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À PROPOS DE LA NOTION D'ELLIPSOÏDE DE DEFORMATION
EN HYPERSTATIQUE

par A. ANSERMET, ing.-professeur 1

Le calcul des ellipsoïdes de déformation est susceptible
de faire réaliser de grands progrès en hyperstatique

comme ce fut le cas dans les réseaux électrotélémé-
triques en ce qui concerne les ellipsoïdes d'erreur. Dans
ces réseaux les praticiens, en considérant la forme de
ces surfaces, constatent que certains nœuds sont mal
déterminés ; ils sont alors amenés à apporter des
modifications de structure ou à améliorer certains poids qui
sont à la base des calculs.

En hyperstatique, il y a un peu de retard quant à

l'application de nouvelles théories relatives aux
déformations des structures ; et pourtant en 1915 déjà, à

Lausanne, chaire de statique, on fit table rase de la
méthode assez simpliste, dite « aux équations d'élasticité

». B. Mayor, en une page et demie, développa une
méthode générale basée sur la variation des coordonnées
des nœuds. Celle-ci permet beaucoup mieux d'aboutir
à la notion d'ellipsoïde de déformation comme on le

verra ci-après.

Poids des barres : Dans les réseaux électrotélémé-
triques, la détermination des poids donne lieu à de
sérieuses divergences ; les staticiens ont cette chance
d'échapper à de telles controverses. Les poids sont
proportionnels aux coefficients d'élasticité E, aux sections
transversales S et aux inverses des longueurs l des
barres. Ces poids p se présentent, sous une forme un
peu camouflée, dans la fonction connue qui exprime le
travail de déformation, ce que certains praticiens n'ont
pas remarqué.

Equation aux déformations : Depuis quelques années,
on en vient à la solution préconisée par Mayor ; la
rédaction des Mémoires de l'Association internationale
des Ponts et charpentes (AIPC), qui nc connaissait pas
encore le cours de statique de Lausanne de 1926, mit ses
colonnes à la disposition des professeurs Naruoka et Li.

1 Publication patronnée par la chaire de constructions métalliques de
l'EPUL. Elle fait suite à celle du 2 décembre relative aux coupoles.
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A ce sujet, la chaire de statique de Zurich s'exprimait
comme suit :

« Dans le cas des treillis spatiaux, à nœuds articulés,
on retombe donc directement sur les équations que
vous utilisez (ainsi que M. Li). »

Il était fait allusion au calcul STRESS ; en réalité, il
faut distinguer deux formes :

(1) OiDx + b{Dy + CjDz miTi vt
(solution sans coupures)

/ 2 i 2.2 i 2
(oj + bi + ci

i= 1, 2, 3

1)

(2)

Equation valable pour un seul nœud libre ; une
variante est la suivante :

a(dx -f bfdy -f- cidz vt — fi (Poids p,-)

(solution avec coupures)

Pratiquement, les coefficients sont les mêmes ; les

équations (2) sont une variante de la solution (1) de

Mayor ; les fj sont les variations des longueurs des

barres exprimées en fonction des variations de coordonnées

du nœud, les nu les modules des barres,
proportionnels aux inverses des poids pi, Ti les efforts axiaux.
Ce sont les T,2 qui interviennent pour le calcul du travail

de déformation A à rendre minimum ou constant.

Travail de déformation A : On voit tout de suite qu'il
est proportionnel à l'expression du lieu : A constante.
Les termes absolus fi, qui ne sont pas nécessairement
tous différents de zéro, expriment que l'état initial n'est

pas le même à la base des équations (1) et (2). Dans le

voisinage immédiat du point qui répond à la condition
A minimum, on a des ellipsoïdes (A constant). Pour
un groupe de nœuds, ce raisonnement n'est plus valable.
Mais pour un seul nœud, les dérivées partielles de l'énergie

sont les trois dérivées qu'il faut former pour
déterminer le centre de l'ellipsoïde en se basant sur l'équation

(2) ; on pouvait le présumer.

Exemple numérique : Pylône à 6 barres ; sommet libre
nœud 1.

i barres
1 1-2
2 1-3
3 1-4
4 1-5
5 1-6
6 1-7

ai
+ 0,740
— 0,071
— 0,669
+ 0,142
+ 0,625
— 0,767

bi
0,345
0,813
0,469
0,804

¦0,525
0,279

Ci Pi Pi
+ 0,577 1,8 3,3
+ 0,577 1,8 3,3
+ 0,577 1,8 3,3
+ 0,577 1,5 3,3
+ 0,577 1,5 3,3
+ 0,577 1,5 3,3

Les a;, b{, Ci n'ont pas de dimensions.

