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CALCUL NUMERIQUE DE PLAQUES FLECHIES

par GEORGES DUPUIS et JEAN-JACQUES GOEL *

Texte publié en hommage a M. Henry FAVRE, professeur a I'Ecole polytechnique fédérale.

Introduction

Dans cette étude, on considérera successivement trois
modeéles mathématiques distinets de corps élastiques.
Tout d’abord, au § 1 de la partie I, on rappellera quel-
ques notions fondamentales de 1'élasticité linéaire tri-
dimensionnelle en insistant sur le théoréeme de I’énergie ;
les paragraphes qui suivent seront consacrés au modéle
classique de la plaque mince fléchie. Dans la partie 11,
on établira un modéle discret de la plaque, modéle
adapté au calcul électronique et qui a été effectivement
programmé sur la calculatrice de 'EPUL pour le cas
particulier des « plaques obliques». La partie IIT est
consacrée a I'examen des résultats numériques obtenus
par le programme mentionné.

* Collaborateurs de I'Institut de mathématiques appliquées de 1’ Ecole
polytechnique de I'Université de Lausanne (EPUL).

Les relations étroites qui lient la théorie de 1'élasticité
au calcul de variations sont connues depuis longtemps.
Dans la partie I, on montrera la simplicité avec laquelle
on établit par le calcul des variations non seulement
I'équation aux dérivées partielles qui régit la plaque
fléchie classique, mais encore les expressions des condi-
tions aux limites et celles des forces de réaction pour
des bords libres, appuyés ou encastrés. Les mémes idées
seront exploitées pour I'établissement du modele discret.

Les déformations et les contraintes sollicitant une
plaque mince sont régies par une équation linéaire aux
dérivées partielles du quatriéme ordre due a Lagrange
(1811) a laquelle il faut adjoindre des conditions aux
limites. Pour quelques cas trés particuliers, on connait
la solution explicite de ce probléme. De nombreux
autres cas ont été traités en développant la solution en
série double ; cette méthode permet, dans le cas ou le
contour est de forme simple (rectangulaire par exemple)
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et ou les conditions aux limites sont simples (plaque
encastrée, simplement appuyée, etc.), d’obtenir une solu-
tion dont la valeur pratique est liée & la rapidité de la
convergence. Une autre méthode préconisée par Mar-
cus [1] consiste a substituer a I'équation différentielle
des équations aux différences ; le probleme d’analyse est
alors remplacé par un probléeme d’algébre et la résolu-
tion du probléme approché est théoriquement toujours
possible. La mise en ceuvre effective de cette méthode
conduit, dés que lon traite un probléme pratique, a
plusieurs difficultés, & savoir :

a) Difficulté de poser les conditions aux limites en termes
de diftérences (en particulier pour les bords libres).

b) Limitation du nombre de points considérés eu égard
au travail matériel que représente la formation des
équations.

¢) Limitation du méme nombre de points eu égard a la
résolution du systéme linéaire obtenu.

La premiére difliculté peut étre levée en formulant le
probléme sous forme variationnelle. MM. E. Stiefel [2]
et Ch. Blanc [3] ont montré que les seules conditions
dont il faut alors tenir compte sont celles dites géomé-
triques qui, en général, s’expriment simplement ; les
conditions de nature dynamique sont implicitement
contenues dans ’énoncé variationnel du probléeme. En
discrétisant le probléme de variation, on le transforme
en un probléme d’extremum ordinaire ; le systéme algé-
brique linéaire auquel on est conduit présente I'avan-
tage d’étre toujours symétrique, circonstance qui n’ap-
parait pas nécessairement si ’'on discrétise le probléme
différentiel.

L’usage d’une calculatrice électronique permet de
lever les deux autres difficultés. La résolution d’un sys-
téme linéaire est un probléme classique et 'on montrera
comment former les équations 4 I’aide de la calculatrice.

Dans ce qui suit, on traitera le probléme de la plaque
limitée par un parallélogramme, dite plaque oblique
pour la distinguer du cas rectangulaire, en faisant usage
de coordonnées cartésiennes obliques, préconisées par
H. Favre [4].

