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LA CALCULATRICE ELECTRONIQUE
À LA DISPOSITION DE L'INGÉNIEUR1

par GEORGES DUPUIS, ingénieur EPUL, collaborateur à l'Institut de mathématiques appliquées

1. Généralités

Cet exposé ne contient rien d'essentiellement
nouveau ; il est destiné à montrer à l'ingénieur praticien
quelques aspects du traitement automatique des
problèmes qui lui sont posés journellement. Nous nous
limiterons aux problèmes de statique posés à l'ingénieur
civil ; toutefois, les considérations qui suivent
s'appliqueraient également à d'autres disciplines de la
technique.

Par suite du développement des calculatrices, de

nombreux problèmes, autrefois rebutants, sont devenus
aujourd'hui chose courante. C'est en particulier le cas
des problèmes d'analyse des structures complexes. Les

principales conséquences de cette situation sont les

suivantes :

1. L'analyse des structures peut être plus détaillée ; il
en résulte que les marges de sécurité peuvent être
diminuées, d'où une économie de matériaux.

2. Des problèmes qui exigeaient plusieurs semaines de
calcul manuel peuvent actuellement être résolus en

1 Exposé présenté lors des journées d'éLudc du Groupe des
ingénieurs des ponts et charpentes de lu SIA des 17 et 18 novembre 1967
à Lausanne.

quelques minutes. Il s'ensuit que, pour un projet
donné, il est possible d'étudier de nombreuses
solutions en des temps raisonnables et de choisir ainsi
en connaissance de cause.

3. L'ingénieur, libéré des calculs fastidieux, peut se
consacrer davantage aux problèmes de construction.

Cette évolution des moyens de calcul n'est toutefois
pas sans exigence. En effet, les méthodes de calcul
classiques sont inspirées par la préoccupation de donner
à ces calculs une forme bien adaptée aux méthodes
manuelles. Or, les exigences du calcul électronique sont
toutes différentes. En calcul manuel, on cherche des
méthodes conduisant à un volume de calcul minimum,
qui exigent de nombreuses initiatives du calculateur.
Par contre, en calcul automatique, on cherche des
méthodes conduisant à des opérations standard, leur
nombre n'ayant qu'une importance secondaire. Il est
donc nécessaire de reprendre, souvent assez au début,
des problèmes que l'on avait l'habitude de résoudre par
des méthodes artisanales, afin de se plier aux exigences
de l'automatisme. Cette circonstance est en fait la même
que celle que l'on rencontre dans bien des questions de
fabrication industrielle.
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Les problèmes posés par la mécanique des corps
déformables sont en général si complexes qu'ils échappent à

l'analyse. La méthode générale utilisée en statique
appliquée consiste à transformer les problèmes donnés en

problèmes plus simples que l'on sait résoudre exactement.

Il n'existe toutefois pas de technique de transformation :

celle-ci fait essentiellement appel à l'intuition de

l'ingénieur. Le développement des calculatrices a fait apparaître

une méthode différente qui consiste à résoudre
directement les problèmes proposés mais, en général,
de manière approchée. Les avantages de cette méthode

par rapport à la précédente sont au nombre de deux :

1. Il existe des techniques générales d'approximation qui
ne font pas appel à l'intuition et peuvent être
automatisées.

2. Il est possible d'évaluer les erreurs commises et, an
besoin, de les réduire.

Pour fixer les idées, considérons le cas d'une plaque
rectangulaire posée sur des appuis ponctuels situés sur
son contour. Si ces appuis sont assez rapprochés, on

pourra les assimiler à un appui continu et déterminer
l'état de contrainte de la plaque en utilisant la solution
exacte, connue pour ce cas. Au contraire, en calcul
électronique, on considérera le détail des appuis ponctuels
mais on résoudra le problème à l'aide d'une méthode
approchée, par exemple la méthode des équations aux
différences. On pourra se faire une idée de la qualité de

l'approximation en reprenant le calcul avec une maille
plus fine.

