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CONTRIBUTION À L'ÉTUDE THÉORIQUE DU COMPORTEMENT

NON LINÉAIRE DES STRUCTURES MASSIVES EN BÉTON ARMÉ

SOUS CHARGES RAPIDES

par BERNARD SAUGY, ingénieur EPFL

Avant-propos

En automne 1967, nous avons sollicité du Fonds

national de la recherche scientifique un crédit destiné à

approfondir l'étude du comportement non élastique des

structures, élude déjà entreprise antérieurement par la

chaire sur une base plus modeste. Accordé au printemps
1968, ce crédit nous a permis de poursuivre activement

l'étude de ce problème complexe ; sous la conduite de

MM. R. Lafitte et M. llussain, c'est M. Bernard Saugy,

assistant, qui a été chargé de ce travail.
Sans attendre que des résultats complets aient été obtenus,

il a paru opportun, après une année, de faire le point.
La présente publication a ainsi pour objet de faire
connaître le sens et les buts de l'étude en cours et d'indiquer
le stade, atteint au milieu de 1969. Nous comptons
poursuivre ce travail dans les mois à venir et il est envisagé,
étant donné la part importante qu'il y a prise, que ce

travail serve ultérieurement de base ci une thèse de doctorat
de M. Saugy.

JS'ous saisissons cette occasion de remercier le Fonds
national de la recherche scientifique de l'appui qu'il a
bien voulu donner et ces recherches.

Prof. Dr A. Gardel.

1. Introduction

La statique des structures est essentiellement basée

sur les hypothèses de l'élasticité de Hooke ; elle permet
de déterminer de façon rapide et efficace les efforts dans

une structure. Or, dans certains cas, ces hypothèses ne
sont valables que sous réserve ; ainsi, pour le béton armé,
on doit imposer un taux d'armature minimum pour
assurer vin comportement voisin du comportement
élastique. Le calcul classique conduit généralement à

garantir un comportement élastique des matériaux
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Fig. 1. — Octaèdre des contraintes principales.
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Fig. 2. — Beprésentation géométrique du critère de
plasticité de von Misés.

(fissuration exceptée). En revanche, le calcul à la
rupture, auquel on a de plus en plus recours, définit
principalement la charge admissible par rapport à la ruine.
Enfin, l'usage du modèle élastique sous-estime la
résistance et la capacité d'adaptation de nombreuses
structures pour lesquelles des déformations irréversibles
sont sans conséquence grave.

Ces trois remarques nous conduisent à développer
l'analyse des structures au-delà du domaine élastique.
Cette constatation ne date pas d'aujourd'hui. Voici
quelques applications principales des théories qui ont
été établies :

— Calcul plastique des cadres et des treillis métalli¬
ques (rotules plastiques).

— Calcul à la rupture des poutres en béton armé.
— Théorie des lignes de rupture de Johansen pour le

calcul des plaques en béton armé.

Ces théories sont actuellement fréquemment utilisées ;

elles sont en bonne partie basées sur le fait que l'on
connaît le schéma de résistance ultime de ces éléments.
Pour un corps de forme compliquée, le nombre des
schémas de ruine possibles est très important, sinon
infini ; il sera par conséquent difficile de déterminer le
schéma le plus défavorable correspondant à la charge
de ruine minimale.

1.1 Objet de notre étude

L'objet de notre étude est de préciser quelques lois
de comportement du béton, dans l'optique de l'analyse
non linéaire des structures massives lorsque celles-ci ont
des limites complexes ; cette étude doit déboucher sur
un programme permettant de calculer des structures en
béton armé. Aussi cette orientation concrète nous
conduira-t-elle parfois à délaisser la rigueur mathématique

au profit de l'efficacité à court terme.
Notons que le Centre de calcul de l'EPFL a déjà mis

au point le calcul élastique des treillis, des plaques, des

structures bidimensionnelles el de leurs combinaisons ;

d'autres universités, ainsi que des institutions privées,
possèdent des programmes de calcul de coques, de

corps à symétrie de révolution ou de structures
tridimensionnelles. Au-delà du domaine élastique, la société
Gulf General Atomic a mis au point un programme
permettant de tenir compte des aciers et de la fissuration

[8] 1. L'Université de Swansea, en Grande-Bretagne,
travaille à l'élaboration d'une méthode non linéaire en
utilisant actuellement un modèle élastique parfaitement
plastique [14]. En outre, l'analyse non linéaire fait, en
ce moment, l'objet de plusieurs travaux de recherche,
mais, à notre connaissance, ou ils sont basés sur un
modèle élaboré pour les métaux ductiles, ou ils n'ont pas
encore abouti.

1.2 Plan de l'exposé
Nous rappellerons tout d'abord certains aspects des

critères mathématiques d'états limites adaptés au
comportement de certains métaux et de l'acier notamment.

Cette base méthodologique nous permettra d'aborder
le cas différent des matériaux fragiles et de donner une
expression simple du critère de rupture qui les régit.
Nous aurons recours pour ce faire à des théories
partielles et des essais réalisés dans d'autres universités.

Ensuite, nous analyserons quelques caractéristiques
de la déformation du béton sous charge rapide et nous
tenterons d'en tirer un modèle de déformation non
linéaire.

Enfin, nous présenterons les grandes lignes d'un
programme de calcul bidimensionnel par éléments finis,
basé sur les hypothèses que nous aurons énoncées, ainsi
qu'une application pratique au calcul d'une poutre sur
trois appuis.

2. Critères d'état limite pour les corps ductiles

Les corps ductiles sont des corps susceptibles de subir
de grandes déformations, par glissement, sans modification

notable de leur structure interne et ceci tant en
traction qu'en compression. L'allongement et la striction

1 t.es numéros entre croelicts renvoient à la bibliographie en fin
d'article.
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précédant la rupture d'une barre d'acier tendue

sont typiques de la ductilité. Par opposition,

nous appellerons corps fragiles des corps
qui peuvent se rompre par perte de cohésion

lors de faibles déformations résultant de tractions

macroscopiques ou microscopiques. La
fissuration du béton tendu illustre cette
propriété. Notons toutefois que la distinction
porte sur le comportement du matériau et non
sur sa structure interne. On observe en effet
des ruptures fragiles dans certains métaux
ductiles, lors d'essais à basse température par
exemple.

Pour faciliter le choix du critère de rupture
des corps fragiles, nous rappellerons brièvement

quelques critères d'états limites couramment

utilisés pour les corps ductiles ; ce rappel
nous permettra également de mieux saisir la

différence de comportement entre les corps
ductiles et fragiles.

Par un certain nombre d'essais uniaxiaux,
dont la traction d'une barre d'acier, on peut définir une
contrainte à partir de laquelle le matériau cède. Dès cette
limite, on observe de grandes déformations irréversibles
correspondant à des glissements préférentiels dans des

plans obliques par rapport à la contrainte de sollicitation.

Il est par conséquent évident que les contraintes

que l'on pourrait appliquer dans les autres directions
ont un effet sur le seuil de plasticité, c'est-à-dire sur la
limite à partir de laquelle les nouvelles déformations
sont irréversibles et ne sont plus proportionnelles aux
contraintes. De nombreuses théories ont tenté de restituer

ce phénomène.

2.1 Critères de Hencky el von Misés [4]
Le seuil de plasticité est défini dans l'espace des

contraintes principales par une surface du type /
(°i> °2> CT3) 0 qu' a> selon von Misés, l'expression
suivante :

Seuil de

,^plasticitéSL

G"3

2cx02 (CTi —a2)2 + (ojj os) •oiJ

(j„ est une constante scalaire de comparaison caractéristique

du matériau.

Si nous augmentons la pression moyenne de Act 1

nous obtenons :

2 ff02 [(CT! -f Äff) — (ff. + Äff)]2 +
Nous constatons que les Aff s'annulent deux à deux ;

par conséquent la limite de plastification est indépendante

de la pression moyenne ct : en effet, ce critère
traduit le fait qu'il existe un seuil de l'énergie de

distorsion au-delà duquel les déformations ne sont plus
élastiques.

2.2 Critère de l'effort tranchant sur la face
de l'octaèdre [4]

Soit un octaèdre centré à l'origine des contraintes
principales et dont les sommets sont sur les directions
principales (fig. 1). L'état de contrainte en un point
quelconque d'un solide esl représenté par un vecteur oi.
On peut admettre que dès que la composante de ce

vecteur parallèle à une des faces de l'octaèdre, c'est-à-

1 La définition des notations relatives aux contraintes et aux
déformations se trouve en annexe (p. 301).

Fig. 3. — Sections parallèles au plan o^cjj du critère de

plasticité de von Misés.

dire la distorsion, dépasse une limite fixée Toct, il se

produit un glissement non élastique.