Le but de cette note est double :

Elle est tout d’abord destinée a décrire comment
résoudre le probléme pratique des plaques rectangu-
laires ou obliques appuyées de maniéres quelconques et
sollicitées par des charges quelconques a l'aide de la
calculatrice du Centre de calcul électronique de TEPUL.

De plus, bien que cette note ne contienne rien d’essen-
tiellement nouveau, elle espére suggérer d’autres tra-
vaux relatifs & des problémes plus généraux.

I. Théorie classique de la plaque fléchie
et calcul des variations ///

§ 1. Notions d’élasticité linéaire tridimensionnelle

Considérons un solide isotrope, déformable, linéaire-

ment élastique, occupant a l'état non déformé un
volume V de frontiére S (fig. I.1).
On soumet ce corps aux champs de force suivants :
—r
forces volumiques de densité X(z,y, z) dans V;

-

force de surface de densité F(z, y, z) sur S.
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Sous ’effet de ces forces, un point P de coordonnées

(z,y,z) se déplace en un point P’ de coordonnées
S

(x + u, y + ¢, z + w). Le champ vectoriel u(z, y, z) de
composantes (u, ¢, w) définit le déplacement du solide.

Fig. 1.1.

Nous utilisons les notations classiques :

u, ¢, W composantes du déplacement ;
allongements unitaires suivant les

axes Oz, Oy, Oz ;

€, €y, E:

8 =&, + ¢ + & dilatation cubique ;
Yzys Yz Yz

distorsions angulaires relatives aux
axes Ozy, Oyz, Ozx ;

contraintes normales relatives aux
éléments de surface perpendiculaires
aux axes Oz, Oy, Oz ;

Oz Oy, Oz

contraintes tangentielles paralleles a
I’axe de premier indice et relatives a
un élément de surface perpendicu-
laire a 1’axe de second indice ;

Tayy Tyzs Tez

V) module d’élasticité et coeflicient de
Poisson ;
E
b 2(1 + v)

module de cisaillement.

Les déformations et les déplacements sont liés par les
relations :

; it e v . Iw
I e ok IR Il - N WL
PE: Jy 9z 4.4
BT L
Yay — (7}/ (72?’ Yze = 0z Jx o YyE == 93z 9]/

Les contraintes et les déformations sont liées par les
relations :

vb vl
G5 =96 <ez+ «1—2\;) S e <ey+ S

vo
0. =26 (& + {2og5) s T =Gy, (12

Ty = GY]/Z on ke GYZ.’E

Energie de déformation. La quantité

Sl
o= o (Ez O: + € Oy + &0, + Yy Tay +
+ Yo Tee + Yo Tie)  (1.3)
est appelée densité d’énergie de déformation. L’énergie de
déformation du solide V' est définie par

2

i // / Wav (1.4)

e

4

A Taide des relations (1.1) et (1.2), on peut exprimer

W et par conséquent U, en fonction des déplacements.
P q 1 I




Ainsi donce U; peut étre considéré comme une fonction-
g b ¥ : i i i
nelle du champ u(z, y, z) et I'on écriva U, [u].

" g ! ->
Potentiel des forces extérieures. La fonctionnelle U, [w]
définie par la relation :

2_f/ xy, u(xy, dV+ ‘/FTJ,) <7’y: >dS

(1.5)

est appelée « potentiel des forces extérieures ».

. . . = ’
Théoréme de Uénergie (voir [8]). Soit u, les déplace-
— —
ments résultant de Papplication des forces X et /' en

équilibre sur le solide. Soit At un champ vectoriel quel-
conque.
Ona:

U [ + Auo) = U [w,] (1.6)
ou 'on a posé
Uil =u,[w] —u,[u]. (1.7)

Ainsi la fonctionnelle U est minimum pour les dépla-
cements de 'état d’équilibre. En introduisant un para-
métre t réel, 'équation (1.6) permet d’écrire :

d — —>
o [w, + tAu] =0 (1.8)
t=o0
Remarques. — 1. En général, le théoréme de I’énergie est

s
énoncé pour le cas particulier suivant : on spécialise Au de

maniére a rendre les déplacements u-:—i— Au compatibles
avec les relations géométriques imposées ; on peut alors res-
treindre le potentiel des forces extérieures a4 ne comprendre
que les forces extérieures données. Ici au contraire, on ne
fera aucune différence entre les forces données et les forces
de réaction, ce qui permettra précisément d’obtenir ces der-
niéres. On applique, en quelque sorte, la méthode des
« hyperstatiques » qui se traduit en mathématiques par I'in-
troduction de multiplicateurs de Lagrange.

