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CALCUL NUMERIQUE DE PLAQUES FLECHIES rsuite et pn)

par GEORGES DUPUIS et JEAN-JACQUES GOËL *

Texte publié en hommage à M. Henry FAVRE, professeur à l'Ecole polytechnique fédérale.

II. Modèle discret de la plaque oblique

§ 1. Introduction

Dans cette deuxième partie, nous établissons le modèle
discret de la plaque oblique. Ce modèle se veut une
approximation du modèle mathématique continu, mais
constitue néanmoins un modèle différent. Donnons tout
d'abord l'idée générale de la construction du modèle.

Dans le problème de variation que nous avons énoncé
dans la première partie (§ 3), il s'agit de déterminer une
fonction w rendant slationnaire la fonctionnelle U[w]
£/,[«>] — f/2[fv], la fonction w devant, en outre, satisfaire

à un certain nombre de conditions aux limites
géométriques (plaque encastrée, appuyée) et de conditions
intérieures (lignes ou points d'appui). Au lieu de cher-

1 Voir Bulletin technique de la Suisse romande, n° 4, 2G février 19GIJ.

cher l'expression analytique de w, on va se limiter à

chercher les valeurs de w pour un ensemble fini de

points [u, v) dans le plan de la plaque, ce qui conduira
à remplacer les intégrales par des sommes et le problème
de variation par un problème d'extremum ordinaire.
On obtiendra ensuite la solution en annulant les dérivées

partielles prises par rapport à ces valeurs w. On est
ainsi conduit à la résolution d'un système linéaire.

La précision du résultat dépend évidemment de
nombreuses circonstances. Si nous laissons de côté les imprécisions

résultant des arrondis dans la résolution du
système linéaire, on voit que l'erreur provient de ce que l'on
a substitué dans l'expression de U[w] les intégrales par
des sommes. La différence entre les deux expressions
doit tendre vers zéro lorsque le réseau de points établi
sur la plaque devient de plus en plus dense. On choisira
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l'approximation des intégrales de façon que cette condition

essentielle soit vérifiée. La convergence de la solution

approchée et de ses dérivées première et seconde

vers la solution exacte et les dérivées correspondantes
n'a pas été établie. Pour le cas particulier que nous
étudions, cette convergence semble se vérifier expérimentalement.

On est tout de même conduit, pour obtenir
une approximation convenable, à prendre un réseau de

points relativement dense (voir partie III), ce qui nous
amène à la résolution de grand système linéaire.

L'objet de l'étude est d'utiliser la calculatrice non
seulement pour la résolution du système, mais aussi pour
préparer la matrice des coefficients. Il suffit dès lors de

fournir à la machine les dimensions géométriques et les

caractéristiques physiques de la plaque, les conditions
géométriques imposées et les charges. Tout le calcul se

fait ensuite automatiquement.

Etablissons, dans la représentation (u, v) de la plaque
(partie I, fig. 1.7), un réseau régulier A, les pas suivant
les axes Ou et Ov étant constants. Les frontières du
réseau coïncident avec les frontières de la plaque. La
maille du réseau a pour dimension lexk (l longueur
d'un pas du réseau selon l'axe Ou, k longueur d'un
pas du réseau selon l'axe Ov).

Nous introduisons de plus le réseau dual A' de A. Les

points du réseau dual sont, par définition, les centres des

mailles du réseau de A.

Sur le réseau A, les lignes v constantes sont numérotées

de haut en bas de 2 jusqu'à N— 1 et les lignes
u constantes de gauche à droite de 2 jusqu'à M — 1.

Ainsi, un point quelconque du réseau est caractérisé par
deux indices : l'indice / qui le place dans une ligne et
l'indice J qui le définit dans une colonne (voir fig. II. 1).

Nous choisiss 'ensemble fini de variables suivant

1° les déplacements verticaux aux points du réseau A, ce
qui correspond à tous les points pour lesquels ï ^ I ^
££ N — 1, 2 ^ J ^ M — 1 ;

2° les angles de rotation parallèlement à Ou : — pris
du

aux points du réseau situés sur les bords I-, el T2 de la
plaque. Ces angles de rotation sont repérés par les
indices : 2 =^ / fé N — 1, J M pour ri ; 2^1^
^ JV— 1, ./ 1 pour T2 ;

3° les angles de rotation parallèlement à Ov : -=— pris aux
àv

points du réseau situés sur les bords F3 et T4 de la
plaque. Ces dérivées porteront les indices 1 1,
2 J ^ M ~1 pour T3 ; / JV, 2 ^ J =é M — 1

pour f"4.

Cet ensemble de variables se révélera particulièrement

pratique. Pour tenir compte des conditions de

bords et des conditions intérieures du modèle
mathématique continu (partie I, formule (3.14)), il suffit,
dans le modèle discret, d'annuler certaines variables. 11

est nécessaire aussi de supprimer la contribution de ces
variables dans l'expression de l'énergie du modèle
discret. Ce fait important nous permet de séparer le calcul
approché de l'énergie en deux parties :

— d'abord, on considère l'approximation de l'énergie de
dél'iirniiil ion (',1(1'] et du potentiel des forces exlé-
rieures l/2[«'] sans tenir compte des conditions aux
[imites e1 des conditions intérieures.;

— ensuite, on tient compte de ces conditions.
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Fig. II.l. — Réseau original et réseau dus

§ 2. Approximation de l'énergie de déformation et du
potentiel des forces extérieures

2.1 Approximation de l'énergie de déformation

L'expression de l'énergie de déformation du modèle

mathématique continu est donnée dans la partie I
(formule (3.12) Nous décrivons le détail de toutes les

approximations que nous avons choisies. Précisons tout
de suite que ce sont les approximations les plus simples
et qu'il est certainement possible d'en déterminer de

meilleures.