Pour les poids à priori pi et à posteriori Pi, ces dimen-
¦ ES

sions sont données par 1 expression —j-»

Dans le voisinage du minimum, on a : A constante

pour des points situés sur des sphères concentriques ; le

problème est très simple. En effet, les coefficients des

termes quadratiques sont :

[paa] [pbb] [pcc] 3,3

et pour les non-quadratiques : [pab] [pac] [pbc] 0

(Ju en déduit les coefficients aux poids des inconnues.

1/3,3 Qxy Qxz Qyz 0Qxx Qyy

[p '-P]\

Qzz

3 X p + 3
L5
3,3

Solution B. Mayor : Il y a trois équations d'équilibre
au nœud libre et six équations aux déformations ; les

neuf inconnues sont les six efforts axiaux dans les barres
et les trois variations de coordonnées en 1. Il y aurait
encore à déterminer la déformation quadratique
moyenne m relative à l'unité de poids : m2 ^ [pvv] : 3.

Ici seulement les fi interviennent pour le calcul des v.
Cet élément m fournit l'ellipsoïde dit moyen.

Pour une paire de nœuds libres on peut réaliser la
forme sphérique ; au-delà, les calculs deviennent vite
inextricables.

Cas d'un pylône à 22 barres : (voir figure).

•f+y

^+x
22 barres y compris 2-4 et 3-5.

Il y a 5 nœuds libres, dont le sommet 1, et 4 nœuds
fixes 6, 7, 8, 9. L'unité de mesure étant arbitraire, les

coordonnées §ont :

euds * x y z
1 0 0 + 8
2 + 3 0 + 4
3 0 + 3 + 4
4 — 3 0 + 4
5 0 — 3 + 4
6 + 6 0 0
7 0 + G 0
8 — 6 0 0
9 0 — 6 0

Les 8 diagonales ont la même longueur 7,81. Quant
aux poids, ils sont tous égaux (p,- 1), sauf pour les

barres 2-4 et 3-5 (/j,- 0,8). Les poids interviennent par
leurs valeurs relatives.

Solution Mayor : Elle comporte 15 équations d'équilibre

et 22 aux déformations pour déterminer 22 efforts
axiaux dans les barres et 15 variations de coordonnées.
Il y a plus d'une manière d'effectuer le calcul car les

termes absolus sont au nombre de 15 au maximum. On'

peut concevoir le cas où il y a un seul terme absolu, par
exemple si ou a une seule force F extérieure, parallèle à

un des axes de coordonnées, deux des composantes de F
étant nulles, la troisième étant égale à F.

Les équations aux déformations ont la forme, pour
la barre gh :

3 (3 inconnues).
(3) agh (Dxg — Dx,,) + bgh (Dijg — Dy,,) +

+ cgh (Dzg — Dzh) mgh Tgh v,jh.
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Matrice aux coefficients des équations normales à inverser)

0,72 0 0 — 0,36 0 + 0,48 0 0 0 — 0,36 0 - 0,48 0 0 0

0,72 0 0 0 0 0 — 0,36 + 0,48 0 0 0 0 — 0,36 — 0,48
2,56 - 0,48 0 — 0,64 0 t 0,48 — 0,64 — 0,48 0 — 0,64 0 — 0,48 — 0,64

nœud 1
2,81 0 -0,57 — 0,50 + 0,50 0 — 0,80 0 0 0 0 0

2,18 0 + 0,50 — 0,50 0 0 0 0 — 0,50 — 0,50 0

1,80 0 0 0 0 0 0 0 0 0

nœud 2 2,18 0
2,81

0

— 0,57
0

— 0,50
— 0,50
— 0,50

0
0

0
0

0

— 0,80
0
0

1,80 0 0 0 0 0 0

A Q 2-81nœud 3
0 + 0,57 — 0,50 + 0,50 0
2,18 0 + 0,50 — 0,50 0

1,80 0

2,18
0
0

0
0

nœud 4
2,81 + 0,57

nœu d 5 1,80

C'est la forme qui fut reprise, bien après Mayor,
notamment dans les Mémoires A IPC (professeur Li) et
qui, en principe, est à la base du calcul STRESS. Mais
B. Mayor est le premier qui évita les coupures à un
moment où la solution par les équations d'élasticité était
qualifiée de classique ; encore une fois, cette dernière
est moins générale surtout quant au calcul des
déformations.

