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ESSAIS DE CISAILLEMENT DIRECT A VOLUME VARIABLE

ET A VOLUME CONSTANT

par H.-B. DE CERENVILLE, ingénieur, Lausanne !

I. Changement de volume lors du cisaillement

On sait que la résistance au cisaillement d’un sol
dépend dans une large mesure des changements de
volume qui peuvent — ou ne peuvent pas — se pro-
duire sur le plan de rupture.

D’une maniére générale, les sols a forte densité —
sables compacts, argiles surconsolidées — tendent a
augmenter de volume lors du cisaillement, alors que
les sols & faible densité — sables laches, argiles nor-
malement consolidées — tendent a diminuer de volume.

Imaginons un sable relativement compact, tel qu’on
le trouve sur une plage. Ses grains sont enchevétrés les
uns dans les autres, de telle maniére que, lors d’un
déplacement relatif des grains, c’est-a-dire lors d’un
cisaillement, le mouvement ne peut prendre place que

— si les grains se cassent sur le plan de cisaillement ;

— ou bien si les grains s’écartent légérement en grimpant

les uns sur les autres.

Dans ce dernier cas, les grains solides ne changeant
pratiquement pas de volume, le volume total du sable
augmente, et le volume des vides croit. Cette propriété
du sol qu’on appelle « dilatance » explique pourquoi si

I'on marche sur une plage de sable saturé d’eau, on
note autour du pied une zone moins humide. En effet,
la pression du pied sur le sable assez compact produit
des contraintes de cisaillement en profondeur qui ont
pour conséquence une augmentation du volume des
vides. L’eau de surface descend alors rapidement rem-
plir ces vides.

Le phénoméne contraire se produit dans les sables
laches ou les argiles normalement consolidées. Lors du
cisaillement, les grains ont tendance a se rapprocher
les uns des autres. Le volume des vides tend donc a
diminuer, de méme que le volume total. 1l y a alors
tendance a expulsion de 'eau.

II. Influence des pressions interstitielles sur la résis-
tance au cisaillement

Si I'on se trouve en présence d’un sol liche saturé
dont le volume tend & diminuer lors d’un cisaillement,

1 Conférence donnée & Lausanne, le 12 mai 1967, devant les mem-
bres de la Société suisse de mécanique des sols et des travaux de fonda<
tions. (Réd.)
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Fig. 1. — Coupes d’éprouvettes d’argile varvée apres
cisaillement.

la diminution du volume des vides n’est possible, si
Ion néglige la compressibilité de I'eau, que si I'eau est
expulsée. Si I'eau ne peut s’en aller — ou s’en aller
assez vite a cause d’une faible perméabilité, ou a cause
d’une limite étanche, ou, ce qui revient au méme, si
I'on a une grande masse saturée — la pression dans
I'eau augmente, on a une surpression interstitielle. Tout
ou partie des contraintes extérieures passe dans 1’eau
au lieu de se transmettre dans le sol de grain 4 grain.

Etant donné que la résistance au cisaillement dépend
avant tout du frottement entre les grains, on voit qu’en
cas de surpression interstitielle (ou pression neutre posi-
tive u), la résistance au frottement ne se manifeste pas
en fonction de la contrainte normale totale appliquée
o, mais en fonction de o — u qu’on appelle la contrainte
effective o’ ou G.

Dans un sol saturé compact qui tend & augmenter
de volume lors du cisaillement, et ot le volume des
vides a donc tendance & croitre, le phénomeéne inverse
se produit si 'eau — ou l'air — ne peut arriver jus-
qu’aux vides pour les remplir. L'eau se trouve alors
en dépression, la contrainte de grain a grain est aug-
mentée, et la résistance au cisaillement devient plus
forte que celle a laquelle on pourrait normalement
s’attendre.

