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CALCUL NUMERIQUE DE PLAQUES FLECHIES

par GEORGES DUPUIS et JEAN-JACQUES GOËL *

Texte publié en hommage à M. Henry FAVRE, professeur à l'Ecole polytechnique fédérale.

Introduction

Dans cette étude, on considérera successivement trois
modèles mathématiques distincts de corps élastiques.
Tout d'abord, au § 1 de la partie I, on rappellera quelques

notions fondamentales de l'élasticité linéaire
tridimensionnelle en insistant sur le théorème de l'énergie ;

les paragraphes qui suivent seront consacrés au modèle
classique de la plaque mince fléchie. Dans la partie II,
on établira un modèle discret de la plaque, modèle
adapté au calcul électronique et qui a été effectivement
programmé sur la calculatrice de l'EPUL pour le cas

particulier des « plaques obliques ». La partie III est
consacrée à l'examen des résultats numériques obtenus

par le programme mentionné.

* Collaborateurs do l'Institut de mathématiques appliquées de YEcole
polytechnique de l'Université de Lausanne (KPUL).

Les relations étroites qui lient la théorie de l'élasticité
au calcul de variations sont connues depuis longtemps.
Dans la partie I, on montrera la simplicité avec laquelle
on établit par le calcul des variations non seulement
l'équation aux dérivées partielles qui régit la plaque
fléchie classique, mais encore les expressions des conditions

aux limites et celles des forces de réaction pour
des bords libres, appuyés ou encastrés. Les mêmes idées
seront exploitées pour l'établissement du modèle discret.

Les déformations ct les contraintes sollicitant une
plaque mince sont régies par une équation linéaire aux
dérivées partielles du quatrième ordre due à Lagrange
(1811) à laquelle il faut adjoindre des conditions aux
limites. Pour quelques cas très particuliers, on connaîl
la solution explicite de ce problème. De nombreux
autres cas ont été traités en développant la solution en
série double ; celte méthode permet, dans le cas où le

contour est de forme simple (rectangulaire par exemple)
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et où les conditions aux limites sont simples (plaque
encastrée, simplement appuyée, etc.), d'obtenir une solution

dont la valeur pratique est liée à la rapidité de la

convergence. Une autre méthode préconisée par Marcus

[1] consiste à substituer à l'équation différentielle
des équations aux différences ; le problème d'analyse est
alors remplacé par un problème d'algèbre et la résolution

du problème approché est théoriquement toujours
possible. La mise en œuvre effective de cette méthode

conduit, dès que l'on traite un problème pratique, à

plusieurs difficultés, à savoir :

a) Difficulté de poser les conditions aux limites en termes
de différences (en particulier pour les bords libres).

b) Limitation du nombre de points considérés eu égard
au travail matériel que représente la formation des

équations.

c) Limitation du même nombre de points eu égard à la
résolution du système linéaire obtenu.

La première difficulté peut être levée en formulant le

problème sous forme variationnelle. MM. E. Stiefel [2]
et Ch. Blanc [3] ont montré que les seules conditions
dont il faut alors tenir compte sont celles dites géométriques

qui, en général, s'expriment simplement ; les

conditions de nature dynamique sont implicitement
contenues dans l'énoncé variationnel du problème. En
discrétisant le problème de variation, on le transforme
en un problème d'extremum ordinaire ; le système
algébrique linéaire auquel on est conduit présente l'avantage

d'être toujours symétrique, circonstance qui
n'apparaît pas nécessairement si l'on discrétise le problème
différentiel.

L'usage d'une calculatrice électronique permet de

lever les deux autres difficultés. La résolution d'un
système linéaire est un problème classique et l'on montrera
comment former les équations à l'aide de la calculatrice.

Dans ce qui suit, on traitera le problème de la plaque
limitée par un parallélogramme, dite plaque oblique

pour la distinguer du cas rectangulaire, en faisant usage
de coordonnées cartésiennes obliques, préconisées par
H. Favre [4].

Le but de cette note est double :

Elle est tout d'abord destinée à décrire comment
résoudre le problème pratique des plaques rectangulaires

ou obliques appuyées de manières quelconques et
sollicitées par des charges quelconques à l'aide de la

calculatrice du Centre de calcul électronique de l'EPUL.
De plus, bien que cette note ne contienne rien

d'essentiellement nouveau, elle espère suggérer d'autres
travaux relatifs à des problèmes plus généraux.

