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CALCUL NUMERIQUE DE PLAQUES FLECHIES (suic « i)

par GEORGES DUPUIS et JEAN-JACQUES GOEL *

Texte publié en hommage a M. Henry FAVRE, professeur a I’Ecole polytechnique fédérale.

II. Modele discret de la plaque oblique

§ 1. Introduction

Dans cette deuxiéme partie, nous établissons le modele
discret de la plaque oblique. Ce modele se veut une
approximation du modele mathématique continu, mais
constitue néanmoins un modele différent. Donnons tout
d’abord T'idée générale de la construction du modéle.

Dans le probléeme de variation que nous avons énoncé
dans la premiére partie (§ 3), il s’agit de déterminer une
fonction w rendant stationnaire la fonctionnelle Ulw] =
Uy[w] — Uy[w], la fonction ¢ devant, en outre, satis-
faire & un certain nombre de conditions aux limites géo-
métriques (plaque encastrée, appuyée) et de conditions
intérieures (lignes ou points d’appui). Au lieu de cher-

! Voir Bulletin technique de la Suisse romande, n° 4, 26 février 1966.

cher I'expression analytique de ww, on va se limiter a
chercher les valeurs de ¢ pour un ensemble fint de
points (u, ¢) dans le plan de la plaque, ce qui conduira
aremplacer les intégrales par des sommes et le probléeme
de variation par un probléeme d’extremum ordinaire.
On obtiendra ensuite la solution en annulant les déri-
vées partielles prises par rapport & ces valeurs ¢. On est
ainsi conduit a la résolution d’un systéeme linéaire.

La précision du résultat dépend évidemment de nom-
breuses circonstances. Si nous laissons de c6té les impré-
cisions résultant des arrondis dans la résolution du sys-
teme linéaire, on voit que I'erreur provient de ce que I'on
a substitué¢ dans 'expression de U[w] les intégrales par
des sommes. La différence entre les deux expressions
doit tendre vers zéro lorsque le réseau de points établi
sur la plaque devient de plus en plus dense. On choisira
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I’approximation des intégrales de facon que cette condi-
tion essentielle soit vérifiée. La convergence de la solu-
tion approchée et de ses dérivées premiére et seconde
vers la solution exacte et les dérivées correspondantes
n’a pas été établie. Pour le cas particulier que nous étu-
dions, cette convergence semble se vérifier expérimen-
talement. On est tout de méme conduit, pour obtenir
une approximation convenable, a prendre un réseau de
points relativement dense (voir partie I1I), ce qui nous
ameéne a la résolution de grand systéme linéaire.

L’objet de I’étude est d’utiliser la calculatrice non seu-
lement pour la résolution du systéme, mais aussi pour
préparer la matrice des coefficients. Il suffit des lors de
fournir 4 la machine les dimensions géométriques et les
caractéristiques physiques de la plaque, les conditions
géométriques imposées et les charges. Tout le calcul se
fait ensuite automatiquement.

Etablissons, dans la représentation (u, ¢) de la plaque
(partie I, fig. I.7), un réseau régulier A, les pas suivant
les axes Ou et O¢ étant constants. Les frontiéres du
réseau coincident avec les frontiéres de la plaque. La
maille du réseau a pour dimension [,k ([ = longueur
d’un pas du réseau selon 'axe Ou, k = longueur d’un
pas du réseau selon 'axe Oy).

Nous introduisons de plus le réseau dual A" de A. Les
points du réseau dual sont, par définition, les centres des
mailles du réseau de A.

Sur le réseau A, les lignes ¢ = constantes sont numé-

rotées de haut en bas de 2 jusqu'a N — 1 et les lignes
uw = constantes de gauche a droite de 2 jusqu'a M — 1.
Ainsi, un point quelconque du réseau est caractérisé par
deux indices : I'indice I qui le place dans une ligne et
I'indice J qui le définit dans une colonne (voir fig. IT.1).

Nous choisissons I’ensemble fini de variables suivant :

10 les déplacements verticaux aux points du réseau A, ce
qui correspond a tous les points pour lesquels 2 = | =
=N—1,2=J=M-—1;

L
ey
aux points du réseau situés sur les bords [ et [, de la
plaque. Ces angles de rotation sont repérés par les
indices: 2=I=N—1, J=M pour [; 2 =1 <=
=N-—1,J =1 pour I,;

20 les angles de rotation parallelement a Ouw :

: : e )
30 les angles de rotation parallelement a Og : T pris aux
(%4

points du réseau situés sur les bords [y et [, de la
plaque. Ces dérivées porteront les indices [ =1,
2=J=M-—1 pour I[3; I=N, 2=J=M—1
pour [y

Cet ensemble de variables se révélera particuliére-
conditions de
bords et des conditions intérieures du modele mathé-
formule (3.14) ), 1l suflit,
dans le modele discret, d’annuler certaines variables.

ment pratique. Pour tenir compte des
matique continu (partie I,

est nécessaire aussi de supprimer la contribution de ces
variables dans I'expression de I'énergie du modeéle dis-
cret. Ce fait important nous permet de séparer le calcul
approché de I'énergie en deux parties :

- d’abord, on considére approximation de I'énergie de
déformation Uj[sw] et du potentiel des forces exté-
rieures Uy[w] sans tenir compte des conditions aux
limites et des conditions intérieures ;

- ensuite, on tient compte de ces conditions.
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Fig. II.1. — Réseau original et réseau dual.

