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BULLETIN TECHNIQUE DE LA SUISSE ROMANDE

96° année 14 novembre 1970 Ne° 23

Flambage par bifurcation des cadres rectangulaires plans
par D* SRIRAMULU VINNAKOTA, chercheur et D7 J.-C. BADOUX, professeur a I'Ecole polytechnique fédérale, Lausanne

1. Introduction

Les cadres rectangulaires sont d’'un emploi courant en
charpente métallique. Ils se présentent sous les formes les
plus variées et constituent des systémes souvent hautement
hyperstatiques.

La capacité portante de tels cadres est limitée, soit par
leur résistance, soit par leur stabilité ou par leurs déforma-
tions. Il y a en général interférence entre ces trois effets et
donc une théorie générale pour calculer la capacité por-
tante des cadres doit faire intervenir ces trois effets simul-
tanément, ce qui complique énormément les calculs.

A T'heure actuelle (1970), il existe trés peu d’études pré-
cises [1, 2, 311 qui permettent d’analyser jusqu’a la rup-
ture le comportement des cadres a plusieurs étages et a
plusieurs panneaux. Dans ces méthodes, les calculs sont
faits & I'aide de calculatrices électroniques et/ou a I'aide
d’abaques. Leur utilisation qui nécessite un temps de
calcul assez considérable, ne se justifie que pour vérifier
des projets définitifs ou pour étudier des cadres non usuels.
Pour déterminer les charges ultimes des cadres courants,
on se contente généralement de méthodes approchées qui
peuvent conduire a des résultats suffisamment justes.

En s’inspirant de la formule de Rankine, M. Merchant
a proposé une telle méthode pour le calcul de la charge
portante des cadres non contreventés a plusieurs étages,
méthode qui se résume a 'application de I’équation sui-
vante [4]:

1 1 1

1 Les numéros entre crochets renvoient a la bibliographie
en fin d’article.
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Fig. 1. — Types de constructions qui peuvent étre résolus a
I’aide de I’étude présente.

ou Pg est la charge critique du flambage du cadre fait d’'un

matériau a élasticité infinie.

Py est la charge limite donnée par la théorie plastique du
premier ordre.

P, est la charge portante du cadre.

11 a été démontré que la formule de Rankine générali-
sée (1) donne des valeurs des charges portantes avec une
bonne sécurité en regard de la grande majorité des analyses
exactes effectuées. Mais, malheureusement, I'utilisation de
cette équation n’est pas aussi simple qu’il apparait a pre-
miére vue, car la détermination de P entraine des calculs
considérables.

Dans cet article, nous exposerons une méthode pratique,
basée sur la méthode des déformations, pour calculer la
charge critique Pfﬁ des cadres rectangulaires. Puis, nous
donnerons des exemples numériques.

2. Enoncé du probléme étudié

Le présent exposé est consacré au calcul de la charge
critique des cadres rectangulaires plans formés de barres
droites d’inertie constante. Les colonnes du cadre, qui sont
verticales, s’élévent sans interruption depuis la fondation
jusqu’a la partie supérieure de la structure. De méme les
poutres (horizontales) sont continues de la gauche a la
droite de la structure. Ainsi, il n’y a aucune barre man-
quante dans un panneau intérieur. Les colonnes du pre-
mier étage peuvent étre de longueurs différentes. Les barres
peuvent étre reliées aux nceuds, qui sont considérés indé-
formables, soit par des assemblages rigides, soit par des
articulations. Les pieds des colonnes peuvent étre ou bien
articulés ou bien encastrés d’une maniére rigide a la fon-
dation.
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Fig. 2. — Désignation et sollicitation du cadre.
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Les figures la a 1g représentent quelques-unes des cons-
tructions entrant dans le groupe considéré qui, au point
de vue pratique, est trés important puisqu’il comprend les
portiques simples, les portiques continus, ainsi que les
cadres multiples a étages et réunit par conséquent les
constructions qui se rencontrent le plus fréquemment.

Les forces extérieures considérées dans la présente étude
sont telles que, avant la perte de stabilité, les barres ne
subissent qu’une compression axiale (ou traction) sans
subir de flexion. A titre d’exemple, la figure 2 montre un
tel systéme de forces. Ici, les charges sont uniquement des
charges concentrées appliquées aux nceuds, agissant dans
I’axe des colonnes.

Un cadre faisant partie d’'un batiment est, en pratique,
soumis a des charges dues au poids propre et aux sur-
charges. Pour simuler les conditions de sollicitation dun
tel cadre, on a considéré un systéme de charges non pro-
portionnelles dans lequel chaque force se compose de
deux parties. Ainsi, on a:

0,= 0 + }~Qs1 5 o= QOgp + )-Qs2§ cee @)

La premiere partie, affectée de I'indice g, caractérise la
contribution du poids propre. Elle reste constante.

La deuxiéme partie, affectée de I'indice s, augmente pro-
portionnellement a sa valeur initiale. Elle représente la
contribution des surcharges dont l'intensité est définie par
le coefficient de proportionnalité ou paramétre de charge /.

La transformation des poids morts et des surcharges
agissant sur les barres horizontales en forces nodales se
fait par un procédé simple. On considére chaque poutre,
entre deux nceuds consécutifs, comme une poutre sur
appuis simples. Les charges concentrées équivalentes agis-
sant aux nceuds sont égales et de signe opposé aux réac-
tions de cette poutre simple. Quand il y a des forces hori-
zontales agissant aux nceuds, les forces axiales dans les
barres sont trouvées par un calcul préliminaire ou leur
effet sur la rigidité est négligé.

Si le parameétre de charge A augmente, pour une cer-
taine valeur critique de A = /., la forme fondamentale
d’équilibre avec les barres rectilignes devient instable.
Cette valeur est caractérisée par le fait que le cadre peut,
sous cette charge, soit garder la forme fondamentale
d’équilibre, soit prendre une autre forme. Le passage d’un
état d’équilibre a un autre s’accompagne en général de
I’apparition dans les barres de déformations et d’efforts
complémentaires.

Afin d’évaluer la valeur critique de 4, nous procédons
comme suit : pour un niveau de sollicitation A laissé cons-
tant, nous imposons au cadre dans sa position initiale une
déformation générale (trés petite) compatible avec les
conditions d’appuis. Nous étudions I’équilibre du cadre
dans cette position déplacée et analysons dans quelles
conditions une telle déformée peut se trouver dans le voi-
sinage de la déformée fondamentale du cadre. Dans le cas
des cadres étudiés, la déformée complémentaire peut étre
obtenue par déplacement des poutres.

3. Hypothéses
La présente étude est basée sur les hypothéses suivantes :

I. Les matériaux qui constituent les barres sont supposés
parfaitement et infiniment élastiques.

II. Les nceuds sont supposés étre rigides.

IIT. Les forces sont supposées conserver leur direction
initiale et leur point d’application initial pendant le
flambage.
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IV. En plus, les forces extérieures sont telles que, avant
la perte de stabilité, les barres ne subissent qu’une
force axiale (compression ou traction) sans subir de
flexion.

V. Les déformations (a I'état déplacé) sont considérées
petites.

VI. Le cas de flambage étudié est celui du flambage par
flexion dans le plan du cadre. Il est supposé que le
flambage spatial accompagné de torsion et le voile-
ment local des parois sont empéchés.

De plus, on néglige les variations élastiques de longueur
dues aux efforts axiaux. Tous les nceuds d’une traverse
présentent donc le méme déplacement transversal v.