¦./¦Théorie classique de la plaque fléchie
et calcul des variations

§ 1. Notions d'élasticité linéaire tridimensionnelle

Considérons un solide isotrope, déformable, linéairement

élastique, occupant à l'état non déformé un
volume V de frontière 5 (fig. 1.1).

On soumet ce corps aux champs de force suivants :

forces volumiques de densité X(x, y, z) dans V ;

force de surface de densité F(x, y, z) sur S.

Sous l'effet de ces forces, un point P de coordonnées

(x, y, z) se déplace en un point P' de coordonnées

(x y u, y y v, z y w). Le champ vectoriel u(x, y, z) de

composantes (u, v, w) définit le déplacement du solide.

jv

Fig. 1.1.

Nous utilisons les notations classiques :

u, V, W

Sx, Sy, EZ

e EX + Ej,

Yxii, Yyz, Yzx

°"x, °Y, c*

T.nj i Tyti Tz-

E,v

G
E

2(1 + v)

composantes du déplacement ;

allongements unitaires suivant les
axes Ox, Oy, Oz ;

tz dilatation cubique ;

distorsions angulaires relatives aux
axes Oxy, Oyz, Ozx ;

contraintes normales relatives aux
éléments de surface perpendiculaires
aux axes Ox, Oy, Oz ;

contraintes tangentielles parallèles à

l'axe de premier indice et relatives à

un élément de surface perpendiculaire
à l'axe de second indice ;

module d'élasticité et coefficient de
Poisson ;

module de cisaillement.

Les déformations et les déplacements sont liés par les

relations :

du

y % y dw
dy ' iz dz '

(1.1)
du dv

yx,J=dy + Tx'
du

i
dw

dz dx '

dv dw
Fz + dy"

Les contraintes et les déformations sont liées par les

relations :

(1.2)

vQ

O; 2G le. + fZToY) > CT" 1G y y -j J.V

vQ
IG _,+ Gy¦ T

1 —2v

GYy* > GYT.™

Energie de déformation. La quantité

1

2

+ y» T.r, + Yv T;/S

o" (E* 0V + E;/ CT„ + E.. CT, y yx„ Tr;/ 4

(1.3)

est appelée densité d'énergie de déformation. L'énergie de

déformation du solide V est définie par

u, J.IJ 'WdV (1.4)

A l'aide des relations (1.1) et (1.2), on peut exprimer
W et par conséquent L\ en fonction des déplacements.
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Ainsi donc L\ peut être considéré comme une fonction-
—¦? r^*-1

nelle du champ u(x, y, z) et l'on écrira U1 \_u\.

Potentiel des forces extérieures. La fonctionnelle U2 lu]
définie par la relation :

U2= X(x,y,z)u(x,y,z)dVy / / F(x,y,z)u(x,y,z)dS

y s (i.5)

est appelée « potentiel des forces extérieures ».

Théorème de l'énergie (voir [8]). Soit u0 les déplace-
—> ->

ments résultant de l'application des forces A' et F en

équilibre sur le solide. Soit Au un champ vectoriel
quelconque.

On a :

U Aiioi u[t0]
ou i on a pose

U [u] £/- [u] — U2 [i

(1.6)

(1.7)

Ainsi la fonctionnelle U est minimum pour les
déplacements de l'état d'équilibre. En introduisant un
paramètre réel, l'équation (1.6) permet d'écrire :

d r,ritu Lu° tAu\ 0 (1.8)

Remarques. — 1. En général, le théorème de l'énergie est

énoncé pour le cas particulier suivant : on spécialise Au de

manière à rendre les déplacements u0 -f- Au compatibles
avec les relations géométriques imposées ; on peut alors
restreindre le potentiel des forces extérieures à ne comprendre
que les forces extérieures données. Ici au contraire, on ne
fera aucune différence entre les forces données et les forces
de réaction, ce qui permettra précisément d'obtenir ces
dernières. On applique, en quelque sorte, la méthode des
« hyperstatiques » qui se traduit en mathématiques par
l'introduction de multiplicateurs de Lagrange.

2. Appelons elt les variables ex, ty, ez, yxV, y,,.,
yxs et Tj, t2, t6 les contraintes ax, <3y, o~2, -xxtJ, tVz,
L'équation (1.3) devient simplement

W
¦2 X e*T*

k 1

(1.9)

tandis que les relations (1.2) peuvent se mettre sous la forme

T„ 2. Cki'"> (1.10)

où les coefficients Ckj sont des constantes ; on vérifie
aisément la symétrie de ces coefficients :

(y Cjk k, j 1, 2,3.
En remplaçant (1.10) dans (1.9) ou obtient la relation

3

1 VIU [ex, e„) - 2j Ck>ekei '

d'où par dérivation :

dW{e1} e,)
TA

dek
"- k 1, (i (1.11)

Cette équation est en fait beaucoup plus générale que
celles dont on l'a tirée ; elle peut s'obtenir directement à

partir de considérations thermodynamiques et servir de base

pour l'établissement d'équations de l'élasticité, linéaire ou
non. Nous la retrouverons dans le modèle classique de la
plaque.