§ 2. Approximation de I’énergie de déformation et du
potentiel des forces extérieures

2.1 Approzimation de Uénergie de déformation

L’expression de I'énergie de déformation du modele
mathématique continu est donnée dans la partie I
(formule (3.12) ). Nous décrivons le détail de toutes les
approximations que nous avons choisies. Précisons tout
de suite que ce sont les approximations les plus simples
et qu'il est certainement possible d’en déterminer de
meilleures.

A. Approximation de I,[w] [partie 1, (3.12)]

On utilise les rectangles du réseau dual pour approxi-
mer [,[w]. Nous pouvons écrire de fagon exacte :

2., 2
1] 31 l // 4 “> ((7 “> du dy

2
tou: les rectangles )l( (7‘}
el

du réseau dual

% )%
// ([)“ ) (;ﬁ) du dy

O
2w 2w\ Pw
of[en2 2
23 3/ Ju? ()w? Judy

O

=2 2.1)

trois sortes de rectangles diffé-

du (lv] =

Dans ce réseau dual,

rents interviennent et nous établissons maintenant

Iexpression approchée de Jy trois domaines

)

pour ces
(voir fig.

Premier domaine :

Nous avons de tels
ity (2o A

notations,

rectangle de centre (fig.

1T:3)
(d,J): “pour

Pour simplifier les

rectangles tout

3d=J=M —2.

nous numérotons les points de 1 a 9, de
gauche a droite et de haut en bas.

Au centre b d’un tel domaine, nous avons approxima-

tivement :
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Fig. 1I.2. — Domaines types du réseau dual et du réseau
original.
(1-1,3-1)2¢ (1-1,3)=2 (I-1,3+1) =3

(1,3+1)26 |k

(17-1)=4 g (1,1)/:;/{
s R e g 8
| |
I |
(I+1,3-1) =7 /IM,J)ESI (1+1,7+1)3 9
LA e sl
| 1
Fig. 11.3. — Domaine de centre du réseau dual.
w1

T # 2 (g — 2w -+ wg)

2w 1
Py # 2 (g — 25 -+ )

En 2, nous avons :

aw 1

o # 3 (wg — wy)
et en 8:

aw 1

Tu #5 (g — )

Au centre 5, nous obtenons par conséquent :

% 1
Judy * 2l (wg + Wy — wy — wy)

Ainsi la valeur approchée de J; pour un tel rectangle
est donnée par :

Lo [% (w4 — 2w + wal? + 15 (wa — 2, + wa)g] Kl
: %]

1
+ C, - (wq — 25 + ) 3 (o — 25 + wy) ki

=

A
+ C, [Yé (wq — 205 + ) +

1 1
+ e (o — 2w5 + w,‘)] W (wg + wq — g — wy) Kl
5 e
Introduisons le vecteur w;; dont les neuf composantes
T

sont les neuf déplacements verticaux intervenant dans
s : ’
Papproximation de J; :

=

wry = (w1, Wa, s e i)

J, peut s’exprimer par la forme quadratique :

9
1N\ 1>t
"1 # 75 A agl Wg Vi — 5 WriJ A NrJ (23)
k=1 5y

ol A = ((ay)) est une matrice symétrique de dimension
9x 9, que 'on peut construire facilement a partir de
Iexpression (2.2) de J;.

En effet :
2
5o = Qg = A
IWr Iy
Remarque. — On utilise la méme notation pour désigner

le domaine et la matrice qui lui est associée, ce qui ne saurait
introduire d’ambiguité.

Deuziéme domaine : rectangle de bord (fig. 11.4)

Nous considérons le rectangle de bord B; (voir
fig. 1I.2); Papproximation que nous obtiendrons sera
valable pour tout rectangle (I, J) pour lequel 3 =< [
=N—2,J=M—1.

(I-1,3-1)= (1-1,3)z2 (1-1,7+1)23
r/7/7/ R I [
(1,9-1)24 B, Jpans (1,01)z6 |
) *
77 |
VAL e
I
(2+1,3-9):7 (I+1,3+1)3
‘ (I#1,7)s8
|
g
2
Fig. I1.4. — Domaine de bord du réseau dual.

Au centre du domaine, nous avons approximative-

ment :
Pw 2
T # Z (wg — w5 + wl)
%

1
B # @ (o — 25 + wyg)

Iy 1
Sugv # I (g 4 Wy — wp — wy) .

J, s’écrit alors :
1

. [ Sl 5 J] ki
Jy# Gy [F (g — wy + wel)® + il (o — 2wy + Ws)“] 5
2 i kl
+ C, - (g — w5 + wl) o2 (g — 205 4 wg) - 3
9 (2.4)
+ C4 [ﬁ (wq — w5 + wgl) +
1 1 kl
=+ i (wg — 25 4 "'s)] o (we + wq — wy — wy) o)
On a aussi :
1 >t - )
Jl # 2‘ N Bl Vg (3.0)
it
avec: wry = (wy, ..., wy) : vecteur dont les neuf com-

posantes sont les neuf variables intervenant dans
"approximation de Jy ;
By : matrice symétrique de dimension 9x 9.
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Pour le rectangle de bord B,, J; s’exprime par une
forme quadratique qui, par symétrie, se déduit aisément
de la forme attachée a B :

1 ¢ —

J # & WIJB WrJ (26)

Pour les rectangles de bord By et By, J; s’obtient de
fagon analogue.