Toct fj (CTi — ff2)2 + (ffg — C3)2 + (°3 — <Ti

L'expression de ce critère est tout à fait semblable à

celui de Hencky.
Nous résumons ces deux critères sous la forme :

y (àx — cr2)2 + (ff2 — <73)2 + (ff3 — <?i)2

ou en développant :

Vi* CT12 — ffl 0-2 + ff22 — ff2 CT3 + CT32 — CT3 ffj
VU (°1 + a2 + CT3)2 — 3 (ffl °2 + CT2 °3 + °3 °i)

En utilisant les notations de l'annexe, nous obtenons :

vu/2 I2 où I2 est l'invariant d'ordre 2 du tenseur des

contraintes cty et mesure l'intensité de la distorsion.
Nous avons vu que 4; est. indépendant de la pression

moyenne ; nous pouvons par conséquent l'exprimer en

fonction du déviateur des contraintes 5,-, c'est-à-dire :

y/a (Si + S2 + 53)2 — 3 S, S2 + S2 53 + S3 SJ

où par définition : S1 + S2 + S3 0

d'où nous lirons :

mj/2 — 3 {S1 S2 + S2 .S3 + S3 Sj) I2

3
VU (SS + S22 + S3*, I2

2.3 Représentation géométrique de ces critères

La fonction iy est symétrique en cj1, cr2. cr3 ; elle

exprime à un scalaire près le carré de la distance r d'un
point limite quelconque à la droite x y z : axe de

symétrie du repère. La surface ainsi définie est un

cylindre dont l'axe est la droite cr, lieu des points
représentatifs d'un état de contrainte dont la distorsion est

nulle (fig. 2).
Dans un plan parallèle au plan al<J2, la section du

cylindre est une ellipse (lig. 3). Les valeurs ctu sont les

limites de plasticité pour des états de contrainte uni-
axiaux.
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Seuil de plasticité

6i

(Ju

C?3 0

Fig. 4. — Critère de Tresca dans le plan o^ffj.

En faisant varier uj, on décrit un ensemble de cylindres

coaxiaux. La limite de plasticité d'un matériau
ductile est ainsi définie par le seul paramètre y.
2.4 Critère de Tresca

La surface limite de plastification est dans ce cas un
prisme de même axe que le cylindre de von Misés. Sa

section pour ct3 0 a l'allure indiquée par la ligure 4.

L'expression mathématique de ce critère est peu aisée.
On obtient dans le plan a1 ct2

| ffl | < ff«
| CT2 | < CT„

I ^1 + CT2 I < °u

A titre de comparaison, nous décrivons dans la

figure 5 les sections droites du cylindre et du prisme.

2.5 Limite de validité des critères de von Misés
el de Tresca

Ces deux critères sont indépendants des signes des

contraintes et s'appliquenl à des matériaux ductiles.
Ils définissent la limite entre le domaine élastique et le

domaine plastique.
De très nombreux essais sur des métaux ont confirmé

que si le seuil de plasticité est nettement marqué, il est
défini par une surface à génératrices parallèles donl la
section droite est variable selon les métaux, mais, en

général, comprise entre celle de Tresca et celle de von
Misés.

L'existence de ce seuil de plasticité résulte physiquement

du glissement de plans cristallins. Notons que les

Ci

axe

Critère de Von Misés

Critère de Tresca

Phase élastique réversible

Seuil de plasticité

Phase plastique irréversible

Ecrouissage

Rupture

Décharge

Déformation spécifique

Fig. G. — Courbe « contrainte-déformation i

de certains matériaux ductiles [131.
caractéristique

résistances élastiques relativement faibles des métaux
vis-à-vis de celles qu'on observe dans les cristaux purs
s'expliquent par la migration des dislocations.

2.6 Comparaison métaux-béton
La courbe « contrainte-déformation » typique pour le

1er, l'acier doux, les métaux à structure cristalline
cubique centrée contenant des impuretés intersticielles
(C, N, H, O), de même que pour de nombreux alliages
(Al-Mg), a l'allure indiquée par la figure 6 [13].

On constate que la figure 6 met en évidence deux
comportements principaux : d'une part, la phase
élastique où les déformations sont réversibles, d'autre part
la phase parfaitement plastique où la variation de la
déformation, irréversible, est indépendante de la
variation de contrainte. Les deux phases sont séparées

par le seuil de plasticité. Prager et Hill, notamment, ont
établi sur la base de telles observations un modèle
élastique parfaitement plastique symbolisé par la figure 28.

Remarquons que les déformations plastiques ne modifient

pas notablement la structure du matériau ; il est
admis, par conséquent, que ce dernier reste isotrope
au-delà du domaine élastique.

Si nous analysons maintenant la déformation du
béton soumis à une compression simple (fig. 7), nous
constatons que même dans les zones comprimées il a un
comportement très différent de celui des métaux. De ce

û££.

Fig. 5. — Seel ions droites des critères
de von Misés et de Tresca.

Fig. 7. -- Diagramme
béton [12].

Déformation
LEGENDE

1. Fluage sous charge
2. Déformation plastique
3. Déformation différée
U Déformation instantanée
5. Déformation réversible

charge-déformation » typique du

288



£i i
-600

¦500

•400

¦300

200/

¦100'

r

_»¦_ kup ure-

"p £iv
^V

kg/c
e

\f
\ 0l 0

\ fa: ^3

-0,5 -1,0 -1,5 -2,0 -2,5 -3,0

e, e [•/..]——

2,5 »2,0 »1,5 *1.0 .0,5

-«— e [•/..]

Fig. 8. — Déformations d'une éprouvette soumise à une

»U**«».>»U»HW HHtW

Charge

charge biaxiale croissante (<Tj 0, a2 [9].

LEGENDE:

1. Bruits
2. Vitesse du son
3. Coefficient de Poisson
A. Déformation longitudinale

0 T, Tn T

microfissuration rupture

Fig. 10. — Mise en évidence de la charge de microfissuration

(Tr) [12].

fait, le modèle « élastique — parfaitement plastique »

n'est pas représentatif du comportement réel du béton.
C'est pourquoi nous allons tenter de dégager quelques
caractéristiques principales du béton et d'établir un
modèle qui lui soit propre.

3. Etats limites du béton

Nous nous limiterons dans cette étude aux phénomènes

rapides dans lesquels n'interviennent pas
explicitement les divers modes de retrait ou de fluage.

3.1 Caractéristiques du béton

Les figures 8 et 9 décrivent le comportement d'une

éprouvette de béton sous une charge rapide.
Nous constatons qu'il n'existe pas de discontinuité

marquée dans les courbes de déformation et que l'on a
dès le début de la sollicitation des déformations irréversibles.

D'autre part, la courbe des variations de volume
(fig. 8, Q) met en évidence, à son extrémité, un
foisonnement qui correspond à une microfissuration du béton.
Ce phénomène est confirmé par la discontinuité dans les

mesures de plusieurs caractéristiques physiques
enregistrées sur une éprouvette soumise à une charge crois-
croissant jusqu'à la rupture (fig. 10).

3.2 Critères de rupture
Nous avons vu sous 2 qu'il suffisait pour connaître le

comportement de certains métaux ductiles de définir la

caractéristique élastique et le seuil de plasticité. Dans
le cas du béton ce seuil n'existe pas : c'est pourquoi
nous rechercherons tout d'abord une limite de rupture,
puis une loi reliant, dans la zone délimitée par cette
surface, les contraintes aux déformations.

T'

Ar/

1
Â

Charge ///II/

"H A

A

A

Déformation A

^ Déformation élastique

p Déformation plastique

r Déformation totale

\ *AE*AR

3.2.1 Critère de Mohr-Coulomb généralisé [i]
Ce critère postule qu'il existe une courbe intrinsèque,

enveloppe des cercles de Mohr correspondant à un état
limite de rupture (fig. 11).

Un élément, soumis à un état de contrainte triaxial
(ct3 > ct2 > ffi), se rompt si l'un des trois cercles d Möhre

coupe la courbe intrinsèque et nous constatons que les

termes
CTi CTi + ff3

et s sont determinants.
2 2

Le critère de Mohr implique que la contrainte
intermédiaire ct2 ne joue aucun rôle. Cette hypothèse est
fondée si la surface physique de glissement est
perpendiculaire au plan des contraintes extrêmes et parfaitement

plane ; mais si la surface de glissement est grenue
ou irrégulière, la contrainte intermédiaire aura un effet

non négligeable.