§ 2. Modèle classique de la plaque fléchie

2.1 Définitions

On appelle plaque fléchie toute plaque mince, d'épaisseur

constante, sollicitée par des forces perpendiculaires
à ses faces (et éventuellement par des moments sur les

bords).
On appelle feuillet moyen de la plaque le plan équi-

distant des faces avant la déformation.
On appelle surface élastique la transformée du feuillet

moyen par la déformation.
On établit le modèle mathématique de la plaque

fléchie de la manière suivante. En se basant sur les résultats

du modèle tridimensionnel on définit à l'aide
d'hypothèses simplificatrices l'énergie U1 de déformation et
le potentiel U2 des forces extérieures. On définit ensuite
la fonctionnelle U U-^ — U2 qui, lorsqu'elle est exprimée

en fonction des déplacements, atteint son minimum
à l'état d'équilibre.

2 2 Hypothèses simplificatrices

La théorie des plaques fléchies repose sur quelques
hypothèses simplificatrices vérifiées à posteriori par les
résultats d'expériences.

Considérons une plaque plane occupant une portion S
du plan. Soit Oxyz un trièdre trirectangle de référence
tel que lc plan Oxy soit dans le feuillet moyen (fig. 1.2).

Hypothèses

1. La plaque est faite d'un matériau linéairement
élastique, homogène et isotrope.

2. Par la déformation, un point P du feuillet moyen
est transformé en un point P' de la surface élastique
situé sur une parallèle à l'axe Oz par P (fig. 1.3).

3. Par la déformation, une normale n au feuillet
moyen est transformée en une normale n' à la surface
élastique.

4. Les contraintes normales (7z, relatives aux éléments
de surface parallèles au feuillet moyen, sont petites et
n'ont pas d'influence sur la déformation.

En plus des notations du § 1, on introduit encore :

h

D
Eh3

12(1 — v2)

épaisseur de la plaque ;

rigidité de la plaque.

2.3 Déformations, contraintes et efforts intérieurs

Soit MM' (u, v, iv) le vecteur déplacement attaché
à un point M(x, y, z) quelconque et (u0, v0, w„) les
valeurs que prennent ces composantes au point M„
(x,y,0) (voir fig. 1.3).

La deuxième hypothèse a pour conséquence que

0 y, y) (2.1)

représente alors l'équation de la surface élastique.
L'hypothèse 3 implique que

dw0
~dx~ '

dw0

dy' y~ y.,- 0, (2.2)

tandis qu'il résulte de l'hypothèse 4 ct de l'une des

équations (1.2) que

1 y
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en remplaçant dans les équations (1.1), on obtient
immédiatement les déformations

dy dy2
dx2 ' e" ~ ~z yy '

V fd2w0 t

<?2<v„\

yy yyy ~ dy-j >

d2w,
Y*v - 2, ^- y,, y„ 0.

Fig. 1.2.

1

n
M(x.y.î)

y|
1 ---•v
1

\MM'=. (U, y w)

(2.4)

En dérivant fa première des équations (2.7) par rapport
à x et la seconde par rapport à y et en additionnant, on a :

yy« j_ 2
d*«;, dy

dx* dxyy ^ dy
AAuv 0

dx-dy
où A est l'opérateur de Laplace.

Or, on établira plus loin que l'équation de la surface
élastique w0 w0(x, y) satisfait à l'équation différentielle de
Lagrange :

pfa y)AAh
d

où p(x, y) est la densité de charge et D la rigidité de la
plaque.

Ainsi, les hypothèses ne satisfont fes équations générales
de l'élasticité que si la charge est identiquement nulle. Désirant

satisfaire avant tout fes équations d'équilibre, on introduira

des contraintes iXz et t,jz de manière à satisfaire ces
conditions, sacrifiant ainsi la comptabilité des hypothèses de
base. On reviendra sur cette question en établissant les
conditions aux limites.

