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LA CALCULATRICE ELECTRONIQUE
A LA DISPOSITION DE L'INGENIEUR'

par GEORGES DUPUIS, ingénieur EPUL, collaborateur a I'Institut de mathématiques appliquées

1. Généralités

Cet exposé ne contient rien d’essentiellement nou-
veau ; il est destiné 4 montrer 4 I'ingénieur praticien
quelques aspects du traitement automatique des pro-
blemes qui lui sont posés journellement. Nous nous
limiterons aux problemes de statique posés a I'ingénieur
civil ; toutefois, les considérations qui suivent s’appli-
queraient également a d’autres disciplines de la tech-
nique.

Par suite du développement des calculatrices, de
nombreux problémes, autrefois rebutants, sont devenus
aujourd’hui chose courante. C’est en particulier le cas
des problemes d’analyse des structures complexes. Les
principales conséquences de cette situation sont les sui-
vantes :

1. L’analyse des structures peut étre plus détaillée ; il
en résulte que les marges de sécurité peuvent étre
diminuées, d’ott une économie de matériaux.

2. Des problémes qui exigeaient plusieurs semaines de
calcul manuel peuvent actuellement étre résolus en

! Exposé présenté lors des journées d’étude du Groupe des ingé-
nieurs des ponts et charpentes de la SIA des 17 et 18 novembre 1967
a Lausanne.

quelques minutes. Il s’ensuit que, pour un projet
donné, il est possible d’é¢tudier de nombreuses solu-
tions en des temps raisonnables et de choisir ainsi
en connaissance de cause.
3. L'ingénieur, libéré des calculs fastidieux, peut se
consacrer davantage aux problémes de construction.
Cette évolution des moyens de calcul n’est toutefois
pas sans exigence. En effet, les méthodes de caleul
classiques sont inspirées par la préoccupation de donner
a ces calculs une forme bien adaptée aux méthodes
manuelles. Or, les exigences du calcul électronique sont
toutes différentes. En calcul manuel, on cherche des
méthodes conduisant a un volume de calcul minimum,
qui exigent de nombreuses initiatives du calculateur,
Par contre, en calcul automatique, on cherche des
méthodes conduisant & des opérations standard, leur
nombre n’ayant qu'une importance secondaire. Il est
donc nécessaire de reprendre, souvent assez au début,
des problémes que I'on avait I'habitude de résoudre par
des méthodes artisanales, afin de se plier aux exigences
de 'automatisme. Cette circonstance est en fait la méme
que celle que I'on rencontre dans bien des questions de
fabrication industrielle.
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Les problémes posés par la mécanique des corps défor-
mables sont en général si complexes qu'ils échappent a
I’analyse. La méthode générale utilisée en statique ap-
pliquée consiste & transformer les problémes donnés en
problémes plus simples que I'on sait résoudre exactement.
Il n’existe toutefols pas de technique de transformation :
celle-ci fait essentiellement appel a I'intuition de I'in-
génieur. Le développement des calculatrices a fait appa-
raitre une méthode différente qui consiste a résoudre
directement les problémes proposés mais, en général,
de maniére approchée. Les avantages de cette méthode
par rapport a la précédente sont au nombre de deux:

1. 1l existe des techniques générales d’approximation qui

ne font pas appel a l'intuition et peuvent étre auto-
matisées.

2. 11 est possible d’évaluer les erreurs commises et, au

besoin, de les réduire.

Pour fixer les idées, considérons le cas d'une plaque
rectangulaire posée sur des appuis ponctuels situés sur
son contour. Si ces appuls sont assez rapprochés, on
pourra les assimiler & un appui continu et déterminer
’état de contrainte de la plaque en utilisant la solution
exacte, connue pour ce cas. Au contraire, en calcul élec-
tronique, on considérera le détail des appuis ponctuels
mais on résoudra le probleme a l'aide d’une méthode
approchée, par exemple la méthode des équations aux
différences. On pourra se faire une idée de la qualité de
Iapproximation en reprenant le calcul avec une maille
plus fine.

Les problémes posés a I'ingénieur peuvent étre sché-
matiquement décomposés en trois parties :

1. Choiz d’un modéle mathématique. Clest le passage
d’'un probléeme de physique & un probleme de mathé-
matique. Par exemple, une plaque est remplacée par
un corps déformable a deux dimensions.