3.2.2 Rupture fragile : théorie de Griffith [3]
La fissuration est un phénomène fondamentalement

discontinu : l'apparition d'une fissure nécessite un seuil

fini d'énergie qui sera fortement influencé par la présence
de défauts de structure. Par la suite, le développement
de la fissure sera dicté par les fissures préexistantes.
Des essais ont, en effet montré que la résistance des

matériaux à l'échelle moléculaire est considérablement
plus grande que celle d'un élément de dimensions finies.
De ce fait, seules les concentrations de contrainte aux
bords d'une fissure existante expliquent le développe-

Coyrbe_jtÜrlD2iau£-

Cercle de Mohr

t»»0j
c3 -er

Fig. 9. — Analyse de la déformation d'une éprouvette de
béton soumise à une charge uniaxiale croissante [12]. Fig. 11. — Courbe intrinsèque de Mohr-Coulomb.
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Fig. 12. — Limite au-delà de laquelle les fissures se
développent [3], (Théorie de Griffith.)

ment des fissures pour les valeurs usuelles de la résistance
à la traction.

En supposant d'une part que la répartition des fissures
initiales est homogène et, d'autre part, que les longueurs
et les rayons extrêmes p de toutes les fissures sont égaux,
Griffith obtient par le calcul la limite des états de
contraintes biaxiaux au-delà de laquelle les fissures se

développent (fig. 12).

I Oi I > 1 o[i I

ctj ß( si 3 ffj + a2 > 0

(ffj — CT2)2 + 8 ß, (ffj + CT,

résistance à la traction
uniaxiale uniforme

0 si 3< <0
Selon Yokobori [3] ces hypothèses sur la fissuration

initiale sont insuffisantes et il convient d'estimer
statistiquement le taux et le type d'amorces de rupture par
unité de volume, puis d'en déduire une nouvelle loi.
En outre, Griffith s'est basé sur des essais réalisés avec
des corps relativement homogènes tels que le verre ou
la fonte grise, mais, à notre connaissance, aucune étude
statistique complète n'a été conduite dans cette optique
pour le béton. Notons enfin que la généralisation de
cette théorie à un état de contrainte triaxial est malaisée.
C'est pourquoi nous ne pouvons utiliser ces résultats qu'à
titre comparatif.
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Fig. 13. — Essais de rupture en compression biaxiale [9].

Me Henry et Kami ont remplacé le couple par une
pression intérieure. Cette dernière technique sous-
estime vraisemblablement la résistance à la traction,
car le rapport des diamètres intérieur et extérieur (0,71)
est trop faible pour garantir une répartition homogène
des tractions dans les parois du cylindre. Notons que la
dispersion des résultats est de l'ordre de (1 à 20 % pour
10 à 20 éprouvettes.

3.2.4 Critère global de rupture
La recherche d'une surface intrinsèque de rupture a

fait et fait l'objet de nombreux travaux qui donnent
encore des résultats contradictoires. C'est pourquoi nous
avons recherché une expression mathématique simple qui
permette de définir avec une précision pratiquement
suffisante la limite de rupture. Cette surface sera
symétrique d'ordre 3 par rapport à l'axe u (droite x y z)
car nous pouvons permuter les indices des trois contrain-

3.2.3 Indications sur la surface de rupture fournies
par des essais biaxiaux

A notre connaissance, il n'existe pas encore de résultats

d'essais systématiques de triple contrainte à trois
composantes, positives ou négatives, indépendantes1.
Nous nous contenterons par conséquent de rappeler les
résultats de deux séries d'essais biaxiaux présentés dans
la littérature. H. Weigler et G. Becker [9] ont obtenu
les limites de rupture, décrites dans la figure 13, par
une série d'essais biaxiaux (o^ 0) pour des rapports
ct2/ct3 constants et pour plusieurs bétons de composition
différente. Si nous appelons n le rapport entre ct3 de
rupture pour un essai uniaxial et ct3 de rupture pour un
essai où ct2 ct3, nous constatons qu'il est compris, pour
les bétons étudiés, entre 1,2 et 1,4.

Les résultats d'essais de rupture du béton en traction,
présentés à la figure 14, ont été obtenus sur des éprouvettes

cylindriques creuses de 20 à 30 cm de diamètre
environ. Bresler e1 Pister on1 soumis les cylindres à une
foire axiale el un roupie à chaque extrémité alors que

1 lie nombreuses tentative-. m>u| arim'ilrnir-nI faites pour river
appareillage d'essai adéquat.

i
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tes principales. Nous la définirons par conséquent par
deux réseaux de courbes orthogonales : les directrices

situées dans un plan perpendiculaire à ct d'une part, et

les génératrices d'autre part.
Mohr a mis en évidence les relations entre les termes

<73
et -• Si nous introduisons l'effet de la

contrainte intermédiaire ct2, nous pouvons admettre par
analogie une relation entre I± a1 + ct2 + ct3 et I2112

j (SI + si + Si) relation entre la pression moyen¬

ne et l'invariant du tenseur des contraintes correspondant

à la distorsion. Cela revient à admettre pour
directrices des cercles dont le rayon est fonction de lv
Les génératrices sont des courbes caractérisées par une

variation de courbure à la limite entre la rupture par
glissement el la rupture fragile. Nous avons admis

comme génératrices des paires de droites. La surface

ainsi définie est composée d'un tronc de cône et d'un
cône se coupant dans le plan des trois points de rupture
correspondant à des essais uniaxiaux. Cette surface,

représentée à la ligure 15, s'exprime simplement sous la

forme :

If + 0*/, + ßi 0 pour /x<pC
/12/2 + a2/1 + ßa 0 pour Ix>pc

ßc<0 contrainte de

rupture, en compression
simple, sur prisme.

Nous indiquerons sous 3.2.5 une méthode susceptible
de déterminer les valeurs numériques de a, (cCj, a2) et

ßj pour un béton donné.

Physiquement, le choix d'une directrice circulaire se

justifie pour autant que la rupture découle d'un phénomène

parfaitement isotrope tel que le glissement. Par

contre si la cause de la rupture est de nature anisotrope,

la directrice tendra vers le triangle inscrit de la directrice

dont les sommets sont sur les axes cjj, ct2, ct3.

Or, la fissuration et, dans une moindre mesure, la

microfissuration sont de nature anisotrope et empêchent,
dans une proportion variable en fonction de la composition

du béton, la formation de plans de glissements.
De nombreuses études sont actuellement conduites

pour définir de façon précise l'évolution des directrices

et des génératrices mais n'ont pas encore donné de

résultats concordants. De plus, le choix d'une surface

très élaborée nécessite de nombreux paramètres
d'ajustement qu'il est encore très malaisé de déterminer pour
un béton donné. C'est pourquoi nous avons admis pour
toutes les valeurs de I1 une directrice circulaire de

rayon I1!,2 ; l'erreur qui en découle est partiellement

compensée par le choix de génératrices dégénérées en

paires de droites.
La figure 16 qui représente une section de la surface

de rupture 1,25, y -0,075) pour 0 se

compose de deux ellipses. La première (cr2et cr3 sont des

compressions) est proche des courbes obtenues par

1.50

E U0

1.30

1.20

1.10

1.00
uniaxial 15 1:2,41 1:1,5 1:1

G2C3 *
Fig. 17. — Courbes comparant la surface tronconique aux
résultats d'essais en compression biaxiale.
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Fig. 18. — Génératrice de la surface tronconique de
rupture.

K. Weigler dans ses essais. Pour juger de notre hypothèse,

nous appelons m le rapport entre ct3 de rupture
(pour ct2/ct3 variable) et ct3 de rupture (en compression
simple). La figure 17 compare les valeurs théoriques de
m aux valeurs d'essais pour divers bétons. L'approximation

faite nous semble done satisfaisante.
La deuxième ellipse définit la rupture dans une zone

essentiellement fragile et le manque d'essais systématiques

complets rend plus difficile la comparaison.
Toutefois, en admettant une valeur relativement faible
de la résistance à la traction uniaxiale, la courbe théorique

confrontée à la figure 15 montre que l'approximation
est convenable, compte tenu du fait que la

résistance du béton à la traction a un caractère aléatoire.
En conclusion, la comparaison des résultats d'essais

biaxiaux aux sections de la surface, par les trois plans
pour lesquels une des contraintes est nulle, est dans
l'ensemble satisfaisante et nous confirme que la surface
tronconique est une approximation suffisante pour les
besoins actuels de notre étude.