Solutions avec coupures : Ici, on peut pousser assez

avant les calculs sans faire intervenir les forces
extérieures ; c'est comme pour les réseaux électrotélémé-
triques où les praticiens calculent provisoirement des

eJlipsoïdes d'erreur, avant d'avoir effectué les mesures.
Le nombre des équations aux déformations sera ici égal
à 22 et celui des équations normales, donc des dérivées
de l'énergie égal à 15. Par exemple, pour la diagonale
2-7 :

+ 0,384 dx2 — 0,768 dy2 + 0,512 dz2 •= v27 — /27.

Pour le moment, les ternies absolus / ne jouent pas
de rôle.

On détermine la matrice aux coefficients des équations
normales ou dérivées de l'énergie :

(4) [pav] 0 [pbv] 0 [pcX] 0 forme dite
implicite.

Les éléments diagonaux sont les coefficients quadratiques,

ce qui est manifeste. La matrice est symétrique
et son inversion, par voie électronique, dure environ
1 minute. On obtient alors la matrice aux coefficients de

poids des inconnues Qxx, Qxy, Qyy ¦ ¦ ¦

Ce sont les éléments pour le calcul des ellipsoïdes de

déformation. En statique, cette notion de poids des

barres sera vite familière ; pour les poids à posteriori,
c'est plus subtil.

Le calcul devient maintenant un problème moins de

statique que de mathématiques pures. Il faut distinguer
deux formes : la ponctuelle et la tangentielle (voir (3)) ;

le centre de la surface qui répond à la condition du minimum

est par hypothèse connu. Dans le premier cas,
on a une forme quadratique ternaire dont les coefficients

sont : [paa], [pab], [pac] [pcc ]. Il suffit de

considérer le déterminant :

[paa] — k [pab\ [l}ac\
[pba] [pbb] —k [pbc] 0
i pac [pbe] [pcc] — k

Les carrés des longueurs des axes principaux sont
proportionnels aux inverses des racines klt k2, k9.

Dans la forme tangentielle, c'est la surface podaire de

l'ellipsoïde par rapport à son centre qui intervient ; le

déterminant devient :

Qxx n-' Qxy Qxz

(6) Qxy Qyy-k' Qyz
^

0

Qxz Qyz Qzz h

Les racines /r/, k'2, k'B sont proportionnelles aux carrés

des longueurs des axes principaux.
Les éléments sont fournis par la matrice inverse de

celle ci-dessus (Calcul par le centre électronique de

l'EPUL). Eu égard au but poursuivi, on peut concevoir
un calcul graphique des racines. L'examen de la matrice
à inverser, en ce qui concerne les éléments diagonaux,
montre déjà que l'ellipsoïde du nœud 1 sera moins
favorable que les autres. Les longueurs des axes principaux
sont proportionnelles à :

1,57 : 1,57 : 0,80 (nœud 1)

0,73 : 0,78 : 0,89 (nœuds 2, 3, 4, 5)

Il faut modifier la structure si, pour le nœud 1, on
veut un ellipsoïde moins aplati ; une modification des

poids aurait peu d'influence dans le cas particulier, en
ce qui concerne la forme de la surface.

Solution K. Friedrich : Ainsi qu'on le sait, outreRhin

surtout, on a remarqué la corrélation existant
entre l'hyperstatique des systèmes articulés et les

réseaux télémétriques (« Die Analogie zwischen den
Stabfachwerken und Streckennetzen wurde bald
erkannt », dit-on couramment). Or, l'évolution des méthodes

de calcul pour les réseaux fut rapide, cohérente ; au
début surtout, on établissait une équation pour chaque
côté surabondant. Bientôt cependant, on base les calculs

sur les variations de coordonnées des nœuds ; de son
côté B. Mayor, de façon indépendante, reconnaissait les

avantages de cette solution surtout pour le calcul des

déformations, mais sur la base des équations (3).
K. Friedrich, il y a vingt-cinq ans déjà, raisonna de

la façon suivante : il considéra un nœud libre, sommet
d'un pylône à 4 barres et admit comme poids la valeur

EiSi constante
Pi mr —u—
comme on le fait souvent dans les réseaux.