Si Pon appelle w la pression dans I'eau interstitielle,
positive pour une surpression, négative pour une dé-
pression, la loi de Coulomb devient :

T =d+(c—u)tge =c +o'tge’
ou Ty = résistance au cisaillement ;
¢ = cohésion effective ;
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Fig. 2. — Coupes d’éprouvettes d’argile varvée apres
cisaillement.

o = contrainte normale sur le plan de cisaille-
ment ;
o’ = contrainte normale effective de grain a

grain ;
tg ¢" = coellicient de frottement interne effectif.

III. Détermination des résistances au cisaillement —
Essai triaxial et essai direct

L’essal triaxial présente d’énormes avantages sur
I'essai de cisaillement direct, notamment celui de per-
mettre la mesure des pressions interstitielles ou des
changements de volume, de pouvoir varier a4 volonté
les contraintes principales o; et o4, et enfin de ne pas
fixer d’avance la position du plan de rupture. Cet essai
présente néanmoins des inconvénients théoriques et des
difficultés pratiques qui en limitent quelque peu 'em-
ploi.

Les inconvénients pratiques sont notamment le prix
a Fr. 300.— par point), et
la difficulté de tailler et de mettre en place I’échantillon

élevé des essais (Fr. 200.

qui requiert des opérateurs habiles. Théoriquement, il
y a aussi des diflicultés a cause de la rigidité des pla-
tines qui prévient une répartition uniforme des con-
traintes de compression et des déformations sur toute
la hauteur de I'échantillon. En effet, I’échantillon ne
reste pas cylindrique, 1l y a un gonflement non uni-
forme, et un cone rigide se forme sous les platines.

in outre, 'on n’a en réalité pas affaire & trois con-
traintes principales bien définies oy, o, et oy sur trois
plans perpendiculaires, mais bien & une contrainte




axiale, une contrainte radiale et une contrainte tangen-
tielle. Enfin, la consolidation ne peut normalement se
faire qu’isotropiquement.

Lessal de cisaillement direct présente d’autres incon-
vénients et d’autres avantages. Ses défauts sont notam-
ment que la rupture a lieu sur un plan imposé, que la
section de cisaillement varie pendant Iessai, que les
pressions latérales ne sont pas connues, et que la défor-
mation angulaire varie d’un point &4 un autre de I’échan-
tillon : trés forte dans les bords, plus faible au milieu
de I'échantillon, ainsi qu’on peut le voir sur les figures 1
et 2. En outre, il n’y a pas moyen de mesurer directe-
ment les pressions interstitielles. Quant a la consolida-
tion, elle ne peut normalement se faire qu’anisotro-
piquement.

En revanche, 'essai de cisaillement direct offre I'avan-
tage d’étre facile a faire, relativement bon marché (au
moins quatre a cing fois meilleur marché que 1’essai
triaxial). Il peut étre exécuté aussi bien sous I'eau que
hors de I'eau, et permet de faire facilement des mesures
de résistance sur des plans donnés tels que surfaces
lustrées ou plans de stratification. Les changements de
volume moyens sont faciles & mesurer ; on peut faire a
choix, comme dans I’essai triaxial, les essais non conso-
lidés non drainés dits « UU », les essais consolidés non
drainés « CU» et les essais consolidés drainés « CD »,
selon qu’on emploie des platines poreuses ou étanches,
et selon la vitesse de cisaillement.

En résumé, les avantages de I’essai triaxial sont tels
que I'on a tendance & mépriser Pessai de cisaillement
direct. Celui-ci a cependant des mérites appréciables,
pour le praticien notamment, et on verra plus loin qu’il
peut donner des renseignements assez complets. Il
permet en outre de faire économiquement de nombreux
essais et de réduire ainsi les risques.

IV. Essais de cisaillement direct a volume variable et
a volume constant

On sait qu'il existe deux types de machines de cisaille-
ment direct : le premier dit @ contrainte imposée, le
second a déplacements imposés. Dans le premier type,
on applique des forces de cisaillement connues 4 une
moitié de la boite a échantillon et on mesure les dépla-
cements relatifs correspondants; dans le second, on
impose le déplacement & la moitié¢ inféricure de la boite
a ¢chantillon et on mesure la résistance sur la moitié
supérieure. Dans les deux cas, les essais se font nor-
malement a golume variable, c’est-a-dire que I'échan-
tillon doit pouvoir librement augmenter ou diminuer
de volume pendant le cisaillement.

