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METHODES MODERNES DE CALCUL DES DEBITS ET DES
RÉSERVES DES NAPPES D'EAU SOUTERRAINES '

par M. E. RECORDON, ingénieur, privat-docent à la Faculté des sciences de l'Université
de Neuchâtel, chargé de cours à l'EPUL

I. Introduction

L'exploitation do plus en. plus intense des nappes
d'eau souterraines par puits de pompage a conduit divers
chercheurs à faire progresser la théorie des écoulements
souterrains vers les ouvrages de captage. On assiste donc
actuellement dans le domaine de l'hydrogéologie à un
courant de recherches orienté vers les mathématiques,
les nouvelles théories étant basées sur les lois de
l'hydrodynamique et de l'hydraulique. Il est de plus en plus
nécessaire que l'hydrogéologue soit à même de chiffrer
les phénomènes, ceci en plus des très nombreuses
connaissances qu'il doit posséder sur la géologie des

eaux souterraines et qui relèvent des sciences naturelles.
C'est la raison pour laquelle un cours sur la «

dynamique des eaux souterraines » a été ouvert à Neuchâtel,
dans le cadre des cours (l'hydrogéologie, aux
géologues qui désirent se spécialiser, en troisième cycle.

Si l'on veut exploiter une nappe, il faut déterminer
les caractéristiques de la couche aquifère au point de

vue de la dynamique des écoulements souterrains. Dans
ce but on exécute, en plus des prospections géologiques,
ce qu'il est convenu d'appeler des essais de pompage
dans des puits construits spécialement à cet effet.

11 est évident que les essais de pompage nc donneront
pas tous les éléments nécessaires pour fixer de manière
raisonnable le débit exploitable et les réserves disponibles

dans la nappe aquifère. En effet, si l'on veut
éviter d'épuiser à longue échéance une nappe, il faudra
qu'à certaines époques ses réserves puissent se reconstituer

par son alimentation naturelle. La nappe aquifère
devra donc être exploitée comme un réservoir qui se

1 Leçon inaugurale du cours de « Dynamique des eaux souterraines
», donnée à l'Institut de Géologie de Neuchâtel, le mercredi

13 décembre 1%7.
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Fig. 1. — Puits complet dans une nappe libre (cas A) et
dans une nappe captive (cas B).

vide lorsque les besoins en eau l'exigent et qui se remplit
lorsque ces besoins diminuent ou cjue les précipitations
sont abondantes. Les conditions d'alimentation de la
nappe devront être connues, de même que son exutoire
éventuel. Seule l'étude géologique complète de l'aqui-
fère donnera ces indications.

La présente étude sera orientée uniquement vers
l'interprétation des essais de pompage et nous laisserons
délibérément de côté le problème spécifiquement
géologique de l'alimentation et de l'exutoire de la nappe.

Nous examinerons tout d'abord quelles sont les théories

qui permettent d'interpréter les résultats d'un essai

de pompage, puis, clans une deuxième partie, nous
montrerons comment se fait cette interprétation dans
le cas particulier d'un essai de pompage, exécuté à

Cressier.
Nous tenterons de montrer surtout quels sont les

avantages des méthodes de calcul développées ces

trente dernières années sous le nom de théorie des

écoulements non permanents, ou régime de non-équilibre,

par rapport à la théorie classique de Dupuit basée

sur l'hypothèse d'un écoulement permanent et d'un
régime d'équilibre.

II. Théories des écoulements vers les puits de captage

A. Ecoulements permanents — Théorie de Dupuit
Rappelons tout d'abord quelques définitions :

On appelle couche aquifère, ou aquifère, une couche de

sédiments dont les interstices sont suffisamment grands

pour qu'elle soit perméable et que l'on puisse, par
captage, en retirer un débit appréciable.