2. Appelons ey, e, ..., €5 les variables €, €, €, Yy, Yoo
Yzz €t T1, Ta, - ..; Tg les contraintes o,, oy, 0,, Ty, Ty Toe
I’équation (1.3) devient simplement

6
1
W= — LT (1029)

D med
F=1

tandis que les relations (1.2) peuvent se mettre sous la forme

6
gy i— Z ('ki”j (1.10)

k=1

ou les coefficients Cgj sont des constantes; on vérifie aisé-
ment la symétrie de ces coeflicients :

Crj = Cj k,j=1,2,3.

En remplacant (1.10) dans (1.9) on obtient la relation
3
; AN
Wiey, .voyiCg) = 7 /\_J Crjerej ,
V=

d’ot par dérivation :
o A AL R S R (1.11)

Cette équation est en fait beaucoup plus générale que
celles dont on l'a tirée; elle peut s’obtenir directement a
partir de considérations thermodynamiques et servir de base
pour l'établissement d’¢quations de I'¢lasticité, linéaire ou
non. Nous la retrouverons dans le modele classique de la

plaque.

§ 2. Modeéle classique de la plaque fléchie
2.1 Définitions

On appelle plaque fléchie toute plaque mince, d’épais-
seur constante, sollicitée par des forces perpendiculaires
a ses faces (et éventuellement par des moments sur les
bords).

On appelle feuillet moyen de la plaque le plan équi-
distant des faces avant la déformation.

On appelle surface élastique la transformée du feuillet
moyen par la déformation.

On établit le modeéle mathématique de la plaque flé-
chie de la maniére suivante. En se basant sur les résul-
tats du modele tridimensionnel on définit a4 'aide d’hy-
pothéses simplificatrices I’énergie U; de déformation et
le potentiel U, des forces extérieures. On définit ensuite
la fonctionnelle U = U; — U, qui, lorsqu’elle est expri-
meée en fonction des déplacements, atteint son minimum
a I'état d’équilibre.

2.2 Hypothéses simplificatrices

La théorie des plaques fléchies repose sur quelques
hypothéses simplificatrices vérifiées a postériori par les
résultats d’expériences.

Considérons une plaque plane occupant une portion S
du plan. Soit Oxyz un triedre trirectangle de référence
tel que le plan Oxy soit dans le feuillet moyen (fig. 1.2).

Iypotheéses

1. La plaque est faite d’un matériau linéairement
élastique, homogeéne et isotrope.

2. Par la déformation, un point P du feuillet moyen
est transformé en un point P’ de la surface élastique
situé sur une parallele & 'axe Oz par P (fig. I.3).

3. Par la déformation, une normale n au feuillet
moyen est transformée en une normale n’ a la surface
élastique.

4. Les contraintes normales o, relatives aux éléments
de surface paralléles au feuillet moyen, sont petites et
n’ont pas d’influence sur la déformation.

En plus des notations du § 1, on introduit encore :

h épaisseur de la plaque ;
Eh3 e
D = T — v rigidité de la plaque.

2.3 Déformations, contraintes et efforts intérieurs

Soit MM’ = (w, ¢, w) le vecteur déplacement attaché
a un point M(z, y, z) quelconque et (u,, vo, w,) les
valeurs que prennent ces composantes au point M,
(z,y,0) (voir fig. I.3).

La deuxieme hypothése a pour conséquence que
Wo = Wo(z, y) (2.1)
représente alors I'équation de la surface élastique.