4. Théorie

Considérons la construction représentée sur la figure 2
qui comprend N nceuds en dehors des appuis et E étages.
Dans la méthode des déformations, qu’on envisage d’uti-
liser ici, on admet comme inconnues les déformations du
cadre. D’apres les hypotheses du paragraphe 3, ce sont les
rotation de N nceuds et les déplacements de E étages. Pour
déterminer ces N + E (= M) inconnues, on a besoin de M
€quations, que I'on va établir dans les paragraphes qui
suivent.

Faisons maintenant une remarque sur les indices et sur
la désignation des éléments. Les nceuds du cadre portent
chacun un numéro. Les indices dont on affecte les charges
et les rotations se rapportent toujours a ces numéros.
Normalement, il y a quatre barres qui aboutissent a un
nceud. I1 est donc indiqué d’affecter chaque grandeur d’un
deuxieéme indice, qui donne le numéro du nceud de 'autre
extrémité de la barre. Ainsi Kj; est le coefficient X relatif
au nceud j de la barre ji.

Si la liaison entre I'extrémité d’une barre et le nceud
correspondant est une articulation, ce fait est indiqué par
une prime sur lindice correspondant. Ainsi Kj. est le
coefficient K relatif au nceud j de la barre ji, liée rigide-
ment au nceud ; et articulée en i.

4.1 Relations de base
D’abord nous exprimons les efforts aux deux extrémités
des barres en fonction des déformations en ces mémes
points. Nous examinerons quatre cas de liaisons aux
extrémités des barres :
— barre liée rigidement a ses deux extrémités ;
— barre liée rigidement a une de ses extrémités et arti-
culée a I'autre ;
— barre articulée a ses deux extrémités et
— barre liée rigidement a ses deux extrémités mais dont
I'un des encastrements est libre de se déplacer per-
pendiculairement a la barre.

position initiale

Fig. 3. — Déformée et sollicitation d’une barre jj dans la
position déplacée du cadre.



Fig. 4. — Equilibre d’un élément (z, z + dz) de la barre 7.

4.1.1 Barre liée rigidement a ses deux extrémités
Prenons une barre du systéme aboutissant aux nceuds i
et j et considérons cette barre avant et apres sa déforma-
tion (fig. 3). Considérons le cas général ou les sections de
la barre subissent des rotations et des déplacements :
soient L; la longueur de cette barre, /;; le moment d’inertie
de la section, P; l’effort normal sollicitant cette barre.

Posons :

Wi, w;i angle de rotation des extrémités i respectivement 7,
vi;, vii déplacements transversaux des extrémités de la

barre, perpendiculaire a sa position initiale ;
M,;;, M;; moments de flexion aux extrémités de la barre ;
Vi, Vi efforts tranchants aux extrémités de la barre.

Signes

Angles de rotation des nceuds y : positif si la déforma-
tion se fait dans le sens contraire des aiguilles d’'une montre.

Déplacements v: positifs s’ils ont lieu de bas en haut
ou de droite a gauche.

Effort normal P : positif dans le cas d’une compression.

Les moments aux nceuds, agissant sur les extrémités des
barres, sont positifs s’ils tournent dans le sens contraire
des aiguilles d'une montre.

Les efforts tranchants aux nceuds, agissant sur les extré-
mités des barres, sont positifs s’ils agissent de bas en haut
ou de droite a gauche.

L’équilibre d’un petit élément dz, situé a l’abcisse z,
donne, en négligeant les termes de second ordre (fig. 4) :

dm
— = —V+ Py 3)
dz
on a également :
la pente yy = f (C))
dz
12
la courbure @ — < (®)
dz*?
M
P = — 6
En plus @ £l (6)

On obtient d’aprés les équations (3) a (6) la relation

14y d?v
A iTzT + Py—e =0 @)

5 dz

La solution générale de 1’équation homogene (7) est
donnée par :

y = a, + as z + ag sin (py ) + a, cos (pi; 2) (8)

1 Afin de simplifier I’écriture, nous supprimons les indices
ij des grandeurs L, I, P et ¢.

Py L%
El

9)

et a;, ay, az et a, sont les quatre constantes d’intégration
a déterminer.

Le déplacement transversal, la pente, le moment de
flexion et I'effort tranchant en un point z de la barre
s’écrivent ! a 'aide des relations (3) a (6) et (7):

v =a,+a,z+ azsingz+ aycos gz (10)
1 ¢ = P =
7 :a2z+a3zc05(pz—a4z51n(pz (11)
M=a3PsingZ+a,Pcosgpz (12)
P
PRt s 13
a 7 13)

Les constantes d’intégration sont déterminées par les
conditions aux extrémités de la barre, a savoir :

W=y, v=vyv;enz=0
] ] (14)
W=y, v=vienz=L

qui peuvent étre exprimées, a l'aide des relations (10)
et (11), sous forme matricielle :

o ~ & 0
ii — e a
Vi I L 1
Vij 1 0 0 1 ay
- 1 ¢ ¢ G
Wi 0 I I cosp — I sin ¢ as
Vii 1 1 sing cos ¢ a,
D’olu on obtient :
-1
L ¢
ay 0 z Z O l//i,‘
a, 1 0 0 | Vi
= (16)
1 ¢ .
as 0 T L5osp —z s 0 Wi
a, I 1 sing cos ¢ Vii

Le signe —1 indique l'inverse de la matrice.

Les moments et les efforts tranchants aux extrémités
peuvent étre obtenus a I'aide des relations (12) et (13).
Ainsi nous avons, en tenant compte des signes...

M, 0 0 0 P a
P
Vij 0 z 0 0 a,
= (17
M 0 0 —Psinp —Pcosg ag
P
Vii 0 —1 0 0 a,
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En remplacant dans le systéme ci-dessus les constantes
d’intégration par leurs valeurs données par la relation
matricielle (16) on obtient aprés des transformations

simples :
My Kij Dy Ky C; —Dy Wii
Vii Dj; Gij Dj; —Gji Vij
= (18)
M, Kij Ci Dy Kji —Dj; Wii
Vii —Dj; —Gy —Dy Gji Vji

ou les fonctions de stabilit¢ C, D, G et K sont défi-
nies [5] par

Sy — ¢ (sin ¢ — ¢ cos p) — S
v 2—2cosp —psing)

o/
~ (sin ¢ — ¢ cos )

EI_ _EI
Ky=—Si  Ki= —Su (19)

ij Ji

K
Dy = Tu (1 + Cy) = Dy

Lorsque P a une valeur tres faible, ou quand les effets
de deuxiéme ordre de la charge directe sont négligés, les
valeurs de K, C, D et G s’obtiennent a partir des équations
correspondantes ci-dessus, en faisant tendre P vers zéro.

El 1
Kij:4T=l(ji; Ci;=§:Cii

ET E.T o
Dli:6zzzD/"; G”:IZF:Gﬁ

Interprétation statique des coefficients K, G, C et D

Si dans la relation (18) on fait v; = v; = 0 et W =0,
ona:

Mij = Ky wiy; My = Ky Cy wy.

Nous voyons que K a la dimension d’un moment,
w étant un nombre et Kj = My pour y;; = 1.

La grandeur Kj est le moment a lextrémité i de Ia
barre ij, rigidement encastrée a ses deux extrémités et
soumise a I’effort normal centré P; (fig. 5), provoqué par
une rotation unitaire du nceud i.

