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tion de la réaction d'induit considérée et de la position
angulaire des encoches et ajustées par un diviseur de

tension.

7.1.2.1 Réaction d'induit directe (fig. 7)
En relevant des équipotentielles judicieusement choisies

(bord des têtes de dents), on obtient le tracé de

champ de réaction d'induit directe. Si le tracé est
suffisamment fin, on peut faire apparaître le flux de fuite
transversal d'encoche et le flux de fuite d'alésage comme
montré sur l'exemple.

L'électrode 100 % n'existe que s'il y a une encoche
sur l'axe interpolaire.

7.1.2.2 Réaction d'induit transverse (fig. 8)
Les remarques concernant la réaction d'induit directe

s'appliquent aussi à la réaction d'induit transverse. On
constatera cependant un flux de fuite d'alésage beaucoup

plus faible dans ce cas.
L'électrode 100 % n'existe que s'il y a une encoche

sur l'axe polaire.

7.2 Répartition des températures dans le fer d'un turbo-
rotor

On a choisi comme modèle un rotor possédant sous
chacune de ses encoches un canal d'amenée d'air frais.
La température des bords de ces canaux est de 18°C
alors que la température du bord des encoches est de
70°C. La température de la périphérie du rotor est de
29,5°C.

En admettant que le potentiel des canaux est de 0 %
et celui des encoches de 100 %, on trouve par le modèle
analogique à la périphérie du rotor un potentiel de

22,2 %.
Le rotor étant symétrique par rapport à ses axes

polaires et interpolaires, on peut ne considérer qu'un
quart de celui-ci. Le papier graphité est donc découpé

1
Fig. 9. — Isothermes.

sur les axes. On recouvre de peinture conductrice les

encoches, les canaux et la périphérie du rotor en ayant
soin d'isoler les canaux des encoches en découpant le

papier au fond de l'encoche (lignes pointillées).
On impose les potentiels respectifs à l'aide du

rhéographe et d'un potentiomètre diviseur.
Avec la sonde, on repère les points ayant le potentiel

préalablement choisi.
Le tracé des équipotentielles se trouve à la figure 9.
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SUR LA REPRESENTATION PLANE
DE STRUCTURES HYPERSTATIQUES
par AUGUSTE ANSERMET, ing., professeur

Dans la littérature hyperstatique le problème faisant
l'objet de ces lignes est peu traité ; c'est le mérite de
la chaire de statique de Lausanne de l'avoir résolu de
façon remarquable puis de consacrer quelques pages à

des applications [1) p. 53-75] 2. Les équations développées

fournissent une solution générale tandis que les

applications portent sur des structures sans barres
surabondantes. L'éminent professeur lausannois ne s'en
est certainement pas tenu là mais pour diverses raisons,
de santé peut-être, n'a plus rien publié. Les lignes qui
suivent poursuivent un double but, en se basant
strictement sur la théorie de Mayor :

1° Calculer quelques pylônes et coupoles dans les cas
où il y a des barres surabondantes, des coupures
pouvant être envisagées. La solution sans
coupures gagne en importance.

2° Etudier ce que deviennent les ellipsoïdes de défor¬
mation en représentation plane.

Cette notion d'ellipsoïdes prend toujours plus de

développement surtout outre-Rhin (on dit aussi
Verschiebungsellipsoïd). Les statieiens qui ont recours
encore à la méthode bien désuète dite aux forces

peuvent aussi calculer ces surfaces moyennant un
changement de variables, ce qui ne sera pas très apprécié des

praticiens.
L'élément fondamental est la matrice de rigidité dont

on effectue l'inversion ; cette matrice ne dépend pas
des forces extérieures ni du choix de la solution : avec
ou sans coupures. Les inconnues, variations de
coordonnées des nœuds, sont différentes mais pas leurs
coefficients, pratiquement tout au moins. Quant aux
forces dites de remplacement pour les barres coupées,
elles sont arbitraires, même nulles. L'échelle des
ellipsoïdes n'est pas encore connue, ce qui importe peu. Au