A. Approximation de l-^w\ [partie I, (3.12)]

On utilise les rectangles du réseau dual pour approxi-
mer /,[<vj. Nous pouvons écrire de façon exacte :

hn S Ci
ries

'

w/
tous les rectangles
du réseau dual

<Pw

du2

yy
du2

dy
dy-

du dv

a
[y

+ c: J \y? + y*)yy> dlld{,\

-5U (2.1)

Dans ce réseau dual, trois sortes de rectangles différents

interviennent et nous établissons maintenant
l'expression approchée de Jx pour ces trois domaines
(voir fig. 11.2).

Premier domaine : rectangle de centre (fig. 11.3)

Nous avons de lels rectangles (/, ./) pour tout
3 yy I -yy N — 2, 3 ^ J £É M — 2. Pour simplifier les

notations, nous numérotons les points de 1 à 9, de

gauche à droite et de haut en bas.

Au centre 5 d'un tel domaine, nous avons approximativement

:
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tl-1,J-1)*t <I-l,])iZ (l-1,l-l)i3

U.J-I)U

y
'i,j-i)te>1,1)1s
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Fig. II.3. — Domaine de centre du réseau dual.

d*-w 1

^2 * p y—y y y
d2w 1

yy* y. y — 2y + y

WU («'j, w2, Ws, Ws)

/j peut s'exprimer par la forme quadratique
o

J\ # "o Zj °« "'«• (V' 9" iV/-/ A "''J (2.3)

où j4 ((a*/)) est une matrice symétrique de dimension
9x9, que l'on peut construire facilement à partir de

l'expression (2.2) de Jv
En effet :

d2Jt
dwk dw-i

au ait

Remarque. — On utilise la même notation pour désigner
le domaine et la matrice qui lui est associée, ce qui ne saurait
introduire d'ambiguïté.

Deuxième domaine: rectangle de bord (fig. II.4)
Nous considérons le rectangle de bord B1 (voir

fig. II.2) ; l'approximation que nous obtiendrons sera
valable pour tout rectangle (/, J) pour lequel 3 y I
yN — 2,J M—l.

{1-1,3-1)*! (I-1.3JB2 (1-1,3*1)-.

(yj-tj't

(1.11-1);!

/yyy/yyy "¦j"i's

t.

(l'V)'*—
(Itl.WjiS

Fig. II.4. — Domaine de bord du réseau dual.

En 2, nous avons

dw 1

et en 8 :

du * 2l^-^>

dw 1_

Tu * 21
{Wf> '

Au centre 5, nous obtenons par conséquent :

d2w 1

-, -, # TJ-j ((Vo + (V, — (V, Wa)
dudv ikl ^ J ' 7 » 9'

Ainsi la valeur approchée de Jl pour un tel rectangle
est donnée par :

•'i # <\ [j2 y, - y + y' + ^ y. y, + »g2] «

i i+ c2 "jâ K — 2w6 + ((•„) • -2 ((v2 — 2ws + y kl

y ct y (w} — 2(y6 + ».,) +
(2.2)

+
I i 1

-2 (*va — 2(v5 + >e8)J -/rf (iv3 + w, - (v, — (v„) M

Introduisons lc vecteur wjj dont les neuf composantes
sont les neuf déplacements verticaux intervenant dans
l'approximation de Jt :

Au centre du domaine, nous avons approximativement
:

d2w 2

yy* y, K — ws + y') >

y«' i/o¦^72# p y—y y y >

*>2(V i

Jl s'écrit alors :

Jl # C, [J (»4 ~ "'5 + y' + f., ("'2 - 2(V5 + «-„)»] ^
2 1 AI

+ C2 — (iv4 — ie5 + «-„/) • rj («'2 — 2w, + (cs) ¦ 5

ro (2.4)
+ C» I

P ("'4" U'5 + "V) +

1 1 1 kly j^ ("'2 — y y |(,8) J ^ (»i + »7 — »x—w»)
%

On a aussi :

1 -+« -*
Jl # vy Wjj /?x Wjj

avec : (V/y (wx, iv9) : vecteur dont les neuf com¬

posantes sont les neuf variables intervenant dans

l'approximation de ./j ;

l)1 : matrice symétrique de dimension 9x9.
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Pour le rectangle de bord B2, J1 s'exprime par une
forme quadratique qui, par symétrie, se déduit aisément
de la forme attachée à Bx :

1 ->( -*
Jx #

2 wv Bz iv" (2.6)

Pour les rectangles de bord B3 et Bt, Jx s'obtient de

façon analogue.

Troisième domaine : rectangle de coin (fig. II.5)

Introduisons artificiellement la variable (1, M) pour
maintenir la symétrie entre les trois domaines ; nous

supprimerons par la suite l'équation qui lui correspond.
Nous considérons le rectangle de coin K1 caractérisé par
les indices I 2, J M — 1.

L'approximation des trois premières intégrales 7j
s'écrit finalement :

h* E
3</<iV —2
3 < J < M— 2

1 -*' -
2 Wjj A Wjj

v 1 ->' ->
2-i y wu Bi wu

J M— 1

y.

