lt y/2, y/N, v,, vu vE} (38)

L'expression (37) peut alors se mettre sous la forme

RD 0 (39)

où R est une matrice de dimension MxM appelée matrice
de rigidité du cadre (M N + E).

Nous donnerons maintenant la matrice R sous forme
de tableau pour la construction représentée à la figure lia
qui comporte un étage de hauteur variable et un étage de
hauteur constante. Comme cette construction comprend
quatre nœuds en dehors des appuis et deux étages, nous
avons six variables indépendantes : y/lt y/2, y/3, y/t, vj, va.

Sur la première ligne, nous inscrivons les inconnues,
c'est-à-dire les rotations des nœuds y/x, y/2, y/3, y/it puis
les déplacements des étages vj et v// en commençant
toujours par l'étage inférieur.

Sur la première cjstanne du tableau, nous inscrivons
successivement les nœuds, puis les étages dans l'ordre déjà
considéré.

D'abord nous avons écrit les formules exprimant l'équilibre

des nœuds puis les relations exprimant l'équilibre
des traverses. On peut remarquer dans ce tableau que l'on
a une disposition symétrique par rapport à la diagonale
principale.

Tableau 1

Matrice de rigidité du cadre représenté à la figure lia

Vi V* Va ¥i VI va

1 \%i K21 C21 0 0 I>n-I>io --D»!

2 I ^12 C1S *aa 0 *u Q» : £la -£»i
3 : ° 0 ^38 ¦"¦43 C43 : ^84 ^80 -#48

4 i ° Ku CM ^"34 ^"34 •^44 jA>4 ~Dti

I »i*-D10 £*i d*-d* ^43 ; : (^10 + ^18+
: l+Gw+Gao')

—Gal—Gj,-

II -On --»»i §Ê -^43 — Gla—GS4 GU+ Gi3 \

Dans lequel :

Kn K10 + K13- + K12 j

K%2 ^21 Y Ajj ;

K30'

Kti — Ki2

K«

Kt

Il y aura lieu d'établir un tableau analogue au tableau 1

pour chaque construction étudiée. En pratique, il n'est pas
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nécessaire d'établir toute la théorie dans chaque exemple,
mais il est possible de remplir directement le tableau à
l'aide de ce que nous avons dit sur les sous-matrices Rvv,
Ry,v Rvy, et ^n- Cette tâche est encore facilitée si l'on se
souvient que les sous-matrices Rvw et Rvv sont symétriques
et que la sous-matrice Rvy/ est la transposée de RM&ß

4.5 Charge critique du cadre

La relation (39) s«|jcompose d'ullpystème d'équations
linéaires dont les inconnues sont des rotations et des
déplacements qui prennent naissance par suite du
déplacement fortuit du cadre par rapport à son état d'équilibre
fondamental. Ces équations sont satisfaites en prenant :

y/, 0 (/ 1 à N) et ve 0 (e I à E) (40)

Ceci indique que sous la charge considérée, il n'existe
aucune autre forme d'équilibre dans le voisinage de la
forme d'équilibre fondamental. Donc, le cadre est stable.

La forme d'équilibre après flambage ne devient possÄs
que si les équations du système (39) comportent pour y/i
(i 1 à N) et ve (e I à E) des solutions différentes de
zéro, ce qui exige que le déterminant de ce système d'équations

soit nul. En annulant ce déterminant, on obtient
l'équation de stabilité :

M o (41)

Marche à suivre pour le calcul de la charge critique

1. On commence le calcul avec une valeur initiale de
X X0 qui est plus petite que la valeur critique Xcr cherchée.

2. On évalue la charge axiale dans chacune des barres,
en utilisant pour les charges nodales les relations (2).

3. Ensuite, on détermine les coefficients K, C, D et G
relatifs à chaque barre compte tenu des types des liaisons
aux extrémités comme cela est indiqué dans le
paragraphe 4.1. On écrit les sous-matrices Rwy/ et au besoin
R,„v, Rvw et Ry,, comme cela est décrit aux paragraphes 4.2

3. On calcule ensuite le déterminant A.
*WV:

et 4

4. Puis, X sera augmenté par étapes de Sx et le calcul
indiqué ci-dessus est répété jusqu'à ce que l'on arrive à
des valeurs X A/„/ et X XsUp différentes de la valeur ôx,
de sorte que

pour Xtnf, A est positif,

pour X,up, A est négatif.