La couche aquifère est limitée vers le bas par une
couche dont la perméabilité est beaucoup plus faible et

qui est appelée substratum imperméable. Elle est parfois
limitée également vers le haut (cas B de la figure 1)

par une couche peu perméable ; la nappe aquifère est
alors en pression, elle est artésienne : on dit qu'elle est
captive. Dans le cas contraire, elle est libre (cas A de
la figure 1).

Le forage ou puits de pompage est dit complet ou
parfait s'il traverse entièrement la couche aquifère et
atteint le substratum imperméable. Nous ne considérerons

dans la suite que ce type de puits.
La théorie la plus ancienne permettant de calculer la

forme de la surface de dépression de la nappe, en fonction

du débit pompé et de la perméabilité de l'aquifère,
est celle cjui fut établie par J. Dupuit vers 1860 environ

[1] [2]. Cette théorie supjDose que le régime d'écoulement

est permanent, c'est-à-dire qu'après une durée
de pompage à débit constant relativement courte, la
surface de la nappe déprimée ne varie jolus et le débit
pompé est exactement compensé par l'alimentation de
la napjje, selon une surface cylindrique de rayon R
(fig. 2). Le débit d'alimentation est réparti également
sur tout le pourtour du cylindre de rayon R, qui est
aj^jielé rayon d'action du puits et qui ne varie pas non
jjlus au cours du temjis.

Dujmit a fait quelques hypothèses simjîlificatrices
jjour établir les formules donnant le débit et la courbe
de dépression :

— Il admet entre autres que l'on j>eut négliger la
composante verticale des vitesses en regard de leur
composante horizontale, ce qui suj^j^ose que le rabattement
A de la nappe reste faible par rapport à l'épaisseur
de l'aquifère.

— Il admet aussi que la loi de Darcy est applicable à
l'aquifère et que le coefficient de perméabilité est le
même dans toutes les directions et en tous points.

Cette théorie ne traduit évidemment pas ce qui se

jjasse pendant les premières heures de pompage, durant
lesquelles le niveau d'eau dans le jmits s'abaisse très
rapidement ; mais après cette période initiale, le niveau
ne varie plus que très lentement ; c'est ce qui a conduit
Dupuit à admettre qu'alors l'écoulement était quasi
permanent. Ce changement de régime s'explique par le
fait qu'au début, la dépression de la nappe ne se
produit qu'au voisinage du jiuits et n'intéresse qu'une
surface horizontale très faible ; dans cette première
j^hase, le rayon de la zone déprimée, faible au début,
augmente très rapidement. Il est certain alors que le
débit pompé n'est jjas compensé par l'alimentation.
En revanche, après quelques heures, cette zone déprimée

a un rayon de plusieurs dizaines de mètres, sa
surface est grande, donc il suiïil d'un abaissement très
lent des niveaux pour compenser le débit pompé. Le

rayon de la zone déprimée ne s'accroît plus que lentement.

Dujmit admet que, dès cet instant, le rayon d'action

ne varie plus, que la nappe ne s'abaisse plus et
que le débit pomjié, au lieu d'être prélevé sur l'eau de
la napjie, est fourni entièrement jjar l'alimentation. La
théorie de Dupuit ne traduit donc pas du tout ce qui
se jDasse en régime transitoire, jjendant les premières
heures de pompage. Le fait d'admettre qu'à un moment
donné l'écoulement transitoire devient permanent, mais
sans que l'on puisse préciser à quel moment, fait ajijia-
raîlre le défaut de la théorie de Dupuit qui sera éliminé
dans les théories nouvelles.
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Fig. 2. — Ecoulement permanent vers un puits de captage ; pompage à débit constant. Hypothèses
de la théorie de Dupuit.