Les problèmes posés à l'ingénieur peuvent être sché-

matiquement décomposés en trois parties :

1. Choix d'un modèle mathématique. C'est le passage
d'un problème de physique à un problème de

mathématique. Par exemple, une plaque est remplacée par
un corps déformable à deux dimensions.

2. Exploitation du modèle. Il s'agit de résoudre un
problème de mathématique parfaitement posé. Par
exemple, dans le cas de la plaque, on a à déterminer
l'intégrale de l'équation de Lagrange satisfaisant des

conditions aux limites. Remarquons que cette partie
du problème ne fait appel qu'aux connaissances
mathématiques de l'ingénieur. En fait, elle pourrait être confiée

à un mathématicien, sans préciser de quel problème
physique elle est issue.

3. Interprétation des résultats. Cette partie est
certainement la plus délicate ; en effet, c'est ici que l'in¬

génieur doit décider de l'incidence des résultats obtenus
à partir d'un modèle, qui ne représente la réalité que
de manière imparfaite, sur la forme et les dimensions
de l'ouvrage qu'il étudie. Contrairement à l'exploitation
du modèle, cette partie fait non seulement appel aux
connaissances mathématiques de l'ingénieur, mais aussi
à son intuition et à son expérience de constructeur.

Il est très important de bien distinguer le problème
physique de son modèle mathématique. Si l'on peut
étudier le second avec toute la précision désirable, cette
précision est probablement illusoire pour le problème
physique. Cette remarque ne doit toutefois pas nous
autoriser à n'étudier le modèle mathématique que de

manière grossière, on cumulerait ainsi les difficultés du

problème.
L'usage d'une calculatrice permet de résoudre entièrement,

et en des temps très brefs, la seconde partie du

problème, c'est-à-dire l'étude du modèle mathématique.
D'autre part, elle peut aussi contribuer aux deux autres

parties. En effet, le moyen puissant que constitue une
calculatrice permet de faire, en peu de temps, de
nombreuses expériences numériques propres à démontrer si

tel ou tel effet joue un rôle sensible et doit être pris en

compte dans les calculs. Enfin, certaines techniques
permettent de déterminer les dimensions ou la forme
optimum d'une structure ; la grandeur à minimiser étant,
par exemple, le poids de la structure.

Dans ce qui suit, nous nous limiterons au problème
de l'étude d'un modèle mathématique. On peut classer

en deux catégories les problèmes qu'il convient de traiter
à l'aide d'une calculatrice :

1. Des problèmes relativement élémentaires qui condui¬
sent à un volume de calcul important.

2. Des problèmes plus complexes pour lesquels l'ingénieur
ne peut obtenir que des ordres de grandeur, s'il ne
dispose que de sa règle à calcul et des abacpies
habituels.

Comme exemple de problème du premier type,
considérons une poutre continue de section variable. On se

propose de déterminer l'enveloppe des moments et efforts
tranchants, sous l'effet d'une charge répartie permanente,

d'une charge répartie mobile et d'une charge
concentrée par travée. La figure 1 représente une telle

poutre et l'enveloppe des moments correspondante. Un

programme, assez élémentaire, écrit pour la calculation
cle l'EPUL, permet de résoudre ce problème en quelques
minutes.

Fig. 1. — Knvcloppe des nioruenls d'une poutre continue
de section variable.

Charge répartie permanente: f; ~ ~ t/m; charge répartie mobile:
p 0,7 t/m ; charge concentrée : P« 6 t.

A U M *fil^'f«-

y <i
'f- S<

sX X
sXX^-S&Bt F 1

A Appuis ponctuels

Fig. 2. — Exemple de plaque calculée par la méthode dos
éléments finis et étudiée sur modèle par le Laboratoire de

statique de l'EPUL. Auteurs du projet : P. Kipfer et
H. Wazeniïed.

Caractéristiques : Epaisseur e 0,90 m ; module d'élasticité E
'1 000 000 t/m2 ; coefficient de Poisson V — 0,38 ; charge unifor-
niiMnrni répartie /> - - I l /m*.
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Fig. 3. — Moments Mx en tm/m le long de la ligne B-B
(cf. fig. 2).