Efforts intérieurs

En un point P(x, y) de la plaque, les formules (2.5)
définissent les contraintes crx, u,,, -T.rlJ en fonction de

l'équation de la surface élastique w0 w0(x, y). Par
définition, on appellera moments de flexion au point P
les expressions :

Mx j ^
cj.,.2 dz

(2.8)

M.• - f tj„z dz

Fig. 1.3.

Quant aux contraintes, elles se déduisent des
relations (1.2) :

d.y +vdy
dy

d2w0

yy

dy

dy,
dx2

r* 0

T*« -2Gzdâ-y

(2.5)

Tr: T„. 0

Remarque. — L'hypothèse de conservation des normales
entraine la nullité des contraintes T!/z et Tzx. Cette conclusion
n'est pas compatible avec les équations générales de l'élasticité.

En effet, si f'on suppose qu'il n'y a pas de forces
massiques, les équations d'équilibre s'écrivent :

d&x d~rXy d~tzx

dx dy dz

d<ïy d^yz d-txu

dy dz dx

y j_ ^y 4- y?
dz dx dy

0

0 (2-6)

0

La dernière équation (2.0) est identiquement satisfaite.
Ces deux premières donnent, compte tenu des équations

iy_
1—vs

d'\v„ d3"'„
2G -

J'Kv"

dy-dy " yy)y-
0

1 — v- l \ <),/
' V

,/.,-,),,
%G -

,Psv"
0

dyd.y

(2.7)

De même, on appellera moment de torsion au point P,
expression :

i,

Mx,,= Ti,,Z dz (2.9)

Enfin, les efforts tranchants seront définis par :

Tx

T„

Tf. dz

(2.10)

/' T- ¦lz.

fTy+Mdyjdx

Txdy

V) ùy
Mxdy rrh Jx)duV>

Mxy d. dMxTud, \Mxu

Mud.

Mxy dx

— X

lyjdt

dx)dy

(Tx ,yy.dx)ju

[.4. Sons positif des moments de flexion, moments
de torsion el efforts tranchants,
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On déterminera Tx et 7'„ de manière à satisfaire les

équations d'équilibre sans se préoccuper de la répartition
des contraintes T^etTy, sur l'épaisseur de la plaque.

Compte tenu des formules (2.5), les moments deviennent

:

Mx

M„

I)
d2w0

dx2
dy
dy2

idy0 dyD —„ -Y V -7-5\ dy dx1
(2.11)

Mxy — (1— v)D
d2w0

dxdy

Pour déterminer les efforts tranchants Tx el 7',,,
considérons l'équilibre d'un élément dx dy autour d'un
point P quelconque (voir fig. 1.4).

L'équilibre des moments autour des axes Ox et Oy
exige que l'on ail :

x~ dx dy
'

(2.12)

_ dMy dMxy
y~ dy dx

2.4 Energie de déformation et potentiel des forces
extérieures

Remplaçons dans (1.3) et (1.4) les valeurs des
déformations et des contraintes obtenues en (2.4) et (2.5) ;

on définit ainsi en procédant à l'intégration suivant la
variable z, l'expression suivante pour l'énergie de
déformation :

<i // dx dy (2.13)

I)
y ô

d2w0y fd2w,y dy„dy, „.. yd2y\-

D
(Aw0)2 2(1

où Aiv„

d2w,y d2w„ d2w„]\
dxdy

'

dx2 dif (2.14)

d2w„

dx2
à w0

Ht
Les forces extérieures qui comprennent les forces

données ct les réactions se divisent dans les catégories
suivantes :

a) forces verticales ayant une répartition de surface
p(x, y), une répartition de ligne p(s) (pour des

lignes d'appui, par exemple), et forces verticales
ponctuelles Pk appliquées en (.!'/,., yk) ;

b) moments M(s) normal au bord.

Par analogie avec l'équation (1.5), on définit l'expression

suivante pour le potentiel des forces extérieures :

u2= f j p(x> '/yy, y)dxdy y j p(s)w„(i )ds

V Pkw0(xk, !/k> I

rt r

M(s)');yy
(ta

(2.15)

où r désigne lu frontière de Y, |~ d'éventuelles lignes
¦ ¦ dw0

d appui intérieures ; esl In dérivée normale à V dni-

gée vers l'extérieur ; s est l'abscisse curviligne.