2. Explottation du modéle. Il s’agit de résoudre un
probléeme de mathématique parfaitement posé. Par
exemple, dans le cas de la plaque, on a a déterminer
Iintégrale de l'équation de Lagrange satisfaisant des
conditions aux limites. Remarquons que cette partie
du probléme ne fait appel qu'aux connaissances mathé-
matiques de I'ingénieur. En fait, elle pourrait étre con-
fiée & un mathématicien, sans préciser de quel probléme
physique elle est issue.

3. Interprétation des résultats. Cette partie est cer-
tainement la plus délicate ; en effet, c’est ici que I'in-

L_ 900 _l_ 16.00 _l__ : 900 2l

Fig. 1. — Enveloppe des moments d’'une poutre continue
de section variable.

oifd . . .
Charge répartic permanente : g = 2 t/m; charge répartie mobile :
p = 0,7 t/m; charge concentrée: P = 6 L.
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génieur doit décider de I'incidence des résultats obtenus
a partir d'un modele, qui ne représente la réalité que
de maniére imparfaite, sur la forme et les dimensions
de I'ouvrage qu’il étudie. Contrairement a I'exploitation
du modele, cette partie fait non seulement appel aux
connaissances mathématiques de I'ingénieur, mais aussi
A son intuition et a4 son expérience de constructeur.

Il est tres important de bien distinguer le probleme
physique de son modéle mathématique. Si I'on peut
étudier le second avee toute la précision désirable, cette
précision est probablement illusoire pour le probleme
physique. Cette remarque ne doit toutefois pas nous
autoriser a n’étudier le modéle mathématique que de
maniére grossiére, on cumulerait ainsi les difficultés du
probléeme.

L’usage d'une calculatrice permet de résoudre entiére-
ment, et en des temps trés brefs, la seconde partie du
probléme, ¢’est-a-dire I'étude du modéle mathématique.
D’autre part, elle peut aussi contribuer aux deux autres
parties. En effet, le moyen puissant que constitue une
calculatrice permet de faire, en peu de temps, de nom-
breuses expériences numériques propres a démontrer si
tel ou tel effet joue un role sensible et doit étre pris en
compte dans les caleuls. Enfin, certaines techniques per-
mettent de déterminer les dimensions ou la forme opti-
mum d’une structure ; la grandeur & minimiser étant,
par exemple, le poids de la structure.

Dans ce qui suit, nous nous limiterons au probléme
de I'étude d’un modéle mathématique. On peut classer
en deux catégories les problemes qu’il convient de traiter
a l'aide d’une calculatrice :

1. Des probléemes relativement élémentaires qui condui-

sent a un volume de calcul important.

2. Des problemes plus complexes pour lesquels I'ingénieur

ne peut obtenir que des ordres de grandeur, s'il ne

dispose que de sa régle a calcul et des abaques habi-
tuels.

Comme exemple de probléme du premier type, consi-
dérons une poutre continue de section variable. On se
propose de déterminer 'enveloppe des moments et efforts
tranchants, sous l'effet d'une charge répartie perma-
nente, d'une charge répartie mobile et d'une charge
concentrée par travée. La figure 1 représente une telle
poutre et I'enveloppe des moments correspondante. Un
programme, assez élémentaire, écrit pour la calculation
de TEPUL, permet de résoudre ce probleme en quelques
minutes.
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Fig. 2. — Exemple de plaque calculée par la méthode des

¢léments finis et étudiée sur modele par le Laboratoire de
statique de I'EPUL. Auteurs du projet: P. Kipler et
H. Wazenried.

Caractéristiques : Epaisseur ¢ = 0,90 m ; module d'é¢lasticité IS =
2000000 t/m?*; coeflicient de Poisson v = 0,38 ; charge unifor-
mément répartie p = 1 t/m®
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Fig. 3. — Moments Mz en tm/m le long de la ligne B-B
(cf. fig. 2).

O Valeur calculée.
@® Valeur mesurée.