3.2.5 Expression analytique du critère de rupture
pour un béton déterminé

Les hypothèses faites sur la surface de rupture nous
permettent de la déterminer en connaissant les valeurs
des trois états de rupture suivants :

résistance à la compression simple
ßC: 71 ßc, If |ßc|

résistance à la traction simple

yßc: 71 yßc, 71f |yße|
résistance à la compression biaxiale

rcßc : 7j 2nßc, If | reßc |

Nous avons vu que la surface s'exprime analylique-
ment par

If + cq 7, + ßi 0 si 7t<ßc

If + oca 7X + ß2 0 si 7x>ßc

Ces équations sont dans le plan (7 i 7j), les équations
des droites passant par les trois points connus (fig. 18),
ce qui nous permet de déterminer les paramètres ce,-

et. ß; en fonction de ßc, n et y et nous donne les équations
suivantes :

ßcSt 7i<ßc :

S<71>ßc:

If +

If +

2n — 1

i + y
l-y

l-I +^-T yi T oIn —

/l + y
y-l

1

ßc

(I

(I

Remarque : En admettant ßx et ß2 variables, nous décrivons

un ensemble de surfaces homothétiques coaxiales.
Ainsi, si ßj I '2 -f- cs.ilx pour un état de contrainte quel-

ß'i
conque, le rapport ;j— définit numériquement le taux de

P»

contrainte d'un point soumis à l'état de contrainte considéré.

ß'iSi {j— 0, l'état de contrainte est nul ;
Pi

ß'isi -jr- 1, l'état de contrainte est un état de rupture,pi

L'usage de ce rapport nous permet une représentation
graphique aisée du mode de travail d'une structure.

Notons enfin, qu'à défaut de caractéristiques précises,
nous admettrons, pour un béton courant, n et y
respectivement égaux à 1,25 et — 0,075.

4. Loi contrainte-déformation du béton

Ayant défini la limite à partir de laquelle le béton se

rompt, nous tenterons d'élaborer maintenant un modèle
de déformation conforme aux caractéristiques du
comportement du béton sous charge rapide.

4.1 Déformation du béton

Si nous analysons les réactions du béton sous des
sollicitations diverses, nous relevons un nombre
considérable de comportements de natures différentes :

— sous une sollicitation très faible, l'éprouvette ana¬
lysée se comporte dans son ensemble comme un
solide d'Euclide (infiniment rigide), l'énergie étant
absorbée par une déformation locale ;

— sous une charge relativement faible appliquée
rapidement, on observe une réaction élastique
linéaire ;

— sous une charge plus importante, la réaction sera
élasto-plastique non linéaire ;

— l'évolution dans le temps met en relief des phéno¬
mènes visqueux (fluage) ;

— dans certaines zones fissurées, la résistance est de
la nature d'un frottement sec ;

— on observe enfin des déformations d'origine phy¬
sico-chimique (par exemple : modification de la
forme sous laquelle l'eau est intégrée à la structure).

La diversité des réactions du béton s'explique
aisément par la complexité du matériau lui-même : les

agrégats sont d'origine et de structures diverses, le
ciment est déjà une matière composite, qui évolue dans
le temps [13].

4.2 Choix d'un modèle

De toute évidence, il est exclu de trouver, pour l'instant

du moins, un modèle mathématique permettant de

symboliser toutes les réactions du béton. Toutefois nous
avons vu, dans l'introduction, l'insuffisance du modèle
élastique dans de nombreux cas particuliers ; nous nous
proposons donc d'améliorer ce modèle en utilisant un
modèle non linéaire. Pour être plus précis, en chaque
instant nous considérons un modèle élastique et ferons
évoluer les caractéristiques élastiques en fonction des
états de contrainte intermédiaires.

On peut s'étonner du choix d'un modèle qui n'introduit

pas le temps comme paramètre principal. La

rhéologie, qui généralise la résistance des matériaux et
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étudie l'écoulement des liquides et des pâtes, propose de

nombreux modèles complexes qui ne définissent pas
seulement les contraintes en fonction des déformations,
mais encore en fonction du temps. Il est dès lors possible
de tenir compte des réactions visqueuses du matériau
et de la succession des états de contrainte ou de

déformation qu'a subis le matériau jusqu'au moment considéré.

Comme nous le verrons sous 5, pour déterminer la

déformée d'une structure, nous devrons intégrer sur son

volume l'énergie spécifique de déformation. 11 va sans

dire que l'introduction du temps comme paramètre
principal complique de manière considérable l'intégration.

D'autre part la complexité des modèles rend déjà
très ardue, sinon impossible pour l'instant, la détermination

des caractéristiques spécifiques d'un béton
donné.

C'est pourquoi nous avons estimé qu'au stade actuel
de notre étude il n'était pas nécessaire, étant donné le

but recherché, de mettre au point un modèle aussi

élaboré faisant intervenir le temps comme paramètre
principal.

Le modèle non linéaire que nous avons choisi permet
en effet d'analyser avec rigueur et simplement une

structure chargée progressivement jusqu'à la ruine pour
autant que les phénomènes de décharge (c'est-à-dire
d'inversion locale du signe des variations de contrainte)
soient de faible importance. L'usage de ce modèle peut
s'étendre aisément à l'analyse de structure où les phénomènes

de décharge sont importants ou même à l'analyse
de certains aspects de l'évolution de structures dans le

temps et ceci par une définition adéquate des caractéristiques

élastiques instantanées. Cette définition pourra
d'ailleurs faire appel à des lois rhéologiques pour autant

que les caractéristiques technologiques du béton soient

clairement définies.
Dans ce qui suit, nous étudierons le comportement du

béton sous un système de charge fixe ou croissant homo-

théliquement dans les cas où les phénomènes de linage

sont négligeables.

4. 3 Modèle non linéaire

Le diagramme contrainte-déformation d'un essai sous

charge uniaxiale nous permet de définir deux modules

d'élasticité variables en fonction de ct (fig. 19).

Le module sécant est rapporté à un état de contrainte
nul : ct E,, E avec Es / (ct) et le module langeul est

coefficient de Poisson

Fig. 20. — Variation dev
lors d'un essai uniaxial
sous charge croissante.

défini à charrue instant : ct ct,- -j- Eu^e ou o~i

\lEt (ct) d e.
o

Les déformations dans les deux autres directions
seront déterminées par le module de Poisson v, dont
l'évolution en fonction de ct est représentée à la figure 20.

Notons que ce module est relativement mal connu et

que souvent dans la littérature les avis divergent quant
à sa valeur et son évolution précise.

Dans le domaine triaxial, ces courbes E et v se

transforment en faisceaux de courbes dépendant des

contraintes dans les autres directions ; nous devrions donc

exprimer les valeurs du module de Young et du coefficient

de Poisson en fonction d'un paramètre scalaire qui
fixe le taux de contrainte. Nous préférons néanmoins

établir les modules sécants de glissement p et de eom-

pressibilité k en fonction d'invariants du tenseur des

contraintes (cf. annexe), en admettant que le matériau
reste isotrope jusqu'à la rupture.

En toute rigueur, il faudrait définir p et k pour chaque
suite possible d'états de contrainte, mais on conçoit
facilement, et nous l'admettrons, que le module de

compressibihté est uniquement fonction de la pression

moyenne (k / (ct)) et que le module de glissement

dépend de la distorsion (p / (72)).

Notons que pour un état de contrainte voisin de la

rupture, le foisonnement accompagnant la microfissuration

est une variation de volume résultant de la distorsion.

Le choix des paramètres p et k indépendants ne

permet pas de tenir compte directement de ce phénomène.

Dans les cas où le foisonnement a un effet non

négligeable sur la résistance de la structure, il est possible

d'introduire, par un artifice de calcul, une dilatation du

matériau fonction de la variation de distorsion.
Ces hypothèses étant posées, analysons plus en détail

les paramètres p et k à l'aide de quelques essais.

4.3.1 Module de compressibilité
Examinons les courbes de la figure 21a, résultant

d'essais biaxiaux (ctj 0) réalisés par K. Weigler [9]
et les mêmes courbes (fig. 21b) représentées en fonction
de er. Les courbes expriment la variation de volume de

cinq éprouvettes confectionnées avec le même béton,
chargées jusqu'à la ruine.

Nous constatons dans la ligure 21a que pour une

valeur de ct3 déterminée, les variations de volume croissent

de l'essai 5 à l'essai 1. D'autre part, pour la même

valeur de ct3, les valeurs de ct qui en découlent croissent

aussi de l'essai 5 à l'essai l.
Ces mêmes variations de volume exprimées pour

chaque essai en fonclion de ct donnenl un faisceau de
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courbes plus compact. Si, pour une valeur choisie de ct,
nous exprimons la valeur de la distorsion caractérisée
par 72, nous remarquons que les variations de volume
lors de chaque essai ne sont pas ordonnées en fonction
de 72. Ces faits tendent à prouver l'existence du coefficient

de compressibilité A' et le fait que la variation de
volume est indépendante de la distorsion au-delà du
domaine élastique. Ces constatations sont, en effet,
évidentes pour un corps parfaitement élastique. Enfin,
l'extrémité des courbes de variation de volume indique
clairement que le foisonnement de rupture est indépendant

de la pression moyenne, et qu'il dépend par conséquent

de la distorsion.
Les essais de Weigler ont porté sur des éprouvettes de

béton de composition différente, ce qui lui a permis de
représenter les courbes dQjaa en fonction de ct3
(définissant à un facteur près la variation de k) pour les
cinq rapports ct2/ct3 étudiés. La figure 22 représente ces
diagrammes pour un cas de charge où u1 ct2 0.
Nous constatons que k esl variable pour le béton 1

(ß,„2g — 214 kg/em2) alors qu'il est pratiquement constant

pour le béton 3 (ßw28 616 kg/cm2).