Remarque. — Si l'on lient compte des formules (2.11), la
densité d'énergie 1" (2.14) peut se metlre sous la forme

¦Um.*1» d'2w0 dy
dy^'LV'X!,dyy^-"y dy

une comparaison avec l'expression (1.3) nous montre que
(mis à part un facteur 2 et le signe) les grandeurs Mx, Mxy, My

i i d*w° d2"'0 d2v>'o
el les grandeurs ——- ——- doivent être considérées

dx- dxdy dy
comme des contraintes et des déformations duales. Partant
de l'expression (2.14) où V est exprimé en fonction des
déformations seulement, on retrouve l'analogie des reia-
tions (1.11) :

M, dv
n fd2»'o
d\y>y

M.rlJ
i dv

dxdy I

- My -
dv
dy

2.5 Enoncé variationnel des conditions d'équilibre

Les équations (2.13), (2.14) et (2.15) expriment que
I\ et L2 peuvent être considérées comme des fonctionnelles

dépendant de w0(x, y). Posons :

u[w0] uyy — iyy y.iy
La solution w0(x, y) cherchée est caractérisée par les

conditions suivantes :

a) w0(x, y) doit satisfaire à toutes les conditions géo¬

métriques imposées : w0 0 en des points d'appui

ou le long de lignes d'appui : —r- 0 le long
i i i - ll du

de bords encastres ;

b) pour toute fonction r\(x, y) quelconque, on doit
avoir :

dt u(w0 y tx\) o (2.17)

2.6 Enoncé différentiel des conditions d'équilibre

Il est difficile d'énoncer sous forme différentielle les
conditions que doit remplir la fonction w0 en des points
de support ponctuel ou le long de lignes d'appui
intérieures à la plaque. Pour cette raison, nous allons
supposer que foutes les forces extérieures, données ou de

réaction, appartiennent à l'une des catégories suivantes :

forces verticales p(x, y) à répartition de surface à l'intérieur

de la plaque, forces verticales p(s) à répartition de

ligne le long de la frontière T de la plaque, moment M (s)
normal à IY On aura donc simplement pour le potentiel
des forces extérieures :

l\ ff pw„dxdy ; f pwods + / M ~ ds (2.18)
« r r

La condition (2.17) devicnl :

K iy y k2 y k3 o,

K1 —Dil A«v„Ar|(/.i' dy

8

jy

K,

d2w0 d2r\ d2w„d2r\ d2W0d2T\

dxdy dxdy dx'1 dy1 dy'1 dx'1
(l-v)D I

.s-

- - ll pr)dxdy I pr)ds / \1 g ds

dxdy,
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Si l'on pose g Aw0, h r\ dans la formule de Green

/ / (Ag h — gAh)dx dy h t. g -7T- ds
dn ° dn]

on obtient

Kt D \ If AAw0r\dxdy-
dAw„

dn ¦àw0f^ds\'

Par un usage répété de la formule de Green-Riem-

mann

on transforme K2 dans l'expression suivante :

K2 (1 — v)D I [dx, dy]

d2w„ d2w0~

dx2 dxdy

d2w0 d2w0

Ydxdy dy2 J

y
dy

dj\
dx

Jusqu'à ce point, il n'avait pas été nécessaire de
préciser l'orientation de l'abscisse curviligne s ; contrairement

à l'usage, dès maintenant les valeurs de s

croissantes correspondront au sens trigonométrique inverse
(fig. 1.5) ; si l'on désigne par tx, ty les composantes de la

—j?

tangente unité t à f dirigée dans le sens des s croissants,
on a :

K, ¦v)d j yy«)

d2w0 d2w„
dx2 dxdy

-
dr)

dy

d2w0 d2w0 dr]

dxdy dy2 _ dx_

ds.

(2.19)

Considérons un point particulier (x0, y0) de Y et le

système d'axes rectangulaires défini par les relations

X

—
Xq

y t
~u u

s
'x -- x„

y [yol V V y--y»

cos cp

sm 9

S 7'-i

En désignant par tu et tv les composantes de t suivant
les nouveaux axes, on a :

— — — —.
lx

T
tu

L'y- -J'J
¦ dry ' dy

d\l
T

dv

dn

dx_
J.3

du_

~d2w„ d2w,y

dx2 dxdy

d2w0 d2w„

dxdy (hf1
_

'çPwo d2W„

du2 dudv

yy,, d2w„

dudv dv2

S' représente la transposée de S. Remplaçons dans

(2.19), en tenant compte des relations ST T' S1 I

K, — (1 — v)D j [tv, tc

~d2w0 d2w„

du2 dudv

~ dn
dv

d2w„ d2w0

dudv dv2
_dj\

du

ds

Cette relation est encore correcte si l'angle 9 dépend
de s ; faisons coïncider (fig. 1.5) les axes u et v avec la

tangente et la normale, directions cjue nous appelons
désormais t et n.

v=n

u. t

Fig. 1.5.