Troisiéme domaine : rectangle de coin (fig. 11.5)

Introduisons artificiellement la variable (1, M) pour
maintenir la symétrie entre les trois domaines ; nous
supprimerons par la suite I’équation qui lui correspond.
Nous considérons le rectangle de coin K, caractérisé par
les indices [ =2, J = M —1.

(1, M-2)s ¢ (1,M-1)x2  (1,M)=3
o
///
(2/”'71;5 (2,M):6
(2,m-2)34 7 OEE
U :
g R
(3,M-2)s7 "
i (3,M-1)58 (3,01)39
el
S 2
Fig. II.5. — Domaine de coin du réseau dual.

Au centre du domaine, nous avons approximative-
ment :

Pw

Ju?

w2
T # 2 (wale — vy + wg)

# E (wel — wy + wy)

92w 1
Judy 7 (ws + wy — wy — wg)
d’ou :
* ; ] Kl
J # 61 [ (Wl——ws—}—w) +/¥Z (“,2‘“4”,5_%“'8) ] ; Z
; 2 kl
+ C, 2 (Wel — wy + wy) 2 (wok — wg + wg) - -
- 2.7)
+ Cs [72 (wel — ws 4+ wy)
: e kl
e 2 (wole — wg + Ws)] il (ws - s — wy — wy) ;
1 ¢
Jo# 9 W u—1 1\1&\); P
o

avec: wo yr—1 = (Wq, Wy, ..., W)
K, : matrice symétrique de dimension 9x9.

Par permutation des variables, on en tire les résultats
pour les domaines de bord K,, K, K,.

(1,7)ef (1,7¢f)z2

(I+1,7)e3

Fig. 11.6.

(I+1,3+1) =4

— Domaine du réseau original.
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L’approximation des trois premiéres intégrales 1,
s’écrit finalement :

'l t
La Yo i mndies

9
Je < N0l
sSSTJ<=M—2
1 ¢ Rl 1 >t —
o Z 5 w7 By wrs + B 5 wrs By wrj
f=I< N-—9° 3<1TI g\ =
=M1 J=2 (2.8)
S’ 1~ 1 st >
e e 3 WIJ By wrs + 5 w17 By wis
I=2 T =N—114
3<J< M—2 3<J<M—2
1 =5t 1 ¢ =
+ 5 WM —1 K Wz, M S 5 W22 Ky ws 0
1 >t 1 -t

-
-+ 5 WK 1,2 K, W\ —1,3+ 5 WN-1, 201 K,y wr-i, a1
2

B. Approximation de I,[w] [partie I, (3.12)]

Cette intégrale est approximeée sur la maille du réseau
original A. De fagon exacte, nous avons :

\ 1 92w \2 A
Ty c// <9u9)dud(): Yoy o9

tous les rectangles
du réseau A

Dauns le réseau A, un seul rectangle D est a considérer

(voir fig. 11.6).

Nous avons de tels rectangles (I, J) pour tout 2 = [
=N-—2 2=J=M-—2. Au centre du rectangle,
nous écrivons approximativement

D% i
Sud% # W (g + wg — oy — )
d’ou :

1
Jz#c‘llw( o+ wg—wy —w, )2kl (2.10)

J, est une forme quadratique

1 =t —
J2# gﬂ’]‘] D Yrg (211)
sy
avec wry = (wy, W, Wy, ¥4)
D : matrice symétrique de dimension 4 x 4.
Finalement, /, devient approximativement :
$oods .
12# ) 5 Wy D vy (212)
2£I<N—27
227 M—2

La somme des expressions approchées de 7, (2.8) et I,
(2.12) nous donne I’énergie de déformation de la plaque.
Toute I'approximation de I'énergie de déformation est
résumée dans ces quatre matrices A, B; (d’otu I'on déduit
By, Bs, B,), K; (d’ou l'on tire K,, Kg, K,) et D.

Introduisons le vecteur w dont les composantes sont
les N.M variables prises ligne aprés ligne de haut en
bas, et pour chaque ligne de gauche a droite. L’énergie
de déformation peut alors se mettre sous la forme :

. Jors s
Uy[wl# 5 wQw (2.13)

ou () est une matrice de dimension (N.M)

X (N.M).




Donnons successivement la contribution a la matrice
Q d’'un domaine quelconque du réseau dual et d’un
domaine du réseau original :

Domaine du réseaw dual (fig. 11.7)
I’expression générale de J; s’écrit :
5 1
1 -t

—
Jl @ b} wrs X wrr

avec : wyry vecteur a 9 composantes ;
X matrice symétrique de dimension 9x 9 qui,
suivant la position du domaine (7, J), est
I'une des matrices

AL By By: By By, KoKy, Koy Ky

1:-1 ‘ 3 LJf!
I-1 !
1 12 S
477
z V//{ v ///Al
7 777 : 5
57 7
Ief
F 8

Fig. 11.7.

4 5 8 . = =
Si nous exprimons J, a 'aide du vecteur ¢ de dimen-
1
sion N.M, on a:

1 >t —
Jl# Q‘ W Q[J W

ol Q7 est une matrice symétrique de dimension (V. M) X
(N.M) et représente justement la contribution a la
matrice ) d’'un domaine du réseau dual. La figure I1.8
indique comment se répartit dans la matrice Q les diffé-
rents éléments de la matrice X. Les neuf sous-matrices
que nous considérons sont de dimension M X M.

