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A PROPOS DE LA NOTION D’ELLIPSOIiDE DE DEFORMATION

EN HYPERSTATIQUE

par A. ANSERMET, ing.-professeur !

Le calcul des ellipsoides de déformation est suscep-
tible de faire réaliser de grands progrés en hyperstatique
comme ce fut le cas dans les réseaux électrotélémé-
triques en ce qui concerne les ellipsoides d’erreur. Dans
ces réseaux les praticiens, en considérant la forme de
ces surfaces, constatent que certains neeuds sont mal
déterminés ; ils sont alors amenés a apporter des modi-
fications de structure ou & améliorer certains poids qui
sont a la base des calculs.

En hyperstatique, il y a un peu de retard quant a
'application de nouvelles théories relatives aux défor-
mations des structures; et pourtant en 1915 déja, a
Lausanne, chaire de statique, on fit table rase de la
méthode assez simpliste, dite « aux équations d’élasti-
cité ». B. Mayor, en une page et demie, développa une
méthode générale basée sur la variation des coordonnées
des neeuds. Celle-ci permet beaucoup mieux d’aboutir
a la notion d’ellipsoide de déformation comme on le
verra ci-apres,

Poids des barres : Dans les réseaux électrotélémé-
triques, la détermination des poids donne lieu a de
sérieuses divergences ; les staticiens ont cette chance
d’échapper a de telles controverses. Les poids sont pro-
portionnels aux coeflicients d’élasticité E, aux sections
transversales S et aux inverses des longueurs I des
barres. Ces poids p se présentent, sous une forme un
peu camouflée, dans la fonction connue qui exprime le
travail de déformation, ce que certains praticiens n’ont
pas remarqué.

Equation aux déformations : Depuis quelques années,
on en vient a la solution préconisée par Mayor ; la
rédaction des Mémoires de I’Association internationale
des Ponts et charpentes (AIPC), qui ne connaissait pas
encore le cours de statique de Lausanne de 1926, mit ses
colonnes a la disposition des professeurs Naruoka et Li.

! Publication patronnée parla chaire de constructions métalliques de
I'EPUL. Elle fait suite & celle du 2 décembre relative aux coupoles.
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A ce sujet, la chaire de statique de Zurich s’exprimait
comme suit :

« Dans le cas des treillis spatiaux, & nceuds articulés,
on retombe donc directement sur les équations que
vous utilisez (ainsi que M. Li).»

11 était fait allusion au calcul STRESS ; en réalité, il
faut distinguer deux formes :

(1) ali -4 ley -+ CiDZ = mlT,L = ¢;
(solution sans coupures)
(@ + b +c =1)
i=—=1, 2, §

Equation valable pour un seul nceud libre ; une
variante est la sulvante :

(2) adx + bidy + cidz = o;— [;

(solution avee coupures)

(Poids py)

Pratiquement, les coeflicients sont les mémes ; les
équations (2) sont une variante de la solution (1) de
Mayor; les ¢; sont les variations des longueurs des
barres exprimées en fonction des variations de coordon-
nées du nceud, les m; les modules des barres, propor-
tionnels aux inverses des poids p;, T'; les efforts axiaux.
Ce sont les 7' qui interviennent pour le calcul du tra-
vail de déformation A & rendre minimum ou constant.

Travail de déformation A : On voit tout de suite qu’il
est proportionnel a ’expression du lieu : A = constante.
Les termes absolus f;, qui ne sont pas nécessairement
tous différents de zéro, expriment que I’état initial n’est
pas le méme a la base des équations (1) et (2). Dans le
voisinage immédiat du point qui répond a la condition
A = minimum, on a des ellipsoides (A constant). Pour
un groupe de nceuds, ce raisonnement n’est plus valable.
Mais pour un seul nceud, les dérivées partielles de I’éner-
gie sont les trois dérivées qu’il faut former pour déter-
miner le centre de I'ellipsoide en se basant sur I’équa-
tion (2); on pouvait le présumer.