K s’appelle «le facteur de rigidité ».

=T — -1
! ! 517Ky G
R Ty
P Myg =Ky
i j

Fig. 5. — Désignation des coefficients K et C.
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La grandeur Cj est le rapport du moment Mj; transmis
a I'extrémité j au moment Mj; agissant & I’extrémité i pour
les conditions mentionnées ci-dessus. C s’appelle « le fac-
teur de transmission ».

Pour avoir linterprétation de G et D, nous faisons dans
la relation (18):

Yij = z//ﬂ:Oet\lﬁ:O, ona:

Vij= —=Vii= Gyvij; M= M; = Dyvy
Gij=Vy |

pour y;j = 1
D= Mj |

La grandeur Gj est l'effort tranchant nécessaire aux
extrémités de la barre ij, soumise a un effort normal
centré P;, pour déplacer transversalement les deux extré-
mités d’une unité de longueur lorsque les rotations des
extrémités sont empéchées (fig. 6). G; s’appelle « la
rigidité a leffort tranchant ».

Dj; est le moment a Iextrémité i de la barre pour ce
dernier cas de charge.

4.1.2 Barre liée rigidement a une de ses extrémités et
encastrée a I’autre

Soit une barre jj liée rigidement au nceud i et articulée
en j (figure 7b). Nous avons y;j 7 ;. Nous pouvons
exprimer ’angle de rotation a I’articulation en fonction de
I’angle de rotation au nceud rigide i. De ce fait, nous dimi-
nuons le nombre des équations de rotation, les angles de
rotation aux articulations se calculant en fonction des
angles de rotation des nceuds rigides.

En effet, en substituant Mj; = 0 dans le systeme (18) et
en 'ordonnant, nous obtenons :

Mij K Djj» — Dy Wij

Vi/ = Dii' G[j' = G]-Ii Vij (21)

Vii — Dy — Gi/' Gi’i Vii
ou

EI
Siir =S (1 —C%); Ky = I Sij; Kjy=0= Cy
(22)
Kti’ D,'-/ P

Dy = 7 Dy Gy = T’ A

Nous avons en plus la relation
wiri = — [Kij Cyj wij + Diy (vy — vip)] /K (23)

qu’on peut calculer une fois qu’on a yy;, vy et vy



il .

. E i |
[ L |
~ Tl M «
(a) (b) (c) (d) (e)
Fig. 7. — Cas particuliers des conditions aux limites.

4.1.3 Barre articulée a ses deux extrémités

Considérons maintenant une barre ij articulée aux
nceuds 7 et j du cadre (fig. 7e). Nous avons M;; = M;; = 0.
En introduisant ces valeurs dans le systéme de base (18)
et en le simplifiant, on obtient la relation :

Vij Gy —Gpw vij
= (24)
Vii — Gy Gy Vi
ou
Vi
Gpjr = — Z = Gy
(25)

Ky = Kjop = Cirjl = Cjy = Dypjr = Djy =0

En plus, on a pour les rotations aux extrémités de la
barre (rappelons que W/ 7 Wi Wi 7 W) :

Wiy = Wi = i— vy /L

qu’on peut calculer une fois qu’on a vj; et vj;.

4. 1.4 Barre liée rigidement a ses deux extrémités mais
dont I'un des encastrements est libre de se déplacer
perpendiculairement a la barre (fig. 8)

Soit une barre i a liaison rigide dans le nceud i et dont
I’extrémité j est encastrée parfaitement sur un appui dépla-
cable dans le sens perpendiculaire a I'axe de la barrel.
Donc, on a les conditions :

Wi=0; Vi=0=Vj;

En substituant ces valeurs dans la relation matricielle (18)
et en la simplifiant, nous avons :

Mj; = Kij» iy + Dy vy (26)
ou
DyDy EI
Kijr = ii__l‘G—”—T if
ji

(27

Dy =Dy — 1P _

i == =

Nous avons en plus les relations :

D; Dy
ij /l‘ Wi =5 Dil" vy

Mji = )Ku Ciip —
L I

Vi = ’VD” i+ Gy ‘/G}i

Fig. 8. — Barre liée rigidement a ses deux extrémités, mais
dont I'un des encastrements est libre de se déplacer perpendi-
culairement a la barre.

qu’on peut calculer une fois qu’on a w;; et v;. Lorsque P
a une valeur trés faible, ou quand les effets de deuxiéme
ordre de la charge directe sont négligés, la valeur de S~
s’obtient a partir des relations (19) et (27), en faisant
tendre P vers zéro. Ainsi Sy = 1.

4.2  Equations de neud

Considérons maintenant un nceud j situé a I’étage e et
liant quatre barres entre elles. Soient 7, /, k, m les nceuds
adjacents liés par une barre avec le neeud j (fig. 2).

Ecrivons les équations des moments :
Mji = Kjiy; + Kij Cij Wi + Dij Ve-s — Dji v
Mk = Kjk Wi + Kij Crj Wi + Djx Ve—Dij Ve 1
Mj = Ky y; + Ky Gy yu (28)
My = Kijm i + K Conj Wi

Or, pour que le nceud soit en équilibre (fig. 9), il faut que
2 M;=0.

En faisant la somme de ces quatre expressions et en
I’égalant a zéro, on a:

Kijyi+ 2 Ky Ciyjyi+ Dive-1 + (Dj—Dj) Ve — Dij vey1 =0
29
avec Kj; = 2 K.

Les sommations s’étendent a tous les nceuds adjacents
au nceud j considéré. L’équation (29) est appelée I'équa-
tion de nceud.

Remarques

1. Pour les barres articulées au nceud j (voir par exemple
fig. 7b et 7e), il est a remarquer qu’elles n’apportent
aucune contribution de moment et par conséquent elles
n’interviennent pas dans 1’équation de nceud correspon-
dante.

2. Sil’'un des nceuds voisins, le nceud i par exemple, est
un nceud d’appui a encastrement rigide (fig. 7a), les termes
(Ky Cy wi), (Dy ve-s) correspondants disparaissent du
fait de Yi= 0 et Veerpi == 0

3. Sile nceud d’appui i est au contraire articulé (fig. 7d),
le terme D;v,-; disparait de nouveau du fait de
ve-; = 0, ainsi que le terme (K;; Cy; ;) du fait de
Ki; = 0; les coefficients Kj; et D;; sont a remplacer par
les coefficients Kj; et Dj» conformément aux relations (22).

4. Pour un nceud complétement articulé (fig. 7d,
neeud i), il n'y a pas d’équation de nceud parce qu’il en a
déja été tenu compte dans le systeme (22) et elles sont ainsi
éliminées du calcul.

b Ce fait est indiqué par le signe ” placé a cdté de I'indice de
I'extrémité correspondante j. (Voir les équations 26 et 27.)
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5. Pour les nceuds parfaitement encastrés, ’angle de
rotation est nul et I'équation de nceud correspondante dis-
parait également.

Si nous avons N nceuds intermédiaires (en dehors des
appuis), nous avons donc N équations de nceud. Cet
ensemble de N équations peut étre mis sous la forme matri-
cielle, comme suit :

—> —>
R,,D,+ R,»D,=0 (30)

Dans laquelle :

—

D, est le vecteur colonne dont les N éléments sont les
rotations des neeuds = { W, Wo, ..., Wi, Wi, - .., YN

—

D, est le vecteur colonne dont les E éléments sont les
déplacements des étages = { vy, vz, ..., Ve, ..., VE )

R, est une matrice carrée d’ordre Nx N et

R,y est une matrice rectangulaire d’ordre Nx E.