S
1 2

3<J<M—2

1 y ->
2 «ïj 53 w//

!<7<.V — 2
J 2

7 JV —1
i<J<M—2

(2.8
1 ->' ->
7C Wjj jB4 Wjj

1 y -» 1 -5-* -*
J Vf>2,J.r—1 À"j W2,M—1 4 "ô ^3.2 -^2 <v2,2

1 -*« 1 -V«

f -s (V.v —1,2 Xg WJV—1,2 Y" y Wjf-l.Jf-l À'4 (V.y-1, J/-1

tl,M-2)*t

(2,M-2;»4 f

(I.M-l)iZ 11,M)tS
1 ^r

(3,M-!)'1

I<

(3,M--i)ti " (¦»,">«

l
I _

Fig. II.5. — Domaine de coin du réseau dual.

Au centre du domaine, nous avons approximativement

:

y* 2,
yfy*p (y — wô y wi)

d2w 2

ta * f? y^ ~ "'5 + w»>

d2w 1

frai,* ]_(»* +*1-»*-»à
d'où :

Jx # Ci [jt (wel — (V5 + «v4)2 + p (.c2/> — (V5 + «•„)*] • -

+ C2 J2 K* — »'5 + (V4) •
£â («'„/,' — »I

¦2

«' 4

(2.7)r2c3 [-j-o («•„; — >v5 + wt) +

2 1 1 kl
+ p (iV2A" — w5 + H's)J £1 («*5 + »? — »4 — »'a) ^r

A7

1 -+> ->
Jx # ~2 w'2<M — i ^ 1 1V2. -v — i

avec : (V2,j/— i (fv1; (v2, iv9)

K^ : matrice symétrique de dimension 9x9.

Par permutation des variables, on en tire les résultats

pour les domaines de bord A'2, A3, A4.

(1,3) Êf (1,3*1) 1 2

Il*t,3)i3 (1*1,1*1) t<

Fig. II.6. — Domaine du réseau original

B. Approximation de I2[w] [partie I, (3.12)]

Cette intégrale est approximée sur la maille du réseau

original A. De façon exacte, nous avons :

h — ZJ
V y
tous les rectangles
du réseau A

JJ [dudv
n

Vdu dv J, (2.9)

Dans le réseau A, un seul rectangle D est à considérer
(voir fig. II.6).

Nous avons de tels rectangles (/, J) pour tout 2 y I
y N — 2, 2 ^ J ïY M — 2. Au centre du rectangle,
nous écrivons approximativement

d2w 1

^yFlyy«>*~y-y
d'où :

I/O TT C- A ,{w2yw3~w1—wy,2ki (2.10)

J2 est une forme quadratique

1
Ji# \j wjj D wjj (2.11)

«>,, W«, (V„, IV,avec Wjj — y\v1; \v2, (v,, vry

D : matrice symétrique de dimension 4x4.

Finalement, /2 devient approximativement :

h* 2j "ô wjj D wjj (2.12)
2 ^ 7<N
2~J<M—2

La somme des expressions approchées de 74 (2.8) et /2
(2.12) nous donne l'énergie de déformation de la plaque.
Toute l'approximation de l'énergie de déformation est
résumée dans ces quatre matrices -4, fi4 (d'où l'on déduit
B2, B3, 7LJ, A"4 (d'où l'on tire A"2, A"3, Kt) et D.

Introduisons le vecteur (v dont les composantes sont
les N.M variables prises ligne après ligne de haut en
bas, et pour chaque ligne de gauche à droite. L'énergie
de déformation peut alors se mettre sous la forme :

1 ->« -*
b\ [w] #

2 (v Q w (2.13)

où Q est une matrice de dimension (N.M)x{N.M).
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Donnons successivement la contribution à la matrice
Q d'un domaine quelconque du réseau dual et d'un
domaine du réseau original :

Domaine du réseau dual (fig. II.7)
L'expression générale de Jx s'écrit :

1-5.' ->
Jx * yj wu % wu

avec : wjj vecteur à 9 composantes ;

X matrice symétrique de dimension 9x9 qui,
suivant la position du domaine (I, J), est
l'une des matrices

A, Blt Bt, B3, Bit Kv K2, Ks, K4.

i-t

i—^ «yyyyi

r-t

Fig. II.7.

Si nous exprimons J1 à l'aide du vecteur w de dimension

N .M, on a :

1 ->¦* ->
Jx* 2 "' Q'J w

où Qjj est une matrice symétrique de dimension (N. M) X

(N.M) et représente justement la contribution à la
matrice Q d'un domaine du réseau dual. La figure II.8
indique comment se répartit dans la matrice Q les
différents éléments de la matrice X. Les neuf sous-matrices

que nous considérons sont de dimension MxM.

i-i:
3

r
Âft Xfz X)3

*2t X?j
"xJ3

*<5 X« Xw

X54 *3$ Xjc

xwxiSxif
XjyXjfi

Symétrique Nv

*» **» x»

Xj? Xjg X»

X^f xa X4j

Xi/ Xjj X5i

Xi?7 Xrn Xfft

\ X?? Xn XM
s

XsaOC»

sx»

#** //JTO c(? X

££me

-6im

jejne

gerne

1*1

1-1

Fig. II.9.

J2 peut aussi s'écrire :

1 -*« -^
J2 # "K (V Ç/7 (V

où Qjj est une matrice symétrique de dimension (JV. M)X
(N.M) et représente la contribution à la matrice Q d'un
domaine du réseau original. La figure 11.10 donne la
répartition des éléments de la matrice D dans la

matrice Q.