Comme exemple de probléme du second type, consi-
dérons la plaque représentée a la figure 2, sollicitée par
une charge uniformément répartie. On se propose de
déterminer les déplacements, les efforts intérieurs et les
réactions d’appuisl. La résolution de ce probleme sur
la calculatrice de 'EPUL, par la méthode des éléments
finis, exige environ une heure de calcul. Nous avons
comparé quelques résultats obtenus par le calcul avec
des mesures effectuées au Laboratoire de statique de
EPUL2. Les figures 3 et 4 montrent les moments cal-
culés et mesurés suivant deux lignes verticales. Les
courbes représentent les valeurs calculées ; les points
sont les résultats de mesure. Ces figures montrent que
la concordance des résultats est trés satisfaisante. Il y
a lieu de remarquer que dans cette comparaison, nous
avons implicitement superposé les différences entre les
solutions approchée et exacte du modéle mathématique
d’une part et entre le modele et la réalité d’autre part.
On pourrait tenter de séparer ces deux influences en
reprenant le calcul de la plaque avec un réseau plus fin.
“n fait, c’est bien ce type de comparaison qui intéresse
'utilisateur.

1 Cet exemple est extrait de la thése de doctorat de J.-J. Goél,
présentée a I'EPUL, intitulée : « Utilisation numérique de la méthode
de Ritz. Application aux plaques ».
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O Valeur calculée.
@ Valeur mesurée.

2. Choix d'une méthode de calcul

Nous avons dit plus haut que les méthodes habituelle-
ment utilisées en calcul manuel sont généralement mal
adaptées au calcul électronique. Nous allons étayer
cette affirmation par un exemple tout a fait élémentaire.

Considérons le probléme des systémes triangulés ; il
s’agit de déterminer les efforts dans les barres, sous
Ieffet de forces extérieures données.

Pour résoudre ce probléme, on utilise habituellement
la méthode de forces; on choisit comme inconnues les
réactions d’appul et les efforts dans les barres et I'on
écrit ’équilibre des nceuds. Plusieurs cas peuvent se
présenter. La figure 5 représente les quatre circonstances
possibles. Dans le premier cas, les équations d’équilibre
sont suflisantes pour déterminer les efforts dans les
barres ; dans le second, il faut leur adjoindre deux équa-
tions de déformation; dans le troisieme, il faut leur
adjoindre une condition de déplacement ; enfin, le qua-
trieme cas nécessite des équations des trois types. Le
tableau 1 résume ces quatre circonstances.

Les équations a écrire sont done, en général, de trois

* Nous tenons a remercier M. le professeur F. Panchaud, directeur
du Laboratoire de statique, qui nous a aimablement fourni ces résul-
tats.
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TasrLEaUu 1

Nombre Nombre Nombre
Nombre Nombre | Nombre d’équa- d’équa- d’équa-
Cas de de d’incon- tions tions tions
barres réactions nues d'équi- de défor- | de dépla-
libre mation cement
a 9 3 12 12 0 0
b 11 3 14 12 2 0
e 9 4 13 12 0 1
d 11 4 15 12 2 1

types différents, ce qui n’est pas favorable 4 1’automa-
tisation des calculs. De plus, les opérations a effectuer
seront différentes selon que le systéme est isostatique,
intérieurement ou extérieurement hyperstatique. Par
contre, on sait que la méthode des forces aboutit a un
systéme d’équations séparable en plusieurs systémes de
dimensions réduites, ce qui constitue un avantage essen-
tiel en calcul manuel. (C’est cette circonstance qui est
exploitée dans la méthode de Cremona, par exemple.)

Si I'on veut traiter ce probléeme a I’aide d’une calcu-
latrice, on ne se contentera pas de résoudre les équations
automatiquement, on demandera également au pro-
gramme de les poser. Dans cette optique, on accepte
volontiers un surcroit de travail dans la résolution du
systéme si I'on imagine une méthode permettant d’éta-
blir ces équations a l'aide d’opérations standard. C’est
bien ce a quoi conduit la méthode des déplacements.