O Valeur calculée.

# Valeur mesurée.

Fig. 4. — Moments My en tm/m le long de la ligne A-A
(cf. fig. 2).

O Valeur calculée.

# Valeur mesurée.

Comme exemple de problème du second type,
considérons la plaque représentée à la figure 2, sollicitée par
une charge uniformément répartie. On se propose de
déterminer les déplacements, les efforts intérieurs et les
réactions d'appuis1. La résolution de ce problème sur
la calculatrice de l'EPUL, par la méthode des éléments
finis, exige environ une heure de calcul. Nous avons
comparé quelques résultats obtenus par le calcul avec
des mesures effectuées au Laboratoire de statique de
l'EPUL 2. Les figures 3 et 4 montrent les moments
calculés et mesurés suivant deux lignes verticales. Les
courbes représentent les valeurs calculées ; les points
sont les résultats de mesure. Ces figures montrent que
la concordance des résultats est très satisfaisante. Il y
a lieu de remarquer que dans cette comparaison, nous
avons implicitement superposé les différences entre les
solutions approchée et exacte du modèle mathématique
d'une part et entre le modèle et la réalité d'autre part.
On pourrait tenter de séparer ces deux influences en

reprenant le calcul de la plaque avec un réseau plus fin.
En fait, c'est bien ce type de comparaison qui intéresse
l'utilisateur.

2. Choix d'une méthode de calcul

Nous avons dit plus haut que les méthodes habituellement

utilisées en calcul manuel sont généralement mal
adaptées au calcul électronique. Nous allons étayer
cette affirmation par un exemple tout à fait élémentaire.

Considérons le problème des systèmes triangulés ; il
s'agit de déterminer les efforts dans les barres, sous
l'effet de forces extérieures données.

Pour résoudre ce problème, on utilise habituellement
la méthode de forces ; on choisit comme inconnues les

réactions d'appui et les efforts dans les barres et l'on
écrit l'équilibre des nœuds. Plusieurs cas peuvent se

présenter. La figure 5 représente les quatre circonstances
possibles. Dans le premier cas, les équations d'équilibre
sont suffisantes pour déterminer les efforts dans les

barres ; dans le second, il faut leur adjoindre deux équations

de déformation ; dans le troisième, il faut leur
adjoindre une condition de déplacement ; enfin, le
quatrième cas nécessite des équations des trois types. Le
tableau 1 résume ces quatre circonstances.

Les équations à écrire sont donc, en général, de trois

1 Cet exemple est extrait de la thèse de doctorat de J.-J. C.ocl,
présentée à l'EPUL, intitulée : « Utilisation numérique de la méthode
de Ritz. Application aux plaques ».

2 Nous tenons à remercier M. le professeur F. Panchaud, directeur
du Laboratoire dc statique, qui nous a aimablement fourni ces résultats.
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Tableau 1

Nombre Nombre Nombre
Nombre Nombre Nombre d'équaCas

de de d'incontions tions tions
barres réactions nues d'équi¬

libre
de dé
formation

de
déplacement

a 9 3 12 12 0 0

b 11 3 14 12 2 0

c 9 4 13 12 0 i
d 11 4 15 12 2 i

types différents, ce qui n'est pas favorable à l'automatisation

des calculs. De plus, les opérations à effectuer
seront différentes selon que le système est isostatique,
intérieurement ou extérieurement hyperstatique. Par
contre, on sait que la méthode des forces aboutit à un
système d'équations separable en plusieurs systèmes de
dimensions réduites, ce qui constitue un avantage essentiel

en calcul manuel. (C'est cette circonstance qui est
exploitée dans la méthode de Cremona, par exemple.)

Si l'on veut traiter ce problème à l'aide d'une
calculatrice, on ne se contentera pas de résoudre les équations
automatiquement, on demandera également au
programme de les poser. Dans cette optique, on accepte
volontiers un surcroît de travail dans la résolution du
système si l'on imagine une méthode permettant d'établir

ces équations à l'aide d'opérations standard. C'est
bien ce à quoi conduit la méthode des déplacements.