L’hypothése 3 implique que

U=ty =10

IWo IV
U= — By P e = Yau =0, (2.2
().l‘ ) ()!/ ) Y-h Y—T- ) ( )
tandis qu’il résulte de I'hypotheése 4 et de I'une des
équations (1.2) que

v
& = 1: (E,I' == Ey) 5
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en remplacant dans les équations (1.1), on obtient
immédiatement les déformations
()2“'0 1)2‘\’0
€= —2 55 & =—3% =
g d? 4 Ay
v (’{?sto 9%, (2.4)
G=—,——2zl= 5 2.4
* T—y g2 " ()yz)
5 %%, 0
BY R g 2T .
Y’!/ (71”(71/ ) Yl YU

déduisent des rela-

elles se

Quant aux contraintes,
tions (1.2):

(/)2“’0\)

E (’()zw,,
\ ()AI'?‘ v (7(/2

Or=—7——12
& 1 — 2

K {)’“’w? PP
<9,1/2 Sl J,v2>

Oy === m’z 4
oz—10 (25)
. I,
My i o 2G z (}T)y
Ty — Ty —10)
Remarque. — l,’l\\polll(w de conservation des normales

entraine la nullllv des contraintes Ty; et Tzz. Cette conclusion
n’est pas ((llnlul|]|>]<‘ avec les m]ualu)n\ géncérales de 1'élas-

ticité. I5n effet, si 'on suppose qu’il n’y a pas de forces mas-
siques, les ¢quations d’équilibre s’écrivent :

JOz i JdTry ti)rTz.zr S

dz iy Iz :

(')O'// i (7Tz/, ()T.t_r/ 9 ¢

=L F =0, (2.6)

()y ()~ Jx

Jo: % I)Tgr J ()Tr/~ 0

Jz ; ()l : ()I/ ;

La derni¢re ¢quation (2.6) est identiquement satisfaite.

Les deux premicres donnent, compte tenu des équations

[2 o f))
D) e (})“\\I‘;. b (/):"\)\'a ) 96 2 ():}f"vl, 0,
Li—v2ia N ot dy*du drdy® 2.7)
LiaTe) (i’”“f" il ) T e
1 —v? Jy? Ay ) Jyda*
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En dérivant la premiére des équations (2.7) par rapport
a a et la seconde par rapport a y et en additionnant, on a:
ag 45 o TH
Py | o I, I,
4 5T 27

()11 D2 Jy? dyt

ou A est I'opérateur de Laplace.
Or, on établira plus loin que I'équation de la surface élas-
lique w, = w,(z, y) satisfait a 'équation différentielle de

= AAw, =0

Lagrange :
(2, )
ANw; = BB )
g D
ou p(x,y) est la densité de charge et D la rigidité de la

plaque.

Ainsi, les hypotheses ne satisfont les équations générales
de I'élasticité que si la charge est identiquement nulle. Dési-
rant satisfaire avant tout les équations d’équilibre, on intro-
duira des contraintes Tzz et Ty- de maniére a satisfaire ces
conditions, sacrifiant ainsi la comptabilité des hypotheses de
base. On reviendra sur cette question en établissant les
conditions aux limites.

Efforts intérieurs

En un point P(z, y) de la plaque, les formules (2.5)
définissent les contraintes o, 0y, Ty en fonction de
I'équation de la surface élastique w, = w,(x, y). Par
définition, on appellera moments de flexion au point P
les expressions :

JIJ:/ % ez dz,

by e
oyz dz .

De méme, on appellera moment de torsion au point P,

I'expression :
/A‘
My— / | Tuyads (2.9)
(2
s

A
N — / < Tndn,
Bty
: (2.10)
Ty = / s
g
Ty
y T,y+b;’.dy) ox
IM,
Tx-dy 2 (My+ oy )ox
T/.E {)EHY; (Mxy+ 5 Y oy ok
I, § == s .
Mx-dy o i y
oMx
e Y
R Ty ox 2 B‘?}"I)( + 2M%9 o ) o
) t AL
/ My dx > R
7 (Txv r" dx ) dy
/ (I Mxy dx /
I
ox
o/ A 5
74 X
Fig. .4 Sens positil des moments de flexion, moments

de torsion et ellorts tranchants.




On déterminera 7, et 7', de maniére a satisfaire les
équations d’équilibre sans se préoccuper de la réparti-
tion des contraintes T,. et T, sur I'épaisseur de la plaque.

Compte tenu des formules (2.5), les moments devien-

nent :
M =—p (T +v 53]
m=—b(Gr 5 aw
h e

Pour déterminer les efforts tranchants 7, et 7, con-
sidérons I'équilibre d’un élément da dy autour d’un
point P quelconque (voir fig. [.4).