Puisque tu 1, tc 0, on obtient :

/ fd2w0 dr\ d2w0dr\
ds

dr] dr]
en remarquant que -=7 -*r une intégration par partie

nous permet d'obtenir :

K, (l~v)Dj(-
d2w„ dr\
dt2 dn

d

Js
d2w„

On obtient finalement :

K D

(1

AA<v„ ¦

2) nd* d,j

dtdn

dAw0

dn

ds

ds

(1-

d2w„

dtdn I) r]ds y j Atv0 S.20)

d2w0 M\ dt]
dt2

~ D) dn

On peut remarquer que le terme
d2W0

dtdn
ne dépend

pas seulement de la tangente T, mais aussi de la courbure

de T. La relation (2.20) est vraie pour n'importe
quelle fonction n ; l'argument classique du calcul des

variations permet de conclure aux relations suivantes :

AAn'„ dans S
D

P -yj\-dàw0
dn

(1 ds

d2w„

M= D Aw0 — (1— v;

dtdn

dy
y*

(2.21)

sur T; (2.22)

surf. (2.23)

Répétons une fois de plus que dans les relations (2.22)
et (2.23) /) el M peuvent être soit des forces soit des

réactions. Les équalions (2,21), (2.22), (2.23), jointes
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aux conditions géométriques caractérisent l'état d'équilibre.

Considérons une plaque dont le bord V comprend une
partie Ç1 encastrée, une partie T2 appuyée, une partie F3

libre ; on aura alors :

dans S : é quation aux dérivées partielles AA«>„ y. ;

sur V±

sur fo

o dy
' dn 0;conditions géométriques : u>0

condition dynamique : aucune ;

la force de réaction p et le moment
d'encastrement M sont données par (2.22) et (2.23) ;

condition géométrique : w0 0 ;

d2w0
condition dynamique : Aw„ — (1—v) dt2

0:

sur To

la force de réaction p est donnée par (2.22) ;

condition géométrique : aucune ;

conditions dynamiques :

dAw0 .cl
dn

I-

ds dtdn 0;

Aw0 — (1
d2w0

v^y 0'

Les conditions dynamiques sont indépendantes de

l'équation aux dérivées partielles (2.21), mais sont par
contre implicitement contenues dans l'énoncé varia-
tionnel des conditions d'équilibre ; pour cette raison, on
les appelle « conditions naturelles du problème de variation

».

Exprimons encore les équations (2.22) et (2.23) dans
le cas d'un bord rectiligne y const, la normale étant
dirigée dans le sens des y croissants :

Wi(A-) + (l-v)|^)
3<" <M,
xdyj "" dy

y

dMxl
dx

T,+9-%? (2.24)dx

M D[A dy,
' dx2 —Mv

r,fd2w„ d2w0\
¦D\yy2+Vyy2)-

(2.25)

Ainsi, le long d'un bord appuyé y const, les
contraintes u,j sont nulles, mais il reste des contraintes tan-
gentielles txij. C'est l'approximation consistant à négliger

les déformations dues à l'effort tranchant qui est
responsable du fait que l'on ne peut pas satisfaire à

toutes les conditions aux limites. Ces moments de
torsion Mxy, dus à des contraintes txy horizontales, sont
statiquement équivalents à des forces verticales distri-

1 AI
buées le long du bord et d'intensité —^—'- comme leB dx
montre la figure 1.6. Il en résulte que la réaction d'ap-

dMx,
dx

C'est precise-pui Vy est donnée par Vy T„ y
ment le résultat (2.24).

Cette manière de remplacer le moment de torsion sur
le bord par une réaction d'appui additionnelle statiquement

équivalente est due à Kirchhoff. Par la façon dont
nous avons établi les conditions aux limites, en ne
faisant appel qu'à l'énergie de déformation et au théorème
des travaux virtuels, on voit que ce qui apparaît
généralement comme un artifice permettant d'exprimer les

conditions aux limites n'est en fait qu'une conséquence
des hypothèses de la théorie des plaques fléchies.

On remarque donc que, dans le cas d'un bord appuyé,
la condition dynamique revient à annuler le moment Mv.

En résumé, la théorie approchée des plaques minces
ne permet pas de satisfaire la totalité des conditions aux
limites. Mais, en vertu du principe de R. de Saint-
Venant, l'influence de ces perturbations est purement
locale et la théorie approchée est largement vérifiée par
l'expérience.

dx dx dx

C7) y
Mxy^dx lMxytH^ydx)dx Mxy Mxy+^y-dx ^p.dx

Fig. 1.6. Equivalence entre le moment de torsion et
l'effort tranchant au bord.