Aprés la guerre, on a commencé a s’intéresser aux
essais de cisaillement direct a volume constant. En
1962, M. Hugh M. O’Neil! a pensé pouvoir montrer
que, dans I’essai de cisaillement direct consolidé non
drainé CU & volume constant, on mesure simultané-
ment la résistance en fonction des contraintes totales
et celles en fonction des contraintes effectives. Iin effet,
dans un essai a volume constant, le développement de
la pression interstitielle w est théoriquement empéché
par la variation Ao de la contrainte normale, de sorte

! Direct shear test for effective strength parameters, par Hucn
M. O’Neir. Journal of the Soil Mechanics and Foundation Division.

Proc. ASCE, aofit 1962.

Fig. 3. — Machine de cisaillement direct pour essais a
volume variable et a volume constant, avec enregistrement
automatique des résultats.

qu’en tout temps Ac = w. La contrainte normale o
serait ainsi toujours égale & la contrainte effective pour
ce type d’essar CU.

V. Machine de cisaillement direct automatique pour
essais a volume variable et a volume constant

On a vu que, pour le praticien, I'essai de cisaillement
direct est intéressant par sa simplicité et son économie.
Par ailleurs, O’Neil a montré que I'essai & volume cons-
tant apporte des renseignements supplémentaires qui
permettent théoriquement d’obtenir les contraintes nor-
males totales et effectives au moyen d’un seul essai CU.

Il a ainsi paru avantageux de construire une machine
combinant I'enregistrement automatique des résultats
avec la possibilité de faire des essais tant & volume
constant qu’a volume variable. M. F. Robert, ingénieur
a Geneve, et la Société Tecnoconsult ont mis au point
la machine que 'on peut voir sur la figure 3. Il s’agit
d’une machine a déplacement relatif imposé ot on dis-
pose de six vitesses variant entre 1 cm/mn et
0,00167 em/mn ou 0,167 mm/s et 0,000277 mm/s.

Iéquipement comprend une unité de réglage, et un
enregistreur a deux voies avec cing vitesses de déroule-
ment du papier de 0,67 em/mn & 20 em/mn, qui sont
toujours proportionnelles au déplacement relatif Dy
des deux moitiés de la boite de cisaillement.

Les différentes grandeurs :

I'; = résistance au cisaillement
I'y = force normale
Dy = changement d’épaisseur

sont mesurdes ou réglées au moyen de capteurs élec-
triques, avec un systeme de tarage, de sélection de
gammes de mesure et de commutation.
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Deux types de programmes automatiques sont pré-
vus :

A) Essat a volume vartable, ou la contrainte normale o
est maintenue constante par 'unité de réglage, alors
que les changements d’épaisseur moyenne Dy et la
résistance au cisaillement T; sont enregistrés en fonc-
tion du déplacement relatif Dpg.

B) Essat a volume constant, ou les changements d’épais-
seur (ou de volume) Dy sont maintenus nuls par
I'unité de réglage, alors que les contraintes normales o
et les résistances au cisaillement T; sont enregistrées
en fonction du déplacement relatif Dg.

On dispose de cing gammes de mesures des forces
Fy et Fp, de 50, 100, 250, 500 et 1000 kg, et de cing
échelles pour la mesure des changements d’épaisseur Dy
de 4,2, 1, 0,5 et 0,2 mm. La sélection des gammes de

% 0y
mesure, des vitesses et du programme d’essai s’effectue

directement sur le clavier de commande. Les figures 4

et 5 montrent le tableau de commande et la boite de
cisaillement. La figure 6 donne le schéma du fonctionne-
ment.

VI. Résultats d’essais sur un sable

Il s’agit d’essais sur un sable assez anguleux, uni-
forme, de 0,3 & 1 mm de diametre, dont les résultats
sont classiques.