Choisissons comme variables, non plus les efforts dans
les barres et les réactions d’appuis, mais les déplace-
ments des nceuds. Nous allons exprimer les efforts inté-
rieurs a I'aide de ces variables et écrire les douze équa-
tions d’équilibre des nceuds. Ces équations seront iden-
tiques pour les cas (a) et (c) respectivement (b) et (d)
de la figure 5, a la différence prés que certaines variables
(qui expriment les déplacements des appuis) seront
nulles a priori. Lorsqu’on impose une condition de liai-
son, une variable de déplacement disparait ; elle est
remplacée par la réaction d’appui correspondante. Pour
les quatre cas de la figure 5, on aura ainsi douze incon-

nues.
H H
v (a) %_»f !V, (6) Vzr
H H
vi |\4 v,' rv, ’Vg v
(c) (d)
Ilig. 5. — Systémes triangulés : a) isostatique ; b) intérieure-

ment hyperstatique ; ¢) extérieurement hyperstatique ;
d) intérieurement et extérieurement hyperstatique.
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Considérons une barre limitée par les nceuds ¢ et j
et solent (z;, ¥s), (2, y;) les coordonnées initiales de ces
nceuds, dans un systéme cartésien de référence. Nous
désignons par (u;, ¢4), (uj, v;) les composantes du dépla-
cement des nceuds dans le méme systéme (voir fig. 6).
La longueur initiale de la barre vaut

1= of (ot + gy — s

la longueur de la barre déformée est donnée par

= o ey ) — (o 10 + (95 + 09) — e - 001
I'allongement de la barre vaut
w=1—1

et si I'on suppose que les déplacements sont petits, on
peut écrire

1
w =7 o —ai) (wj—w) + (yy—wi) (j — )] (1)

L’effort normal qui sollicite la barre est donné par

N= E—lli W, (2)

ou E est le module d’élasticité et F est l'aire de la
section de la barre. On en déduit ’expression des forces
appliquées aux nceuds :

EF
Pj; = Ncosa = B [('c, — )% (uj — w;) + (zj —

— ) (g — ) (y— o),

. EF
Qji = Nsinat = —5~ [(%‘ — @) (Y5 — yi) (wj— w)

+m~mﬂww4

3)

On remarquera que 'on a bien
Py = — Py, Qi = — Qjs,

comme le veut l'équilibre de la barre.
La géométrie et la physique de la barre sont entiére-
ment caractérisées par les trois nombres

EF EF
Cr=73 (@ —@)?*; Co=—5 U —vi)*;

(4)
EF
Cy= 75 (& — @) [y — ya)-

(4, Y5+v5)

7

Fig. 6. — Barre de triangulation typique.




Avec ces définitions, les formules (3) prennent la
forme

Pj,; — Cl(uj- == ui) —I— Ca(()j — V,') 5 } (5)

Qji = Cy(uj — ws) + Colvj—vi) .

Désignons par Xj, Y; les composantes de la force
extérieure appliquée au nceud j; les équations d’équi-
libre de ce nceud s’écrivent alors :

Y py—x,
Z Qi =Y,

ou les sommes portent sur toutes les barres qui abou-
tissent au nceud j.

Nous allons montrer maintenant que 'on peut obtenir
le méme résultat a partir du théoréme du minimum de
Iénergie potentielle. L’énergie de déformation de la
barre considérée ci-dessus vaut

1 i
E—Ist:%%sz;

(6)

compte tenu de la relation (1) et des notations (4)
cette énergie peut se mettre sous la forme

il
-5 [01 (wj — wi)® 4= Cy (v — 99)® + 2C, (uj —

) o vi)].

’

L’énergie de déformation totale du systéme vaut

1
L= 5 Z[Cl (wj — uq)? + Cy (0 — 05)2 +

+ 2C; (uj — w;) (v; — vi)],

ou la sommation est a effectuer sur toutes les barres
du systéme. Le potentiel des forces extérieures appli-
quées a la structure est donné par

U, = Z (Xjuj + Yy 5

]

Pénergie potentielle U = U; — U, peut donc s’écrire

1
U= 5 Z I:Cl(uj — w)? + Co(vj — vi)% + 2C4(u; —
barres Z <7>
— ug) (vj— Vi)] — £ (Xju; + Yyey).
]
Les déplacements de la position d’équilibre rendent
minimum la fonction (7); on doit done avoir

2U .
g Z[Cl(”ih i) + Ca("i_"i)] —Xj=0, l

aU N ) r
527 = L\ — ) + Gy — )| — ¥y = o, |

ou les sommes portent sur les barres pour lesquelles
I'énergie de déformation fait intervenir les déplacements
du neeud 5 c’est-a-dire sur toutes les barres qui abou-
tissent en ce nceud, En comparant les équations (6) et
(8), on constate qu'il s’agit bien du méme systéme.