4.3.2 Module de glissement

L'analyse des essais précités et plus particulièrement
les diagrammes du type de la figure 8 nous ont permis
de représenter la valeur p sécanl en l'onction de 72

Wa («g- 23).
Nous avons constaté que pour un même béton, les

diagrammes p / (72) pour deux essais différents

(CTj 0, ct2 CT3 et CT! CT2 0) sont pratiquement les
mêmes. En revanche, pour chacun des essais les courbes
pt (fig. 23) sont distinctes de p, ce qui peut provenir
soit d'une imprécision de l'essai, soit du fait que le
matériau n'est pas isotrope.1 Or, nous constatons que
les courbes extérieures sont précisément celles qui
correspondent à des faces chargées identiquement et que,
de plus, la dispersion est plus grande lorsque ct3 est

1 En effet, dans un corps isotrope les ui sont égaux et par conséquent

(JLl [i.

: en

Béton
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./" Béton 2

*x\

ton 3-u
A Bé
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Fig. 22. — Variation de la dilatation cubique pour un essai
uniaxial [9].
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faible, c'est-à-dire dans la zone où la détermination de

E, est la moins précise et où le matériau est réputé
élastique. Cela nous permet de penser que l'écart
observé provient de l'essai et que l'isotropie du matériau
est effectivement conservée au-delà des déformations
linéaires.

4.3.3 Définition de p et k pour un béton quelconque

Nous avons montré que le modèle choisi est cohérent

avec les résultats des essais, effectués par K. Weigler,
sous charge rapide et que les modules p et A: permettent
de représenter le comportement du béton. Toutefois, le

manque d'essais multiaxiaux systématiques et la diversité

des bétons rendent très malaisé l'établissement des

lois reliant l'évolution des paramètres p et A: aux
caractéristiques physiques d'un béton de composition
déterminée.

Par conséquent la détermination numérique rigoureuse

du modèle pour un béton donné devra se faire par
ajustement avec le comportement d'une éprouvette du
même béton sous une charge de même nature. Notons

que cette manière de procéder peut nous permettre,
dans certains cas, de tenir compte implicitement de

phénomènes complexes que l'analyse mathématique ne

peut encore restituer de manière explicite (vitesse de

charge, par exemple).
Nous avons vu sous 4.3.1 et 4.3.2 qu'il est aisé, à

partir d'essais multiaxiaux, de déterminer des courbes

moyennes de p et k dont la définition numérique par
un nombre fini de points suffit au traitement à l'ordinateur.

Si nous ne disposons pas de tels essais, l'interprétation
des données courantes sera souvent suffisante. Le

module de compressibilité k peut être admis constant et

déduit des caractéristiques £ et v valables pour le

domaine élastique [k » „—-). D'autre part, k sem-
\ 3(l-2v)/

ble lié de façon étroite à la compacité et à la résistance
à la compression, ce qui permet d'obtenir des renseignements

complémentaires par comparaison avec des

bétons connus1. Si nous connaissons k, le module de

glissement p peut alors se calculer à partir du diagramme
0"tde déformation sous charge uniaxiale (" 3 (Ex

— CTl\ • ¦
e gy I avec une precision pratiquement sulhsante.

Notons que le calcul de structures importantes e!

complexes justifierait le fait que soient entrepris des

essais systématiques sur les matériaux afin d'obtenir
des bases plus rigoureuses pour la méthode de calcul
définie sous 5.

4.4 Confrontation du modèle à un exemple de fluage
Nous nous sommes limité dans cet article à l'étude

des déformations du béton sous charge rapide et à la

définition d'un modèle qui permette de décrire ces

déformations, mais sans référence directe au comportement

physique du béton. Toutefois, nous trouvons une
justification de ce modèle dans l'analyse de deux essais

de linage décrits par l'IIermite [5].
Le premier a montré qu'un cylindre creux chargé

axialement par un couple de torsion constant pendant

1 i.c choix de k constant n'implique pas que V soil constant, car V

I 3/f—2H\
est fonction de y V

q(3/
,1
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Fig. 23. — Valeur de p sécant en fonction de I2 pour un
essai biaxial (a2/a3 1).

une longue durée s'est déformé sans variation de volume,
ce qui correspond à un coefficient de Poisson de 0,5.
Le deuxième essai portait sur un cylindre plein soumis
à une charge axiale. Il s'est raccourci mais son diamètre
n'a pas changé au cours du fluage : ce qui implique un
coefficient de Poisson nul.

Si nous exprimons ces deux états de contrainte en
termes de pression moyenne et de déviateur des

contraintes, nous constatons que, dans le premier cas, la

pression moyenne est nulle alors que dans le second on

trouve les deux termes.
Or, nous savons, d'une part, qu'une éprouvette de

béton soumise à une pression uniforme pendant une
longue durée a tendance à diminuer de volume (par
perte d'eau notamment [5]); d'autre part, qu'une éprouvette

soumise à un cisaillement se décharge par glissement

plastique, ce glissement étant partiellement expliqué

par la structure microscopique fibreuse du ciment.
A partir de ces deux phénomènes, il semble possible

d'assimiler l'évolution dans le temps, d'une éprouvette
chargée, à l'action d'une charge instantanée de même

nature agissant avec des caractéristiques p et k

adéquates.

Ainsi, dans le premier des essais décrits plus haut,

CT étani nul la variation de volume -r serait nulle.
k)

Dans le deuxième essai la variation de diamètre
comprendrait un terme découlant de la pression moyenne

-1 et un terme relatif au déviateur des contraintes

anl de signes contraires,°V \ i- -77-M. Ces deux termes eta
p,/

il est concevable qu'ils s'annulent dans ce cas particulier
OU que leur somme soit proche de zéro.

En conclusion, l'analyse de ces deux essais met en

défaut le modèle parfaitement plastique 1 et laisse

espérer un développement fructueux du modèle décrit
ici. De plus elle donne un sens plus concret aux para-

1 t.es déformations plastiques de ce modèle ont lieu sans variation
dr volume.
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Fig. 24. — Définition des éléments et des nœuds.

mètres p et k qui se révèlent plus généraux que les
coefficients E et v.

5. Modèle mathématique pour l'étude du comportement
non linéaire des structures

Sur les bases décrites dans les chapitres précédents,
nous avons élaboré un premier programme de calcul
permettant d'analyser des structures bidimension-
nelles en béton armé (déformations ou contraintes
planes). Nous en décrirons sommairement les principaux

aspects.
Rappelons tout d'abord que la déformée réelle d'une

structure correspond à une dépense minimale d'énergie.
Dans le cas d'une structure élastique à fibre moyenne,
l'expression de l'énergie de déformation d'un élément
perpendiculaire à la fibre moyenne peut s'exprimer
aisément en fonction de la déformée de celle-ci, ce qui
nous permet d'obtenir l'énergie de déformation totale
par une simple intégration sur la ligne moyenne. Par
contre, dans le cas d'une structure sans fibre moyenne
ou non élastique, l'expression de l'énergie totale de
déformation ne pourra s'obtenir qu'à l'aide d'une
intégration complète de l'énergie spécifique sur le volume
ou la surface de la structure.

Le but de notre étude est d'analyser des structures
de formes complexes ; de plus, les lois de comportement
du béton nous ont conduit à définir des caractéristiques
élastiques instantanées différentes pour chaque zone
de la structure. Nous devons, par conséquent, choisir
une méthode d'intégration suffisamment souple pour
tenir compte de toutes les particularités locales. Nous
avons opté pour la méthode des éléments finis basée sur
le modèle des déformations. Cette dernière, très générale,

se distingue par la possibilité qu'elle a de s'exprimer
dans un langage simple et intuitif pour de nombreux

cas particuliers.
Nous ne décrirons pas la méthode dans son ensemble,

mais nous nous limiterons à rappeler quelques relations
principales dans le cas d'une structure bidimensionnelle.