Ceci indique que la charge critique du cadre, définie
par X — Xcr, se situe entre Xin, et Xmp (fig. 12).

A

<-=>>¦i1—.<—,'

Inf X
sup

cr2er

Fig. 12.
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5. On continue les calculs au-delà de la valeur Xi„f avec
des accroissements réduits ô2, <58, ôn (avec ôtt <
< S2 |lfll»pour améliorer l'exactitude dans la détermination

de la charge critique.

6. On trouve ainsi les valeurs raffinées de XMf et X„p
différentes de ôn- Xcr est alors pris égal à (Xw + AJW)/2.

4.6 Systèmes sans déplacements des nœuds

Dans de nombreux cas pratiques, les déformations des
cadres sont limitées aux rotations des nœuds. On est, par
exemple, en présence d'un tel cas lorsque toutes les charges
horizontales d'un cadre sont transmises par des planchers
intermédiaires rigides à tous les étages à des voiles massifs
d'extrémité ou à des pans en treillis placés dans les façades
ou à des bâtiments voisins (voir fig. lb, Id, If et fig. lib).

On obtient une simplification notable du calcul de la
charge critique de ces cadres, parce que tous les déplacements

ve (e I à E) des étages et toutes les équations
correspondantes du système (36) disparaissent alors. La
relation (39) s'écrit alors :

Rvw Dv — 0

et la condition de stabilité devient :

R„ 0

(42)

(43)

Ces systèmes sont donc particulièrement simples à
calculer.

A titre d'exemple, nous donnerons, ci-après, la matrice
Rvw pour le cadre représenté à la figure 11b. On
constate que c'est le même cadre montré sur la figure lia
avec les déplacements des nœuds empêchés.

Tableau 2

Matrice de rigidité du cadre représenté à la figure 11b

Vi Vi V3 Vi

1 *n Ktl Cal 0 0
2 Kn Ci* Kn 0 ""42 ^48
3 0 0 ^33 ¦*M3 ^48
4 0 KM CM ^84 CS4 *44

4.7 Simplifications dans les cas particuliers

Nous allons indiquer les simplifications des calculs
provenant de la symétrie du système considéré.

4.7.1 Flambage antimétrique

Si les déplacements transversaux des nœuds ne sont pas
empêchés par des liaisons extérieures, alors, les systèmes
symétriques et symétriquement chargés périssent par
flambage antimétrique.

Dans ce cas, les déformations complémentaires qui
naissent à la charge critique sont antimétriques. Cette
caractéristique permet de limiter les calculs à la moitié du
cadre seulement.
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Fig. 13. — Flambage antimétrique d'un cadre dont l'axe de
symétrie passe par le milieu d'une travée.

4.7.1a L'axe de symétrie passe par le milieu d'une travée
(fig. 13a)

Puisque aussi bien le déplacement vertical et le moment
dans la section C sont nuls, figure 13b, on peut couper le
système au point C et remplacer l'action de la partie droite
du système, sur la partie gauche, par un appui articulé
déplacable horizontalement (fig. 13c).

Le cadre représenté à la figure 13a se calcule donc
exactement comme celui indiqué à la figure 13d. Les inconnues
sont y/lt y/3, y/2, v/ et va.

4.7.1b L'axe de symétrie coïncide avec l'axe d'une
colonne (fig. 15a)

Deux cadres identiques sous des charges identiques
auront des déformées semblables (voir fig. 14a et l4||||
Les colonnes adjacentes peuvent donc être superposées et
liées ensemble sans modifier la répartition intérieure des
contraintes et des déformations. Les cadres montrés aux
figures 14a et 14b et celui montré à la figure 14c auront
les mêmes déformations et en particulier, ils auront la
même charge critique.