Ci-dessous nous indiquerons la maniére d’établir les
matrices R,,, et R,,.

Matrice wa

Pour un nceud quelconque j, on commence par écrire,
sur la jme ligne qui lui correspond, r; = Kj; dans la
colonne y;, puis on considére successivement 'extrémité i
de toutes les barres aboutissant en j (sauf si cette extrémité
est un appui ou une articulation) et on écrit r; = K; Cj;
dans chaque colonne ;. Si I'extrémité est un appui, ou
une articulation ou si les nceuds 7 et j ne sont pas reliés par
une barre, I’élément rj; dans I’expression de la matrice Ry
doit étre pris égal a zéro. En vertu du principe de récipro-
cité, la matrice R, est symétrique.

Matrice R, :

Il faut remarquer que seules les barres verticales abou-
tissant au nceud en considération fournissent des contri-
butions a 1’équation de nceud [voir I’équation (29)].

Pour le nceud j situé a I’étage e, on écrit sur la jme ligne
de la sous-matrice R,,; ri = + Dy —Dj dans la co-
lonne v,, puis on écrit successivement rj,.; = Dj; dans
la colonne v.; (sauf sie = 1) et rj,o; = — Dy; dans
la colonne v, ; (sauf si ¢ = £ ou le nceud k correspon-
dant a j n’existe pas). Tous les autres éléments sur la
j™e ligne de la sous-matrice doivent étre pris égaux a zéro.
Dans le cas ou certaines barres sont articulées, il faut
tenir compte des modifications indiquées dans les para-
graphes 4.1.2 et 4.1.3.

()(

"\

_-_,____
—_—a

Fig. 9. — Equilibre d’un nceud.
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Fig. 10. — Equilibre d’une traverse.

4.3 Equations d’étage

Nous obtenons les équations d’étage en écrivant I’équi-
libre des forces horizontales. Si nous coupons le cadre par
des paires de plans horizontaux, trés prés de chaque poutre
(fig. 10), il faut que pour la partie isolée :

ZH=10 31
équation que nous pouvons expliciter en
ZVi+2XVg=0 (32)

dans laquelle

2 Vj; est la somme des efforts tranchants le long de la
coupure inférieure et

2 Vjr est la somme des efforts tranchants le long de la
coupure supérieure.

Les efforts tranchants Vj; et Vj peuvent étre remplacés
par leur expression en fonction de y et v,
Vii= —Dijyi — Dji Wi—Gijve -1 + Gji v, (33)

Vik = Djx Wi + Dij Wi + Gik Ve — Gij Vey s

Nous obtenons :

s . k T
é [-Dﬁ !//iJ + é [(Dik*Dn) l//j] + 5 [Dki V/kJ =

. , X
[é G,-,} Ve-1 + [g (Gji + ij)] Ve [Z Gki] Vexs =0

dans laquelle :

s’étend a tous les neeuds inférieurs des barres reliant

%

I’étage e a 'étage e—1.

J
2
les étages ¢ et ¢—1 et a tous les nceuds inférieurs des barres
reliant les étages ¢ et e+ 1.

s’étend a tous les nceuds supérieurs des barres reliant

5 b, ’ e ;
> s’étend a tous les nceuds supérieurs des barres reliant

les étages ¢ et e+ 1.

Dans le cas ou le systtme comprend des barres articu-
lées a certains nceuds, il y a lieu d’en tenir compte a I'aide
des indications des paragraphes 4.1.2 et 4.1.3.

Pour chaque étage nous pouvons écrire une équation
d’étage. Pour le cadre en étude de E étages, nous avons
ainsi E équations d’¢tage liant les rotations i et les dépla-
cements v du cadre. Comme dans le cas des équations de
nceud, l'ensemble des équations d'étage peut étre écrit
sous forme matricielle de la maniére suivante :

> —>
Ry, D, + Ryy Dy =0 (35)

vy



Dans laquelle :

R,, est une matrice rectangulaire d’ordre Ex N

R,, est une matrice carrée d’ordre Ex E.
— . )
Les vecteurs D, et D, ont déja été définis dans le para-
graphe 4.2.
Les matrices R,,, et R,, s’établissent concretement de la
fagon suivante :

D’abord on constate que I'équation (34) relative a
I’étage e permet de remplir la e™e ligne de ces deux matrices.
On note également que seules les barres verticales abou-
tissant a 1’étage e fournissent des éléments dans cette ligne.

Matrice R,,, :

Pour chaque nceud i, correspondant a I'extrémité infé-
rieure d’une barre liant I’étage e en question avec celui de
I’étage inférieur, on écrit dans la i™e colonne r,; = — Dj;.

Pour chaque nceud j, situé a 1’étage e, on écrit dans la
j™e colonne r.; = (Djx—Djy).

Enfin, correspondant a chaque nceud k, correspondant
a lextrémité supérieure d’une barre liant 'étage ¢ en
question avec celui de 1’étage supérieur, on écrit dans la
kme colonne re = Dy;.

Matrice R,, :

On remarque d’aprés 1’équation (34) que la eme ligne
correspondante a 1’étage ¢, contient tout au plus trois
€léments non nuls, a savoir re, ey, re, ¢ €t re, oy1. Le

terme diagonal r,, . vaut EI (Gji + Gjr). La sommation

s'étend a toutes les extrémités supérieures des barres
reliant les étages e et e—1, si e < E, a toutes les extrémités
inférieures des barres reliant les étages e et e + 1. Puis on
!
a re, e = —2Gy ol la sommation s’étend a toutes les
extrémités inférieures des barres reliant 1’étage e a 1’étage
e—1.
. k 5
Enfin, on a;sie < B, reeii= ~ 5 Gyj, ou la somma-

tion s’étend a toutes les extrémités supérieures des barres
reliant 1’étage ¢ + 1 a I'étage e.

4.4 Matrice de rigidité du cadre

La matrice compléte de la structure qui comprend les
déplacements des étages aussi bien que les rotations angu-
laires des nceuds peut étre écrite comme suit :

—> —
R,, D, + R, D, =0
s - (36)
Ry, D, + Ry D, =0
ou bien
_ —>
R wwy R wv D W
<0 (37)
Rr,/, Rrr 7))'
S

soit D le vecteur déformation de la structure défini par

= { w1, Was -5 WN, VI, Vi, - -, VE} (38)

2 4 2y \ 4
~—J4 —_—\ ~ -
fj e X [l et \
: \ I !
1 ! ) i
\ A i I
] (TR |13 1Y s - N3
\ | \ /
\ H \ I
\ \ | !
! 1 1 !
\\\ ’I \
\] O ! Y 0!
0 0
& (2 SO
Fig. 11. — Cadre considéré pour la matrice R.

L’expression (37) peut alors se mettre sous la forme

—>
RD=0 (39)

ou R est une matrice de dimension M x M appelée matrice
de rigidité du cadre (M = N + E).

Nous donnerons maintenant la matrice R sous forme
de tableau pour la construction représentée a la figure 11a
qui comporte un étage de hauteur variable et un étage de
hauteur constante. Comme cette construction comprend
quatre nceuds en dehors des appuis et deux étages, nous
avons six variables indépendantes : vy, Wy, Ws, W4, Vi, VI

Sur la premiere ligne, nous inscrivons les inconnues,
c’est-a-dire les rotations des nceuds wy, Wy, Vs, Wy, puis
les déplacements des étages vy et vy en commengant tou-
jours par I’étage inférieur.