Les quatre sous-matrices que nous avons dessinées

sont de dimension MxM.
Des figures II.8 et 11.10, on tire la forme finale de la

matrice Q. Il suffit en effet de sommer la contribution
de tous les domaines du réseau original (ZJjJ et du
réseau dual (2J2). Si on introduit des blocs matriciels
de dimension M X M, la matrice Q comporte N lignes de

blocs. Elle est, de plus, symétrique et pentadiagonale

par blocs (fig. 11.11).

Pratiquement, nous formons la partie supérieure de

la matrice sous forme de blocs de dimension M.Y.M.

j — ûa Ù„ -

Symétrique
UB Dy

\

- t'r' ligne de D
o ème

.ame

,'eme

Fig. 11.10. Contribution à la matrice Q d'un domaine du
réseau original.

— c o

^ I

i

Fig. II.8. — Contribution à la matrice Q d'un domaine du
réseau dual.

Fig. 11.11. Forme pentadiagonale par blocs de la
matrice Q.

Domaine du réseau original (fig. II.9)
L'expression de J2 s'écrit :

1 ->' -y
J2 # 9 "V./ D Wu

où D est une matrice symétrique de dimension 4x4.

2.2 Approximation du potentiel des forces extérieures

L'expression du potentiel des forces extérieures est
donnée dans la première partie (formule (3.13)
Rappelons que toutes les forces extérieures qui interviennent

dans cette formule comprennent les forces données

et les réactions.

61



A. Approximation de I3[w] [partie I, (3.13)]

Quoique de nature très différente dans lc modèle
continu, les deux intégrales et la somme dans I3[w]
s'expriment, dans le modèle discret, de façon très semblable.

La première intégrale dans I3[w] s'écrit, de façon
exacte :

/ j // p(u,v)w (u,v) sinadudv J^ J3 (2.14)
tous les rectangles JJ
du réseau dual

Pour l'approximation de J3, trois sortes de rectangles
sont considérés :

Pour le domaine de centre :

J3 # wjj pu lk sin a

Pour le domaine de bord :

lk
J3 # wu Vu -^ sin a

Pour le domaine de coin :

lk
J% # wjj pu j sm a

Ces trois formules peuvent être résumées en une seule :

J3#wjjPuAFjj (2.15)

De même, une répartition de ligne des forces verticales

p(s) devient, dans le modèle discret, une répartition

ponctuelle. On concentre sur chaque point (I, J) du

réseau touché par la ligne la force pjj Asjj.
Ainsi, l'approximation de I3[w] s'écrit finalement :

h * 2j w'J Pu Ai5/

V

2</<jV —1
2<J<M— 1

r+ r

V

Wjj pu Asjj

wjj Pjj

.16)

15. Approximation de /4[(v] [partie I, (3.13)]

Les intégrales de /4[(v] s'approximent sur le réseau de

bord dual :

/ Mu(v)
dw

r, + r2

V / àw Y
dudv= 2j / My^,dv= _j

tous les segments*' /O
\J,

de bord dual '
r\ + r2

(2.17)

./'
r,+r,

dw » -i /
* dw V

Mr(u) yv du= 2j / M"(") y du 2jJi
(2.18)fcOUS les segmenta*.

ile bord dual
r,+ r,

T T'
—t—

4-

Considérons un segment « de bord » et un segment
«de coin» dual (fig. 11.12) :

Pour un segment « de bord », on a :

J4 # Wjj Mjj k

Pour un segment « de coin » :

Ji # Wjj Mjj tj-

Ces deux formules peuvent être résumées en une seule :

J^wuMjjAkjj (2.19)

et 74 s'écrit approximativement :

h# Y, Wjj Mjj Aku
J 1

J 31

y 2j w" m" Al"
/ 1

/ 31

2<J< M— 1

(2.20)

La somme des expressions approchées de /3[(v] (2.16)
et /4[(v] (2.20) nous donne le potentiel des forces
extérieures.

Si nous introduisons, comme dans l'approximation de

l'énergie de déformation, le vecteur w dont les composantes

sont les N.M variables, le potentiel des forces
extérieures s'écrit :

U2[w]#w f 2.21)

où / est un vecteur à N.M composantes. Ces dernières

valent pjjAFjj, pjjAsjj ou encore Pjj pour les

composantes correspondant aux déplacements, MjjAlu ou
MjjAkjj pour les composantes correspondant aux
angles de rotation et zéro pour les quatre variables
introduites artificiellement.

Pour un cas de charges déterminé, il faut préciser les
forces données (charges et moments) qui « agissent » sur
toutes les variables (déplacements et angles de rotation)
non nulles, ce qui détermine les composantes correspon-

—y
dan les de /. Si la variable est nulle (condition aux
limites ou de bord), la force appliquée est naturellement
inconnue et constitue la réaction. En résumé, les N.M

—>-

composantes du vecteur / sonl réparties en deux
catégories :

1° les (N.M — n) forces données /, ;

2° les n réactions T] : r/4, rn, ri:,

si Wji, (v/2, Wfn sont les n variables nulles.

L'approximation de l'énergie totale s'écrit finalement :

1 y -> -*< _>
U[w]#-~ wQw — w f Ci 122)

Fig. 11.12.