^2

I

M\

ses (a) (b) ses

3"

2Q,

2 I
s

S

ses (c) 5

Fig. 14. — Flambage de cadres semblables.
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0

°>5I40

S55S (b)

Fig. 15. — Flambage antimétrique d'un cadre dont l'axe de
symétrie coïncide avec l'axe d'une colonne.

Le cadre représenté à la figure 15a se calcule donc
exactement comme celui indiqué à la figure 15b où la moitié
seulement des valeurs réelles de la rigidité et de la charge
axiale des colonnes centrales, données à la figure 15a,
entre en ligne de compte.

4.7.2 Flambage symétrique

Dans les systèmes symétriques et symétriquement chargés

dont les déplacements transversaux des nœuds sont
empêchés, les déformées complémentaires sont en général
symétriques. Cette caractéristique permet de limiter les
calculs et d'introduire les valeurs des angles de la moitié
du portique seulement.

3.i T •3°3 H

X /

t i 111111 i 4

55SS (a) 55SS

il
i

i

2\

X

b)

(d)

Fig. 16. —¦ Flambage symétrique d'un cadre dont l'axe de
symétrie passe par le milieu d'une travée.
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On rencontre deux cas :

4.7.2a L'axe de symétrie passe par le milieu d'une travée
(fig. 16a)

L'angle de rotation et le déplacement horizontal de la
section C qui se trouve sur l'axe de symétrie sont nuls. En
plus, à cause de la symétrie, l'effort tranchant dans cette
barre est nul. On peut couper le système au point C et
remplacer l'action de la partie droite du système, sur la
partie gauche, par un appui déplaçable verticalement et
encastré comme le montre la figure 16c. Le cadre représenté

sur la figure 16a se calcule donc exactement comme
celui indiqué à la figure 16d. Les inconnues sont y/x, y/2
et y/3.

4.7.2b L'axe de symétrie coïncide avec l'axe d'une
colonne (fig. 17a)

Dans ce cas, la déformée complémentaire, correspondant
à la plus petite charge critique, est antimétrique

comme le montre la figure 17b. Par un raisonnement
analogue à celui donné dans le paragraphe 4.7. lb, on constate
que les inconnues qui interviennent dans le calcul de
charge critique sont ytx, y/2, y/3, y/i et y/s.

Notons que la déformée symétrique représentée à la
figure 17c, avec les rotations nulles des nœuds situés sur la
ligne de symétrie, correspond à une charge critique plus
élevée que celle correspondant à la déformée antimétrique.

v p i*
1 i Ie

t0 0°
"SSSJ SS55

\1 0"

0 T
_a

b(a) -t 1
Fig. 18. — Portique simple étudié dans l'exemple 1.

suffit d'étudier le portique représenté à la figure 18b, dont
le nœud 0" ne peut pas tourner mais peut subir un délacement

vertical. Le nombre d'inconnues est égal à un : à
savoir la rotation y/x.

La condition de stabilité est donnée par la relation :

ou bien
K,

*u 0

*K>- I °

On a d'après les relations (27) :

K EL 2 EL
10"

-^¦10" Lg

5. Exemples numériques

œœxemple 1. Nous commençons par une application
numérique relative à une construction élémentaire.
Etudions la stabilité du portique simple symétrique et
symétriquement chargé représenté à la figure 18a pour des
valeurs numériques Lc 12,00 m ; Lp — 10,00 m ;

Ic Ip= 18 260 cm4, E 2100 t/cm2 ; Q 100 t.
Comme le déplacement de la traverse est empêché, il nous

et la condition de stabilité se simplifie comme suit :

2 ELEL s
L

H Lc

i-c l~>p
S10 + 2,4 =0

Le tableau suivant représente le calcul du déterminant A,
pour des valeurs croissantes de <p :

m

SUS*

m
45

±40

0

ses (a) w

1 \

(b)

•3°l'3

2° wl

X

| E *7

4

T

6 i

(c)

Fig. 17. — Flambage antimétrique et symétrique d'un cadre
dont les déplacements des nœuds sont empêchés et dont l'axe
de symétrie coïncide avec l'axe d'une colonne.