On trouvera dans un mémoire de M. L. Rolle [7] un
très bon exposé de la question des conditions aux limites
ainsi qu'une méthode moins restrictive que celle de

Kirchhoff (mais aussi moins simple) prenant en compte
les déformations dues à l'effort tranchant et permettant
de satisfaire toutes les conditions aux limites.

11 est encore une autre question importante qui n'a
pas été effleurée. C'est la cohérence mathématique du
modèle. On peut en effet montrer que le problème varia-
tionnel ou le problème différentiel qui s'en déduit
possède une et une seule solution (il faut naturellement que
les conditions géométriques soient suffisantes pour
« fixer » la plaque).

§ 3. Equations principales de la théorie des plaques
minces en coordonnées cartésiennes obliques

3 .1 Formules de Iransformation

Le système de coordonnées obliques, dont deux des

axes sont parallèles aux côtés du parallélogramme et le
troisième perpendiculaire à son plan, est le mieux
adapté à la forme de plaque considérée (voir fig. 1.7).

Les formules de transformation sont :

x u y v cos a,

y v sm a.

que l'on peut écrire sous forme matricielle

1 cos a

0 sin a

(3.1)

u
T

a

V v

et :

r-i
//

i -Vtga

0 1/sin oc

Ces formules de transformation définissent une
application biunivoquc entre un point du plan (.t, y) et un
point du plan (u, v). Par celle application, lc parallélogramme

dans le plan (x, y) se transforme cn un rectangle
dans le plan (u, v) comme le montre la figure 1.7.
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y
s

/
/ / u x L"

Fig. 1.7.

Reprenons les principales équations du § 2 en
considérant w0, que nous écrirons dorénavant w, comme
fonction composée des variables indépendantes x, y :

w w[u(x,y), v(x, y)] (3.2)

d'où les formules de transformation suivantes :

dw dw
dx du

dw
du

dw
~ dx

dw 1

dy ~
tg

dw

adu
1 dw

_

sin adv
— eos a .;- - y sm

dw

dy

d2w d2w
d~y du~2 (3.3)

d2w 1 à2w

3C du2

2 d2w 1 d2w

dy2 ~ tg" sin a tg a £?a^p
' sin2 a dv2

d2w 1 d 2w 1
i

d2w

dxdy tgad u2 sin a dudv

et :

Aw
1

sin2

d2w
2

a <?u2

d2w
cos a -, -. +dudv

d2w

dv2
'

3.2 Contraintes et efforts intérieurs en coordonnées

obliques

En tenant compte des formules ci-dessus, les équations

(2.5) s'écrivent, après quelques transformations :

CTx

-Ez
(1 — v2) sin2 a

En coordonnées obliques, il est préférable de considérer

les éléments de surface parallèles aux axes u, z et

v, z et de décomposer la contrainte totale relative à ces

éléments suivant les axes u et v (fig. 1.8).
Soit l'élément de surface parallèle aux axes u, z. Si

nous décomposons la tension totale suivant les axes u

et v, on obtient deux composantes que nous désignons

par t,.„ et cr„.

Considérons aussi l'élément de surface parallèle aux
axes v, z et décomposons la tension totale suivant les

axes u el v. On définit ainsi <ju et -ruv.

Les relations entre (ct« t„„ ct,.) et (ct- txij ay) s'obtiennent,

d'une part en considérant les deux parties de

la figure 1.9, d'autre part en exprimant l'équilibre
suivant l'axe Ou de l'élément de la figure 1.10.

La figure 1.9 nous permet d'écrire :

CTj, CT, sin a,

Txy ¦= Tu,- y cr,. cos a.