S 1ere [igne de X
= [ X X X | Xig X5 Xss Xi7 X1g X190 R
I1-1 J o\ z
s el M N ke Xed T i
S X X5 Xos Xog |~ Xo7 Xog Xog | —— 3°™°
J-1 2
T B Tl KX Xee | XaXaXes | T4
N me
X P T X Xsg | Xey Xsp Xsa | 2
2L | Symétrique - \X“ - X XaXa | —~— geme
69
N
J-1 2
e e ey — Xor Xog Xps s
SeT) S O SR O N | iV ame
Xes
= | I oe S X,,,\x” ] — géme
Fig. 11.8. — Contribution a la matrice ) d'un domaine du

réseau dual.

Domaine du réseauw original (fig. 11.9)
I’expression de J, s’éerit :

1 ¢ —
J2 # 5 WrJ D wry

ou [ est une matrice symétrique de dimension 4 x 4,

J, peut aussi s’écrire :

—

1 -t
J2#§ W Q]J 2%

ol Qs est une matrice symétrique de dimension (V. M) X
(N.M) et représente la contribution a la matrice () d’un
domaine du réseau original. La figure II.10 donne la
répartition des éléments de la matrice D dans la
matrice (.

Les quatre sous-matrices que nous avons dessinées
sont de dimension M x M.

Des figures I1.8 et I1.10, on tire la forme finale de la
matrice Q. Il suffit en effet de sommer la contribution
de tous les domaines du réseau original (ZJ,) et du
réseau dual (ZJ,). Si on introduit des blocs matriciels
de dimension M x M, la matrice Q) comporte IV lignes de
blocs. Elle est, de plus, symétrique et pentadiagonale
par bloes (fig. IT.11).

Pratiquement, nous formons la partie supérieure de
la matrice sous forme de blocs de dimension M x M.

2= Dy Dp—{— Dis- Dy — —{e¢ ljgne de D

S ~

\ eme
e e Do Dos D2y 2
S yme’/‘riyue :

- ame
e L R

T+ [t el D“___ 4eme

Fig. 11.10. — Contribution a la matrice Q d’'un domaine du

réseau original.

Fig. 11.11. — Forme pentadiagonale par blocs de la
matrice (.

2.2 Approximation du potentiel des forces extérieures

L’expression du potentiel des forces extérieures est
donnée dans la premiere partie (formule (3.13) ). Rap-
pelons que toutes les forces extérieures qui intervien-
nent dans cette formule comprennent les forces don-
nées et les réactions,
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A. Approximation de I4[w] [partie I, (3.13)]

Quoique de nature trés différente dans le modeéle con-
tinu, les deux intégrales et la somme dans I5[w] s’ex-
priment, dans le modéle discret, de fagon trés semblable.

La premiére intégrale dans Ig[w] s’écrit, de fagon
exacte :

o L
) Rl
V // p(u,V)w(u,v}smadudv:‘\/__J3 (2.14)
tous les vectangles /.
du réseau dual O

Pour 'approximation de J3, trois sortes de rectangles
sont considérés :

Pour le domaine de centre :

J3# wiry pry Uk sin
Pour le domaine de bord :

Js# wis prs lg sin o
Pour le domaine de coin :

ey
Ja# wrr prr 7 sma

Ces trois formules peuvent étre résumées en une seule :
J3# WrJ prJ AF[J (215)

De méme, une répartition de ligne des forces verti-
cales p(s) devient, dans le modéle discret, une réparti-
tion ponctuelle. On concentre sur chaque point (7, J) du
réseau touché par la ligne la force pi‘; Asyy.

Ainsi, 'approximation de I,[w] s’écrit finalement :

wry prr OF 1y

wis prs Dsry (2.16)
A
wiy Pry

B. Approximation de 1,[w] [partie I, (3.13)]

Les intégrales de [,[w] s’approximent sur le réseau de

bord dual :

§ I ~ & P \
[ M) Gde= Y, Mo(o) e do = D I,
1 ous les segmentsv -
Mot T }l()e"?u):’l T]"“.;?(‘“L (2 ¢ 1 /)
M+T,
i Jw 2 3 5y Q
/ M, (u) o du = ‘\_J / M (u) 55 du = ‘\_J J,
& tous les segmentsv 9
EE de bord Ah:.’;ll‘ = ("' ls)
Fa+4 Ty
[ 5 3
(W) DR L
S LS = S e I ,,*__4, 1z
M
A e e e
1 t } }
i | | |
Fig. 11.12.
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Considérons un segment « de bord » et un segment
«de coin» dual (fig. I11.12):

Pour un segment « de bord », on a:
J4 # wrg 1\111 k

Pour un segment «de coin»y :
k
J4 # NiJ 1"11,] 7)‘

Ces deux formules peuvent étre résumées en une seule :
J4 # wr1J J][J A/\']J (2 . 19)

et [, s’écrit approximativement :
4

Nrg lV[[J A/f],/

WrJ 1‘11‘] Al]_]

La somme des expressions approchées de I4[w] (2.16)
et I,[w] (2.20) nous donne le potentiel des forces exté-
rieures.

51 nous introduisons, comme dans I'approximation de

5 A e S
I'énergie de déformation, le vecteur & dont les compo-
santes sont les V.M variables, le potentiel des forces
extérieures s’écrit :

Lol
Uyw]#w | (2.21)
—

ou [ estun vecteur a V.M composantes. Ces derniéres
valent prgAFg,, [7;JASIJ ou encore PfJ pour les com-
posantes correspondant aux déplacements, M;;Al;; ou
M;Akry pour les composantes correspondant aux
angles de rotation et zéro pour les quatre variables
introduites artificiellement.