V "10 A

5,08
5,09
5,10

- 2,3274

- 2,3830

- 2,4394

+ 0,0726
+ 0,0170

- 0,0394

Donc, la valeojçritique du paramètre tp tpa- — 5,095.

Cette valeur correspond à celle donnée par le tableau du
livre de Bleich [8], La valeur critique du paramètre de
charge X est

<p\r EIC
Q L\ 6,91

Exemple 2. Considérons maintenant la même construction

que précédemment, mais pour laquelle le déplacement
transversal des nœuds est permis (fig. 19a). Dans ce cas,
c'est le flambage antimétrique qui intervient et d'après ce

que nous avons vu au paragraphe 4.7.1, il nous suffit
d'étudier la construction représentée à la figure 19b dont
l'appui articulé 0' est déplaçable horizontalement.
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Fig. 19. — Portique simple étudié dans l'exemple 2.

VQ. XQ XQ

(a) -t (b)

IA

0'

Le nombre d'inconnues est égal à deux : ylt vt. Nous
avons comme condition de stabilité :

Ku —D10

"Dio Gio

(*i, Kw>) Gx -D2

ou

Xi.
EL

Après quelques simplifications, la condition de stabilité
s'écrit :

A (S10 + 7,2) [2510(1 + C10)-(p\0] -lS10à + C10)P= 0

Le tableau suivant représente le calcul du déterminant A,
pour des valeurs croissantes de tp :

<p S10 + 7,2 x S10(l + C10) 2x—ip2 A

2,70
2,75
2,80

2,76
2,77
2,28

10,1179
10,0723
10,0254

10,0630
10,0537
10,0443

5,2297
5,1991
5,1679

5,1929
5,1867
5,1804

3,1694
2,8357
2,4958

2,7682
2,7005
2,6324

4,7180
1,5314

- 1,6858

0,8902
0,2481

— 0,3959

D'où on obtient <pcr 2,775.

Ce résultat correspond exactement à celui donné par le
tableau du livre de Bleich [8]. La valeur critique du
paramètre de charge X est :

Xc.
Ç>2cr E L
Q L\ 2,056.

Exemple 3. Soit à calculer la charge critique du cadre
à deux panneaux représenté à la figure 20a pour des valeurs
numériques Lc 16,00 m ; Lp 20,00 m ; Ic Ip

18 260* cm ; E 2100 t/cm2 ; g 10 t.
Nous avons ici un cadre symétrique et symétriquement

chargé dont le nombre des panneaux est pair. D'après ce

que nous avons vu au paragraphe 4.7.1b, il nous suffit
d'étudier le cadre représenté à la figure 20b. Les inconnues
intervenant dans la condition de stabilité sont : y/x, y/2, v/.

La condition de stabilité est donnée par la relation :

ou

et

Ku K21 C21 -D10-

Kn C12 K22 -D20>

-Dw -D20- Gity +G20'

Ku K10> + K12; K22 K2q

K12 K21 r <PW Ç>20

+ *21

Fig. 20. — Cadre à deux panneaux étudié dans l'exemple 3.

Le tableau suivant donne les valeurs de A pour des

valeurs croissantes de X :

X A

4,00 0,4148
5,00 0,2775
6,00 0,1481
7,00 0,0267
8,00 - 0,0865

7,20 0,0034
7,40 - 0,0196
7,25 - 0,0024

D'où Xcr 7,23.

Cette valeur correspond à celle donnée dans la
référence [6].

Exemple 4. Soit à étudier le portique multiple [7] représenté

à la figure 21a, pour les valeurs numériques /= 0,150 ;

L 12 ; E 2000 ; g 2 ; L Lc i 1,5 L„.
Ici nous avons une construction symétrique, symétriquement

chargée dont le nombre des travées est pair. D'après
ce que nous avons vu au paragraphe 4.7. lb, nous sommes
ramenés à étudier la construction représentée à la figure 21b.
Cette dernière est elle-même une construction symétrique
et symétriquement chargée dont le nombre des travées est

impair. D'après ce que nous avons vu au paragraphe
4.7.1a, nous pouvons nous limiter à l'étude de la
construction représentée à la figure 21c.