Léquilibre des moments autour des axes Ox et Oy
exige que l'on ait :

()J—[I ()A‘ 1.1'_//

7.1; T + TORES,

5 2y (2.12)
oM, M,
L (/!/ B (7.1‘

2.4 Lnergie de déformation et potentiel des jorces
exlérieures

Remplagons dans (1.3) et (1.4) les valeurs des défor-
mations et des contraintes obtenues en (2.4) et (2.5);
on définit ainsi en procédant a l'intégration suivant la
variable z, I'expression suivante pour Uénergie de défor-
mation :

2 3

Uy = // T dn dy (2.13)

e

v =3 |G (G 2o G+ 24w ()’
2 |\ 9z \ Jy? Jx? ()J Jxdy

D f 5 oy (72¥4’(,>2 2w, 92 w,,]l
sl RO el gl 9.
9 1<Aﬂu) ! (1 V) [({71‘()]/ ()L‘ ()lj I ( 14)
: ALl [)2w
Sihm e oL e

Les forces extérieures qui comprennent les forces
données et les réactions se divisent dans les catégories
suivantes :

a) forces verticales ayant une répartition de surface
pla, y), une répartition de ligne p(s) (pour des
lignes d’appui, par exemple), et forces verticales
ponctuelles P appliquées en (2, y;) ;

b) moments M(s) normal au bord.

Par analogie avee I'équation (1.5), on définit 'expres-

B b
sion suivante pour le potentiel des forces extérieures

2 2

Uy = // plz, y)w,(z, y)dady + / )(s)wo(s)ds -+
5 riF
; (2.15)
\ Prwo(zr, yi) + / M(s) : ”-['i ds ,
g7 :

ou [ désigne la frontiecre de S, T d’éventuelles lignes
; R Ny e ‘ o
d’appul intérieures ; 3 est la dérivée normale a [ diri-
an
gée vers 'extérieur ; s est 'abscisse curviligne.

Remarque. — Si 'on tient compte des formules (2.11), la
densité d’énergie V' (2.14) peut se mettre sous la forme
v 1 (” (7“0 oM J*wo i 2
R o Z iVl gy, 3
2 Ja? Y dxdy Ty ﬁyz)

une wmpamiwn avec l'expression (1.3) nous montre que
(mis & part un facteur 2 et le signe) les grandeurs My, May, M,

o PPwe 3o
, T

Jxdy ’ Iy*
comme des contraintes et des déformations duales. Partant
de l'expression (2.14) ot V est exprimé en fonction des

déformations seulement, on retrouve l'analogie des rela-
tions (1.11) :

et les grandeurs doivent étre considérées

s IV et L B L aV
My = f)(aTa) A\l_,,jff{z;—f L My;fa(a_w(‘
¢ \ (7.1'2 Z \ (7y" )

2.5 Enoncé variationnel des conditions d’équilibre

Les équations (2.13), (2.14) et (2.15) expriment que
U, et U, peuvent étre voncidérées comme des fonction-

nelles dépendant de w,(x, y). Posons :

Ulw,] = Lvl[mﬂ — Uy[w,) (2.16)

La solution w,(x, y) cherchée est caractérisée par les
conditions suivantes :
a) wo(r, y) doit satisfaire & toutes les conditions géo-

métriques imposées : w, = 0 en des points d’ap-

(7(\',7
—— = 0 le long

an

pui ou le long de lignes d’appui :
de bords encastrés ;

b) pour toute fonction n(x, y) quelconque, on doit
avoir :

Ay .
d7b(m;+1n):0 (2.17)