1 Texte rédigé en hommage à la chaire de statique de I.ausann
(l'.l-G) avec le patronage de la Direction EPFL.
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point de vue des dimensions, il faut multiplier la force
de remplacement par le module de la barre, ce qui fournit

un élément linéaire implicitement compris dans les

termes absolus des équations aux déformations. Dans
la théorie de Mayor les termes absolus résultent de

conditions d'équilibre car il n'y a pas de coupures ni

formation de dérivées partielles de l'énergie.
11 convient de citer ici la remarquable publication

n° 104 de l'EPUL qui est, après plus de quarante ans,
inspirée de la méthode de Mayor. Toutefois cette
publication donne en outre satisfactionn à ceux qui
appliquent la méthode des moindres carrés ; les équations [8[,
qui sont à la base des calculs, sont les équations dites
normales de cette méthode.
Théorème fondamental

C'est celui qui fut soumis à l'Académie des sciences

par la chaire de statique de Lausanne ; étant très connu
il suffit de rappeler qu'il permet de réaliser, d'une
infinité de façons, la représentation plane d'un système
spatial. Le calcul du système plan entraîne le calcul
immédiat de celui de l'espace.

Pour bien comprendre ce théorème, il suffit de

confronter les groupes d'équations (3 — V) valables

spatialement et (3' — V) valables planimétriquement.
A titre de simplification, pour le calcul numérique, on

peut même poser :

a 1 pour le paramètre du complexe directeur
(valeur arbitraire), ce facteur 1 ayant une dimension.

Planimétriquement il y a, bien entendu, encore trois
inconnues pour chaque nœud libre, dont une rotation ;

on n'a pas le choix. Les équations susmentionnées
fournissent tous les éléments des matrices de rigidité.
En plan on n'a plus que des ellipses et les cas concrets
traités ci-après le montreront. La publication de Mayor,
qui était en fait le cours de l'Ecole, est d'une clarté la

mettant à la portée des praticiens. Parmi ces derniers,
certains envisagent d'appliquer la statistique ; ils

auront surtout à appliquer la méthode des moindres
carrés. La statistique fut utilisée dans certains cas

comportant la mesure de déformations (publication
EPUL n° 98). Si la statistique permet de réaliser des

progrès dans ce domaine on s'en réjouira. Mais le mieux,
dans certains cas, est de faire un double calcul en

coupant puis ne coupant pas les barres surabondantes.

Pylônes
Le cas le plus simple est celui d'un pylône à quatre

barres et un sommet libre ; admettons des modules
mutuellement égaux, ce qui donne lieu aussi à l'égalité
des poids des barres (p 1). Quand la hauteur du

pylône varie il y a une valeur IIS qui correspond à la
forme sphérique de l'ellipsoïde de déformation. Il y a

trois variations de coordonnées inconnues.
Les résultats sont les suivants quand H varie.

Matrices
de rigidité

Matrices
inverses

Hauteur
pylône

1,33 Ü 0

1,33 0
1,33

0,75 0 0

0,75 0

0,75

H,
(forme

sphérique)

1,2 0 0

1,2 0
1,6

0,83 0 0

0,83 0

0,625

// > H,
(aplatissement

1,5 II

I,
D

0
1,0

0,067 0 0

0,667 0
1,00j

// < Ih
(allongement

en sens vertical

Les longueurs des axes principaux des ellipsoïdes

sont proportionnelles à \ 0,75 : \/ 0,75 : y/ 0.75 puis
\/~Ô$3 : \/lï&3 : \/\TE& et \/ 0,67 : \Z~^fil : \/TÔ0

En représentation plane, il y a une rotation et deux
coordonnées à calculer par pylône ; en outre les modules
sont fournis par l'équation (fi — V) de Mayor.