Sur la premiere colonne du tableau, nous inscrivons
successivement les neeuds, puis les étages dans I'ordre déja
considéré.

D’abord nous avons écrit les formules exprimant 1’équi-
libre des nceuds puis les relations exprimant 1’équilibre
des traverses. On peut remarquer dans ce tableau que I’on
a une disposition symétrique par rapport a la diagonale
principale.

TABLEAU 1

Matrice de rigidité du cadre représenté a la figure 1la

41 Y Vs

1 Ky Ky Cyy | O 0 Dy, —Dy, —Dy,

2 K G | Ky 0 Kyp Cag  Dyy —Dyy

3 0 0 Ksy Kis Cag 0 Dyy— Dy — Dy,

4 o 0 Kyy Coy | K34 Cyy K Dy, —Dyy

1 Dyy—Dyg| Dy Dy —Dyy’| Dy (Glo+612+/ _021_043:
LGyt Gyo) :

1 *Dlz _Dz1 *Dai —D4a 621+G43

:_612“634

Dans lequel :
Ky = Ky + Ky + Ky s Kg3 = Ky + Kgy:

Ky = Ky + Kyy3 Kaa = Kyp + Kyy.

Il y aura lieu d’établir un tableau analogue au tableau |
pour chaque construction étudiée. En pratique, il n’est pas
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nécessaire d’établir toute la théorie dans chaque exemple,
mais il est possible de remplir directement le tableau a
I’aide de ce que nous avons dit sur les sous-matrices Ry
R,., R,, et R,,. Cette tiche est encore facilitée si I'on se
souvient que les sous-matrices R,, et R,, sont symétriques
et que la sous-matrice R,,, est la transposée de Ry

4.5 Charge critique du cadre

La relation (39) se compose d’un systéme d’équations
linéaires dont les inconnues sont des rotations et des
déplacements qui prennent naissance par suite du dépla-
cement fortuit du cadre par rapport 4 son état d’équilibre
fondamental. Ces équations sont satisfaites en prenant :

vi=0(=1aN)etv,=0(e=13E) (40)

Ceci indique que sous la charge considérée, il n’existe
aucune autre forme d’équilibre dans le voisinage de la
forme d’équilibre fondamental. Donc, le cadre est stable.

La forme d’équilibre aprés flambage ne devient possible
que si les équations du systéme (39) comportent pour ;
(i=1a N)et v, (¢e=1IaE) des solutions différentes de
z€ro, ce qui exige que le déterminant de ce systéme d’équa-
tions soit nul. En annulant ce déterminant, on obtient
I’équation de stabilité :

|R|=4=0 @1)

Marche a suivre pour le calcul de la charge critique

1. On commence le calcul avec une valeur initiale de
/.= Ay qui est plus petite que la valeur critique A, cher-
chée.

2. On évalue la charge axiale dans chacune des barres,
en utilisant pour les charges nodales les relations (2).

3. Ensuite, on détermine les coefficients K, C, D et G
relatifs a chaque barre compte tenu des types des liaisons
aux extrémités comme cela est indiqué dans le para-
graphe 4.1. On écrit les sous-matrices R,, et au besoin
Ry, Ry, et R,,, comme cela est décrit aux paragraphes 4.2
et 4.3. On calcule ensuite le déterminant 4.

4. Puis, A sera augmenté par étapes de 0, et le calcul
indiqué ci-dessus est répété jusqu’a ce que I’on arrive a
des valeurs 4 = Ay et 1 = Ay, différentes de la valeur §,,
de sorte que

pour Ay, 4 est positif,

pour Ag,p, 4 est négatif.

Ceci indique que la charge critique du cadre, définie
par 2 = A, se situe entre Ay et Ag, (fig. 12).

ﬂu\

1 \ 61 -
3 o
-
| eZ.

Kinf
Ao A

xsup
er cr2

Fig. 12. — Courbe 2—4 d’un cadre.
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5. On continue les calculs au-dela de la valeur A;;, avec
des accroissements réduits dy, Js, ..., d, (avec &, < ...
< 0y << 6y) pour améliorer I'exactitude dans la détermi-
nation de la charge critique.

6. On trouve ainsi les valeurs raffinées de Ay et Ag,
différentes de J,. Acr est alors pris égal & (Lins + Agp)/2.

4.6 Systemes sans déplacements des neuds

Dans de nombreux cas pratiques, les déformations des
cadres sont limitées aux rotations des nceuds. On est, par
exemple, en présence d’un tel cas lorsque toutes les charges
horizontales d’un cadre sont transmises par des planchers
intermédiaires rigides a tous les étages a des voiles massifs
d’extrémité ou a des pans en treillis placés dans les fagades
ou a des batiments voisins (voir fig. 1b, 1d, If et fig. 11b).

On obtient une simplification notable du calcul de la
charge critique de ces cadres, parce que tous les déplace-
ments v, (¢ = I a E) des étages et toutes les équations
correspondantes du systeme (36) disparaissent alors. La
relation (39) s’écrit alors :

R,, D, =0 (42)
et la condition de stabilité devient :
A:]RW]=O (43)

Ces systemes sont donc particuliérement simples a cal-
culer.

A titre d’exemple, nous donnerons, ci-apres, la matrice
R, pour le cadre représenté a la figure 11b. On con-
state que c’est le méme cadre montré sur la figure 11a
avec les déplacements des nceuds empéchés.

TABLEAU 2

Matrice de rigidité du cadre représenté a la figure 11b

51 Vs Vs Wy
1 Ky Ky Cy 0 0
2 Ky, Gy Ky, 0 Ky, Cyy
3 0 0 Ky Kys Cyy
4 0 Ky Coy K3y Cyy Kyq

4.7 Simplifications dans les cas particuliers

Nous allons indiquer les simplifications des calculs pro-
venant de la symétrie du systéme considéré.

4.7.1 Flambage antimétrique

Si les déplacements transversaux des nceuds ne sont pas
empéchés par des liaisons extérieures, alors, les systemes
symétriques et symétriquement chargés périssent par
flambage antimétrique.

Dans ce cas, les déformations complémentaires qui
naissent & la charge critique sont antimétriques. Cette
caractéristique permet de limiter les calculs a la moitié du
cadre seulement.
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Fig. 13. — Flambage antimétrique d'un cadre dont I'axe de
symétrie passe par le milieu d’une travée.

4.7.1a L’axe de symétrie passe par le milieu d’une travée
(fig. 13a)

Puisque aussi bien le déplacement vertical et le moment
dans la section C sont nuls, figure 13b, on peut couper le
systeme au point C et remplacer ’action de la partie droite
du systéme, sur la partie gauche, par un appui articulé
déplagable horizontalement (fig. 13c).

Le cadre représenté a la figure 13a se calcule donc exac-
tement comme celui indiqué a la figure 13d. Les inconnues
sont Yy, W3, We, Vi et vy

4.7.1b Laxe de symétrie coincide avec I'axe d’une
colonne (fig. 15a)

Deux cadres identiques sous des charges identiques
auront des déformées semblables (voir fig. 14a et 14b).
Les colonnes adjacentes peuvent donc étre superposées et
liées ensemble sans modifier la répartition intérieure des
contraintes et des déformations. Les cadres montrés aux
figures 14a et 14b et celui montré a la figure 14c auront
les mémes déformations et en particulier, ils auront la
méme charge critique.