Pour pouvoir utiliser la théorie de Dupuit, il faut
connaître le rayon d'action R qui n'est pas mesurable.
On lui attribue donc une valeur arbitraire qui varie
de 60 m environ pour les sables fins à 150 m pour les

graviers.
En 1906, Thiem a complété la théorie de Dupuit en

montrant que, si l'on mesurait le rabattement de la

nappe dans deux piézomètres situés à proximité du

puits, il n'était plus nécessaire de faire intervenir dans
le calcul le rayon d'action. La formule de Thiem est

toujours basée sur l'hypothèse d'un écoulement permanent,

mais elle a l'avantage de permettre la détermination

du coefficient de perméabilité dans diverses directions

rayonnantes autour du puits, à condition de placer
dans chacune de ces directions deux piézomètres au
moins.

Pour illustrer la théorie de Dupuit, prenons un
exemple numérique (fig. 3) : supposons un puits de

rayon r 1 m foré dans une nappe libre d'épaisseur
fl=8m. Admettons que le rayon d'action R 100 m
et supposons que l'on ait mesuré le rabattement du
niveau d'eau dans le puits A 2,10 m après quelques
heures de pompage à débit constant Q 600 1/min.
Si l'on résout la formule de Dupuit donnée sur la figure 3

par rapport à k, on obtient

QXogRfr
1,366(2//— A) A

Dans l'exemple numérique, log Rjr 2, Q 0,01 m3/

sec., et l'on trouve k 5.10"4 m/sec.
Le coefficient de perméabilité étant connu, l'équation

de Dupuit donne une relation entre Q et A qui est la

Caractéristique d'un puits
ECOULEMENT PERMANENT

MKMOLVJHM

Niveau statique

RWÜWAW»

Exemple numérique

Données : R -. tOO m

r t m
H aOOm
K -.S.10-*m/s,

Q - UBe k (2H-&1A
log R/r

0 '20,5 116-AlAavec A en m

200 iOO 600 800 1000 1200 01/tr.

impermeable m

Fig. 3. — Exemple de calcul de la courbe caractéristique d'un puits : courbe débit — rabattement.
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Fig. 4. — Ecoulement non permanent vers un puits de cajjtage ; pompage à débit constant.
Hypothèses des théories de Theis et de Hantush.

caractéristique du jouits dans notre cas particulier
Q 20,5 (16 — A)A. Cette équation est représentée
graphiquement par la courbe de la figure 3, et l'on
constate que, lorsque le rabattement est inférieur à la
moitié de l'éjDaisseur // de l'aquifère, le débit augmente
à peu près linéairement, tandis que si le rabattement
est plus grand, le débit augmente relativement peu.

La théorie de Dupuit joermet aussi d'établir l'équation

de la courbe de dépression, profil de la nappe
déprimée.

Cette théorie donne donc trois éléments caractéristiques

d'un puits de pompage :

1. Le coefficient de perméabilité de l'aquifère.
2. La caractéristique du puits, variation du débit en

fonction du rabattement.
3. La courbe de dépression donnant la valeur du rabatte¬

ment en fonction de la distance au puits.

Elle ne donne en revanche aucune indication sur les
réserves de la nappe, ni sur l'évolution de la courbe
de dépression au cours du temps.

B. Ecoulements non permanents — Théorie de Theis

Pour éliminer les inconvénients de la théorie de
Dupuit, Charles V. Theis, géologue à l'Inspectorat géologique

de l'administration des Etats-Unis 1 [3], imagina
en 1935 d'écrire les équations de l'écoulement non
permanent vers un puits de cajotage. Un écoulement est
dit non permanent lorsque ses caractéristiques, sa
vitesse, sa pression, par exemple, varient en fonction
du temps. Pour cela, Theis a considéré une najspc aquifère

captive d'épaisseur constante et de très grande
étendue dans laquelle a été établi un puils de captage
complet.

Pour résoudre ce problème, il faut écrire-, jmis intégrer

les équations différentielles traduisant le princijie

1 U. S. Geological Survey, Washington, I). C.

de continuité, la conservation de l'énergie et la loi de
Darcy.

Theis a montré également que, dans le cas de la
napjje libre, les équations sont les mêmes.

Nous ne donnerons pas ici le développement
mathématique complet, ce qui serait trojo long, mais voyons
jmurtant quelle est la forme de l'expression donnant le
débit.