(8)

P
Py 2 3
q
H
n 5 2
Ve Ve r\(!
s it v
Fig. 7. — Exemple illustratif : systéme triangulé formé de

onze barres de sections identiques.

Pour le probléme qui nous occupe ici, il est indiffé-
rent d’obtenir les équations (8) & partir de I'équilibre
des nceuds ou a partir du minimum de 1’énergie poten-
tielle. Par contre, dans le cas d’'un probléme continu,
la premiére méthode n’est que I'interprétation intuitive
de la seconde et présente parfois des difficultés essen-
tielles.

Exemple numérique
Considérons le systéme triangulé représenté a la figure 7.
Les conditions de liaison sont ici

Uy = vy = ¢y = vg = 0.

Ecrivons les équations d’équilibre du nceud 1 ; il faut
considérer toutes les barres qui aboutissent en ce nceud.
On obtient successivement, en utilisant les formules (4) et

(9) :
Barre 1-2: [=ua; €, = Eai y O3 = C3 =0,d’0u
EF
P, = — (u, — s
12 a (g — uy) (9)
Qi =0
Barre 14 = l'=a,:C;='0;, Cz=—Ea—F, Cy =0, d’ou
Py =0, l
EF ' (10)
Qu = = (V1 — vq) [
Barre 1-5: l=a ,C,=Cy =—Cy = 0,354 %, d’ou
EF
Py = 0,356 2L [(u,, i) e Jig —vs)],
a
EF i

Qus = 0,356 == [— 1y — ) + vy —v5)]
Les équations d’équilibre du neeud 1 s’écrivent :
Py + Py + Py = P,
Qiz + Qua + Q5 =0,
c’est-a-dire, compte tenu des relations (9) a (11),
EF

= (1,354 wy — 0,354 vy — uy — 0,354 ug +

+ 0,354 v;) = P,
EF o 22}
(— 0,354 vy 4 1,354 v; — ¢, + 0,354 Uy —

— 0,354 g5) = 0.

a

On formerait de méme les dix autres équations qui expri-
ment I'équilibre des nceuds 2, 3, ... 6. Ce systéme de douze
équations linéaires peut se mettre sous la forme matricielle

— —
Ay g = fo; (13)
o b
ou o = (Uy vy Uy Uy Uy Vg Uy Vg Ug Vg Ug Vg),
>

for =Py, 10, 0, — P10, 0, H; Vy;'0, Vi 05V
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et A, est la matrice de dimensions 12x12 (13 b). On com-
parera les deux premiéres lignes de cette matrice avec les
équations (12). En vertu des conditions de liaison, on peut
supprimer les colonnes relatives aux variables wy, ¢4, ¢35, ¢.

Nous obtenons ainsi un systéme de douze équations pour
les douze inconnues uy, vy, Uy, ¥y, Ug, Vg, Us, Ug, I, Vi, Vi, V.
Permutons ces équations en écrivant les trois relations ou
interviennent les réactions d’appui, a la fin du systéme, on
obtient :

Uy vy s Vg Usg Vg 1y A us Vg Ug Vg
1,354 | - 0,354 [ -1 -0,354 | 0,354
Neeud 1
- 0,35 | 1,354 =1 0,354 | — 0,354
—1 2,707 A - 0,354 | - 0,354 -0,354 | 0,354
2
1,707 - 0,354 |- 0,354 =1 0,354 | — 0,354
-4 1,354 | 0,354 - 0,354 | - 0,354
3
0,354 | 1,354 - 0,354 | — 0,354 ~{
EF
A=~ (13b)
- 0,354 |- 0,354 1,354 | 0,354]-1
4
—A - 0,354 |- 0,354 0,354 | 1,354
~ 0,354 | 0,354 ~ 0,354 |- 0,354 |- 1 2,707 —1
5
0,354 | - 0,354 -1 ~ 0,354 | - 0,354 1,707
~0,354 | 0,354 -1 1,354 | — 0,354
6
0,354 | — 0,354 —1 ~0,354 | 1,354
1,354 |- 0,354 |—1 - 0,354 1y P
~0,354 | 1,354 0,354 o 0
=4 2,707 =1 - 0,354 Uy 0
1,707 0,354 v -Pp
s X = , (14)
a
-1 1,354 | 0,354 | — 0,354 g 0
0,354 | 1,354 | — 0,354 vy 0
~0,354 | 0,354 - 0,354 [ 0,354 | 2,707 [-1 g 0
- 0,354 | 0,354 =1 1,354 g 0
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U
1
- 0,354 | - 0,354 -1 Uy H
-1 - 0,354 | - 0,354 ¥y Vv,
EF
“a X = (15)
0,354 | - 0,354 -1 - 0,354 | - 0,354 Ug V,
0,354 | — 0,354 —-0,354 Vg Vg
Us
Ug