Pour un cas de charges déterminé, 1l faut préciser les
forces données (charges et moments) qui « agissent » sur
toutes les variables (déplacements et angles de rotation)
non nulles, ce qui détermine les composantes correspon-

350 . . sifie
dantes de f. Si la variable est nulle (condition aux
limites ou de bord), la force appliquée est naturellement
inconnue et constitue la réaction. En résumé, les N. M
—
composantes du vecteur [ sont réparties en deux caté-

gories :

10 les (V.M — n) forces données f;;
20 les n réactions r;: rjy, Tjg, - T
S1 Wiy, Wig, win sont les n variables nulles.

L’approximation de 'énergie totale s’écrit finalement :

> 2>t =

e e
(v[‘\'i # 5 W () 18] W / (_)_)_))

La relation (2.22) exprime que 'énergie du modele
. A e A (it gl
discret (r’[w] peut étre considérée comme une fonc-
—

tion de .




§ 3. Enoncé variationnel des conditions d’équilibre,
obtention des déformations, des réactions et des
efforts intérieurs

3.1 Enoncé variationnel des conditions d’équilibre

i
La solution w cherchée est caractérisée par les deux
conditions suivantes :
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10 pour tout vecteur m (a N.M composantes), on
doit avorr :

éﬂ Ulw+ g3l =0 (3.1)
B=0

Si l'on utilise la relation (2.22), on a:
= 15— —
v el = L G rpd e G e

— G +pA T =

2 —-
:gan

= — 1= — —> >
+BhnWw+§an~nf]

+ U [w]

D’apres la relation (3.1), le coeflicient de p doit étre
nul ; écrivons-le & nouveau pour le transformer :

1 - - i > —> > > L
e e s R S e

X

— - — —>\s > 4> — —
w'On=('0n)=n"0w=n'0w
car () est une matrice symétrique.

Le coeflicient de B devient :
n'(ew—7)=0

Cette expression doit étre nulle quel que soit le vec-

— . ) —
teur n. On a donc nécessairement pour la solution s :
S .
Q- -w=/| (3.2)

(C’est un systeme de N.M ¢équations linéaires a
(N.M - n) inconnues qui sont les N.M variables w;
et les n réactions r;, Remarquons que, pour obtenir les
relations (3.2), il sufflit de dériver I’énergie ([;] par
rapport a chacune des variables wi(t = 1, ..., N.M).

20 % doit satisfaire 4 toutes les conditions géomé-
triques imposées. Les conditions continues du modele
mathématique continu [partie I, formule (3.14)] sont
remplacées, dans le modele discret, par des conditions
discrétes agissant sur un ensemble fini de nos N.M
variables. Toutes les conditions que nous envisageons
(lignes ou points d’appui, encastrements) reviennent a
annuler plusieurs variables.

H’j | ()
/. = /.17/.27 --~a//! (:{";)

Si 'on tient compte des conditions géométriques (3.3)
le systéme (3.2) comporte N.M inconnues que l'on

classe en deux catégories :

10 les (V.M — n) variables w, ;

20 les n.réactions ry, §.=JyyJas cisssiln

La résolution se sépare aussi en deux parties :
— d’abord on détermine les variables w; ;

— ensuite on calcule les réactions »;.

3.2 Déplacements et angles de rotation

Introduisons successivement :

—

== 3 5 =
— le vecteur w de dimension (N.M — n) que I'on
. X 4 e .

obtient a partir du vecteur @ en supprimant les

composantes ; nulles ;

== . . 7 4

— la matrice () de dimension (N.M —n) x (N.M—n)
que I'on réalise en supprimant dans Q les n lignes
et colonnes correspondant aux variables nulles.

i
Cette matrice () est toujours symétrique. De plus,
elle conserve sa nature pentadiagonale par blocs,
mais certains blocs sont de dimension réduite ;

=
=
— le vecteur f dont les (N.M — n) composantes

: o :
sont obtenues a partir de / en supprimant les
composantes correspondant aux variables nulles.
Cette opération revient a éliminer les réactions r;.

Sil'on tient compte des conditions géométriques (3. 3)
et si 'on supprime les équations qui ont pour second
membre les réactions inconnues r;, le systéeme (3.2)
devient :

Ow=1 (3.4)

La résolution du systéme linéaire (3.4) se réalise par
élimination. Si I'on considére plusieurs cas de charge,
on traite simultanément tous les seconds membres cor-
respondants. On obtient ainsi les déplacements et angles
de rotation pour chaque cas de charge.

3.2 Réactions

Les n réactions r; (forces verticales et moments) sont
données par les n équations correspondantes du sys-
téme (3.2).

Montrons que I'équilibre des forces verticales est réa-
lisé. On considére pour cela toutes les équations du sys-
téme (3.2) relatives aux déplacements, c’est-a-dire
obtenues en dérivant I’énergie L'[;')] par rapport a des
« variables déplacement » :

5 >
()d == /tl

Ce systéme peut aussi s’écrire :

— > — =% efi
()(1, /"1
=dl]

()412 /(12
W =
—>
()Al" /:1,‘
—>
wl ()dm__ _/‘1/11 il
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Effectuons la somme de ces m équations [m =

(N—2) x(M—2)]:

m m
L 4
V le W = >1 fdi
Y el
i=1 i=1
On peut montrer, & partir des matrices A, By, K et D,
que la somme de gauche est nulle ; d’ou :

m
SURL
=1

Ainsi, I’équilibre des forces verticales est réalisé dans
le modeéle que nous avons construit. On vérifie de fagon
analogue I'équilibre des moments.