Ainsi, le nombre d'inconnues est réduit à quatre (yflt
Vi' vi' viù au heu de huit nécessaires pour le cadre représenté

à la figure 21a.

2v 4j| Ü 21' 2°i. 21' 0«

2 I

0

2 I

2 I
XQ

2 I

4 I

2 XQ

2 I

2 XQ

2 I
2 I

0
sSs

X Q

XQ

2 I

\ Q

2 I

X Q

I W 1

2 I

XQ

XQ

2 1,

XQ

2 I

XQ

2 1J

55SS 55S5S Ä5 5^5^

,'
p I p 1 1 p 1 4-2-

(a) (b) (c)
Fig. 21. — Portique multiple étudié dans l'exemple 4.
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La condition de stabilité est donnée par la relation :

m K-21 ^21 D13 -D10 -D21

Kiz C12 -^22 D12 -D21

Du -D10 Au G10 + G12 —G21

~D12 Ef -G12 G21

où

K - K10 + K10> + K12 : K«« K2, + K

On a également :

Pio Vu 9

20'

ElXQL2. K _ K m
' K10- — A2o' — 1

EI L

Le tableau suivant donne les valeurs de A pour des
valeurs croissantes de X :

X A

4,00 0,8633
5,00 0,4908
6,00 0,2192
7,00 0,0435
8,00 - 0,0418
7,20 0,0195
7,40 - 0,0012
7,25 0,0139
7,30 0,0086
7,35 0,0036
7,40 - 0,0012

D'où Xcr 7,3875

et la charge critique X„Q 14,775

La valeur donnée dans la référence précitée est égale à
14,7723. Dans cette référence, le problème a été étudié
par la méthode d'énergie et on a dû déterminer trois fois
les valeurs propres des matrices d'ordre 8.

Exemple 5. En employant les résultats des paragraphes
4.1 à 4.5, on arrive à résoudre facilement divers problèmes
des colonnes isolées. Prenons, par exemple, les cas représentés

à la figure 22a. C'est une barre encastrée à son extrémité

inférieure et articulée à son extrémité supérieure.
Les déplacements transversaux des deux extrémités
sont empêchés. La colonne a une inertie constante 21

¦f?2

21

XQ

JXQ
1

XQ

I
XQ

2 I

~s*s (a;

i m

i o.

sss (b)

Fig. 22.
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Colonne étudiée dans l'exemple S.

entre les nœuds 0 et 1 et une inertie constante / entre les
nœuds 1 et 2.

Remarquons d'abord que cette colonne peut être considérée

comme un cas limite du cadre représenté à la
figure 22b, quand le moment d'inertie des poutres tend
vers zéro.

On reconnaît tout de suite que les inconnues intervenant
dans la condition de stabilité sont y/x et vj. La condition
de stabilité est donnée par la relation :

(K10 + K12-) iD12.-Dw)

(D12.-D10) (G10 + G12d

On a également :

Ç>io <Pu- V
XQL2
El

Après quelques simplifications la condition de stabilité
s'écrit :

A [2 S10 + S12.] [4 S1Q (1 + C10) + 5ia.-3 ç>2]-

-[512.-2 510(1 + C10)]2 0

Le tableau suivant donne les valeurs de A pour des
valeurs croissantes de X :

<p A

2,00
2,20
2,17
2,18

28,8845

- 4,3270
+ 0,7018

- 0,9747

D'où
Vc 2,175.

Pour des valeurs numériques Z,= 8,00m;/=18 260 cm4 ;
E 2100 t/cm2, la charge critique de la colonne est égale
à 283,5 t.