La relation (2.22) exprime que l'énergie du modèle

discret E/[h>J peut être considérée comme une fonction

de (V.
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§ 3. Enoncé variationnel des conditions d'équilibre,
obtention des déformations, des réactions et des
efforts intérieurs

3.1 Enoncé variationnel des conditions d'équilibre

La solution w cherchée est caractérisée par les deux
conditions suivantes :

1° pour tout vecteur T) (à N.M composantes), on
doit avoir :

3q u [w y p4l o

s o

Si l'on utilise la relation (2.22), on a :

u[wyßi\ \ Çyçyj q{w

(3.1)

ßt)

-Çyçiîî
ß2 -i n -
-9 u Q n

9- n Ç <? T| — T| /

u [t]
D'après la relation (3.1), le coefficient de ß doit être

nul ; écrivons-le à nouveau pour le transformer :

1

2 ^ 0 y »* <? ïT- ïf ¦ r=o
Or

w Q r\ ((v Q T) r) Ç (v r) Ç w

car Ç est une matrice symétrique.

Le coefficient de ß devient :

n" {Qw- f) o

Cette expression doit être nulle quel que soit le vec-
—> —>

teur r|. On a donc nécessairement pour la solution w :

Q-w T (3.2)

C'est un système de N.M équalions linéaires à

(N.M y n) inconnues qui sont les N.M variables Wi
et les n réactions r;-. Remarquons que, pour obtenir les

relations (3.2), il suffit de dériver l'énergie U[w\ par
rapport à chacune des variables wt(i =1, N.M).

2° (v doit satisfaire à toutes les conditions géométriques

imposées. Les conditions continues du modèle
mathématique continu [partie I, formule (3.14)] sonl
remplacées, clans le modèle discret, par des conditions
discrètes agissant sur un ensemble fini de nos N.M
variables. 'Joutes les conditions que nous envisageons
(lignes ou points d'appui, encastrements) reviennent, à

annuler plusieurs variables.

W) 0

/ /i,/a. (3.3)

Si l'on tient compte des conditions géométriques (3.3)
le système (3.2) comporte N.M inconnues que l'on
classe en deux catégories :

1° les (N.M — n) variables w,
2° les n réactions r,, / f1, f2, ¦, /«¦

La résolution se sépare aussi en deux parties :

— d'abord on détermine les variables fv, ;

— ensuite on calcule les réactions r,-.

3.2 Déplacements et angles de rotation

Introduisons successivement :

—>

— le vecteur w de dimension (N.M — n) que l'on
~~*

obtient à partir du vecteur w en supprimant les

composantes Wj nulles ;

— la matrice Q de dimension (N.M—n) x IN.M — n)
que l'on réalise en supprimant dans Q les n lignes
et colonnes correspondant aux variables nulles.

Cette matrice Q est toujours symétrique. De plus,
elle conserve sa nature pentadiagonale par blocs,
mais certains blocs sont de dimension réduite ;

— le vecteur / dont les (N.M—n) composantes

sont obtenues à partir de / en supprimant les

composantes correspondant aux variables nulles.
Cette opération revient à éliminer les réactions r,.

Si l'on tient compte des conditions géométriques (3.3)
et si l'on supprime les équations qui ont pour second
membre les réactions inconnues rh le système (3.2)
devient :

Q7v=T (3.4)

La résolution du système linéaire (3.4) se réalise par
élimination. Si l'on considère plusieurs cas de charge,
on traite simultanément tous les seconds membres
correspondants. On obtient ainsi les déplacements et angles
de rotation pour chaque cas de charge.

3.2 Béactions

Les n réactions rj (forces verticales et moments) sont
données par les n équations correspondantes du
système (3.2Y

Montrons que l'équilibre des forces verticales est réalisé.

On considère pour cela toutes les équations du
système (3.2) relatives aux déplacements, c'est-à-dire
obtenues en dérivant l'énergie U[w] par rapport à des
« variables déplacement » :

-> —>

Qi w j,,

Ce système peut aussi s'écrire :

y
yL

Q*

Qi,

Lu

l.i.

y

K
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Effectuons la somme de ces m équations [m
(JV — 2) x (M — 2)] :

VQ'w^VU

On peut montrer, à partir des matrices ^4, B±, K1 et D,
que la somme de gauche est nulle ; d'où :

S«. 0

Ainsi, l'équilibre des forces verticales est réalisé dans

le modèle que nous avons construit. On vérifie de façon
analogue l'équilibre des moments.

3.4 Efforts intérieurs

L'expression des efforts intérieurs du modèle
mathématique continu est donnée dans la partie I [formules
(3.8) et (3.9)].

Dans lc modèle discret, les moments M„, Muv et Mv
sont calculés en chaque point du réseau ; il suffit pour

cela d'approximer les dérivées
d2w d2w d2w

— et —— en
du2 dudv dv2

ces points et d'appliquer la formule (3.8). Ces approximations

doivent être identiques à celles que nous avons
trouvées pour obtenir l'énergie de déformation du modèle
discret. Ainsi, dans le cas d'un bord appuyé, on peut
vérifier que l'expression du moment Mu ou Mv en un
point de la frontière du réseau (Mu si le bord considéré

est r4 ou [~2, Mv si le bord est T3 ou T4) correspond
exactement à une équation du système linéaire (3.3). C'est

l'équation relative à l'angle de rotation au point considéré.

La valeur de Mu ou Mv en ce point sera naturellement

nulle si aucun moment extérieur n'est donné.