5.1 Rappel de quelques relations de la méthode
des éléments finis [1]

5.1.1 Définitions1
Soit une structure plane ou à section plane, formée

d'un matériau élastique.
Nous appelons :

1 Utilisant lea Notations de O. C. Zicnkiewicz.

nœuds un nombre fini de points (i, j, m) de la
structure, définissant des éléments (e) triangulaires
plans (fig. 24) ;

force agissant aux nœuds d'un élément (e) :

' F*¦ ii

n=
Fi
h

F-1 iy

F],

déplacement des nœuds d'un élément (e)

H
Le déplacement { /} d'un point quelconque est lié au

déplacement des nœuds de l'élément qui le contient par
la fonction de déplacement [N].

Six
Siy
Sjx

Omx

Omy

CH*}M
Une fonction de déplacement linéaire impose que la

déformation spécifique d'un élément (dérivée du
déplacement), et partant la contrainte, soient constantes en
tous les points de cet élément.1

La déformation spécifique de l'élément se déduit du
déplacement des nœuds de ce dernier par :

We
Yiy

[B]e { 5 }e

et les contraintes sont proportionnelles aux déformations,

d'où :

Me [D]e {

[D] est appelée matrice d'élasticité, et s'explicite sous
de nombreuses formes.

[D] est constante pour un modèle élastique :

Des deux relations précédentes, nous tirons :

[S]e { 5 avec [5] [D] [B]
dite matrice des contraintes.

Matrice de rigidité [K]
Intuitivement, elle représente le tableau des coefficients

d'influence entre les forces et les déplacements
aux nœuds de l'élément considéré.

Exemple : / 6 L
0
0 («g. 25).
1

cf7=0

cfz 0

(fi-i
Fig. 25. — Elément
dont un nœud est
soumis à un déplacement

unitaire.

1 Le choix d'une fonction linéaire par rapport à une fonction plus
élaborée implique pour le même résultat un nombre supérieur
d'éléments. L'attribution de caractéristiques variables à des éléments voisins

exige de petits éléments et justifie dans notre cas le choix d'une
fonction linéaire.

296



0"i 0

E2*0
0"2*0

V- ?- 5

Fissures

G1 0

E^O

0~o±0

Fig. 26. — Comportement d'un
element fissuré.

loi initiale

-G

-E

après fissuration

seuil de rupture

Fig. 27. — Schéma « contrainte-déformation »

du béton.

/ i

/ i

Zone élastique

Ci
Palier plastique
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5.1.2 Equation d'équilibre généralisée à l'ensemble
des nœuds

L'une des façons de concevoir la résolution d'un
système par éléments finis consiste à exprimer que chacun

des nœuds est en équilibre sous les charges suivantes

:

[Alls'

¦t
/eo{F}

avec

[K]

!M

force provoquée par le déplacement des

nœuds voisins

force gravitaire généralisée

force généralisée correspondant à un état
initial de déformation (effet de la température

par exemple)
charge extérieure généralisée

matrice de rigidité totale qui est la somme
ordonnée des matrices de rigidité des

éléments

déplacement de l'ensemble des nœuds

Nous écrirons donc :

{R) [K]{B} + {F},+ {F\/eo

Dans ce système, I 6 j est la seule inconnue, aussi

pouvons-nous la déterminer en procédant de la manière

suivante :

[K] est définie par la géométrie et le matériau de la

structure
F \ et l F |£0 découlent de l'état initial

R \ représente les charges extérieures appliquées à la

structure.

Si{U) {R}~{F}p-{F}t0
nous avons U \ \IQ { 6 }¦

Par conséquent { 5 } [K]-1 J U )l

Dès que nous connaîtrons la valeur { 5 î des

déplacements de chaque nœud, nous obtiendrons pour chaque

1 La dimension de la matrice [K] est le produit du nombre de
nœuds par leur i\c%rv de liberté ; le nombre d'équations du système
sera par conséquent fréquemment de quelques centaines, voire quelques

milliers.

élément la valeur des contraintes, l ct \e [S]e {5 Li
le problème sera ainsi résolu.

5.2 Analyse non linéaire et description du programme
Pratiquement, la différence essentielle entre l'analyse

linéaire et non linéaire provient du fait que, dans celle-ci,
les caractéristiques élastiques dépendent de l'état de

contrainte final (p, k / (oty)).

L'équation d'équilibre lU\ [K] 161 est conservée

avec [7C] / {[D]) mais la matrice d'élasticité [D \

f (p, k) est variable.
Pour résoudre ce nouveau système, relevons deux

processus distincts :

a) Calcul par approximations successives en modi¬
fiant [K] entre chaque analyse linéaire pour tenir
compte de l'évolution du matériau (variation de

p ou fissuration).
b) Calcul par itération sur la structure initiale en

introduisant par approximations successives des
efforts fictifs, c'est-à-dire en redistribuant les
efforts que l'élément considéré ne peut « supporter

».

Au premier stade de notre étude, nous avons utilisé
la première méthode. Très proche du phénomène physique,

elle permet de mieux comprendre le mode de

résistance d'une structure, et converge très rapidement
dans de nombreux cas où la structure n'est pas trop
bouleversée.1

Le programme actuel calcule donc par une série

d'itérations une structure soumise à une charge fixe ou

qui peut croître par une deuxième série d'itérations.
Cette structure comprend un matériau de base tel que
le béton, auquel se superpose un réseau d'armatures
filiformes. La liaison entre les deux réseaux est réalisée

par des nœuds communs. La déformation étant
constante sur tout un élément, cela implique qu'il n'y a pas
de glissement possible entre les matériaux.

5.2.1 Comportement du matériau de base

Nous avons défini le matériau par une surface de

rupture et par les coefficients p et k (cf. 3 et 4). Chaque
élément est. supposé homogène ; ainsi, un élément
fissuré est, dans son ensemble, transformé en un élément

1 La deuxième méthode que nous étudions actuellement est plus
« abstraite ». Sa convergence, plus sûre, est cependant lente. Toutefois,

il sera possible, par une technique de caleu! plus élaborée, de
rendre cette méthode plus rapide, dans son ensemble, que la première.
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très fortement orthotrope orienté dans la direction des
tractions principales (fig. 26).

Le schéma « contrainte-déformation » pour chaque
élément a par conséquent l'allure de la figure 27.

5.2.2 Eléments filiformes
Le modèle de déformation des éléments filiformes est

défini par une zone élastique et un seuil de plasticité
au-delà duquel la contrainte ne peut augmenter. La
contrainte est limitée à ct0 en introduisant, entre deux
itérations, une déformation initiale 60 indépendante de
ct. Des correctifs successifs permettent de fixer la
contrainte à ct0 (fig. 28).

5.2.3 Conditions aux limites
La forme de la structure à déformation ou contrainte

plane est quelconque. Chaque nœud peut, avoir un
déplacement imposé (nul par exemple) dans une direction

quelconque.
Les charges comportent :

¦— des charges gravitaires (définies par la densité du
matériau de base)

¦— des charges ponctuelles sur les nœuds
— des déformations initiales de chaque élément (dé¬

coulant par exemple d'un gradient de température).

5.2.4 Structure du programme
L'organigramme général est le suivant :

—?¦ Cycle des itérations successives

—y Cycle sur les éléments du matériau de base
calcul des matrices des éléments du

matériau de base

[B], [D], [A]
Construction de la matrice de rigidité

—> Cycle sur les éléments filiformes
calcul des matrices des éléments fili¬

formes
[B], [D], [K]
Construction de la matrice de rigidité
Introduction des conditions aux limites et

résolution du système linéaire

—> Cycle sur les éléments de base
calcul des contraintes, des contraintes

principales, définition des nou-
velles caractéristiques

—? Cycle sur les éléments filiformes
calcul des contraintes dans les élé-

merits d'acier

Définition de la nouvelle itération.

Les résultats principaux sortent sur cartes perforées et
permettent le dessin automatique de la structure et des
contraintes principales sur un coordinatographe.1

5.2.5 Application de ce programme
Ce programme est conçu dans une optique de recherche

: il doit nous permettre de contrôler et de faire
évoluer les hypothèses précitées, il rend possible l'analyse

du comportement de structures complexes à
contraintes ou déformations planes en béton armé, mais
ne permet pas le calcul de la charge de ruine d'une
structure dans laquelle les bouleversements internes
sont trop importants dans les phases ultimes de
résistance.

Nous travaillons actuellement à étendre ce programme
au calcul tridimensionnel, c'est pourquoi nous avons
préféré apporter les correctifs nécessaires (capacité,
méthode d'itération) au nouveau programme plutôt que
d'améliorer le programme bidimensionnel de portée
relativement restreinte.