Désignons par P0 la position initiale du nœud comme
le fit B. Mayor et P la position finale sous l'action des

forces extérieures :

JTp2 _ Dx2 _|_ Dy2 _|_ £),2

K. Friedrich considéra un état intermédiaire P' :

~Jy~P2 _ d3.2 + dy2 + rf,2_
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A cet effet, il coupa une barre et fit varier la température

dans les trois autres ; théoriquement, il pouvait
éviter une coupure, mais en faisant varier la température

dans la quatrième barre d'une façon qui n'était plus
arbitraire comme les trois autres. K. Friedrich
aboutissait aux mêmes équations que celles dites aux erreurs
dans les réseaux ; il retombait sur un problème qui,
depuis longtemps, est traité à fond. Des cas avec
40 équations normales et plus sont devenus courants et
le calcul d'ellipsoïdes d'erreur est un jeu.

Toutefois, à première vue, la solution Mayor sans

coupures est préférable ; en réalité, c'est moins simple.

En résumé, on peut dire qu'en hyperstatique des
systèmes articulés les méthodes évoluent rapidement ; la
solution sans coupures due en premier lieu à B. Mayor
paraît gagner du terrain. Les remarquables publications
ayant paru dans les Mémoires A IPC le prouvent, ainsi

que les recherches faites par la chaire de statique de
Zurich (calcul STRESS).

En ce qui concerne les ellipsoïdes de déformation, il
s'agit d'une notion qui deviendra vite familière ; des
formes très défavorables pour ces surfaces seront
évitées. Ce problème, dans son ensemble, est susceptible
encore de bien des développements.
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METHODES MODERNES DE CALCUL DES DEBITS ET DES
RÉSERVES DES NAPPES D'EAU SOUTERRAINES (Suite et fin) ^

par M. E. RECORDON, ingénieur, privat-docent à la Faculté des sciences de l'Université
de Neuchâtel, chargé de cours à l'EPUL

III. Application des théories de Dupuit et de Theis au
cas de l'essai de pompage de Cressier

A. L'essai de pompage de Cressier

En 1931, la commune de Cressier a construit un
premier puits de captage à une centaine de mètres de la

gare, côté plaine (fig. 8).
En 1960, les besoins en eau ayant augmenté, la

commune étudia la possibilité d'exploiter la nappe souterraine

dans une deuxième station plus à l'ouest, en
construisant un nouveau puits de captage. Elle confia à
M. le professeur Burger la tâche de diriger les recherches

géologiques. Les travaux de forage et
d'établissement du puits d'essai et des

puits d'observation, ou piézomètres,
furent confiés à l'entreprise Grundwasserbauten

AG., de Berne. Les essais de

pompage furent également suivis par
M. Irmin Lévy, ingénieur à Delémont,
qui étudiait le réseau d'alimentation en
eau pour la commune.

Uemplacement qui paraissait géologi-
quement favorable est situé au sud de
la localité de Cressier, à proximité immé-
diatedes voies ferrées ; il se trouve
sensiblement à égales distances, 500 m
environ,de la Vieille Thielle et du pied
du coteau bordant la plaine, et entre
deux ruisseaux, à 400 m environ du Mor-
truz et à 280 m du Ruhaut. La surface
du terrain est en très faible pente en
direction de la plaine (fig. 9).

Au point de vue géologique, la nature
des sols a été reconnue à l'aide de deux
forages el de prospections électriques.

La carte des résistivités électriques (fig. 10) montre
que l'on est en présence probablement d'un cône de
déjection d'un ancien torrent descendant du Jura. La
forme incurvée des courbes d'équirésistivité montre
aussi que le puits d'essai est situé sensiblement au
centre de ce cône. On peut admettre qu'une certaine
alimentation de la nappe se fait par le nord-ouest, par-
dessous la voie ferrée. Ce qui est confirmé d'ailleurs par
le fait que la surface de la nappe souterraine marque
une pente générale d'environ 1 °/00 en direction de la

plaine. La nappe, en l'absence de pompage, s'écoule
vers la plaine à une vitesse de l'ordre de 10-6 m/sec.

Cressier a«

S2
CFF

OS 13

»17 70

Les douilles

331EJFjbr SAC —i
Fabr lä"

1961

9>fc

s Cordelles
¦»32 ^===I »33

Ihi
<P

1 Voir Bulletin technique N° 5 du 9 mars 19G8. Fig. 8. — Plan de situation de Cressier.
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