Sujjposons que le débit Q soit constant ; si l'alimentation

de la najjpe est nulle, le volume d'eau qui
correspondra à ce débit sera celui qui est compris entre
deux positions de la surface de l'aquifère déprimée.
Considérons à une distance r du puits un élément de
cette surface dont les dimensions sont rdQ et dr (fig. 4).
Supposons que, pendant un espace de temps très court
dt, compris entre les époques t± et. t2, la surface de la
nappe s'abaisse de dh. Le volume d'eau élémentaire qui
s'écoulera du volume rdQ dr dh sera égal à rdQ dr dliS.
Dans cette cxjjression, S est le coefficient d'emmaga-
sinement ; c'est une fraction qui représente le volume
d'eau libre, par rapport au volume total de l'élément,
que l'on peut extraire de l'aquifère par pomjiage. Le
débit élémentaire sera donc égal à ce volume d'eau,
divisé par le temjis dt. On a donc :

df) SnlQclr^
dt

et le débit total sera donné par l'intégrale
co an

d h (r, 0, t)Q=S ai
lIQ di¬

ra : rayon du jjuits.
Remarquons que le problème de Theis, qui consiste

à déterminer le rabattement de la nappe à une distance
quelconque du puits et à une époque quelconque, est
le même du point de vue mathématique que celui qui
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consiste à calculer la variation de la température en
fonction du temps en un point quelconque d'une plaque
mince au centre de laquelle on ajjplique une source de
chaleur constante et ponctuelle.

Cette analogie a facilité les travaux de Theis, qui a

pu utiliser une méthode déjà établie.
Le calcul conduit à l'équation suivante :

Q
4 n t du

dans laquelle u T

L'intégrale qui figure dans cette équation ne jjeut
pas être calculée à l'aide des fonctions transcendantes
élémentaires. Il faut avoir recours à un développement
en série qui est le suivant :

Wtu) du — 0,5772 — logc " +

tr
371ÏÏ 4.4! ^

La fonction W(u) est ajjjielée « fonction caractéristique

» du puits ; on peut calculer une fois pour toutes
sa valeur jjour toute valeur de u au moyen du
développement en série. Il existe des tables donnant les
valeurs de W(u) [1] [2] [6]. Dès lors, le problème est
résolu à l'aide des deux équations suivantes qui
donnent la valeur de A en fonction de r et t pour un débit Q
et pour un aquifère caractérisé j3ar sa transmissivité
T kll (k : coefficient de perméabilité de Darcy —
// : épaisseur de l'aquifère) et son coefficient d'emma-
gasinement S.

A -
Q

¦\Y(u)
r- S

4 1 1
' 417 7'

Ce sont les équations de Theis cjui permettent, comme
nous le verrons jilus loin, de déterminer les mêmes
éléments que les équations de Dupuit, mais qui donnenl

en jjlus l'évolution du rabattement de la nappe en fonction

du temjjs et le coefficient d'emmagasinement qui
caractérise les réserves en eau disjaonibles dans l'aquifère.

Les valeurs numériques de la fonction caractéristique
W(u) peuvent être données sous forme d'une courbe
standard (fig. 5) que l'on dessine sur papier logarithmique

en rejDortant en ordonnées W(u) et en abscisse 1/u
4 T t
r25

Pour préciser la signification des équations de Theis,
rejsrenons l'exemple numérique que nous avons analysé
Y>\us haut jjar la méthode de Dupuit (chapitre II A et
figure 3). Nous avions considéré un puits de 1 m de

rayon, un aquifère de 8 m d'éjDaisseur, et le coefficient
de perméabilité était égal à k 5-10"1 m/sec. Dans ce

cas, la transmissivité, qui est égale à k.H, vaut
T 4.10-3 m2/sec. Supposons que l'on ait déterminé
le coefficient d'emmagasinement S 0,1 (10 %) et

voyons comment varie le niveau d'eau dans le jiuits
au cours du temps (r r„ lm).