3.4 Efforts iniérieurs

L’expression des efforts intérieurs du modéle mathé-
matique continu est donnée dans la partie I [formules
(3.8) et (3.9)].

Dans le modele discret, les moments M, M,, et M,
sont calculés en chaque point du réseau ; 1l suflit pour

Py )Pw P*w
ces points et d’appliquer la formule (3.8). Ces approxi-
mations doivent étre identiques a celles que nous avons

cela d’approximer les dérivées en

trouvées pour obtenir I'énergie de déformation du modeéle
discret. Ainsi, dans le cas d'un bord appuyé, on peut
vérifier que I'expression du moment M, ou M, en un
point de la frontiére du réseau (M, si le bord considéré
est I'; ou Iy, M, sile bord est 'y ou I'y) correspond exac-
tement & une équation du systéme linéaire (3.3). C’est
I’équation relative a I'angle de rotation au point consi-
déré. La valeur de M, ou M, en ce point sera naturelle-
ment nulle si aucun moment extérieur n'est donné.

Les efforts tranchants 7', et 7', dans le modele discret
sont déterminés aux points du réseau A, sauf aux points
de bord. Leurs approximations n’ont pas de sens au droit
d’un appuil ; en ces points 7', et 7', présentent en effet
des discontinuités.

III. Exemples d’application

Dans cette troisitme partie, on donnera trois exem-
ples numériques traités a 'aide du programme élaboré
par le Centre de calcul électronique. Tout d’abord au § 1,
on étudiera le cas simple d’une plaque oblique simple-
ment appuyée sur deux des cdtés et libre sur les deux
autres. Au § 2, on comparera la solution numérique,
pour une plaque rectangulaire simplement posée, avec
la solution exacte. Le § 3 est consacré a la confrontation
des résultats numériques et expérimentaux.

§1.

Etude des sollicitations d’une plaque oblique
simple

On se propose d’é¢tudier les sollicitations de la plaque
oblique représentée schématiquement a la figure T11.1

a Paide du programme ci-dessus mentionné.
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Fig. I1I.1. — Plan schématique de la plaque étudiée.
Caractéristiques :

Epaisseur h = 0,25 m.

Module d’élasticité E = 2 10% t m—2.
Coeflicient de Poisson v = 0,25.

Charge uniformément répartie p = 1 t m—2.

Les données du probléme sont les suivantes :

a) Données géomélriques
Ce sont :
N, M le nombre de points sur une ligne ¢ = ¢nst, res-
) g ,
pectivement u = cbst,

Pour des raisons pratiques, le programme actuel impose
les limitations suivantes :

M =35 N =100;

b, I, h, « lalargeur de la plaque, sa longueur, son épaisseur
et 'angle que forment les axes Ou et Oy ;

E, v, x le module d’élasticité, le coeflicient de Poisson

et le coeflicient de raideur du sol pour le cas d’une
plaque posée sur un sol élastique.

b) Données relatives aux liaisons

On donne dans ce groupe la liste des variables astreintes
a resler en position initiale.

¢) Données dynamiques

Pour chaque cas de charge, on donne les charges appli-
quées aux N.M points. Le cas des charges réparties est
traité en concentrant la charge appliquée a I'intérieur d'une
maille du réseau dual au neeud correspondant du réseau
original.

d) Données relatives au calcul des efforts intérieurs

Dans le cas ou le réseau est dense, il n'est pas utile de
calculer les efforts intérieurs en chaque point. Pour cette
raison, il est possible de spécifier les points ou ce calcul doit
étre ellectué.

Le programme calcule pour chaque cas de charge :

—— les déplacements en chaque point ;

— les réactions d’appuis ;

— les efforts intérieurs (moments, efforts tranchants)
aux points choisis.

On a représenté aux figures [11.2 & T11.4 les dépla-
cements ainsi que les moments M, et M, le long de quel-
ques lignes de coordonnées. Ces résultats sont tout a

fait satisfaisants saul prés des angles, particulierement




ceux obtus, ol des pertur})ations se font sentir. [in par-
ticulier, les valeurs obtenues pour les réactions d’appuis
ne sont pas raisonnables prés des angles. Pour la plaque
considérée ici, on obtient les résultats suivants :

TasrLEavu 1

Point n° Réaction d’appui
2-2 — 18,611
2-3 — 0,260
2-4 — 3,771
2-5 — 4,008
2-6 — 4,064
27 — 4,002
2-8 — 3,828
2-9 — 3,520
2-10 — 3,029
2-11 — 2,250
2-12 — 2,793

Moments M, le long de quelques lignes de
coordonnces.

Remarquons que I'équilibre d’ensemble de la plaque
est automatiquement réalis¢ quand bien méme les

valeurs locales des réactions ne sont pas satisfaisantes.

Fig. TI1.4. — Moments M, le long de quelques licnes de
o v (=] q L=}
coordonnées.

Cette circonstance est liée a la nature du modeéle discret.
Ces perturbations prés des angles sont probablement
dues d’une part au fait que le modéle mathématique
continu de la plaque mince n’est pas valable prés des
bords, comme on I'a vu dans la premiére partie, et
d’autre part a I'approximation discréte de ce modéle
qui est elle-méme mauvaise dans les angles. 1l est difficile
de séparer ces deux influences. Il faut toutefois remar-
quer que ces perturbations sont locales et que, de plus,
on pourrait améliorer le modéle continu (cf. par exemple
[7]) et le modeéle discret en choisissant un opérateur
« plus fin ».