Choisissons comme variables, non plus les efforts dans
les barres et les réactions d'appuis, mais les déplacements

des nœuds. Nous allons exprimer les efforts
intérieurs à l'aide de ces variables et écrire les douze équations

d'équilibre des nœuds. Ces équations seront
identiques pour les cas (a) et (c) respectivement (b) et (d)
de la figure 5, à la différence près que certaines variables
(qui expriment les déplacements des appuis) seront
nulles à priori. Lorsqu'on impose une condition de
liaison, une variable de déplacement disparaît ; elle est
remplacée par la réaction d'appui correspondante. Pour
les quatre cas de la figure 5, on aura ainsi douze inconnues.

!a)

(c) (d)

Fig. 5. — Systèmes triangulés : a) isostatique ; b) intérieurement

hyperstatique ; c) extérieurement hyperstatique ;

d) intérieurement et extérieurement hyperstatique.

Considérons une barre limitée par les nœuds i et /
et soient (a:;, yf), (xj, yf) les coordonnées initiales de ces

nœuds, dans un système cartésien de référence. Nous
désignons par (u,-, vf), (uj, vf) les composantes du
déplacement des nœuds dans le même système (voir fig. 6).
La longueur initiale de la barre vaut

1 J (xi — xif y (yt — yt? ;

la longueur de la barre déformée est donnée par

i' 7 S + "/) — S + ".-)]2 + vin y vi) -S + ^-)]2 ;

l'allongement de la barre vaut

w V — l

et si l'on suppose que les déplacements sont petits, on
peut écrire

1

+ {yj—y<) ("? — "!•)]•

L'effort normal qui sollicite la barre est donné par

N^^fw, (2)

où E est le module d'élasticité et F est l'aire de la
section de la barre. On en déduit l'expression des forces
appliquées aux nœuds :

ÎVcoscx
EF
l3 (xj — a-,)2 (uj — Ui) + (xj

xi) (vi—yi) (vi—Vi)

EF
[Xj — Xi) (ijj — IJi) (Uj—Ui)Qji JVsincx

,3

+ (yi — yif ivi — ft)

On remarquera que l'on a bien

(3)

Qn,

comme le veut l'équilibre de la barre.
La géométrie et la physique de la barre sont entièrement

caractérisées par les trois nombres

ct
EF

Co
EF

l M
"p" VJi — Vi)

EF (4)

cs -p" (xi — xi) (l/i — Vt)-

" N

W) m,uj*vJ)

Fig. C. — Barre de triangulation typique.

196



Avec ces définitions, les formules (3) prennent la
forme

Pji Cx{uj — ut) + C9[cj — Vf) \

Qii C3{uj — ut) + C2(vj — vf) j (5)

Désignons par Xj, Yj les composantes de la force
extérieure appliquée au nœud / ; les équations d'équilibre

de ce nœud s'écrivent alors :

L Pji — Xj,

Qii — */i

(6)

où les sommes portent sur toutes les barres qui
aboutissent au nœud /.

Nous allons montrer maintenant que l'on peut obtenir
le même résultat à partir du théorème du minimum de
l'énergie potentielle. L'énergie de déformation dc ia
barre considérée ci-dessus vaut

1
N

1 EF
2

compte tenu de la relation (1) et des notations (4),
cette énergie peut se mettre sous la forme

C1 (uj — ui)2 -f C2 (vj — Vi)2 + 2C3 (i

L'énergie dc déformation totale du système vaut

U^Y Yi[Cl {ui~ Uif + Ca ^ ""*)' +

+ 2C3 (uj— Ui) (cj— vf)

où la sommation est à effectuer sur toutes les barres
du système. Le potentiel des forces extérieures appliquées

à la structure est donné par

U9 L(x(XjUj + Yjvf) ;

l'énergie potentielle U= U^—U2 peut donc s'écrire

U + C2{v1 — vif X 2C3(uj —J C^Uj —
res L

Ui) [Vj — Ci) — Zj (XjUj + Yfj).
(7)