Les efforts tranchants Tu et Tv dans le modèle discret
sont déterminés aux points du réseau A, sauf aux points
de bord. Leurs approximations n'ont pas de sens au droit
d'un appui ; en ces points Tu et 1\. présentent en effet
des discontinuités.

III. Exemples d'application

Dans cette troisième partie, on donnera trois exemples

numériques traités à l'aide du programme élaboré

par le Centre de calcul électronique. Tout d'abord au § 1,

on étudiera le cas simple d'une plaque oblique simplement

appuyée sur deux des côtés et libre sur les deux
autres. Au § 2, on comparera la solution numérique,

pour une plaque rectangulaire simplement posée, avec
la solution exacte. Le § 3 est consacré à la confrontation
des résultats numériques et expérimentaux.

§ 1. Etude des sollicitations d'une plaque oblique
simple

On se propose d'étudier les sollicitations de la plaque
oblique représentée scbématiquemenl à la figure I I I I

à l'aide du programme ci-dessus mentionné.

bord appuyé

bord appuyé

b= 10 oo

Fig. III. 1. — Plan schématique de la plaque étudiée.
Caractéristiques :

Epaisseur h — 0,25 m.
Module d'élasticité E 2 lu6 l m—2.
Coefficient de Poisson v 0,25.
Charge uniformément réparlie p 1 t ni —2.

Les données du problème sont les suivantes :

a) Données géométriques

Ce sont :

JV, M le nombre de points sur une ligne v cIlst, res¬
pectivement u — Cnst.

Pour des raisons pratiques, le programme actuel impose
les limitations suivantes :

M ^ 35

b, l, A, a

E, V, K

A" ^ 100 ;

la largeur de la plaque, sa longueur, son épaisseur
ct l'angle que forment les axes Ou et Ov ;

le module d'élasticité, le coefficient de Poisson
et le coefficient de raideur du sol pour le cas d'une
plaque posée sur un sol élastique.

b) Données relatives aux liaisons

On donne dans ce groupe la liste des variables astreintes
à rester en position initiale.

c) Données dynamiques

Pour chaque cas de charge, on donne les charges appliquées

aux N.M points. Le cas des charges réparties esl
traité en concentrant la charge appliquée à l'intérieur d'une
maille du réseau dual au nœud correspondant du réseau
original.

d) Données relatives au calcul des efforts intérieurs

Dans le cas où le réseau est dense, il n'est, pas utile de
calculer les efforts intérieurs cn chaque point. Pour cette
raison, il est possible de spécifier les points où ce calcul doit
être effectué.

Le programme calcule pour chaque cas de charge :

— les déplacements cn chaque point ;

— les réactions d'appuis ;

— les efforts intérieurs (moments, efforts tranchants)
aux points choisis.

)n a représenté aux ligures II 1.2 à 111.4 les

déplacements ainsi que les moments .1/,, el .1/,. le long th" quelques

lignes de coordonnées. Ces résultats sonl tout à

fait satisfaisants sauf près des angles, particulièrement
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ceux obtus, où des perturbations se font sentir. En
particulier, les valeurs obtenues pour les réactions d'appuis
ne sont pas raisonnables près des angles. Pour la plaque
considérée ici, on obtient les résultats suivants :

Tableau I

Point n° Réaction d'appui

2-2 — 18,611
2 -3 — 0,260
2 -4 - 3,771
2-5 — 4,008
2-6 — 4,064
2 - 7 — 4,002
2-8 — 3,828
2 -9 — 3,520
2 - 10 — 3,029
2 - 11 - 2,250
2 -12 - 2,793

Fig. III. Moments Mv le long de quelques lignes de
coordonnées.

„2 3 u s e f a 9 to /t

/ X
'

My v / / / / s / /7 ' A y /.7 v / X / / / / / / // ' / /jyyLy—y // / — H /
s/ / /vT/ 1////////, /

/ yj-y-y-yyjyyj.—<**-*> / y ^—¥¦-//>7 /-^ /
Fig. III.2. — Déplacements verticaux.

III. Moments Mu le long de quelques lign
coordonnées.

Remarquons que l'équilibre d'ensemble de la plaque
esl, automatiquement réalisé quand bien même les

valeurs locales des réactions ne sont pas satisfaisantes.

Cette circonstance est liée à la nature du modèle discret.
Ces perturbations près des angles sont probablement
dues d'une part au fait que le modèle mathématique
continu de la plaque mince n'est pas valable près des

bords, comme on l'a vu dans la première partie, et
d'autre part à l'approximation discrète de ce modèle
qui est elle-même mauvaise dans les angles. Il est difficile
de séparer ces deux influences. Il faut toutefois remarquer

que ces perturbations sont locales et que, de plus,
on pourrait améliorer le modèle continu (cf. par exemple
[7]) et le modèle discret en choisissant un opérateur
« plus fin ».

§ 2. Valeur de l'approximation et convergence de la
solution. Etude numérique d'un cas particulier.

On considère ici une plaque rectangulaire simplement
appuyée et uniformément chargée. Pour ce cas, on peut
donner la solution analytique du problème que l'on
comparera avec les solutions discrètes pour divers
réseaux (fig. II 1.5 et II 1.6).