8]
(=N
~1

2.6 Enoncé différentiel des conditions d’équilibre

Il est difficile d’énoncer sous forme différentielle les
conditions que doit remplir la fonetion w, en des points
de support ponctuel ou le long de lignes d’appui inté-
rieures & la plaque. Pour cette raison, nous allons sup-
poser que toutes les forces extérieures, données ou de
réaction, appartiennent a 'une des catégories suivantes
forces verticales p(x, y) a répartition de surface a I'inté-
rieur de la plaque, forces verticales p(s) a répartition de
ligne le long de la frontiere [ de la plaque, moment M(s)
normal & . On aura done simplement pour le potentiel
des forces extérieures :

g V%) 2

Uy= // pwoda dy / pivods —+ / M d"‘—o ds (2.18)
r

/
(S

N T
La condition (2.17) devient :
K=K+ K,+ K;=0,

el

iK=D // Aw,Anda dy

1-v)D // 0 220 Jg,n (),HL;“‘,)HH % W"() T] dady,
AT ()1()1/ dxdy  Ix? dy:  Iy? ¢
\‘
Ky = — // pnda dy — / pnds — / M0 ds .
o . i an
N I I
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Sil’on pose g = Aw,, h = 1 dans la formule de Green

// Ag h— gAh)dx dy = / < 3;%’ : gh> W

on obtient :

sty { / [ ARbimdedy— / v ?;1) ds}-

Par un usage répété de la formule de Green-Riem-

mann
((2Q oP / ,
//((% al/)d dy = | Pde + Qdy,

s [

on transforme K, dans I’expression suivante :

o JIPwo an
2 2% Jady dy

Ko iD / [y
: 2 e ok ()ZWP n
Jxdy Iy* 0

Jusqu’a ce point, 1l n’avait pas été nécessaire de pré-
ciser l'orientation de I’abscisse curviligne s ; contraire-
ment a l'usage, dés maintenant les valeurs de s crois-
santes correspondront au sens trigonométrique inverse
(fig. 1.5);

N e AN .
tangente unité ¢ & [ dirigée dans le sens des s croissants,
on a:

st 'on désigne par t,, t, les composantes de la

h fi. 0
& da% dxdy Yy
K (e / L -2
: Do I, n
| Jxdy Iy | | dx | (2.19)

Considérons un point particulier (a, y,) de T et le
systéme d’axes rectangulaires défini par les relations

xz T u u r—ux,
el
Y Yo i y Y — Yo
cos ¢ —sin g
o= S === 1
Linq) ]

cos @
R S
En désignant par t, et ¢, les composantes de ¢ suivant
les nouveaux axes, on a:

lJ: llt
— :
ly D)

& [)l]_ ()T]
Ak ) T dv
N @

ok R0k

*wo I, |
JuZ Judy

" %wo I*wo
A2 Jxdy
()2”’0 (’)2“,”

Judy I

D*w, D%,

() vy ;) e
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St représente la transposée de S. Remplagons dans
(2.19), en tenant compte des relations ST = T* St= 1

92w, 2w ] I dn
> QU Judy v
Ky=—(1—v)D / [t %] ds.
¥ 00 Waili |01
udy Jv? R

Cette relation est encore correcte si I'angle ¢ dépend
de s ; faisons coincider (fig. 1.5) les axes u et ¢ avec la
tangente et la normale, directions que nous appelons
désormais ¢ et n.

Puisque ¢, = 1, {, = 0, on obtient :

S 9“’0(71’]
oy e v)D'/<mz o

D*w, (71])
~ Jton Jt

Jn dJn S : ;
en remarquant que —- = —- , une intégration par partie

ot s

nous permet d’obtenir :

e Pw,dn | d [Pwo
oy | v)D/ (912 g [Mn] )ds
%

On obtient finalement :

Kt {/v / (AA% e %) ndo dy — / (932'” el
D [

*wo
o (1 75 V> [z%;:z

it )ndé s / (Aw . (2.99)

, Pwo. M\ In i
Tt e )and}—o'

(72“’0
dton

pas seulement de la tangente I, mais aussi de la cour-

] ne dépend

d
On peut remarquer que le terme i
ds

bure de I'. La relation (2.20) est vraie pour n’importe
quelle fonction n ; 'argument classique du calcul des
variations permet de conclure aux relations suivantes :

Alw, = % dans S ; (2.21)
') Aw, d [P*w, Sl
p=—2D (an + (1 —v) R [:)t()n]) sur ["; (2.22)
)* ‘o
M=D (Aw S TR G ;{‘) sur . (2.23)
ot

Répétons une fois de plus que dans les relations (2.22)
et (2.23) p et M peuvent étre soit des forces soit des
réactions. Les équations (2.21), (2.22), (2.23), jointes




aux conditions géométriques caractérisent 1’état d’équi-
libre.