Ezemple numérique : Pylone a 6 barres ; sommet libre
nceud 1.

i = |barres ai bi Ci pi P;
1 1-2 | + 0,740 | + 0,345 | + 0,577 | 1,8 3,3
2 1-3 | —0,071 | — 0,813 | 4+ 0,577 | 1,8 3,3
3 1-4 | — 0,669 | + 0,469 | + 0,577 | 1,8 3,3
b4 1-5 | + 0,142 | 4+ 0,804 | + 0,577 | 1,5 3,3
5 1-6 | + 0,625 —0,525 | 4+ 0,577 | 1,5 3,3
6 1-7 | — 0,767 | — 0,279 | + 0,577 | 1,5 3.3

Les a;, b;, ¢; n’ont pas de dimensions.

Pour les poids & priori p; et & posteriori Py, ces dimen-
ES

sions sont données par l'expression e

Dans le voisinage du minimum, on a : A = constante
pour des points situés sur des sphéres concentriques ; le
probleme est tres simple. En effet, les coeflicients des
termes quadratiques sont :

(paa| = [pbb] = [pcc] = 3,3

et pour les non-quadratiques : [pab] = pac] = [pbe] = 0
On en déduit les coeflicients aux poids des inconnues.

Qrzz = Qyy = Qzz=1/3,3  Qay = Qaz = Qyz =0
1,8 It

33 7°°33

1

<

= 3 (3 inconnues).

[p:P]}=3x

Solution B. Mayor : 1l y a trois équations d’équilibre
au nceud libre et six équations aux déformations ; les
neuf inconnues sont les six efforts axiaux dans les barres
et les trois variations de coordonnées en 1. Il y aurait
encore & déterminer la déformation quadratique
moyenne m relative & I'unité de poids : m? o~ [pee] : 3.

Ici seulement les f; interviennent pour le calcul des ¢.
Cet élément m fournit ellipsoide dit moyen.

Pour une paire de nceuds libres on peut réaliser la
forme sphérique ; au-dela, les calculs deviennent vite
inextricables. 5

Cas d’un pyléne a 22 barres : (voir figure).

22 barres y compris 2-4 et 3-5.

Il y a 5 nceuds libres, dont le sommet 1, et 4 nceuds
fixes 6, 7, 8, 9. L’unité de mesure étant arbitraire, les
coordonnées sont :

Nceeuds
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Les 8 diagonales ont la méme longueur 7,81. Quant
aux poids, ils sont tous égaux (p; = 1), sauf pour les
barres 2-4 et 3-5 (p; = 0,8). Les poids interviennent par
leurs valeurs relatives.

Solution Mayor : Elle comporte 15 équations d’équi-
libre et 22 aux déformations pour déterminer 22 efforts
axiaux dans les barres et 15 variations de coordonnées.
Il y a plus d'une maniére d’effectuer le calcul car les
termes absolus sont au nombre de 15 au maximum. On:
peut concevoir le cas ou il y a un seul terme absolu, par
exemple si on a une seule force I extérieure, paralléle a
un des axes de coordonnées, deux des composantes de I
étant nulles, la troisiéme étant égale a F.

Les équations aux déformations ont la forme, pour

la barre gh:
(3) agh (Daxy — Day) + bgn (Dyy — Dyn) +

4+ cgn (Dzg — Dzp) = mygp Tgp = vga.




Matrice aux coefficients des équations normales (a inverser)

C’est la forme qui fut reprise, bien aprés Mayor,
notamment dans les Mémoires AIPC (professeur Li) et
qui, en principe, est a la base du calcul STRESS. Mais
B. Mayor est le premier qui évita les coupures & un
moment ou la solution par les équations d’élasticité était
qualifiée de classique ; encore une fois, cette derniére
est moins générale surtout quant au calcul des défor-
mations.

Solutions avec coupures : lci, on peut pousser assez
avant les calculs sans faire intervenir les forces exté-
rieures ; c’est comme pour les réseaux électrotélémé-
triques ou les praticiens calculent provisoirement des
ellipsoides d’erreur, avant d’avoir effectué les mesures.
Le nombre des équations aux déformations sera ici égal
a 22 et celul des équations normales, donc des dérivées
de I’énergie égal 4 15. Par exemple, pour la diagonale
2-7: -

+ 0,384 dz, — 0,768 dy, + 0,512 dzy = 09 — f5;.