Les déplacements de la position d'équilibre rendent
minimum la fonction (7) ; on doit donc avoir

^= ydu, z_j

dv, Zj

Q( cé?i — fi)

C3(uj — ut) + C2(vj — Vi)

x, o,

Yi 0,

(8)

où les sommes portent sur les barres pour lesquelles
l'énergie de déformation fait intervenir les déplacements
du nœud / ; c'est-à-dire sur toutes les barres qui
aboutissent en ce nœud. En comparant les équations (6) et
(8), on constate qu'il s'agit bien du même système,

P 1

U

Fig. 7. — Exemple illustratif : système triangulé formé de
onze barres de sections identiques.

Pour le problème qui nous occupe ici, il est indifférent

d'obtenir les équations (8) à partir de l'équilibre
des nœuds ou à partir du minimum de l'énergie potentielle.

Par contre, dans le cas d'un problème continu,
la première méthode n'est que l'interprétation intuitive
de la seconde et présente parfois des difficultés
essentielles.

Exemple numérique
Considérons le système triangulé représenté à la figure 7.

Les conditions de liaison sont ici

«4 f4 V5 Vg 0.

Ecrivons les équations d'équilibre du nœud 1 ; il faut
considérer toutes les barres qui aboutissent en ce nœud.
On obtient successivement, en utilisant les formules (4) et
(5):

EFBarre 1-2

Barre 1-4

n EF
P12 (u1 H

a

Qu o.

I a, Cl 0, C2

Pi,

Qu

(9)

EF
C3 0, d'où

0

EF
I

a

(10)

Barre 1-5

P,,

l Ct — C„ 0,354 d'où

(111

«y/2, c1

0,354^ [(«x-Us)-^-^)],
Qu 0,354 ëL | _ („, _ ,,5) + K _ „,)].

Les équations d'équilibre du nœud 1 s'écrivent

PlZ + Pu + Pl5 P.
Qt> + Qu + Qn o,

c'est-à-dire, compte tenu des relations (9) à (11),

k, — 0,354 us +
¦f 0,354 vs,) P,

EF

F F
— (1,354 h,—0,354 c,-a

EF
— 0,354 uj + 1,354 v1 — vi + 0,354 u5

— 0,354 v„) 0.

(12)

On formerait de même les dix autres équations qui expriment

l'équilibre des nœuds 2,3, 6. Ce système de douze
équations linéaires peut se mettre sous la forme matricielle

"o

An

"t l'i "2 ^2 »3 ^3 "4 Vi "s l>5 "6 ''e

(13)

/„ (P, 0, 0, — P, 0, 0, II, Vlt 0, V.,, 0, V3)
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et A0 est la matrice de dimensions 12x12 (13 b). On
comparera les deux premières lignes de cette matrice avec les
équations (12). En vertu des conditions de liaison, on peut
supprimer les colonnes relatives aux variables u4, vt, c5, va.

Nous obtenons ainsi un système de douze équations pour
les douze inconnues ult vlt u2, v2, u3, v3, u5, u6, II, V^, V2, V3.
Permutons ces équations en écrivant les trois relations où
interviennent les réactions d'appui, à la fin du système, on
obtient :

Nœud 1

2

3

EF

5

1,354 -0,354 -1 -0,354 0,354

-0,354 1,354 -1 0,354 - 0,354

-1 2,707 -1 - 0,354 - 0,354 -0,354 0,354

1,707 - 0,334 - 0,354 -1 0,354 - 0,354

-1 1,354 0,354 -0,354 - 0,354

0,354 1,354 - 0,354 - 0,354 -1

- 0,354 - 0,354 1,354 0,354 -1

- 1 -0,354 - 0,354 0,354 1,354

-0,354 0,354 -0,354 - 0,354 -i 2,707 - 1

0,354 -0,354 -1 - 0,354 - 0,354 1,707

- 0,354 0,354 -1 1,354 - 0,354

0,354 - 0,354 -1 -0,354 1,354

(13b)

EF
a

1,354 -0,354 -1 -0,354

-0,354 1,354 0,354

-1 2,707 -1 - 0,354

1,707 0,354

-1 1,354 0,354 -0,354

0,354 1,354 - 0,354

- 0,354 0,354 - 0,354 -0,354 2,707 - 1

- 0,354 0,354 -1 1,354

- (14)
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EF
a

-0,354 - 0,354 -1

-1 -0,354 - 0,354

0,354 - 0,354 -1 - 0,354 -0,354

0,354 -0,354 -1 -0,354

u1

fl

u2

V2.