Afin de concrétiser les possibilités pratiques d'application

d'une telle méthode de calcul, nous présenterons
quelques résultats de l'analyse d'une poutre en béton
armé sur trois appuis simples. Soulignons toutefois que
le but de cette analyse n'est nullement de calculer une
poutre à la rupture dans un but constructif car les
méthodes récentes du calcul à la rupture permettent de
le faire avec précision et à beaucoup moins de frais. En
revanche, cette analyse nous a permis de tester les
possibilités et les faiblesses des hypothèses et de la
méthode de calcul utilisée.

Comme base de comparaison, nous avons choisi une
poutre sur trois appuis, qui a été l'objet d'un essai de
F. Leonhardt [10] lors d'une étude sur l'effort tranchant
dans les poutres continues. La poutre est définie par la
figure 29 ; elle a été soumise à deux charges en travées
croissant jusqu'à la ruine. Nous avons estimé, à partir des
définitions courantes données par Leonhardt, les paramètres
définissant notre modèle.

L'augmentation du nombre de nœuds utilisés pour définir
le schéma de calcul a une importance considérable sur le
temps nécessaire à l'analyse, par contre il est évident quela précision des calculs est nettement améliorée par le choix
d'un réseau aussi dense que possible. En tenant compte
de cette contradiction et de la capacité du programme actuel,
nous avons choisi le schéma de calcul de la figure 30, qui
représente une demi-poutre. Le déplacement horizontal des
nœuds sur l'appui central est admis nul, pour tenir compte
de la symétrie.

Le coefficient de compressibility A: est admis constant et
choisi égal à 130 000 kg/cm2 par comparaison avec les résultats

obtenus par K. Weigler. Le module de glissement est
choisi pour ce cas particulier de la forme u n, — ß In /a
où Pi et p sont déterminés par ajustement avec la courbe

1 Pour l'instant, la capacité du programme est limitée à 80 nœuds
environ.
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Fig. 30. — Schéma de calcul.

uniaxiale indiquée par Leonhardt, en tenant compte des
essais plus complets de Weigler (fig. 31). A partir de la
résistance du béton (ßw2R =—351 kg/cm2), nous avons
admis ßc=0,8 pw2S= —280 kg/cm2 et n=l,25, y= —0,075.

Comme nous l'avons vu plus haut, le calcul se fait par
approximations successives : l'analyse présentée en
comprenait huit pour trois valeurs différentes de la charge.

La figure 32 compare les efforts dans les armatures
principales en travée pour une charge croissant jusqu'à 12,5 t.
Cette charge correspond à 1,5 fois la charge créant des
contraintes égales aux contraintes admissibles suivant les
normes SIA 162. Elle est aussi égale à la moitié de la charge
de rupture d'essais.

La figure 33 représente la variation des efforts principaux
dans le béton et le développement des zones fissurées.

Nous constatons que les résultats du calcul sont tout
à fait comparables à ceux que fournit l'essai sur modèle et
donnent une idée précise du comportement de la poutre.
Nous avons d'autre part remarqué que la tension dans les
étriers était supérieure à ce qu'indiquent les essais, mais
que la flèche en travée était identique.

Par la suite, nous avons tenté d'augmenter la charge
jusqu'à la ruine en réduisant le nombre d'itérations
intermédiaires pour limiter le temps de calcul. Nous n'avons pas
pu dépasser 70 à 75 % de la charge de rupture obtenue par
l'essai, car les résultats devenaient incohérents pour
plusieurs raisons dont nous présenterons quelques aspects.

Certaines causes d'erreur, telles que le glissement des
armatures ou la modification locale de leur mode de travail
(armature principale localement doublement coudée sous
l'effort tranchant), proviennent de phénomènes physiques
particuliers qu'il est difficile de symboliser. D'autres, par
contre, découlent de la technique de calcul ; par exemple,
la méthode d'itération choisie (type a, 5.2) implique que
les éléments fissurés soient admis très fortement orthotropes
dans la direction des fissures. Ce schéma rigide conduit clans
certains cas à des singularités de la matrice de rigidité
interdisant la poursuite du calcul, de plus il ne permet pas de
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Fig. 31. — Diagramme synthétique «contrainte-déformation
» pour une charge uniaxiale.

tenir compte, simplement, des compressions auxquelles
l'élément résiste lorsque les fissures se referment. Dans le cas
de la poutre, la proportion des zones fortement fissurées est
relativement importante et l'on observe sur appui une
fissuration secondaire d'orientation différente. Ces remarques
expliquent dans une large mesure l'impossibilité que nous
avons rencontrée de déterminer plus précisément la charge
de rupture de la poutre. Il nous semble par conséquent que
l'usage de la méthode des forces fictives (processus b), 5.2)
nous permettra de réduire notablement l'écart entre la charge
de rupture réelle et celle calculée, sans remettre en cause
les hypothèses de base sur le modèle de déformation du
béton, qui s'est révélé fructueux.

Par ailleurs, cet exemple de calcul montre qu'il est déjà
possible d'analyser avec précision le comportement de
certaines structures à contrainte ou déformation plane et de
forme complexe dans un domaine non élastique qui échappait

à l'investigation de l'ingénieur. Ainsi l'usage de ce

programme pour l'analyse de sections planes de structures
massives peut déjà donner des renseignements pratiquement
utilisables clans le dimensionnement de tels ouvrages.

6. Conclusion

L'analyse des structures massives et complexes en
béton armé exige l'élaboration de lois de comportement
du béton sous un état de contrainte triaxial.

Le modèle de déformation tridimensionnel « élastique
— parfaitement plastique », mis au point grâce au grand
essor de la technologie des métaux, restitue dans une
large mesure le comportement réel de nombreux métaux.

On constate cependant que ce modèle s'adapte mal
au comportement effectif du béton, qui d'une part est

un matériau fragile et d'autre part se déforme, sans

discontinuité, de façon irréversible dès le début de la
sollicitation.

Nous avons donc été conduits à définir tout d'abord
un critère de rupture du béton sous charge triaxiale.
Comme lieu des points représentatifs des états de
contrainte correspondant à la rupture, nous avons choisi,
dans le système de référence des contraintes principales,
une surface à symétrie de révolution comprenant un
cône et un tronc de cône. Ceux-ci se coupent dans le

plan passant par les trois points représentatifs de la

rupture uniaxiale.
Au stade actuel de notre étude, la surface admise

représente une approximation suffisante qui concorde
assez bien avec les résultats d'essais biaxiaux et qui, de

plus, peul être facilement déterminée pour un béton
donné. Le choix d'une surface plus élaborée, comprenant
notamment des directrices non circulaires dans les zones
de faible pression moyenne, nous semble encore trop
incertain au vu du nombre restreint d'essais
multiaxiaux systématiques.
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Nous avons ensuite recherché un modèle de
déformation représentatif de l'évolution des caractéristiques
d'un béton sous charge rapide croissante. Nous avons
opté pour un modèle isotrope non linéaire qui, par
opposition aux modèles rhéologiques, ne fait pas intervenir
le temps comme paramètre principal. A un instant
donné de la sollicitation, nous admettons entre les
contraintes et les déformations une relation de type élastique

définie par les modules sécants de compressibilité A-

et de glissement p, ces modules étant dérivés des coefficients

de Lamé. De plus, les modules p et k sont considérés

comme variables en fonction de l'évolution du
matériau sous la charge. Ainsi, le coefficient de compressibilité,

constant pour certains bétons, est admis variable
en fonction de la pression moyenne, ou du premier
invariant du tenseur des contraintes. Le coefficient de
glissement est exprimé en fonction du deuxième invariant

du tenseur des contraintes, représentatif de la
distorsion du matériau.

Ces hypothèses sont cohérentes avec les résultats
d'essais biaxiaux et il est pratiquement possible, par des
essais courants, d'obtenir pour un béton donné une
définition numérique des caractéristiques que nous
utilisons.

Nous basant sur ce modèle, nous avons élaboré un
programme de calcul bidimensionnel, basé sur la méthode

des éléments finis. Ce programme permet d'analyser
une structure en béton armé, à contrainte ou déformation

plane, de forme complexe. Nous avons effectué, à
titre de contrôle, l'étude d'une poutre en béton armé
sur trois appuis simples, soumise à une charge croissant
jusqu'à la moitié de la charge de ruine réelle, et nous
avons comparé les résultats à ceux d'essais. Il apparaît
que les calculs sont parfaitement confirmés. D'autre
part, le programme actuel a permis de suivre le

comportement jusqu'à une charge voisine de 70 % de cette
charge de ruine, mais l'analyse n'a pu être prolongée
valablement au-delà de cette limite. Enfin, l'examen des

P 10t

<&
"s.