Pour le moment, les termes absolus f ne jouent pas
de role. "

On détermine la matrice aux coefficients des équations
normales ou dérivées de I'énergie :

(4) [pas] =0 [phe]=0 [pes] =10

implicite.

forme dite

Les éléments diagonaux sent les coeflicients quadra-
tiques, ce qui est manifeste. La matrice est symétrique
et son inversion, par voie électronique, dure environ
1 minute. On obtient alors la matrice aux coellicients de -
poids des inconnues Quz, Ozyy Qyy

Ce sont les éléments pour le calcul des ellipsoides de
déformation. En statique, cette notion de poids des
barres sera vite familiére ; pour les poids a posteriori,
c’est plus subtil.

Le calcul devient maintenant un probleme moins de
statique que de mathématiques pures. Il faut distinguer
deux formes : la ponctuelle et la tangentielle (voir (3)) ;
le centre de la surface qui répond a la condition du mini-
mum est par hypothése connu. Dans le premier cas,
on a une forme quadratique ternaire dont les coefli-
cients sont : [paa], [pab], [pac] ...[pec ]. 1l suflit de
considérer le déterminant :

[paal —k  [pab) [pac]
(5) | [pbal [pbb] — k [pbe] = 0
[pac] [pbe] [pee] — k

Les carrés des longueurs des axes principaux sont
proportionnels aux inverses des racines ky, ky, k.

0,72 | 0 0 —0,36| 0 + 0,48 0 0
0,72 | 0 0 0 0 0 — 0,36
2,56 | + 0,48 0 — 0,64 0 + 0,48
nosud 1 2,81 0 — 0,57 | — 0,50 | + 0,50
! . 2,18 0 + 0,50 | — 0,50
1,80 0 0
218| 0
nceud 2 . 2.81
nceud 3

~ 0,36 — 0,48 0 0
—0,36 | —0,48
— 0,48 | —0,64
0
— 0,50
0
0
— 0,80
0
+ 0,50
— 0,50
0
0

2,81
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Dans la forme tangentielle, c’est la surface podaire de
I’ellipsoide par rapport a4 son centre qui intervient ; le
déterminant devient :

Qxx — K Qxy sz
(6) Qay Quy — K Qyz =0
sz Qyz sz — K

Les racines k', &'y, k'3 sont proportionnelles aux car-
rés des longueurs des axes principaux.

Les éléments sont fournis par la matrice inverse de
celle ci-dessus (Calcul par le centre électronique de
I’EPUL). Eu égard au but poursuivi, on peut concevoir
un calcul graphique des racines. L’examen de la matrice
a inverser, en ce qui concerne les éléments diagonaux,
montre déja que ellipsoide du neceud 1 sera moins favo-
rable que les autres. Les longueurs des axes principaux
sont proportionnelles & :

1,57 : 1,57 : 0,80 (nceud 1)
0,73:0,78: 0,89 (nceuds 2, 3, 4, b)

Il faut modifier la structure si, pour le nceud 1, on
veut un ellipsoide moins aplati ; une modification des
poids aurait peu d’influence dans le cas particulier, en
ce qui concerne la forme de la surface.

Solution K. Friedrich : Ainsi qu’on le sait, outre-
Rhin surtout, on a remarqué la corrélation existant
entre l’hyperstatique des systémes articulés et les
réseaux télémétriques (« Die Analogie zwischen den
Stabfachwerken und Streckennetzen wurde bald er-
kannt », dit-on couramment). Or, I'évolution des métho-
des de calcul pour les réseaux fut rapide, cohérente ; au
début surtout, on établissait une équation pour chaque
coté surabondant. Bientdt cependant, on base les calculs
sur les variations de coordonnées des nceuds; de son
coté B. Mayor, de fagon indépendante, reconnaissait les
avantages de cette solution surtout pour le calcul des
déformations, mais sur la base des équations (3).

K. Friedrich, il y a vingt-cinq ans déja, raisonna de
la fagon suivante : il considéra un nceud libre; sommet
d’un pylone & 4 barres et admit comme poids la valeur

E;S; constante
e
comme on le fait souvent dans les réseaux.