L'équilibre de l'élément de la figure 1.10 donne :

— 0% sin ce — t.™ cos a

Nous obtenons finalement

C7„ y T„r COS a 0

OY

sm a

0 1
1

tga

0 0
1

sin a

CTr

(3.5)

777777777777777777-"
L nv

Fig. 1.9.

v cos2 a + sin2 a — 2 v cos a v

— (1 —v) cos

cos2 a + v

Dsasina (1 - v) sin a 0

sin2 a — 2 cos a 1

yy
du2

fy
dudv

d2w

dv2

(3.4)

tu

ruv - TV

L X U COS <*

11 V

ox Sin« - G"

Lxu sin«

Fig. 1.8. Fig. 1.10.
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En tenant compte des formules (3.5) et (3.4), on a :

ct,,

T,„
Ez

(1 — v2) sin3 a

cos2 a + v sin2 ce

— (1 + v) sin2 a
+ 2

cos" a -j- v sur a

Si l'on définit les moments Mu, M„v, Mv par :

d2w

iy
yy
dudv

dy
dv2

(3.6)

/-»
y* -»

CT„ z dz Muv / t,„. z dz Mv / <jv z dz ; (3.7)

l'expression des moments s'écrit

MH

M,:

D

9 cos a cos2 a -f- v sin2 a

(1 + v) sin2 a — cos ce

4- 9,

cos" a Y- v sur a

De la même manière que pour les formules (2.12), on
vérifie que les efforts tranchants Tu ct Tv sont donnés

par :

dMu dM,n.
Tu

du dv

T _ dM1 dMuv
' _ dv du

(3.9)

3.3 Energie de déformation et potentiel des forces exté¬

rieures

Reprenons l'expression de l'énergie de déformation
(2.13) et appliquons-lui les formules de transformation
(3.1). Le Jacobien de la transformation est :

J sm a

et l'énergie de déformation s'écrit :

U.\w) Il V sin a du dv/-[«.]= [I V U V du dv

D ld2w\ (d2w\ d2wd2w
2sii,3a to) +[dv2)'2{cos'a+vsm'^y2dy~

(d2w d*w\ d2w- 4 cos a y2 +-7J v~T + 3.10
\du2 dv1/ dudv

I d2w \+ 2(2-(l + v)sin2a)U,)
Si l'on considère les formules (3.8) et (3.10), on a:

dV
M„= t-,2 Muv= - - 2 M-=

2 / d w N

1 dY

d\

dV
,/ydhv

du2) ''{dudv) ''\dv2,

el la densité d'énergie I peul se mettre sous la forme :

' dy~
du2

d2w

dudv

dy
dv2

(3.8)

V M,
d2W

dy
d2W

dudv
2 Mm t^—7, + M- _

dy
dv

En introduisant les constantes C1: C2, C3, C4 :

C ~^—1 — o • 11 sin'' a

C2 Cx 2 (cos2 a + v sin2 a)

C3 C1 (— 4 cos a)

C4 C- 2(2 — (1 + v) sin2 a)

U1 [w] s'écrit :

(3.11)

™-jjfrm+<i'dy
\dv* y a

d2w d2w
2d~u? 'yy

d2w ld2w d2w\c* yyv w + yydu

+ffc<&)**-
(3.12)

h n y h H
L'expression (1.15) pour le potentiel des forces

extérieures devient :

U2[w]= // p(u,v) w(u,v) smadudv y / p(s) w(s) ds y
s- r + r

_£ Pkw (iit, y y I m« y j£ dv y f m„ (y dy du
h J du J dv

r, + r,

h
r, + r.

'4 [y (3.13)

Les deux premières intégrales cl la somme constituent

/3[<ï'].
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r rx y r2 y r3 + l~4 désigne la frontière de la

plaque ;

V1 et F2 sont les frontières parallèles à l'axe Ov, V3 et I~4

les frontières parallèles à l'axe Ou (voir fig. 1.7) ;

T désigne d'éventuelles lignes d'appui, s l'abscisse

curviligne ;

p(u, v) est la répartition de surface des forces verticales,
p(s) une répartition de ligne des forces verticales (pour
les lignes d'appui par exemple) et Pj la force appliquée

au point (wj-, vk) ;

dw dw
^— et -x- sont les angles de rotation parallèlement a
du dv r

Ou respectivement Ov et pris sur les bords r\, Y2

respectivement r~3, T4. Ces deux dérivées sont dirigées vers
l'extérieur ;

Mu(v) et Mv(u) sont des moments par unité de longueur
appliquées respectivement aux bords ri; Y2 et r~3, f4.

Les expressions (3.12) et (3.13) montrent que L\ el L 2

peuvent être considérées comme des fonctionnelles de

w(u, v). La fonction w(u, v) cherchée doit rendre minimum

la fonctionnelle U[w] U-^w] — c72[fv] et satisfaire

à toutes les conditions géométriques imposées :

dw
Rord encastré : iv 0 t- 0 sur T, et T,

du x

dw
0

dv
0 sur f3 et I~4

Rord appuyé : w 0

Ligne ou point
d'appui : w 0

(3.14)

(A suivre.)
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