Considérons une plaque dont le bord ' comprend une
partie ['; encastrée, une partie ', appuyée, une partie Iy
libre ; on aura alors :

dans S: équation aux dérivées partielles AAw, = %;

s 2 ZANG awa
conditions géométriques : w, = 0, e 05
sur [ condition dynamique : aucune ;

1 Y q j
la force de réaction p et le moment d’encas-

trement M sont données par (2.22) et (2.23) ;

condition géométrique : w, = 0 3

e . *w
sur [y 1 condition dynamique: Aw,—(1—v) 9t20:0;
la force de réaction p est donnée par (2.22) ;
condition géométrique : aucune ;
conditions dynamiques :
IDw, d [2*w,
sur [ < [ ke =0:
5 an gt i ds | dtdn 4
)
Aw, — (1 —v) o 0.

Les conditions dynamiques sont indépendantes de
I'équation aux dérivées partielles (2.21), mais sont par
contre implicitement contenues dans 1’énoncé wvaria-
tionnel des conditions d’équilibre ; pour cette raison, on
les appelle « conditions naturelles du probléme de varia-
tion ».

Exprimons encore les équations (2.22) et (2.23) dans
le cas d’un bord rectiligne y = const, la normale étant
dirigée dans le sens des y croissants :

i) ’ P, oM,
p=—D (3 (hw + (1 —v) o) = S +
IM IM
it cat MO
+ . (),21 Ty + 17\13 ( "‘4)
D%, 2%, %,
W[ZD(AWO——(l—V) IE?>: (9_1/2 —;—Vjvfz):—‘ﬂ]y

(2.25)

Ainsi, le long d’un bord appuyé y = const, les con-
traintes o, sont nulles, mais il reste des contraintes tan-
gentielles T,,. C’est 'approximation consistant a négli-
ger les déformations dues a D'effort tranchant qui est
responsable du fait que Ion ne peut pas satisfaire a
toutes les conditions aux limites. Ces moments de tor-
sion M,,, dus a des contraintes T,, horizontales, sont
statiquement équivalents a des forces verticales distri-
My
Jx
montre la figure 1.6. II en résulte que la réaction d’ap-
I My,

Jx

comme le

7 7 Ry sye
buées le long du bord et d’intensité

ui V, est donnée par V, = 7, . C’est précisé-
v v v I

ment le résultat (2.24).

Cette maniére de remplacer le moment de torsion sur
le bord par une réaction d’appui additionnelle statique-
ment équivalente est due & Kirchhoff. Par la facon dont
nous avons ¢tabli les conditions aux limites, en ne fai-
sant appel qu’a I'énergie de déformation et au théoreme
des travaux virtuels, on voit que ce qui apparait géné-
ralement comme un artifice permettant d’exprimer les

conditions aux limites n’est en fait qu'une conséquence
des hypothéses de la théorie des plaques fléchies.

On remarque donc que, dans le cas d'un bord appuyé,
la condition dynamique revient 4 annuler le moment M,

En résumé, la théorie approchée des plaques minces
ne permet pas de satisfaire la totalité des conditions aux
limites. Mais, en vertu du principe de B. de Saint-
Venant, l'influence de ces perturbations est purement
locale et la théorie approchée est largement vérifiée par
I’expérience.

a e g’x y ,_gt : ,,d'T.' , ofx | ox |
e e s
i i
O ~ | SR
& / bl £ e ;
[ Mxy dx L(’Mx_g,‘ bM;ydx)dx Mxy Mxy+ Q'S";"H.dx fb”"ji
Fig. 1.6. — Equivalence entre le moment de torsion et

I'effort tranchant au bord.

On trouvera dans un mémoire de M. L. Bolle [7] un
trés bon exposé de la question des conditions aux limites
ainsi qu’une méthode moins restrictive que celle de
Kirchhoff (mais aussi moins simple) prenant en compte
les déformations dues a 'effort tranchant et permettant
de satisfaire toutes les conditions aux limites.

Il est encore une autre question importante qui n’a
pas été effleurée. C’est la cohérence mathématique du
modeéle. On peut en effet montrer que le probléme varia-
tionnel ou le probléeme différentiel qui s’en déduit pos-
séde une et une seule solution (il faut naturellement que
les conditions géométriques soient suflisantes pour
« fixer » la plaque).