La méthode de M. Levy conduit à la solution suivante
(cf. [5]) :

w(x, y)
12(1 — v2)p6*

Eh3

4

TT5/«

y

+ yy '^l y Bm "^ sh ^
OÙ Am -

B,„

2(oc„, 4- tham y 2)
TT5m5 chetm

ix''nv' <7icx„,
cc„,

IIITVI

¦11,

On a effectivement calculé la llèche tv aux 12 points
représentés à la ligure III.6, avec 6 chiffres significatifs
exacts, pour les valeurs numériques suivantes:

b 10 ; 1= 14 ; h 0,2 ; E 2x 106 ; v 0,3 :
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Fig. III.
-I

Fig. III.6.

Les résultats figurent à la première ligne de chaque
case du tableau IL

D'autre part, on a calculé cette plaque à l'aide du

programme décrit, en divisant la largeur b en 4, 6 et
30 parties égales et la longueur l en respectivement 4, 8

et 40 parties égales. Les résultats obtenus pour les

points de la figure III.6 sont donnés au tableau IL On

comparera également la valeur de la flèche maximum
avec celle obtenue par P. Dubas [9] au moyen de

l'opérateur discret dit du polygone funiculaire et avec un
réseau de 4x4:

b*p
«w 0,077198

Eh3

l
ceci pour - 1,4 et v 0,3.

b

Tabi II

Point n° - 3 4

2

a
b
c
d

0,0103921

0,0104875
0,0103843

0,0175559

0,0176704
0,0175401

0,0200733

0,0201907
0,0200546

3

a
b
c
d

0,0183289

0,0184415
0,0183112

0,0311360

0,0312346
0,0311015

0,0357688
0,0355961
0,0357528
0,0356279

4

a
b

c
d

0,0231271

0,0232444
0,0231022

0,0394003

0,0394802
0,0393523

0,0451858

0,0452371
0,0451293

5

a
1,

c
d

0,0247194

0,0248380
0,0246916

0,0421490

0,0422235
0,0420960

0,0483545
0,0479663

(0,0482487)*
0,0483959
0,0482923

a Solution exacte (développement en série avec G chiffres signifi¬
catifs exacts).

b Différence finie: réseau 4x4.
c » » réseau 6x8.
ri » » réseau 30 X 40.
* Méthode du polygone funiculaire: réseau 4x4.

On conclut de l'examen du lableau I I :

a) La solution donnée par le premier réseau (4x4)
est déjà très près de la solution exacte (l'erreur est
d'environ 1 % pour le point central). Cette cir¬

constance est liée à l'exemple choisi. La surface

élastique est en effet particulièrement régulière
dans ce cas ; on n'aboutirait certainement pas à

la même conclusion pour un exemple moins simple

comprenant, par exemple, des encastrements ou
des bords libres.

b) La convergence de la solution discrète est très
lente. En passant du réseau 6 X 8 au réseau 30 X 40,

on ne gagne en moyenne qu'un chiffre significatif ;

sauf au point central où la solution est moins
bonne D'autre part, les erreurs d'arrondi deviennent

importantes si l'on prend un nombre trop
grand de points, comme on peut s'en rendre

compte en considérant les symétries ; il n'y a en

définitive pas intérêt à choisir un réseau trop
dense.

Reprenons la question des symétries.
Pour le réseau 4x4, on a les résultats suivants :

^^^^ colonne

ligne ^^^^
0 4

2 0,02569069 0,02569669

4 0,02569669 0,02569669

Pour le réseau 6x8, on a par exemple :

^^^^colonne „
ligne^^^^l

0

3 0,01844151 0,01844151

7 0,01844151 0,01814151

Enfin, le réseau 30x40 donne

^^~-^^^ colonne

ligne^"--^^
G 2G

11 0,01831 |Ï23] 0,01831 [Ï83]

31 0,01831 |Ô48J 0,01831 [TÖÖj

Dans les deux premiers cas, les erreurs d'arrondi sont
sans influence sur les résultats. Pour le dernier cas, on a

à résoudre un système linéaire d'ordre 1200 environ ; les

erreurs d'arrondi introduites par ces opérations ont une
influence qui se fait sentir sur les deux à trois derniers
chiffres significatifs. Le nombre d'opérations arithmétiques

à effectuer pour résoudre le système linéaire
correspondant à un réseau de N lignes et M colonnes, peut
se mettre sous la forme aAr + ßA/3. Afin de limiter l'effet
des erreurs d'arrondi el le temps de calcul, on choisira

toujours A7 Si M.
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§ 3. Confrontation des résultats numériques et des
essais sur modèle

La figure III. 7 représente schématiquement une
plaque biaise pour laquelle le Laboratoire de statique
de l'EPUL a effectué un modèle en plexiglas. Nous
avons également calculé cette plaque à l'aide du
programme décrit, en divisant la largeur en 10 parties
égales et la longueur en 58 parties égales. De cette
manière, les points de mesure coïncident avec des points
du réseau.

On a envisagé trois cas de charge :

1) charge uniformément répartie sur la plaque
entière ;

2) charge uniformément répartie sur la moitié de la
plaque ;

3) charge uniformément répartie sur le quart de la
plaque.

»

i

\
1

/

I

A
3 s a f? 1 a a it J3 1 ï^ ù: a m Si si »

\ i

ta

\

ao

Fig. III.8. — Moments Mx en lin, le long de la ligne 2

[e\. fig. II 1.7).
Valeur calculée.

¦ Valeur mesurée.
La numérotation en abscisse correspond aux colonnes de la figure
III.7.

On a rc présente aux ligures I I I .8 à I I I 14 les i nome ni s

calculés pour quelques lignes coordonnées ainsi que les

points de mesure correspondants pour le cas de charge 3.