§ 2. Valeur de l'approximation et convergence de la
solution. Etude numérique d’un cas particulier.

On considére ici une plaque rectangulaire simplement
appuyée et uniformément chargée. Pour ce cas, on peut
donner la solution analytique du probléme que 1'on
comparera avec les solutions discrétes pour divers
réseaux (fig. I11.5 et I11.6).

La méthode de M. Levy conduit a la solution suivante

(cf. [5]) :

1201 —v)pbt v . ma
w(x, y) = peal il B2 E bt

End
m=1:3,0,. ..
4 mTry mmy . my
— Apch —2 + By, L sh
<ﬁ5,’15+ e b LT gk b )

2(“}11 + thot, S 2)

oAy, = — = e
M choyy,

9

2 mTrl

/fm T e ’ Qo = oy
Tmd cho,, 2b

On a effectivement calculé la fleche ¢ aux 12 points
représentés & la figure 111.6, avee 6 chiffres significatifs
exacts, pour les valeurs numériques suivantes :

b=10; I=14; h=10,2; E=2x10%; v=10,3;
D=
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Fig. TI1.5.
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Fig. 111.6.

Les résultats figurent a la premiere ligne de chaque

case du tableau II.

D’autre part, on a calculé cette plaque a I'aide du
programme décrit, en divisant la largeur b en 4, 6 et
30 parties égales et la longueur [ en respectivement 4, 8

et 40 parties égales. Les résultats obtenus pour les
points de la figure I1I.6 sont donnés au tableau I1. On

comparera également la valeur de la fleche maximum

avec celle obtenue par P. Dubas [9] au moyen de I'opé-
rateur discret dit du polygone funiculaire et avec un

réseau de 4X4 :

o b4p
wmax = 0,077198 ETIﬁ
cecl pour Zl) =14 et v=03.
Tasreauv II
Point n° 2 3 A
a 0,0103921 0,0175559 0,0200733
9 b
c 0,0104875 0,0176704 0,0201907
d 0,0103843 0,0175401 0,0200546
a 0,0183289 0,0311360 0,0357688
3 b 0,0355961
¢ 0,0184415 0,0312346 0,0357528
d 0,0183112 0,0311015 0,0356279
a 0,0231271 0,0394003 0,0451858
7 b
' c 0,0232444 0,0394802 0,0452371
d 0,0231022 0,0393523 0,0451293
a 0,0247194 0,0421490 0,0483545
b 0,0479663
5 (0,0482487)*
c 0,0248380 0,0422235 0,0483959
d 0,0246916 0,0420960 0,0482923

a  Solution exacte (développement en série avee 6 chiffres signifi-

catifs exa

b Différence finie : réseau 4 4.
c » » 1 6X8.
d » »  réseau 30 < 40.

Méthode du polygone funiculaire :

réscau 4 X 4.

On conclut de 'examen du tableau 11 :

a) La solution donnée par le premier réseau (4 4)

constance est lice a exemple choisi. La surface
élastique est en elfet particulierement réguliere
dans ce cas; on n’aboutirait certainement pas a
la méme conclusion pour un exemple moins simple
comprenant, par exomple, des encastrements ou
des bords libres.

b) La convergence de la solution discréte est tres
lente. En passant du réseau 6 X 8 au réseau 30 < 40,
on ne gagne en moyenne qu'un chiffre significatif ;
sauf au point central ou la solution est moins
bonne ! D’autre part, les erreurs d’arrondi devien-
nent importantes si I'on prend un nombre trop
grand de points, comme on peut s’en rendre
compte en considérant les symétries ; il n’y a en
définitive pas intérét a choisir un réseau trop
dense.

Reprenons la question des symétries.
Pour le réseau 44, on a les résultats suivants :

colonne & p

ligne < ;
2 0,02569669 0,02569669
& 0,02569669 0,02569669
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est. déja tres pres de la solution exacte (Ierreur est

d’environ 1 % pour le point central). Cette cir-

Pour le réseau 68, on a par exemple :

) colonne o 6

ligne
3 0,01844151 0,01844151
7 0,01844151 0,01844151

Enfin, le réseau 30 x40 donne :

o 6 2%
ligne
1" 0,01831 [123| 0,01831 [183]

31 0,01831 (048

0,01831 [160]

Dans les deux premiers cas, les erreurs d’arrondi sont
sans influence sur les résultats. Pour le dernier cas, on a
a résoudre un systeme linéaire d’ordre 1200 environ ; les
erreurs d’arrondi introduites par ces opérations ont une
influence qui se fait sentir sur les deux & trois derniers
chiffres significatifs. Le nombre d’opérations arithmé-
tiques a effectuer pour résoudre le systéme linéaire cor-
respondant a un réseau de N lignes et M colonnes, peut
se mettre sous la forme oV + PAM3. Afin de limiter I'effet
des erreurs d’arrondi et le temps de caleul, on choisira

toujours N = M.




§ 3. Confrontation des résultats numériques et des
essais sur modele

La figure IIT.7 représente schématiquement une
plaque biaise pour laquelle le Laboratoire de statique
de PEPUL a effectué un modeéle en plexiglas. Nous
avons également calculé cette plaque a 'aide du pro-
gramme déerit, en divisant la largeur en 10 parties
éoales et la longueur en 58 parties égales. De cette
maniére, les points de mesure coincident avec des points
du réseau.