A) Essats a volume variable
Fig. 7 : Résistance au cisaillement et changement de vo-
lume pour un sable compact (¢ =~ 0,7) en fonction
du déplacement relatif pour quatre valeurs de la
contrainte normale o. On voit bien que le gonfle-
ment de dilatance diminue avec l'augmentation
de la contrainte normale.

Fig. &8 : Résistance au cisaillement et changement du
volume pour un o donné de 4 kg/em? en fonction
de I'indice de vide au départ e,. On note la forte
expansion du sable compact et la diminution de
volume du sable lache lors du cisaillement.

Fig. 9 : Détermination des indices de vide critiques pour
quatre contraintes normales, par le diagramme
des changements de volume a la rupture en fonc-
tion des indices de vide au départ e,.

I'ig. 10 : Courbes intrinseques pour le sable de compacité

forte, moyenne et liche, avec des angles de frotte-
’ B ' s

ment interne respectivement d’environ 459, 390

et 340,
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B) Essais a yvolume constant

Itig. 11 : Essais 4 volume constant pour sable compact el
lache, avec une contrainte normale initiale o,
de 1 kg/cm® En haut, les valeurs de o et T/ en
fonction du déplacement relatif, en bas, en trait
plein, les valeurs de T//o dans l'essai & volume
constant, en traitill¢ les valeurs de T//0 dans I’essai
a volume variable.

On note I'énorme augmentation de la résistance
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Fig. 11. — Essais a4 volume constant sur du sable avec
gg =1 kglcm?.

au cisaillement pour le sable compact (environ
6 fois celle a volume variable), et 'augmentation
beaucoup plus faible pour le sable lache (environ
1,8 fois celle & volume variable).

On remarque aussi que la résistance maximum
se présente pour un déplacement relatif plus petit
qu’a volume variable, car le désenchevétrement
des grains n’est pas possible dans I'essai & volume
constant.
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I'ig. 13. — Courbes intrins¢ques du sable — essais a volume

constant (et variable).

Fig. 12 : Essais a volume constant du sable compact pour
trois contraintes normales initiales o, de 0,2, 1
et 4 kg/em? On note que la résistance au cisaille-
ment reste toujours ¢levée — entre 5,5 et
7,5 kg /em? — alors que la valeur de T//c plafonne
a une valeur relativement basse, sensiblement plus
faible qu’a volume variable. Cela est di, en partie
tout au moins, au phénomeéne d’attrition, c’est-a-
dire de rupture ou d’usure des grains.

Fig. 13 : Courbes intrinséques du sable compact et lache :
en trait plein a volume constant, en traitillé a
volume variable. Si les résultats sont pratique-
ment identiques pour le sable liache, en revanche,
pour le sable compact, I'essai a volume constant
donne un angle de frottement interne a peu pres
équivalent a l’angle du sable de compacité
moyenne a volume variable.
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Fig. 16. Essais CD lents a volume variable sur de 'argile.

L’essai a4 volume constant sur du sable met en évi-
dence les trois phénomeénes suivants :

1) Développement d’une énorme résistance pour le sable
compact, limitée toutefois par le phénomene d’attri-
tion, ou de rupture des grains.

2) Faible déplacement relatif nécessaire pour obtenir le
coefficient de frottement maximum, vu 'impossibilité
de désenchevétrement des grains.

3) Diminution de I'angle de frottement interne du sable
compact par rapport aux essais a volume variable,
ensuite du phénomene d’attrition.

VII. Résultats d’essais sur une argile

Il s’agit d’une argile remaniée et reconsolidée & une
teneur en eau de 23 9%, ayant une limite de liquidité
wy, = 48 9, et un indice de plasticité Ip = 32 9%,.

On distingue les trois types d’essais classiques :
Essais UU : non consolidés non drainés ;
Iissais CU : consolidés non drainés ;

Essais CD : consolidés drainés.