On constate d'après les exemples qui précèdent, que la
mise en équations du problème, c'est-à-dire l'établissement
du tableau donnant le déterminant A, est facile. Le seul
travail matériel qui puisse être important est l'évaluation
de ce déterminant pour des valeurs croissantes de X qui
est d'ailleurs répétative en nature. Dans les exemples étudiés

jusqu'à maintenant, nous avons volontairement
choisi des cadres très simples afin de ne pas surcharger
inutilement les calculs. Naturellement, dans la pratique, il
n'en est pas toujours ainsi mais lorsqu'on se trouve en
présence d'un système comportant un grand nombre
d'inconnues, on peut alors avoir recours à un ordinateur pour
déterminer Ao-

Dans ce qui suit, nous donnons le calcul de charge
critique de deux cadres dimensionnés ailleurs [9, 10] l'un
d'après les normes allemandes, l'autre d'après les normes
françaises.

Exemple 6. Considérons l'ossature à une seule travée et
plusieurs étages (fig. 23a) soumis à des charges
croissantes [9]. Les profils adoptés pour les barres et les forces
axiales dans les colonnes, correspondant à la valeur de
X 1, sont indiqués dans les tableaux suivants :



Poutre Profil

1-1 145
2-2 145
3-3 145
4-4 I42'/2
5-5 138
6-6 130

Colonne Profil P XPs)

pour A= 1

0-1 2132 77,4 t
1-2 2132 60,9
2-3 2132 44,4
3-4 2128 27,9
4-5 2128 13,5
5-6 2128 3,2

On a ici un cadre symétrique et symétriquement chargé
dont l'axe de symétrie passe par le milieu d'une travée.
Si l'on se réfère au paragraphe 4.îpa, on constate qu'il
est suffisant d'étudier le cadre représenté à la figure 23b.
Les douze inconnues intervenant dans la condition de
stabilité sont y/i(i=\ à 6) ; ve(e l à VI). Le tableau
suivant donne les valeurs de A pour des valeurs
croissantes de X, obtenues à l'aide d'un ordinateur.

X A

9,00 1,0418
17,00 0,1752
25,00 - 0,0149
21,00 0,0349
22,00 0,0161
23,00 0,0021
24,00 - 0,0081
23,20 - 0,0003

D'où

Xcr 23,1*

Exemple 7. Le cadre représenté à la figure 24 fait partie
de l'ossature métallique d'un immeuble d'habitation à
étages [10]. Il comporte 11 étages (9 étages au-dessus du
rez-de-chaussée et du sous-sol) de deux travées égales. La
hauteur de chaque étage est de 3 m et la largeur de chaque
travée est de 6 m. Les profils adoptés pour les barres et
les forces axiales dans les colonnes, correspondant à la
valeur de X 1, sont donnés dans les tableaux ci-après.
Rappelons que les profils des colonnes intermédiaires
ont été choisis par nous, en suivant les règles adoptées
dans la référence précitée.
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Fig. 23. — Cadre étudié dans l'exemple 6.

3,00

3,00

3,00

3,00

3,00

3,00

3,00
9

3,00

3,00

11

10

6,00

22

21

20

19

17

16

15

14

13

12

0
3§S

0'

SNSt

5,00

11°

10°

9°

8°

7°

6°

5°

4°

3°

2°

1°

0
sss

Fig. 24. — Cadre étudié dans l'exemple 7.

Poutres Colonnes extérieures Colonnes intérieures

Poutre Profil

1-12 IPN 360
2-13 IPN 360
3-14 1AP 360 M*
4-15 IAP 360 M
5-16 IAP 360 M
6-17 IPN 300
7-18 IPN 300
8-19 IAP 300 M
9-20 IAP 300 M

10-21 IAP 250 C*
11-22 IAP 250

Colonne Profil P (=XPS)
pour A=l

0-1 HE 32 117,79 t
1-2 HE 32 107,38
2-3 HE 32 99,97
3-4 HE 28 86,56
4-5 HE 28 76,15
5-6 HE 24 66,74
6-7 HE 24 55,17
7-8 HE 20 44,43
8-9 HE 20 33,53
9-10 HE 14 22,46

10-11 HE 14 11,23

Colonne Profil P(=XPs)
pour X 1

0-12 HE 36 145,92 t
12-13 HE 36 133,28
13-14 HE 36 120,54
14-15 HE 32 107,90
15-16 HE 32 95,26
16-17 HE 28 82,58
17-18 HE 28 69,48
18-19 HE 24 56,16
19-20 HE 24 42,52
20-21 HE 20 28,56
21-22 HE 20 14,28

C — série courante.
M — série mince. 347



Le cadre est symétrique et symétriquement sollicité ;
l'axe de symétrie coïncide avec l'axe des colonnes intermédiaires.