"

f '"Ni

_V

' -
f

\

\
1

3 5 K 13 1? 21 25 Z9 3< JS 137 Af iS £9 S3 ST S9

\
"

Fig. III.9. — Moments Mx, en tm, le long de la ligne 4

(cf. fig. III.7).
n Valeur calculée.

¦ Valeur mesurée.

A '

J
tt 21 ts ' ^/ t

J 5 •i'
> 1t

29 51 si 37 41 is iS ss S7\ S9

3

M

Fig. 111.13. — Moments My, en tm, le long de la ligne 7

(cf. fig. II 1.7).
Valeur calculée.

¦ Valeur mesurée.

Pour ce cas, qui est certainement le plus défavorable à la
précision des mesures et du calcul, la différence entre
valeurs mesurées ct valeurs calculées esl en moyenne de

l'ordre de 10 %. Remarquons que pour le cas de charge I,
la symétrie centrale géométrique et dynamique n'est
satisfaite pour les moments mesurés qu'à 10 % près
environ ; ce qui est probablement dû aux erreurs de

67



Coupe A-A

60 S9 ST S3 49 45 Ci 39 JJ SI 29 2S 21 1? >} S 5 3 2

WS,'.&
b,','

Ton? charger

n y —x

i> —-,
¦< * "

Angle rn grade
Si. O*, 7V-

Fig. III.7. — Dalle pont-rail continue - biaise.

Plan schématique du modèle (dessin obligeamment prêté pa
le Laboratoire de statique de l'EPUL).
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1
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3 S 9**\,J tt et ZS 29 J' 3S "\" AS «
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* ^v
>

\J

f 1
* -NA

Fig. III.11. — Moments Mc, en tm, le long de la ligne 10

(cf. fig. III.7).
D Valeur calculée.

¦ Valeur mesurée.

Fig. III.10. — Moments Mx, en lm, le long de la ligne 7

(cf. fig. III. 7).
D Valeur calculée.

¦ Valeur mesurée.

mesures, au fluage du plexiglas, etc. A la lumière de

cette remarque, la confrontation des résultats numériques

et des mesures sur modèle est très satisfaisante.

Nous remercions M. le professeur Ch. Blanc qui a

suggéré cette étude et qui a mis la calculatrice IHM 7040
à notre disposition, Nous remercions également M. le

professeur .1. Descloux pour l'intérêt qu'il a porté à ce

travail et pour les suggestions qu'il a émises toul au long
de celui-ci.
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Fig. III. 12. — Moments Mx, en tm, le long de la ligne 12
(cf. fig. III.7).

D Valeur calculée.

¦ Valeur mesurée.
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LE CHENAL D'OXYDATION Ä FAIBLE CHARGE POUR yyyys^y/y
L'EPURATION DES EAUX USEES DE VERSVEY PRES D'YVORNE
par J.-D. RANDIN, ingénieur EPUL, chef de la Section Génie Sanitaire de la Compagnie d'Etudes de Travaux Publics S.A

Introduction

Si l'on voulait scinder rigoureusement le canton de
Vaud en zones plus ou moins touchées par la pollution
des eaux, des analyses chimiques et des statistiques
complexes seraient nécessaires. Non seulement ce
travail ne se ferait que très lentement, mais encore le
résultat final serait faussé par les évolutions inattendues

de la pollution. Il est donc vain de vouloir procéder
à une pareille enquête sur l'ensemble du territoire
cantonal.

Un autre critère de classement consisterait à définir
les densités de population fictive ou équivalente, qui
tiennent compte d'une part des habitants réels et d'autre

part de chiffres d'équivalents-habitants provenant
des industries ; la carte du canton serait ainsi couverte
de taches limitant :

— les bassins de grave pollution à caractère d'urgence ;

— d'autres bassins où la pollution latente n'est pas encore
menaçante pour l'hygiène de la population ;

— enfin des zones rurales à faible densité de population
où la pollution passe encore inaperçue.

De nouveau, cette statistique s'est révélée quasiment
impossible à établir, parce que les zones de pollution
ne dépendent pas que de la densité de population ou
encore de la population «industrielle fictive» chiffrée

en équivalents-habitants, mais surtout du pouvoir auto-
épurateur des lacs, des cours d'eau et des exutoires tels

que la fosse à purin, l'étang ou le puits perdu.
Devant ces difficultés, l'Etat a établi une sorte de

classement simplifié à l'extrême que l'on trouve dans
l'article 61 du Règlement d'application de la loi sur la
protection des eaux contre la pollution, du 26 décembre
1958, et qui précise les ordres d'urgence suivants, ne
tenant pas compte des types d'exutoires à disposition :

— Toutes les communes de plus de 1500 habitants doivent
être dotées d'installations collectives d'épuration pour
le 31 décembre 1963.

— Toutes les communes ayant moins de 1500 habitants
doivent être dotées d'installations collectives d'épuration

pour le 31 décembre 1968.

En appliquant à la lettre ces dispositions, on voit
qu'il n'est plus question de densité de population
équivalente à une charge de pollution, mais bien d'une
population globale communale.

Conformément au règlement d'application, plusieurs
éludes furent menées à chef, certaines ayant été suivies
de réalisations :

— Les grandes communes (plus de 1500 habitants) à popu¬
lation dense et à territoire peu étendu résolurent leur
problème d'épuration ou sont en train de le résoudre
moyennant prolongation du délai imparti.
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