A) Essais a volume variable

Fig. 14 : Issais UU rapides a volume variable. Résistance
au cisaillement et changement de volume en fonc-
tion du déplacement relatif pour trois contraintes
normales. La résistance au cisaillement est pra-
tiquement indépendante de la contrainte normale.
A faible charge, on a une augmentation de volume,
alors qu’a plus forte charge il y a diminution de
volume.

I'ig. 15 : Essais CU rapides a volume variable. La résistance
au cisaillement augmente avec la contrainte nor-
male. On a une augmentation de volume a faible
charge, une diminution de volume a plus forte
charge.
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Fig. 17. — Essais CD lents a volume variable sur de 'argile
préconsolidée a 3 kg/em?.

Fig. 16 : Essais CD lents a volume yariable. La résistance
au cisaillement est & peu prés proportionnelle a la
contrainte normale. On a une tendance marquée a
la consolidation pendant l’essai malgré la conso-
lidation préalable. Le réarrangement des grains
reste possible pendant le cisaillement.

. 17 : Essais CD lents, préconsolidés a 3 kglem?, a volume
pariable. La résistance au cisaillement est un peu
plus élevée que dans I'essai CD normal, d’autant
moins qu’on se rapproche de la charge de pré-
consolidation. Il y a augmentation de volume a
faible charge normale, diminution a charge plus
forte — malgré la consolidation préalable.

Iig. 18 : Courbes intrinséques pour les essais UU, CU et

CD, a volume variable. Notons la différence de

résistance entre essais CU rapides et lents, ou l'on

constate un effet de viscosité dans I'essai rapide.
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Fig. 26 :

Comparaison des courbes inlrin-
seques UU avolume variable et
a volume constant. Noter le
plafonnement de la résistance
a volume constant un peu
plus haut qu’a volume varia-
ble, et la plus faible résistance
a volume constant pour les fai-
bles contraintes normales.

Hig: 2r:

Comparaison des courbes intrin-
seques CU a volume variable
et a volume constant. Remar-
quer la résistance supérieure
a volume constant, sauf aux
faibles contraintes normales.

Fig. 88 :

Comparatson des courbes intrin-
i sl :
séques CD a volume variable et
@ volume constant. On note
une faible différence des an-
oles de Irottement effectifs et
de la cohésion effective.




VIII. Conclusions

L’essai de cisaillement direct & volume variable avec
mesure de changement de volume, comme aussi I'essai
4 volume constant, se complétent pour donner des indi-
cations précieuses sur le comportement du sol au cisaille-
ment. Pour les sables, ils donnent une idée de I'indice
de vide critique en dessus duquel on risque une liqué-
faction. Pour les argiles, ils permettent de savoir a
quelle pression normale o le changement de volume est
approximativement nul lors du cisaillement. En des-
sous de cette contrainte, les résistances des essais UU
et CU sont en partie éphémeres, en ce sens qu’avec le
temps, elles tendent a diminuer. En dessus de cette
contrainte, les essais UU et CU donnent des résistances
qui ne peuvent qu’augmenter avec le temps en tendant
vers les résistances CD.

Précisons, pour terminer, qu’il y a lieu de distinguer au
moins trois causes aux pressions interstitielles dans le sol :

A) la présence d’une nappe aquifére ;

B) un changement ou une modification de contrainte
qui tend & provoquer la consolidation (positive
en cas de surcharge, négative en cas de décharge) ;

C) la tendance du sol a changer de volume lors du
cisaillement.

Ces trois types de surpressions ou de dépressions
interstitielles peuvent se superposer.

Dans les sols perméables, il n’y a, en général, lieu de
tenir compte que des pressions interstitielles du type A)
(nappe), sauf si la charge appliquée ou le cisaillement
se produit rapidement, par exemple lors d’un tremble-
ment de terre, ou alors si la masse saturée est dune
grande étendue.