(e)

Fig. 14. — Flambage de cadres semblables.

Qs
37 5 3°y
Lgs
1y 2 4 25 y1°
L40
S\
N (a) ,x_ S
S5y Q5
‘|| 0,5 I,
_____ 14
l‘\
\‘\ 0,5 1'40
\
0
AN
(b)
Fig. 15. — Flambage antimétrique d’un cadre dont I’axe de

symétrie coincide avec I’axe d’une colonne.

Le cadre représenté a la figure 15a se calcule donc exac-
tement comme celui indiqué a la figure 15b ou la moitié
seulement des valeurs réelles de la rigidité et de la charge
axiale des colonnes centrales, données a la figure 15a,
entre en ligne de compte.

4.7.2 Flambage symétrique

Dans les systemes symétriques et symétriquement char-
gés dont les déplacements transversaux des nceuds sont
empéchés, les déformées complémentaires sont en général
symétriques. Cette caractéristique permet de limiter les
calculs et d'introduire les valeurs des angles de la moitié
du portique seulement.

Fig. 16. — Flambage symétrique d'un cadre dont l'axe de
symétrie passe par le milieu d’une travée.
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On rencontre deux cas :

4.7.2a Laxe de symétrie passe par le milieu d’une travée
(fig. 16a)

L’angle de rotation et le déplacement horizontal de la
section C qui se trouve sur 1’axe de symétrie sont nuls. En
plus, a cause de la symétrie, I’effort tranchant dans cette
barre est nul. On peut couper le systtme au point C et
remplacer I'action de la partie droite du systéme, sur la
partie gauche, par un appui déplacable verticalement et
encastré comme le montre la figure 16¢. Le cadre repré-
senté sur la figure 16a se calcule donc exactement comme
celui indiqué a la figure 16d. Les inconnues sont q, W,

et ys.

4.7.2b L'axe de symétrie coincide avec [l'axe d’une
colonne (fig. 17a)

Dans ce cas, la déformée complémentaire, correspon-
dant a la plus petite charge critique, est antimétrique
comme le montre la figure 17b. Par un raisonnement ana-
logue a celui donné dans le paragraphe 4.7. 1b, on constate
que les inconnues qui interviennent dans le calcul de
charge critique sont wy, Wo, Ws, W, et ws.

Notons que la déformée symétrique représentée a la
figure 17c, avec les rotations nulles des nceuds situés sur la
ligne de symétrie, correspond a une charge critique plus
élevée que celle correspondant a la déformée antimétrique.

5. Exemples numériques

Exemple 1. Nous commengons par une application
numérique relative a une construction élémentaire. Etu-
dions la stabilité du portique simple symétrique et symé-
triquement chargé représenté a la figure 18a pour des
valeurs numériques L. = 12,00 m; L, = 10,00 m;
I, =1,=18260 cm%, E=2100 t/cm?; Q= 100 t.
Comme le déplacement de la traverse est empéché, il nous

Qs
y3 o y3°
Lys
1 2 4 2°  yl1°
T40

,\,a
m
o

N

(b)
Fig. 17. — Flambage antimétrique et symétrique d’un cadre

dont les déplacements des nceuds sont empéchés et dont I'axe
de symétrie coincide avec I'axe d’une colonne.
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(b) —H

Fig. 18. — Portique simple étudié¢ dans 'exemple 1.

suffit d*étudier le portique représenté a la figure 18b, dont
le nceud 0” ne peut pas tourner mais peut subir un délace-
ment vertical. Le nombre d’inconnues est égal a3 un: a
savoir la rotation /.

La condition de stabilité est donnée par la relation :
A = Ky =10
ou bien
Ky + K9 =0

On a d’apres les relations (27) :

ELy  2EI,
Ly Ly

Ky =

et la condition de stabilité se simplifie comme suit :

Ed: 2ET
7 S+ Lp”:o—>sw+
Ll
2 =10 A= 2.4 =0
+ I L, = S10 + 2,

Le tableau suivant représente le calcul du déterminant 4,
pour des valeurs croissantes de ¢ :

@ Sto 4

5,08 — 2,3274 -+ 0,0726
5,09 — 2,3830 -+ 0,0170
5,10 — 2,4394 — 0,0394

Donc, la valeur critique du parametre ¢ = ¢, = 5,095.

Cette valeur correspond a celle donnée par le tableau du
livre de Bleich [8]. La valeur critique du paramétre de
charge /A est

¢% E L

2
c

= 6,91

her =

Exemple 2. Considérons maintenant la méme construc-
tion que précédemment, mais pour laquelle le déplacement
transversal des nceuds est permis (fig. 19a). Dans ce cas,
c’est le flambage antimétrique qui intervient et d’aprés ce
que nous avons vu au paragraphe 4.7.1, il nous suffit
d’étudier la construction représentée a la figure 19b dont
'appui articulé 0" est déplagable horizontalement.
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Fig. 19. — Portique simple étudié dans I’exemple 2.

Le nombre d’inconnues est égal a deux: y;, vi. Nous
avons comme condition de stabilité :

4 = Ky, —Dy = (Kl(] + KIO’) GlO _Dzm =0
—Dyy Gy
ou
E L
Ky = 3 10
10’

Apres quelques simplifications, la condition de stabilité
s’écrit :

4= (S19+ 7,2)[281(1 + C19)—0*0] —[S1o(l + C1 =0

Le tableau suivant représente le calcul du déterminant 4,
pour des valeurs croissantes de ¢ :

7 Sio + 7.2 x = S + Cyp) | 2x—¢? 4

2,70 | 10,1179 5,2297 3,1694 4,7180
2,75 | 10,0723 5,1991 2,8357 1,5314
2,80 | 10,0254 5,1679 2,4958 | — 1,6858
2,76 | 10,0630 5,1929 2,7682 0,8902
2,77 | 10,0537 5,1867 2,7005 0,2481
2,28 | 10,0443 5,1804 2,6324 | — 0,3959

D’ou on obtient ¢ = 2,775.

Ce résultat correspond exactement a celui donné par le
tableau du livre de Bleich [8]. La valeur critique du para-
metre de charge /A est:

; 0% E I,
dp = /’Q—ch ~ 2,056.

Exemple 3. Soit a calculer la charge critique du cadre
a deux panneaux représenté a la figure 20a pour des valeurs
numériques L, = 16,00 m; L, = 20,00 m; I.= I, =
= 18260% cm ; E = 2100 t/cm?; Q = 10 t.

Nous avons ici un cadre symétrique et symétriquement
chargé dont le nombre des panneaux est pair. D’aprés ce
que nous avons vu au paragraphe 4.7.1b, il nous suffit
d’étudier le cadre représenté a la figure 20b. Les inconnues
intervenant dans la condition de stabilité sont : w,, w,, v1.

La condition de stabilité est donnée par la relation :

Ky Ky Coy  —Dyy
4= Ky Cra Ky Dy =0
Dy —Dy, G +Gay
ou
Ky = Ky + Kipi Kyy = Koy -+ Ky
et
EL,
Kip = Kyy =4 — 1 1o = Py
L,

A Q
| \
l‘ 1 2 1° 1 2
Lc ; Ic IC I Ic 0,5 Ic
| o 0! or o o!
L L
D D
(a) 7 (b)
Fig. 20. — Cadre a deux panneaux étudié¢ dans I’exemple 3.