Sous forme matricielle, ce systéme peut s’écrire

A-—> =
w0 (16)
Bu=.A.

La matrice A est obtenue & partir de 4, en supprimant
les lignes et colonnes relatives aux variables nulles. La
matrice B est formée des lignes de A, relatives aux variables
nulles, dans lesquelles on a supprimé les colonnes corres-
pondantes (termes encadrés en trait plein dans la matrice Ag).
La résolution de ce systéme ne présente aucune difficulté,
on calcule tout d’abord les déplacements & 1’aide de la pre-
miére équation (16) :

— -
u=A?f,

puis on obtient les réactions d’appui a 'aide de la seconde :
5 —
R = B u.

La matrice inverse A~! s’écrit ici:

. ’ =
on en déduit le vecteur déplacement w :

—T

=%(2,050 0,325 1,375 —0,828 1,257 — 0,118
0,807 1,172),

et les réactions d’appui

H=—P;V,=—0518P; V,=1,036P;
V, = 0,482 P.

Il reste enfin a déterminer les efforts dans les barres, au
moyen de la relation

EF

N==r [(w;' — @) (wj—wi) + (yj— i) (vj — w)]-

Pour notre exemple, on obtient les résultats donnés au
tableau 2.

TaBLEAU 2
1,878 | 0,325 | 1,203 |-0,472| 1,085 |-0,118| 0,635| 0,828
Barre l
(&) P
0,839 | 0,163 | 0 0,118 | - 0,046 | — 0,058 | 0

1-2 -0,675
1,366 |- 0,472 | 1,203 |-0,163| 0,578 | 0,828 2-3 -0,118
1-4 0,325
0,657 | - 0,172 | 0 -0,172 | - 0,343 2-5 -0,828
- i 3-6 -0,118

A 1 = > El

EF
1,878 |- 0,325 | 0,635| 0,828 4-5 0,807
5-6 0,365
Symétrique
0,839 0,058 0 1-5 - 0,459
2-4 0,273
0,856 | 0,828 2-6 -0,516
5-3 0,166
1,657
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Le probleme est ainsi complétement résolu.

La méthode des déplacements que nous 7 2
venons d’exposer a propos d’un exemple
particulier est en fait trés générale. Dans
tous les cas, on retrouve le schéma de cal- * 4
cul de l'exemple ci-dessus, que lon peut
résumer comme suit : Enr g >
1. Formation de la matrice de rigidité de ]
la structure, sans tenir compte des con- £ 3 8
ditions de liaison (la matrice 4, dans
notre exemple).
i+1 9, 10
2. Suppression des lignes et colonnes rela-
tives aux variables nulles de la matrice
ainsi formée ; on obtient ainsi la matrice
ey . . — 1 12
A qui lie les variables de déplacement u
e
aux forces extérieures f.
3. Formation de la matrice B, a partir des
lignes relatives aux variables nulles de la  Fig. 8. — Numéro-
matrice initiale. Cette matrice exprimeles  tation des nceuds Fig. 9. — Forme tridiagonale par blocs de la matrice

=
réactions d’appui R en fonction des dépla-
=3
cements u.
3 . = = =
4. Calcul des déplacements solution du systéme A u = /.

5. Obtention des réactions d’appui définies par 1'équation
= —
R = B u.

6. Détermination des efforts intérieurs & l'aide des dépla-
cements.

Dans le paragraphe suivant, nous montrerons com-
ment utiliser la méme technique pour résoudre de
maniére approchée un probléme d’élasticité plane.