Dans les sols argileux et les sols peu perméables, les
trois types A), B) et C) se superposent fréquemment,
et la pression interstitielle du type C) consécutive au
cisaillement prend toute son importance, soit qu’elle
améliore temporairement la résistance (argile surconso-
lidée, cohésion temporaire mesurée dans les essais UU
ou les essais de compression sur cylindre non fretté),
soit qu'elle réduise la résistance disponible. La diffi-
culté est de connaitre la pression interstitielle w a intro-
duire dans les calculs de stabilité. Il semble aujour-
d’hui que la combinaison d’essais de cisaillement a
volume variable et & volume constant doit permet-
tre de mieux connaitre les phénomeénes associés au
cisaillement et de réduire les marges d’incertitude qui
sont encore l'apanage des problémes de stabilité.
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Les théoriciens et les techniciens spécialistes des sys-
témes asservis disposent actuellement d’une abondante
littérature relative a cet aspect moderne de la technique.

En revanche, il existe peu d’ouvrages élémentaires des-
tinés 4 initier les ingénieurs et les techniciens non spécia-
lisés qui sont confrontés, de plus en plus fréquemment,
a des probléemes de servomécanismes pour la résolution
desquels ils ne sont pas, ou peu, préparés technique-
ment.

Le livre de Ed. Bukstein répond tout a fait a un tel
besoin chez de trés nombreux ingénieurs et techniciens.

Sans faire usage d’un appareil mathématique com-
plexe, l'auteur décrit, en détail et soigneusement, la
technologie et les composants des différentes parties
constitutives d’un asservissement. L’ouvrage abonde
d’exemples chiffrés par lesquels le lecteur fait Pacquisi-
tion indispensable 4 toute réflexion : 'ordre de grandeur.

Les fonctionnements sont décrits d’'un point de vue
physique. La compréhension des raisonnements fait sur-
tout appel au bon sens et a des notions mathématiques
du niveau de la classe de premiere des lycées.

Le chapitre traitant du probléeme de la stabilité des
asservissements, en particulier, donne clairement les
idées générales qui interviennent dans les différentes
techniques de stabilisation.

[ ouvrage est divisé en onze chapitres :

Aprés un premier chapitre d’introduction, P'auteur
reprend un par un les éléments de la chaine d’asser-
vissement. Les chapitres T & I'V traitent des détecteurs
d’erreurs, c’est-a-dire des écarts entre la consigne impo-
sée a lasservissement et le résultat de son action. Le
chapitre V décrit les principaux correcteurs d’erreurs,
tandis que les chapitres VI a IX détaillent les différents
types d’amplificateurs assurant la liaison entre le détec-
teur et le correcteur. Les chapitres X et XTI concernent
le probleme de la stabilité des servomécanismes el les
applications de ceux-ci.

L’ouvrage de Ed. Bukstein est destiné aux ingénieurs
non spécialisés en asservissements et aux agents tech-
niques électroniciens. C’est pourquoi l'auteur a, dans
son ouvrage, davantage mis I'accent sur les principes
de fonctionnement des servomécanismes que sur les
méthodes de calcul et sur les processus de construction
qui intéressent des spécialistes seuls.

C’est en cela que ce livre constitue un apport des plus
intéressants a une littérature technique déja abondante,
mais jusqu’a présent incompléte.
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Cet ouvrage est destiné, d’une part aux ingénieurs
spécialistes de I'éclairage, et, d'une fagon plus générale,
a Dlenseignement de la photométrie et de I'éclairage
ainsi qu’a celui de questions qui s’y rattachent plus
particuliérement. L’éclairage artificiel est de plus en plus
utilisé dans la vie moderne et ceux qui doivent s’y inté-
resser, méme accessoirement, sont toujours plus nom-
breux (architectes, urbanistes, industriels, etec.).

I auteur du présent ouvrage a jugé utile de faire
bénéficier des connaissances recueillies au cours de lon-
gues années d’enseignement, de pratique de bureaux
d’études et de travaux de laboratoire de photométrie,
ceux qui sont désireux de mieux connaitre la technique
de I'éclairage ou de parfaire leurs connaissances en cette
matiére.
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