Le paragraphe 4.7.1b montre qu'il est possible
d'étudier seulement la moitié du cadre. Le nombre
d'inconnues intervenant dans la condition de stabilité est égal
à 33. Elles sont y/t (i 1 à 22) ; ve(e lk XI).

Le tableau suivant présente les valeurs de A pour des

valeurs croissantes de X, obtenues à l'aide d'un ordinateur.

X A

9,00 956,4850
13,00 0,1890
14,00 — 0,4029
13,20 0,0759
13,40 - 0,0668
13,25 0,0417
13,30 0,0000

d'où Xcr 13,30.

Deux minutes suffisent à l'ordinateur pour faire ce
calcul.

6. Conclusions

Dans cet article, nous avons présenté une méthode,
simple et rapide, pour calculer la charge critique élastique
des cadres rectangulaires plans. Pour commencer, nous
avonslpairement exprimé les relations existant entre les

forces|et les déformations qui conduisent à l'établissement
de la matrice de rigidité. Puis nous avons indiqué le
processus mathématique, qui devient un travail de routine,
pour évaluer la charge critique. La méthode est bien
adaptée aux possibilités des machines électroniques. Nous

basant sur cette méthode, nous avons préparé un
programme qui permet d'évaluer Pel des cadres allant jusqu'à
quinze étages et deux travées. En introduisant cette valeur
dans la formule de Rankine modifiée (1), on obtient la
charge portante du cadre. Cette formule simple ne tient
cependant pas suffisamment compte du phénomène
complexe de stabilité elasto-pffitötique des cadres. Donc, pour
étudier des cadres non usuels ou pour vérifier des projets
définitifs, on utilisera des méthodes plus précises [1, 2, 3],
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les difficultés rencontrées par les néophytes et de donner
les moyens de les résoudre. Evitant les aspects mathématiques

susceptibles de dérouter certains lecteurs, c'est dans
un langage courant qu'il traite les divers paliers de mise
en pratique que l'utilisateur franchira dans l'élaboration,
puis le contrôle*1tt'un programme ; il en verra d'abord
l'aspect délais et en viendra naturellement à l'aspect coût
dont l'utilisation complexe sera résolue avec les ordinateurs.

Il démystifie une méthode dont les aspects concrets
et utiles seront facilement accessibles et qui offre à ceux
qui la pratique des possibilités considérables d'utilisation
au fur et à mesure de leur expérience. A signaler que,
d'après cet exposé, la réalisation d'une usine très complexe
et la réorganisation d'une société de construction ont été
programmées, de même que des programmes administratifs

et financiers dans l'optique d'une orientation nationale
vers les méthodes type P.P.B.S. (Planning Programming
Budgeting System).

Cet ouvrage intéressera tous ceux qui ont à résoudre des

problèmes d'organisation et de programmes : industriels,

ingénieurs, architectes. Traitant les problèmes d'actualité
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éditions en langue allemande, expose les problèmes
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donne une description des nouveaux procédés de mesure
en tenant compte des découvertes les plus récentes de
l'électricité, de la télémécanique et de l'électronique. Ces
procédés ont été mis au point par l'auteur lui-même qui
s'est vu décerner la médaille Humboldt pour les services
rendus par ses nombreux travaux.

Les possibilités d'automatisation de ces mesures, grâce
à l'emploi de méthodes électriques de télémesure et de
procédés de transmission sans fil, sont, notamment, mises
en évidence. Ce sont les bases d'une nouvelle science,
l'électrohydrométrie, qui sont présentées dans cette étude.
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l'hydrologie et traite également de problèmes généraux et
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d'économie rurale et forestière, les architectes industriels.

348


	Flambage par bifurcation des cadres rectangulaires plans