Le tableau suivant donne les valeurs de 4 pour des
valeurs croissantes de A :

A 4
4,00 0,4148
5,00 0,2775
6,00 0,1481
7,00 0,0267
8,00 — 0,0865
7,20 0,0034
7,40 — 0,0196
7,25 — 0,0024

Dot Az =17,23.

Cette valeur correspond a celle donnée dans la réfé-
rence [6].

Exemple 4. Soit a étudier le portique multiple [7] repré-
senté a la figure 21a, pour les valeurs numériques /= 0,150 ;
L=12; E=2000; Q=2; L=L.=1,5 L,

Ici nous avons une construction symétrique, symétrique-
ment chargée dont le nombre des travées est pair. D’apres
ce que nous avons vu au paragraphe 4.7.1b, nous sommes
ramenés a étudier la construction représentée a la figure 21b.
Cette derniere est elle-méme une construction symétrique
et symétriquement chargée dont le nombre des travées est
impair. D’aprés ce que nous avons vu au paragraphe
4.7.1a, nous pouvons nous limiter a 1’étude de la cons-
truction représentée a la figure 21c.

Ainsi, le nombre d’inconnues est réduit a quatre (yq,
W, Vi, Vi) au lieu de huit nécessaires pour le cadre repré-
senté a la figure 21a.

22 Q
A Q AQ AR A Q A Q
g .2 4 2°y 2 2°y 2y 0!
21 21 fT 2 Tq
Lol 1 2T I 1 3t I
°l 21 Q
, A Q AQ A Q A Q xQ
L1y 3 1% 1 ie 1y o
r 21 21 21 21
Lel21 41 21l 21 21f 21 |
‘ 0 0 0 0 0
AR | S SR
T LP T p \ $ Lp ‘ i_:g i
4 —F + + +—
(a) (b) (e)
Fig. 21. — Portique multiple étudi¢ dans I'exemple 4.
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La condition de stabilité est donnée par la relation :

Ky, Ky Cyy Dyy —Dyy —Dyy
Kyp Cs Ky Dy, —Dy;
A= —0
Dyy —Dyy Dy Gip+ Gy —Gyy
—Dy, —D,;  —Gy Gy
ou
Ky = Ky + Ky + Ky Ky = Ky + Koy
On a également :
EI

AOL?
— =g i Ky = Ky = 18 ——
P10 = P12 = ¢ \/ 7 10 20 T

Le tableau suivant donne les valeurs de A pour des

valeurs croissantes de A :

A A
4,00 0,8633
5,00 0,4908
6,00 0,2192
7,00 0,0435
8,00 — 0,0418
7,20 0,0195
7,40 — 0,0012
7525 0,0139
7,30 0,0086
7,35 0,0036
7,40 — 0,0012
D’ou A, = 7,3875
et la charge critique = A, O = 14,775

La valeur donnée dans la référence précitée est égale a

14,7723. Dans cette référence, le probléme a été étudié
par la méthode d’énergie et on a dii déterminer trois fois
les valeurs propres des matrices d’ordre 8.

Exemple 5. En employant les résultats des paragraphes
4.1a4.5, onarrive a résoudre facilement divers problémes
des colonnes isolées. Prenons, par exemple, les cas repré-
sentés a la figure 22a. C’est une barre encastrée a son extré-
mité inférieure et articulée a son extrémité supérieure.
Les déplacements transversaux des deux extrémités
sont empéchés. La colonne a une inertie constante 2/

xQ
Ae— ———
2 =08
L I
A Q
~ T e
L 2I
0
B (a) (b)
Fig. 22. — Colonne étudiée dans I'exemple 5.
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entre les nceuds 0 et 1 et une inertie constante I entre les
neeuds 1 et 2.

Remarquons d’abord que cette colonne peut étre consi-
dérée comme un cas limite du cadre représenté a la
figure 22b, quand le moment d’inertie des poutres tend
vers z€ro.

On reconnait tout de suite que les inconnues intervenant
dans la condition de stabilité sont y; et v;. La condition
de stabilité est donnée par la relation :

(Kyp + Ki2)  (D1gr —Dyg)
(D1y —Dyp)  (Gyp + Gyo)

On a également :

10 L2
¢ == go 71— (p —
S & \/ El

Apres quelques simplifications la condition de stabilité
s’écrit :

A=[2 S10 + S127] [4S;0(1 + Cyp) + S1p—3 0*]—
—[S12— 2 81 (1 + Cm)]2 =0

Le tableau suivant donne les valeurs de A4 pour des
valeurs croissantes de A :

0 A
2,00 28,8845
2,20 — 4,3270
2,17 + 0,7018
1 — 0,9747
D’ou
Qer = 2,175.

Pour des valeurs numériques L = 8,00 m ; 7 = 18 260 cm?;
E = 2100 t/cm?, la charge critique de la colonne est égale
a 283,5 t.

On constate d’apres les exemples qui précédent, que la
mise en équations du probléme, c’est-a-dire 1’établissement
du tableau donnant le déterminant 4, est facile. Le seul
travail matériel qui puisse étre important est 1’évaluation
de ce déterminant pour des valeurs croissantes de A qui
est d’ailleurs répétative en nature. Dans les exemples étu-
diés jusqu’a maintenant, nous avons volontairement
choisi des cadres tres simples afin de ne pas surcharger
inutilement les calculs. Naturellement, dans la pratique, il
n’en est pas toujours ainsi mais lorsqu’on se trouve en pré-
sence d'un systéme comportant un grand nombre d’in-
connues, on peut alors avoir recours a un ordinateur pour
déterminer .

Dans ce qui suit, nous donnons le calcul de charge
critique de deux cadres dimensionnés ailleurs [9, 10] I'un
d’apres les normes allemandes, 'autre d’aprés les normes
frangaises.

Exemple 6. Considérons I'ossature a une seule travée et
plusieurs étages (fig. 23a) soumis a des charges crois-
santes [9]. Les profils adoptés pour les barres et les forces
axiales dans les colonnes, correspondant a la valeur de
A =1, sont indiqués dans les tableaux suivants :

Lo d



Poutre Profil Colonne Profil f:o(u: ﬁ}i)l
1-1 145 0-1 2132 77,4 t
2-2 145 1-2 2132 60,9
3-3 145 2-3 2132 44 4
4-4 142, 3-4 2128 27,9
5-5 138 4-5 2128 13,5
6-6 130 5-6 2128 3,2

On a ici un cadre symétrique et symétriquement chargé
dont I’axe de symétrie passe par le milieu d’une travée.
Si I'on se référe au paragraphe 4.7.1a, on constate qu'’il
est suffisant d’étudier le cadre représenté a la figure 23b.
Les douze inconnues intervenant dans la condition de sta-
bilité sont w;(i=1 a 6); ve(e=1 a VI). Le tableau
suivant donne les valeurs de A pour des valeurs crois-
santes de A, obtenues a I’aide d’un ordinateur.

y) 4

9,00 1,0418
17,00 0,1752
25,00 — 0,0149
21,00 0,0349
22,00 0,0161
23,00 0,0021
24,00 — 0,0081
23,20 — 0,0003

D’ou
Aer = 23,18.