Les équations de Theis dans ce cas deviennent :

6,25 i t
A 20 C H (u) avec u ou „ ,._/ » o,2o

A toute valeur de t correspond une valeur bien définie
1

de u, donc de — > ct la courbe standard donne la valeur

correspondante de W(u). Pour un débit donné, par
exemple de 300 1/min., ou 0,005 m3/s., la valeur du
rabattement A peut donc être trouvée pour toute valeur
de C'est ce qui se traduit par les courbes de la figure 6

(graphique supérieur).
Supposons maintenant que l'on veuille trouver, par

la théorie de Theis, la courbe analogue à la caractéristique

du jiuits dans la théorie des écoulements permanents,

c'est-à-dire la variation du débit en fonction du
rabattement. Il faudra choisir une valeur constante du

temps, par exemple 1 jour ou 86 400 sec, à laquelle
correspond

1 86 400
6.2E

13 824
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Variation du niveau d'eau dans un puits en

fonction du temps au cours de pompages à débits cts.

ECOULEMENT NON PERMANENT - EXEMPLE NUMERIQUE

Données, S- 10'/.- 0.1

r= tm
fJ „2/,
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Fig. G. — Exemple de calcul de la variation du niveau
d'eau dans un puits au cours d'un pompage à débit constant

(théorie de Theis).

et la courbe standard donne W(u) 9. La première
équation de Theis devient A 180Ç. Elle se traduit
par une droite sur le graphique inférieur de la figure g.
D'autres droites correspondront à une durée de

pompage, t 3 jours, 10 jours, etc.
A la courbe caractéristique calculée par l'équation

de Dupuit et dessinée en traitillé sur le graphique de

la figure 6 correspond donc dans la théorie de Theis

une famille de droites de moins en moins écartées à

mesure que la durée de pompage t augmente. On

remarque que la droite de Theis pour une durée de pompage

de 10 jours est peu différente de la courbe de

Dupuit pour les rabattements plus petits que 3 m
(rabattements inférieurs aux 40 % de la puissance de

l'aquifère). Si l'on impose la condition que le rabattement

dans le puits ne doit pas dépasser 3 m par exemple,

pour une durée de pompage de 20 ans le débit ne devra

pas dépasser 500 1/min., alors que, si cette durée n'est

que de 10 jours, le débit sera limité à 800 1/min.

C. Ecoulements non permanents — Théorie de Hantush

Le succès remporté aux Etats-Unis par la théorie de

Theis a conduit d'autres chercheurs à perfectionner
cette méthode.

Vers 1955, M. S. Hantush [4] étendit la théorie de

Theis au cas d'une nappe limitée vers le haut par une
couche semi-perméable (fig. 4). Il y a donc un débit
complémentaire qui alimente l'aquifère ; ce débit est
d'autant plus grand que la pression artésienne diminue
sous l'effet d'un pompage plus intense. Schoeller

propose de désigner en français ce phénomène par le terme
de « drainance ». Hantush introduit le facteur de drai-

nance B 1 / n' (fig. 4) pourcaractériserlaperméabilité

relative de la couche supérieure et de l'aquifère.
Il a donné l'équation des nouvelles courbes standard.
La fonction caractéristique dépend alors de u et de rjB.

Cette fonction peut être représentée grajihiquement
(fig. 7) par une famille de courbes. Remarquons que,
si r/B devient très petit, c'est que B est très grand et

que k' est très petit ; on tend vers le cas de la théorie
de Theis et la valeur r/B 0 corresjmnd à la courbe
de Theis.

Enfin, en 1960, Hantush [5] a encore généralisé sa

théorie en faisant intervenir la perméabilité du substratum

et les coefficients d'emmagasinement du toit et du
substratum. Nous ne pouvons pas décrire ici ces

nouveaux développements.
(A suivre)
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Courbes standard
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