Pylônes 22 barres, 5 nœuds libres

(publication EPUL n° 101)

Tableau des coordonnées

(unité de mesure arbitraire)

Nœuds
1

2
3
4
5

6

7

8
9

0
y

0
3 0
0 + 3
3 0

0 — 3

G 0

0 + G

G 0

0 — G

+ 4 nœuds libres
+ 4

+ 4

0

0
0

0

Tableau des poids p
inversement proportionnels aux modules

1 2 3 4 5 G 7 8 9

1 1 1 1

1 0,8 1 1 1

1 0,8 1 1 1
1 1 1 1

1 1 1 1

Matrice de rigidité (partielle)

0,72 0 0 — 0,36 0 + 0,48
0,72 0 0 0 0

2,56 + 0,48 0 — 0,64
nœui 1 2,81 0

2,18
— 0,57

0
1,80

nœud 2

Ces éléments, surtout diagonaux, laissent pressentir que
pour le nœud 1 la forme de l'ellipsoïde n'est pas favorable.

Pour ce nœud 1, les longueurs des axes principaux
sont proportionnelles à 1,57 : 1,57 : 0,80 : il faudrait
modifier la structure ou les valeurs des modules des

barres, donc les poids. La surface est de révolution ce

que l'on pouvait présumer à cause de la structure
symétrique du pylône.

La composante verticale du déplacement du nœud

est exprimée, en représentation plane, en fonction d'une
rotation ; pour une valeur déterminée de celle-ci on a,
dans notre cas, un cercle de déformation.

Coupole du Reichstag à Berlin. Pour mieux
comprendre encore le rôle de la représentation plane
considérons cette coupole qui fit l'objet d'une thèse dirigée

par les professeurs Mayor et Maurice Paschoud ([1],
[6] et publication EPUL n° 86). En vue de conférer

plus d'intérêt à ce cas, 4 barres surabondantes furent
ajoutées (contre-diagonales). Le nombre de barres passa
de 24 à 28 pour 24 inconnues (variations de coordonnées
des nœuds).

Bien que la matrice de rigidité soit la même, avec ou

sans coupures des barres surabondantes, il faut, parfois,
confronter ces deux solutions.

Voici la transcription partielle de la matrice inverse
de celle de rigidité ; le calcul fut effectué par le centre
de calcul électronique de l'EPUL.

2fÎ4 1,56 — 1,20 + 1,95 + 1,53 + 0,73
2,42 + 1,03 — 1,43 —1,04 — 0,94

1,72 — 0,9'i —1,02 — 0,32
îœud 1 2,38 + 1,65 + 0,97

2,58 + 1,15
1,72

nœuds 2

Pour toutes les barres un a admis le même module et
le même poids p 1.
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Dans cet exemple, il y avait lieu de former 24 groupes
comportant chacun 24 équations symétriques par
rapport à la diagonale avec les termes absolus des équations

aux coefficients de poids des inconnues :

0,509 0 0+ 0,047
0,440 0 + 0,056

0,663 0
Nœud 1 0,445

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Les nœuds 1, 2, 3. 4 sonl ceux de la couronne
supérieure de la coupole ; pour le nœud 1, on a

a/2,44 : V 2.42 : V 1,72 1,56 : 1,55 : 1.31.

\ aleurs proportionnelles aux distances du centre de
l'ellipsoïde de déformation aux trois paires de plans
tangents respectivement normaux aux axes des
coordonnées. D'une propriété connue de la surface podaire
concentrique à l'ellipsoïde on déduit que la somme
ci-après : (2,44 -f- 2,42 + 1,72) est indépendante de
l'orientation des axes de coordonnées. Comme on le
sait l'orientation des axes principaux dépend d'une
équation de 3e degré que l'on se contente souvent ici
de résoudre par voie semi-graphique. Si les éléments
non diagonaux (ci-dessus — 1,56, — 1,20 + 1,03) sont
suffisamment petits, les praticiens se contentent parfois
des éléments fournis par la matrice.