<E

<Ea:
élément fissurecontraintes principales J

* - 20 kg/cm2 rP= 12.5 t

<B
NT^f <g

4
>

••

Fig. 33. — Description des contraintes dans le béton.
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résultats semble montrer qu'il sera possible d'étendre le

domaine d'investigation sur la base des lois de comportement

décrites dans cet article.
Le programme ainsi élaboré rend donc possible le

calcul de structures bidimensionnelles en béton armé,
de forme complexe, dans un domaine non linéaire. Les

hypothèses et la technique de calcul choisies rendent
possible une amélioration de ce programme pour tenir
compte de phénomènes que nous avons, jusqu'ici,
négligés par souci de simplification. Nous étudions
actuellement l'extension de ce programme au calcul
tridimensionnel, afin d'obtenir un outil puissant qui prendra

toute sa signification dans l'analyse du comportement

non linéaire jusqu'à la rupture de structures
complexes.

Sij — 077 Ci

Le déviateur principal sera

Si — 07 — Ui
o-! —a 0

_
0

0 a2 —"a 0

0 Oct, — a

(4)

(5)

Les contraintes principales o1% ct2, ct3 sont les racines de
l'équation — ct3 -f- ^ct2 -f 72ct -j- 73 0, où Iv It, I3 sont
les invariants d'ordre 1, 2, 3 de la transformation (6)

(changement de repère)

7j ctx + ct2 + ct3

h ai — CT1CT2 + CT22 — <*2a3 + ^32 — CT3CT1

^3 [ CTj; | (déterminant).

Annexe: Définitions

Pour faciliter l'expression des relations que nous avons
présentées, nous avons utilisé les termes suivants :

1. Etat de contrainte triaxal

Soit l'état de contrainte en un point d'un solide défini
par trois contraintes normales et six contraintes tangen-
tielles égales deux à deux (fig. 34).

Nous appelons tenseur des contraintes la matrice
symétrique suivante :

Ot; ;

CTn ai2 CTi3 ~1 Les termes 0"u, cr22, a

CT21 ct22 ct23 contraintes normales,
CT3i CT32 CT33 J sont les contraintes ta

les autres
tangentielles. (1)

Nous appelons tenseur principal le tenseur des contraintes
exprimé dans l'espace des contraintes principales défini par
les vecteurs propres du tenseur des contraintes :

CT»

CTt 0 0 ~|

0 ct, 0
0 O" a3

t ¦ n • — CT-, -f- CT2 -\- CTo

La pression moyenne est denme par ct — -=

et le déviateur des contraintes par

(2)

(3)

Û~33

fj?3
CT.t.'3>K

032

JjU22
B«i

Ctz
J*

<J?1
(T«

Fig. 34. — Définition des contraintes.

2. Etat de déformation triaxial

Si nous appelons tenseur des déformations spécifiques

E2i
L E31

déformation moyenne

ou dilatation cubique

(3)

(9)

nous pouvons définir par analogie avec les contraintes :

— le tenseur principal des déformations E;

— le déviateur des déformations e%j Sij — e;

— le déviateur principal des déformations ei

avec, par exemple,
• * h* _ E13

E22 — E E23 _
E,9 s.., ec32 =33

(10)

Les contraintes et les déformations ainsi définies, rappelons

quelques aspects des lois élastiques qui peuvent les lier.

3. Définition des caractéristiques élastiques [2]

Dans l'espace des contraintes principales, chaque
contrainte est liée, dans le domaine élastique, à l'ensemble des
déformations par les relations suivantes :

°i ai h + h E2 + H £3

a2 a2 s2 + b2 s1 -f- c2 63

°3 a3 Ei + h E2 + c3 Es

Le milieu isotrope est caractérisé par :

(11)

*i cx a2

Posons : 6j A

a3 &3 et a1 6a

A + 2p

où X et p sont les paramètres de Lamé ;

(11) devient :

(A + 2u) s, +

a3 Ae,

Ae2

+ (A + 2p.) e2 +
Ae3
Ae„

+ A E, (A + 2 u) e3

(12)

Si nous mettons en évidence les termes en A, nous obtenons

les équations suivantes :

*2 * (El + E2 2 HE,.

Le système (12) peut, alors se mettre sous la forme
suivante :

: A e -f 2 n E,' (13

Dans un système d'axes quelconques, (13) se transforme
en neuf équations du type suivant :

tfij A 6 6,7 + 2 n e,; avec 6,7 1 si i /' (14)
5(/ 0 si i ^ /
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Décomposons chaque membre de (14) en deux parties,
en utilisant la relation (4), nous obtenons :

<Jij Sij + a Sij 2 p eij + (3 A + 2 p) s 5,; (15)

En faisant la somme des équations relatives à Sxl, S2.

ct (3 A + 2 p) s où a 3ksij k<

2
avec A- A -f- — n appelé coefficient de compressibilité.

Cette relation exprime la proportionnalité entre la
dilatation cubique et la pression moyenne.

Puis on déduit : Sij 2p aj avec p appelé coefficient de
glissement.

C'est une relation entre les déviateurs des contraintes el
des déformations, qui s'explicite sous la forme suivante :

Sn S12 "^13
521 ¦S22 ^23
^31 ^32 "^33

2n
"11 «12 «13

«21 «22 P23

Remarque : Pour une charge uniaxiale, le système (11)
donne, avec les conventions de Lamé, le système d'équations
suivant :

o-i À0-r2uE1
0 =A9 + 2ue2
0 A 9 + 2 u e3.

En éliminant 6

port à Et (in obtient :

3 A + 2 u
et en résolvant par rap-

CTi ß _ ^ (3 A + 2 n) moduIe d'élasticité
E A + p de Young

et e2 E3 - v e, avec v
"• coefficient

2 (A + P) de Poisson.

Nous constatons que le module de Young et le coefficient
de Poisson sont mieux adaptés pour traiter des problèmes
à une dimension ; ils sont nécessaires d'autre part pourdéfinir des corps anisotropes.
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Les phénomènes d'opinion prennent une importance
croissante tant dans la vie politique que dans
l'économie. Le développement prodigieux des « mass-media »

est, pour une bonne part, responsable de cette évolution
qui concerne aussi bien les décisions politiques des
gouvernants que les décisions économiques et commerciales
des entreprises. Les données de fait de la concurrence entre

les nations, les entreprises, les groupes sociaux évoluent
également rapidement, avec l'ouverture des frontières,
les innovations techniques et l'élévation des revenus.

Tout responsable a besoin d'instruments lui permettant
de situer son action — contexte préalable et

résultat — dans un univers en changement rapide et
profond. La technique moderne des enquêtes par
sondage fournil une réponse à cette nécessité, tant sur le
plan des faits et comportements qu'au niveau plus
difficile des opinions, des attitudes et des motivations.
Ce livre aborde les applications des enquêtes par
sondage, dun 1 il dresse le panorama actuel, illustré par de
très nombreux exemples vécus, puisés notammenl dans
l'expérience de la SOFRES et de la SEMA.

Une première partie traite des enquêtes d'intérêt
collectif sur l'économie et la société et vise particulière¬

ment l'éclairage des décisions politiques et économiques
au niveau de ia nation, de la région et de la ville.

La seconde, qui concerne plus spécialement les
problèmes commerciaux des entreprises, présente les différents

thèmes d'enquêtes par sondage, allant de l'étude
de la clientèle à la publicité, en passant par la
distribution, les tests de produits, etc.

Enfin, les conditions d'exécution et de validité des
enquêtes par sondage sont étudiées, en insistant sur les
points qui doivent faire l'objet du dialogue entre le
demandeur d'enquête et le spécialiste de l'exécution des
sondages.

Cadres de l'administration, hommes politiques,
professionnels du marketing, de la publicité, de la presse,étudiants en sciences économiques, sociologie, politique,
commerce, responsables de syndicats, mouvements et
associations, tireront profit de ce livre, dont la lecture
n'exige aucune formation mathématique préalable.

Sommaire :

Les enquêtes sur les problèmes d'intérêt collectif. Enquêtes
d'intérêt national. Enquêtes sur le développement urbain et
agricole. Enquêtes d'opinion publique. — Les enquêtes de
recherche commerciale. Tests préliminaires aux lancements
de produits. Enquêtes de marché auprès du grand public.
Analyse de la distribution des produits. Enquêtes concernant

les marchés industriels. L'audience des moyens d'information
de musse et des supports de publicité. La mesure de

['efficacité de la publicité. Enquêtes et stratégie commerciale.
— Les conditions de réalisation des enquêtes par son-

tttige. Histoire d'une enquête. L'échantillonnage. Le
questionnaire. Les enquêteurs. Les machines.
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