On a envisagé trois cas de charge :

1) charge uniformément répartie sur la plaque
entiére ;

2) charge uniformément répartie sur la moitié de la
plaque ;
3) charge uniformément répartie sur le quart de la

plaque.

20] 2o

Fig. 111.8. — Moments M, en tm, le long de la ligne 2
(et fige TIT 7).

[] Valeur calculée.

M Valcur mesurée.

La numérotation en abscisse correspond aux colonnes de la figure

| QIS4

Onareprésenté aux figures 111.8a I11.14 les moments
calculés pour quelques lignes coordonnées ainsi que les

points de mesure correspondants pour le cas de charge 3.

20

Fig. III.9.
(cf. fig: ITT.7).
[J Valeur calculée.
B Valeur mesurée.

Moments Mg, en tm, le long de la ligne 4

-2 | JEL
-3 :
Fig. T11.13. — Moments My, en tm, le long de la ligne 7

(ef: hg, TII.7):
[J Valeur calculée.
M Valeur mesurée.

Pour ce cas, qui est certainement le plus défavorable a la
)

précision des mesures et du calcul, la différence entre
valeurs mesurées et valeurs calculées est en moyenne de
I'ordre de 10 9. Remarquons que pour le cas de charge 1

/0 5 )
la symétrie centrale géométrique et dvnumu ue n'est

y g ) 1

satisfaite pour les moments mesurés qu'a 10 9% pres

environ ; ce qui est probablement di aux erreurs de
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Fig. I11.7. — Dalle pont-rail continue - biaise.

Plan schématique du modele (dessin obligeamment prété par
le Laboratoire de statique de 'EPUL).

Fig. I11.11. — Moments M,, en tm, le long de la ligne 10
(cf. g LTI 7).

[ Valeur calculée.

B Valeur mesurée.

Fig. T11.10. — Moments M,, en tm, le long de la ligne 7
(et TTLA7):

[J Valeur calculée.

B Valeur mesurée.

Nous remercions M. le professeur Ch. Blanc qui a
suggéreé cette étude et qui a mis la calculatrice IBM 7040
A notre disposition. Nous remercions également M. le

mesures, au fluage du plexiglas, ete. A la lumicre de professeur J. Descloux pour 'intérét quil a porté a ce
cette remarque, la confrontation des résultats numé- travail et pour les suggestions qu’il a émises tout au long
riques et des mesures sur modeéle est trés satisfaisante, de celui-ci.
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Fig. I11.12. — Moments M, en tm, le long de la ligne 12
(ct. fig. IIT.7).

[J Valeur calculée.
B Valeur mesurée.

LE CHENAL D’'OXYDATION A FAIBLE CHARGE POUR
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I’EPURATION DES EAUX USEES DE VERSVEY PRES D’'YVORNE

par ]J.-D. RANDIN, ingénieur EPUL, chef de la Section Génie Sanitaire de la Compagnie d’Etudes de Travaux Publics S.A

Introduction

St I'on voulait scinder rigoureusement le canton de
Vaud en zones plus ou moins touchées par la pollution
des eaux, des analyses chimiques et des statistiques
complexes seraient nécessaires. Non seulement ce tra-
vail ne se ferait que trés lentement, mais encore le
résultat final serait faussé par les évolutions inatten-
dues de la pollution. Il est done vain de vouloir procéder
a une pareille enquéte sur I’ensemble du territoire can-
tonal.

Un autre critére de classement consisterait a définir
les densités de population fictive ou équivalente, qui
tiennent compte d’une part des habitants réels et d’au-
tre part de chiffres d’équivalents-habitants provenant
des industries ; la carte du canton serait ainsi couverte
de taches limitant :

— les bassins de grave pollution a caractére d’urgence ;

— d’autres bassins ot la pollution latente n’est pas encore

menacante pour I'hygiéne de la population ;

— enfin des zones rurales & faible densité de population

ou la pollution passe encore inapercue.

De nouveau, cette statistique s’est révélée quasiment
impossible a établir, parce que les zones de pollution
ne dépendent pas que de la densité de population ou
encore de la population «industrielle fictive » chiffrée

en équivalents-habitants, mais surtout du pouvoir auto-
épurateur des lacs, des cours d’eau et des exutoires tels
que la fosse a purin, I'étang ou le puits perdu.
Devant ces diflicultés, I'Etat a établi une sorte de
classement simplifié & Iextréme que 'on trouve dans
I'article 61 du Reéglement d’application de la loi sur la
protection des eaux contre la pollution, du 26 décembre
1958, et qui précise les ordres d’urgence suivants, ne
tenant pas compte des types d’exutoires & disposition :

— Toutes les communes de plus de 1500 habitants doivent
étre dotées d'installations collectives d’épuration pour
le 31 décembre 1963.

— Toutes les communes ayant moins de 1500 habitants
doivent étre dotées d’installations collectives d’épu-
ration pour le 31 décembre 1968.

En appliquant & la lettre ces dispositions, on voit
qu’il n’est plus question de densité de population équi-
valente a une charge de pollution, mais bien d'une
population globale communale.

Conformément au reglement d’application, plusieurs
études furent menées a chef, certaines ayant été suivies
de réalisations :

— Les grandes communes (plus de 1500 habitants) a popu-

lation dense et a territoire peu étendu résolurent leur

probleme d’épuration ou sont en train de le résoudre
moyennant prolongation du délai imparti.
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