«3

ft

«5

«6

H

V1

(15)

Sous forme matricielle, ce système peut s'écrire

A u /,
B~iï R.

(16)

La matrice A est obtenue à partir de A0, en supprimant
les lignes et colonnes relatives aux variables nulles. La
matrice B est formée des lignes de A0 relatives aux variables
nulles, dans lesquelles on a supprimé les colonnes
correspondantes (termes encadrés en trait plein dans la matrice A0).
La résolution de ce système ne présente aucune difficulté,
on calcule tout d'abord les déplacements à l'aide de la
première équation (16) :

~u A-1 ~f,

puis on obtient les réactions d'appui à l'aide de la seconde :

JR B~u.

La matrice inverse A~x s'écrit ici :

on en déduit le vecteur déplacement u :

u" =-4(2,050 0,325 1,375 —0,828 1,257 —0,118Er
0,807 1,172),

et les réactions d'appui

H —P; Vt — 0,518 P ; Va 1,036 P ;
V3 0,482 P.

Il reste enfin à déterminer les efforts dans les barres, au
moyen de la relation

FF r iN -p- y(xj — Xi) (u; — ui) + (ijj — yi) (vj — Pj)J.

Pour notre exemple, on obtient les résultats donnés au
tableau 2.

A"1
EF

1,878 0,325 1,203 -0,172 1,085 -0,118 0,635 0,828

0,839 0,163 0 0,118 - 0,046 -0,058 0

1,366 -0,172 1,203 -0,163 0,578 0,828

0,657 -0,172 0 -0,172 - 0,343

Symétrique

1,878 -0,325 0,635 0,828

0,839 0,058 0

0,856 0,828

1,657

Tabi

Barre
('-/)

N

1-2 -0,675

2-3 -0,118

1-4 0,325

2-5 -0,828

3-6 -0,118

4-5 0,807

5-6 0,365

1-5 -0,459

2-4 0,273

2-6 -0,516

5-3 0,166
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Le problème est ainsi complètement résolu.

La méthode des déplacements que nous
venons d'exposer à propos d'un exemple
particulier est en fait très générale. Dans
tous les cas, on retrouve le schéma de calcul

de l'exemple ci-dessus, que l'on peut
résumer comme suit :

1. Formation de la matrice de rigidité de
la structure, sans tenir compte des
conditions de liaison (la matrice A0 dans
notre exemple).

2. Suppression des lignes et colonnes rela¬
tives aux variables nulles de la matrice
ainsi formée ; on obtient ainsi la matrice
A qui lie les variables de déplacement u

aux forces extérieures /.

3. Formation de la matrice B, à partir des
lignes relatives aux variables nulles de la
matrice initiale. Cette matrice exprime les

réactions d'appui R en fonction des dépla-
—y

cements u.

4. Calcul des déplacements solution du système Au f.
5. Obtention des réactions d'appui définies par l'équation

~R B~u.

6. Détermination des efforts intérieurs à l'aide des dépla¬
cements.

Dans le paragraphe suivant, nous montrerons
comment utiliser la même technique pour résoudre de
manière approchée un problème d'élasticité plane.

Remarques
1. La matrice A, qui lie les déplacements aux forces

extérieures, est appelée matrice de rigidité de la structure ;

cette matrice est toujours symétrique, en vertu du théorème
de réciprocité de Betti.