Remarques

1. La matrice A, qui lie les déplacements aux forces
extérieures, est appelée matrice de rigidité de la structure ;
cette matrice est toujours symétrique, en vertu du théoréme
de réciprocité de Betti.

2. La matrice de rigidité ne dépend pas du cas de charge
considéré. Dans la premiére relation (16), la géométrie et
les propriétés physiques de la structure sont représentées
par la matrice A, les forces extérieures sont exprimées par

iy

le vecteur f. Cette matrice peut donc étre formée et inversée

une fois pour toutes. Pour un second cas de charge, il suffit
—

de multiplier la matrice A= par le nouveau vecteur f. Le

d’un treillis.

du systéme triangulé de la figure 8.

nombre de cas de charge ne joue ainsi qu'un faible réle
sur le temps total de calcul. C’est la un des avantages des
méthodes de résolution directes par rapport aux méthodes
itératives.

3. Dans l'exemple traité ci-dessus, nous avons résolu le
systéme (16) en inversant la matrice A. En fait, dés qu’il
s’agit d’un grand systéme d’équations, l'inversion de la
matrice exige un temps de calcul considérable et il est beau-
coup plus avantageux de résoudre ce systéme par élimina-
tion, c’est-a-dire en triangulant la matrice A. De plus, on
tient compte de maniére essentielle d’une circonstance favo-
rable, liée a la forme de la matrice 4. Considérons le systéme
triangulé représenté a la figure 8; si l'on numérote les
nceuds comme indiqué sur cette figure, la matrice des coeffi-
cients se présente alors comme le montre la figure 9. Seuls
les blocs hachurés contiennent des termes non nuls. En effet,
les nceuds de la ligne ¢ ne sont couplés qu’aux nceuds des
lignes (i —1) et (i + 1), d’ou la forme tridiagonale. Compte
tenu de la symétrie de la matrice, il suffit de mémoriser les
termes contenus dans la partie doublement hachurée.
Actuellement, on résout fréquemment des systémes de trois
ou quatre mille équations. Sans tenir compte de cette remar-
que, le nombre de termes a traiter serait donc de 1'ordre de
dix millions !

(A suivre.)
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Ce livre définit succinctement les limites entre les-
quelles se situent le choix et I'utilisation rationnelle des
pompes centrifuges en regard de leurs applications les
plus courantes. EEn possession de ces éléments de base
et a Pintérieur des limites ainsi définies, 'utilisateur est
donc capable de résoudre lui-méme les innombrables
cas d’espéce dont certains, les plus typiques, sont évo-
qués.

Compte tenu des particularités d’un service bien dé-
terminé, le lecteur trouvera concrétisées les régles essen-
tielles d’ordre général conditionnant le choix, la mise
en place et I'exploitation : des groupes électropompes
centrifuges, des béliers hydrauliques, des ¢jecteurs, des
pompes volumétriques ainsi que de leurs accessoires et
appareils de mise en route, de protection et de contréle.

Une place importante est réservée a 'entrainement
des pompes au moyen de moteurs électriques. Il faut
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voir la le fait que ce mode d’attaque a considérable-
ment élargi le champ d’utilisation des pompes centri-
fuges. En particulier, et grace a la technique moderne,
la commande automatique constitue, dans ce domaine,
un élément de souplesse et de sécurité, donc d’économie.

A signaler encore des développements sur les éjec-
teurs a vide ou a pression d’air et béliers hydrauliques,
ainsi que sur le pompage en milieu visqueux (choix de
la pompe, pompes volumétriques, calcul des pertes de
charge, ete.).

Autant de points particuliers dont la connaissance
est utile a 'ingénieur, a I'éléve ingénieur et au techni-
cien appelés a se spécialiser dans la mise en pratique
des problémes de pompage en milieux liquides. L’ingé-
nieur trouvera un bref apercu des méthodes utilisées
aux essais des pompes centrifuges, ainsi qu'au calcul
des tolérances admises relativement aux performances
de ces machines.

Sommaire :

1. Les groupes électropompes centrifuges : 1. Pompes cen-
trifuges. — 2. Conduites. — 3. Choix d’une pompe centri-
fuge. — 4. Choix du moteur d’entrainement. — 5. Com-
mande automatique des pompes centrifuges. — 6. Installa-
tion, mise en route et incidents de fonctionnement. ——
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