Désignons par P, la position initiale du nceud comme
le fit B. Mayor et P la position finale sous l'action des
forces extérieures :

P,P? = Da? 4 Dy® 4 Dz2,
K. Friedrich considéra un état intermédiaire P’ :

P'P? = da® + dy® + dz2.
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A cet effet, il coupa une barre et fit varier la tempé-
rature dans les trois autres ; théoriquement, il pouvait
éviter une coupure, mais en faisant varier la tempéra-
ture dans la quatriéme barre d’une fagon qui n’était plus
arbitraire comme les trois autres. K. Friedrich abou-
tissait aux mémes équations que celles dites aux erreurs
dans les réseaux; il retombait sur un probléme qui,
depuis longtemps, est traité a fond. Des cas avec
40 équations normales et plus sont devenus courants et
le calcul d’ellipsoides d’erreur est un jeu.

Toutefois, a premiére vue, la solution Mayor sans
coupures est préférable ; en réalité, c’est moins simple.

En résumé, on peut dire qu’en hyperstatique des sys-
témes articulés les méthodes évoluent rapidement ; la
solution sans coupures due en premier lieu & B. Mayor
parait gagner du terrain. Les remarquables publications
ayant paru dans les Mémoires AIPC le prouvent, ainsi

que les recherches faites par la chaire de statique de
Zurich (calcul STRESS).

En ce qui concerne les ellipsoides de déformation, il
s’agit d’une notion qui deviendra vite familiére ; des
formes trés défavorables pour ces surfaces seront évi-
tées. Ce probléme, dans son ensemble, est susceptible
encore de bien des développements.
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METHODES MODERNES DE CALCUL DES DEBITS ET DES
RESERVES DES NAPPES D’EAU SOUTERRAINES (suit et fin) !

par M. E. RECORDON, ingénieur, privat-docent & la Faculté des sciences de l'Université

de Neuchatel, chargé de cours a I'EPUL

III. Application des théories de Dupuit et de Theis au
cas de l'essai de pompage de Cressier

A. L’essai de pompage de Cressier

En 1931, la commune de Cressier a construit un pre-
mier puits de captage & une centaine de métres de la
gare, cOté plaine (fig. 8).

En 1960, les besoins en eau ayant augmenté, la com-
mune étudia la possibilité d’exploiter la nappe souter-
raine dans une deuxiéme station plus a 'ouest, en cons-
truisant un nouveau puits de captage. Elle confia a
M. le professeur Burger la tache de diriger les recherches
géologiques. Les travaux de forage et
d’établissement du puits d’essai et des
puits d’observation, ou piézométres,
furent confiés a lentreprise Grundwas-
serbauten AG., de Berne. Les essais de
pompage furent également suivis par
M. Irmin Lévy, ingénieur 4 Delémont,
qui étudiait le réseau d’alimentation en
eau pour la commune.

La carte des résistivités électriques (fig. 10) montre
que I'on est en présence probablement d’un céne de
déjection d’un ancien torrent descendant du Jura. La
forme incurvée des courbes d’équirésistivité montre
aussi que le puits d’essal est situé sensiblement au
centre de ce cone. On peut admettre qu’une certaine
alimentation de la nappe se fait par le nord-ouest, par-
dessous la voie ferrée. Ce qui est confirmé d’ailleurs par
le fait que la surface de la nappe souterraine marque
une pente générale d’environ 10/00 en direction de la
plaine. La nappe, en l'absence de pompage, s’écoule
vers la plaine a une vitesse de I'ordre de 10-6 m/sec.

Cressier ;

CFF y — -
- = Ssow | its 1831)]
Puits 1931
~ 2 rabr. \ISAC um\\ T T

Les Gouilles

LJ/(-] 052

L’emplacement qui paraissait géologi- &
quement favorable est situé au sud de puls o= 1961 L /
la localité de Cressier, & proximité immé- 1946
diatedes voies ferrées ; il se trouve sen- P
siblement a égales distances, 500 m les |Cordelles
environ,de la Vieille Thielle et du pied \ vs e
du coteau bordant la plaine, et entre ’ L
deux ruisseaux, a 400 m environ du Mor- 2,
truz et a 280 m du Ruhaut. La surface
du terrain est en trés faible pente en T ©
direction de la plaine (fig. 9). A = Triae
Au point de vue géologique, la nature \\ 4

des sols a été reconnue a I'aide de deux
forages et de prospections électriques. T

! Voir Bulletin technique N° 5 du 9 mars 1968,
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Fig. 8. — Plan de situation de Cressier.
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