2. La matrice de rigidité ne dépend pas du cas de charge
considéré. Dans la première relation (16), la géométrie et
les propriétés physiques de la structure sont représentées
par la matrice A, les forces extérieures sont exprimées par
le vecteur /. Cette matrice peut donc être formée et inversée
une fois pour toutes. Pour un second cas de charge, il suffit
de multiplier la matrice A~1 par le nouveau vecteur /. Le

i

z
3 4

3

XL s e
*

5

i— s e

7
——*-

Ui a 10 S

9

ti IZ

11

- 11

Fig. 8. — Numérotation

des nœuds
d'un treillis.

Fig. 9.
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par blocs de la matrice
ure 8.du système triangulé de la figure 8

nombre de cas de charge ne joue ainsi qu'un faible rôle
sur le temps total de calcul. C'est là un des avantages des
méthodes de résolution directes par rapport aux méthodes
itératives.

3. Dans l'exemple traité ci-dessus, nous avons résolu le
système (16) en inversant la matrice A. En fait, dès qu'il
s'agit d'un grand système d'équations, l'inversion de la
matrice exige un temps de calcul considérable et il est beaucoup

plus avantageux de résoudre ce système par élimination,

c'est-à-dire en triangulant la matrice A. De plus, on
tient compte de manière essentielle d'une circonstance
favorable, liée à la forme de la matrice A. Considérons le système
triangulé représenté à la figure 8 ; si l'on numérote les
nœuds comme indiqué sur cette figure, la matrice des coefficients

se présente alors comme le montre la figure 9. Seuls
les blocs hachurés contiennent des termes non nuls. En effet,
les nœuds de la ligne i ne sont couplés qu'aux nœuds des
lignes (i — 1) et (t -j- 1), d'où la forme tridiagonale. Compte
tenu de la symétrie de la matrice, il suffit de mémoriser les
termes contenus dans la partie doublement hachurée.
Actuellement, on résout fréquemment des systèmes de trois
ou quatre mille équations. Sans tenir compte de cette remarque,

le nombre de termes à traiter serait donc de l'ordre de
dix millions

(A suivre.)
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Ce livre définit succinctement les limites entre
lesquelles se situent le choix et l'utilisation rationnelle des
pompes centrifuges en regard de leurs applications les
plus courantes. En possession de ces éléments de base
et à l'intérieur des limites ainsi définies, l'utilisateur est
donc capable de résoudre lui-même les innombrables
cas d'espèce dont certains, les plus typiques, sont
évoqués.

Compte tenu des particularités d'un service bien
déterminé, le lecteur trouvera concrétisées les règles essentielles

d'ordre général conditionnant le choix, la mise
en place et l'exploitation : des groupes électropompes
centrifuges, des béliers hydrauliques, des électeurs, des

pompes volumétriques ainsi que de leurs accessoires et
appareils de mise en route, dc protection et de contrôle.

Une place importante est réservée à l'entraînement
des pompes au moyen de moteurs électriques. Il faut

voir là le fait cjue ce mode d'attaque a considérablement

élargi le champ d'utilisation des pompes centrifuges.

En particulier, et grâce à la technique moderne,
la commande automatique constitue, dans ce domaine,
un élément de souplesse et de sécurité, donc d'économie.

A signaler encore des développements sur les
éjecteurs à vide ou à pression d'air et béliers hydrauliques,
ainsi que sur le pompage en milieu visqueux (choix de
la pompe, pompes volumétriques, calcul des pertes de
charge, etc.).

Autant de points particuliers dont la connaissance
est utile à l'ingénieur, à l'élève ingénieur et au technicien

appelés à se spécialiser dans la mise en pratique
des problèmes de pompage en milieux liquides. L'ingénieur

trouvera un bref aperçu des méthodes utilisées
aux essais des pompes centrifuges, ainsi qu'au calcul
des tolérances admises relativement aux performances
de ces machines.

Sommaire :
I. Les groupes électropompes centrifuges : 1. Pompes

centrifuges. — 2. Conduites. — 3. Choix d'une pompe centrifuge.

— 4. Choix du moteur d'entraînement. — 5.
Commande automatique des pompes centrifuges. — 6. Installa-
lion, mise en route et incidents de fonctionnement. —
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