Coupole hyperstatique. L'exemple traité à nouveau
est celui ayant fait l'objet de calculs différents à Zürich
(système Stress) et à Lausanne (Publications EPUL
nos 95, 101). Il comporte 30 barres dont 15 surabondantes

ct 15 inconnues (5 nœuds libres) ce qui lui confère
son caractère spécial. Il peut y avoir plus d'équations que
d'inconnues ce qui dépend du mode de calcul ; en
général les praticiens redoutent cette éventualité. A

Lausanne, on tourna la difficulté de façon judicieuse.
En principe, le mode de calcul Stress est basé sur un
programme comprenant des équations aux déformations
et d'équilibre comme l'avait fait B. Mayor.

En ce qui concerne les variations de coordonnées des
nœuds, il ne faut pas oublier qu'il y a deux manières
de les former. La chaire de statique de Lausanne n'a
pas hésité, et, après plus de 40 ans, on doit reconnaître
qu'elle a fait preuve d'une grande perspicacité.

Pour la coupole à 15 barres surabondantes la structure,

s'exprime par les valeurs ci dessous :

Nœuds

Nœuds
fixes

G

7
8

10

— 0,62
— 0,19
+ 0,50
+ 0,50
— 0,19

— 2,00
— 0,62
+ 1,62
+ 1,62
— 0,62

0

+ 0,59
+ 0,365
— 0,365
— 0,59

+ 1,90

f 1,18
— 1,18
— 1,90

+ 1,3
+ 1,3
+ 1,3
+ 1,3
+ 1,3

L'unité de mesure esl arbitraire.

On peut se borner à un rappel partiel de la matrice
inverse de celle de rigidité ; il y a 15 variations de
coordonnées des nœuds.

+ 0,077 0

+ 0,091 0
0 0

— 0,020 0

0,510 0

0,662
Nœud 2

Inversion effectuée par le Centre de calcul électronique
de l'EPUL.

Pour le nœud 1 on a, en représentation plane, une
ellipse de déformation pour une valeur déterminée de
la rotation inconnue.

En tout, ici, il y a 5 rotations et 10 coordonnées des

centres de rotation à calculer.

Spatialement on a \/ 0,509 : \/ 0,440 : \/ 0,663

0,714, 0,664 : 0,81 pour les valeurs relatives des

longueurs des axes principaux.
Quant aux poids à posteriori P, dont le calcul est

parfois laborieux, ils prennent des valeurs qui
interviennent par leurs inverses f : P.

1 :P
5 barres p 0,7 5x0,7 X 0,630= 2,21
5 » 1,15 5X1,15X0,581= 3,35

10 » 1,0 10x1 X0,512 5,12
10 » 0,8 10x0,8 X0.533 — 6,27

Somme pjP 14,95

(théoriquement 15)
(calcul fait à la règle)

Par hypothèse les modules des barres sont les mêmes, à

un facteur près, en plan et spatialement.

Si on veut couper les barres surabondantes, les forces
de remplacement sont arbitraires, parfois nulles ; il
faut les multiplier par les modules des barres pour
convertir ces forces en valeurs linéaires. La force de

remplacement peut varier d'une barre à l'autre et cet
élément est compris implicitement dans les termes
absolus des équations.

En résumé, on voit qu'on peut mettre à l'actif de la
chaire de statique de Lausanne une solution générale
en hyperstatique des systèmes articulés spatiaux avec
leur représentation plane. Le calcul basé sur les
déformations se révèle de beaucoup le meilleur et dans ce
domaine Lausanne joua un rôle prépondérant, ce que
les lignes qui précèdent viennent confirmer. La
représentation plane est toujours actuelle.

Adresse de l'auteur :

Auguste Ansermet, case postale 106, 1814 La Tour-de-Peilz.
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