Exemple 7. Le cadre représenté a la figure 24 fait partie
de l'ossature métallique d’un immeuble d’habitation a
étages [10]. Il comporte 11 étages (9 étages au-dessus du
rez-de-chaussée et du sous-sol) de deux travées égales. La
hauteur de chaque étage est de 3 m et la largeur de chaque
travée est de 6 m. Les profils adoptés pour les barres et
les forces axiales dans les colonnes, correspondant a la
valeur de 4 = 1, sont donnés dans les tableaux ci-apres.
Rappelons que les profils des colonnes intermédiaires
ont été choisis par nous, en suivant les régles adoptées
dans la référence précitée.

Poutres Colonnes extérieures

Poutre Profil Colonne Profil P (=APy)

pour A=

1-12 | IPN 360 0-1 HE 32 117,79 t
2-13 IPN 360 1-2 HE 32 107,38
3-14 TIAP 360 M* 2-3 HE 32 99,97
4-15 IAP 360 M 3-4 HE 28 86,56
5-16 | IAP 360 M 4-5 HE 28 76,15
6-17 IPN 300 5-6 HE 24 66,74
7-18 IPN 300 6-7 HE 24 59,17
8-19 IAP 300 M 7-8 HE 20 44,43
9-20 | TAP 300 M 8-9 HE 20 33,53
10-21 IAP 250 C* 9-10 HE 14 22,46
11-22 IAP 250 10-11 HE 14 11,23

* C — série courante.
* M — série mince.

3,60
5 l 50
3,60 |
4 %4°
3,80
o 3 #3"
4,00
o 2 :%2"
4,00
i 15
3,00 .
0 0
3 S
10,00
A
(a) (b)
Fig. 23. — Cadre étudié dans I’exemple 6.
X
J4T: 22 118
3,00 10 21 10°
3,00 9 20 90
3,00 8 19 8°
3300 7 18 7°
3500 6 17 6°
=y 5 16 52
00
% 4 15 4°
51y 00 3 14 3°
3500 2 13 22
3500 1 12 s
3,00
0 0 0
. \
6,00 | 6,00
L] L
Fig. 24. — Cadre étudi¢ dans I'exemple 7.
Colonnes intérieures
Colonne Profil P (=1Py)
pour A = 1
0-12 HE 36 14592 t
12-13 HE 36 133,28
13-14 HE 36 120,54
14-15 HE 32 107,90
15-16 HE 32 95,26
16-17 HE 28 82,58
17-18 HE 28 69,48
18-19 HE 24 56,16
19-20 HE 24 42,52
20-21 HE 20 28,56
21-22 HE 20 14,28
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Le cadre est symétrique et symétriquement sollicité ;
I’axe de symétrie coincide avec I'axe des colonnes intermé-
diaires. Le paragraphe 4.7.1b montre qu’il est possible
d’étudier seulement la moiti¢é du cadre. Le nombre d’in-
connues intervenant dans la condition de stabilité est égal
a33. Ellessont y; (i =1a22); v.(e =1a XI).

Le tableau suivant présente les valeurs de A pour des
valeurs croissantes de A, obtenues a l’aide d’un ordina-
teur.

A 4

9,00 956,4850
13,00 0,1890
14,00 — 0,4029
13,20 0,0759
13,40 — 0,0668
13,25 0,0417
13,30 0,0000

d’ou 4. = 13,30.

Deux minutes suffisent a l’ordinateur pour faire ce
calcul.

6. Conclusions

Dans cet article, nous avons présenté une méthode,
simple et rapide, pour calculer la charge critique élastique
des cadres rectangulaires plans. Pour commencer, nous
avons clairement exprimé les relations existant entre les
forces et les déformations qui conduisent a 1’établissement
de la matrice de rigidité. Puis nous avons indiqué le pro-
cessus mathématique, qui devient un travail de routine,
pour évaluer la charge critique. La méthode est bien
adaptée aux possibilités des machines électroniques. Nous

basant sur cette méthode, nous avons préparé un pro-
gramme qui permet d’évaluer P;’r’ des cadres allant jusqu’a

quinze €tages et deux travées. En introduisant cette valeur
dans la formule de Rankine modifiée (1), on obtient la
charge portante du cadre. Cette formule simple ne tient
cependant pas suffisamment compte du phénomeéne com-
plexe de stabilité élasto-plastique des cadres. Donc, pour
étudier des cadres non usuels ou pour vérifier des projets
définitifs, on utilisera des méthodes plus précises [1, 2, 3].
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Dans la recherche de l'organisation la plus efficace,
c’est-a-dire la plus rapide et la plus siire, pour élaborer
et controler des programmes d’études ou de réalisation,
la méthode PERT est celle qui, par ses preuves éclatantes
aux Etats-Unis, a remporté le plus grand succes.

Dans son ouvrage, P. Sicard tente de mettre en lumiere
les difficultés rencontrées par les néophytes et de donner
les moyens de les résoudre. Evitant les aspects mathéma-
tiques susceptibles de dérouter certains lecteurs, c’est dans
un langage courant qu’il traite les divers paliers de mise
en pratique que l'utilisateur franchira dans 1’élaboration,
puis le contrdle d’un programme; il en verra d’abord
I’aspect délais et en viendra naturellement a 'aspect colt
dont I'utilisation complexe sera résolue avec les ordina-
teurs. Il démystifie une méthode dont les aspects concrets
et utiles seront facilement accessibles et qui offre a ceux
qui la pratique des possibilités considérables d’utilisation
au fur et & mesure de leur expérience. A signaler que,
d’aprés cet exposé, la réalisation d’une usine trés complexe
et la réorganisation d’une société de construction ont été
programmées, de méme que des programmes administra-
tifs et financiers dans I’optique d’une orientation nationale
vers les méthodes type P.P.B.S. (Planning Programming
Budgeting System).

Cet ouvrage intéressera tous ceux qui ont a résoudre des
problémes d’organisation et de programmes : industriels,
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ingénieurs, architectes. Traitant les problemes d’actualité
de fagon simple, cet ouvrage s’adresse aussi aux profes-
seurs et étudiants des Facultés et des grandes écoles.

Nouveaux procédés de mesure en hydrologie. Méthodes
de base de I'électrohydrométrie, par H. Andreae, profes-
seur habil., docteur &s sciences naturelles, ancien directeur
de la section hydrologie et directeur de I'Institut hydrologique
a la Faculté des sciences de I’Université Humboldt de Berlin.
Paris, Dunod, 1970. — Un volume 16x24 cm, xviir - 901
pages, 67 figures. Prix : broché, 44 F.

Le présent ouvrage, qui a déja fait 'objet de plusieurs
éditions en langue allemande, expose les problemes fon-
damentaux de I’hydrologie et de I’économie de 1’eau et
donne une description des nouveaux procédés de mesure
en tenant compte des découvertes les plus récentes de
I’électricité, de la télémécanique et de I’électronique. Ces
procédés ont été mis au point par l'auteur lui-méme qui
s’est vu décerner la médaille Humboldt pour les services
rendus par ses nombreux travaux.

Les possibilités d’automatisation de ces mesures, grace
a Pemploi de méthodes électiiques de télémesure et de
procédés de transmission sans fil, sont, notamment, mises
en évidence. Ce sont les bases d’une nouvelle science,
I’électrohydrométrie, qui sont présentées dans cette étude.

Ce livre contient de plus de nouvelles définitions sur
I’hydrologie et traite également de problémes généraux et
de leurs solutions.

Il représente un instrument de travail utile pour les hydro-
logues, les géologues, les géophysiciens, les géographes,
les météorologues, les spécialistes d’économie des eaux,
d’économie rurale et forestiére, les architectes industriels.
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