§ 3. Equations principales de la théorie des plaques
minces en coordonnées cartésiennes obliques

3.1 Formules de transformation

Le systéme de coordonnées obliques, dont deux des
axes sont paralléles aux cotés du parallélogramme et le
troisitme perpendiculaire 4 son plan, est le mieux
adapté a la forme de plaque considérée (voir fig. I.7).

Les formules de transformation sont :

T = u -+ ¢ cos q,

(3.1)

y = ¢ sin o

que 'on peut écrire sous forme matricielle :

x 1 cosiex] [w u
= =T
Y 0 sin «f |¢ ¢
et :
u Z] AL G e o g B s
£y -
3 Y 0 Ysina] |y

Ces formules de transformation définissent une appli-
cation biunivoque entre un point du plan (2, y) et un
point du plan (u, ¢). Par cette application, le parallélo-
gramme dans le plan (2, y) se transforme en un rectangle
dans le plan (u, ¢) comme le montre la figure 1.7.
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i 7
L) 2 i
7
Iz
/ K
7 = R
’ u
7
o 25 L)
Fig. 1.7.

Reprenons les principales équations du § 2 en consi-
dérant ¢,, que nous écrirons dorénavant w, comme
fonction composée des variables indépendantes z, y :

w = w[u(z, ), 9(z> y)] 3.2)
d’ou les formules de transformation suivantes :

Iw v Iw  Iw

En coordonnées obliques, il est préférable de consi-
dérer les éléments de surface paralleles aux axes u, z et
¢, z et de décomposer la contrainte totale relative a ces
éléments suivant les axes w et ¢ (fig. 1.8).

Soit I’élément de surface parallele aux axes u, z. Si
nous décomposons la tension totale suivant les axes w
et ¢, on obtient deux composantes que nous désignons
par Ty, et oy.

Considérons aussi I'élément de surface paralléle aux
axes ¢,z et décomposons la tension totale suivant les
axes w el ¢. On définit ainsi o, et Typ.

Les relations entre (o, Tu ) et (0 Ty oy) s’ obtien-
nent, d’'une part en considérant les deux parties de
la figure 1.9, d’autre part en exprimant I'équilibre sui-
vant I'axe Ou de I'élément de la figure 1.10.

La figure 1.9 nous permet d’éerire :
Oy = Oyisin o
Tzy = Tur + Op COS L.

L équilibre de élément de la figure .10 donne :

— = N — = = L
Jez  Ju du — 0, 8in & 4 ToycOs & + Oy + T cos a =0
5y ! W s i
0% :__1Q ,1 i : di’ L oosia ‘?ﬂ + sin « ‘L" Nous obtenons finalement :
Y tg adu ' smady | Jv Jx Yy
: : ] R 5 cos? o |
c sina —2cosa o.
I*w s % (3.3) u sin 3
Jx? Ju? e
1 S
N G SRS R SR B8 e B e e b
Jy> tg? o Ju?  sinatgaJudy | osin® o Jv? n
- : 4 o 0 0 - o
P 1 9w ] 1 Pw S sin o Z
drdy ~ tgaJud ' osina Judy
et
1 2% Pw I oyt
Aw = ———— =5 —— D008 & ==z "
sin? o Ju Judy I*
ny
3.2 Contraintes et efforts intérieurs en coordonnées 7ITTIIN TTTTT 7777
obliques
. Fig. 1.9.
En tenant compte des formules ci-dessus, les équa-
tions (2.5) s’écrivent, aprés quelques transformations :
i B : SR
o v cos? o -+ sin? « — 2vcosa v =
u
= (1—v)cosasina (1 —v) si ol | 22 3.4
T = are e | el =) (OB IGEE T —V) s & § e >
o (1 —v?) sin? « dudy Ba)
42
e . Pw
LO‘y cos? o + v sinfa — 2 cos « 1 5o
= — — — [« L —
Oy cos
Vv
U} Y Txy cos
! ‘
/t‘uv
Gx-sina / o
Txy sind N
Tuv = Tvu
2 | & ’
T u
{ &
Fig. 1.8. Eig, . 1:10:
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En tenant compte des formules (3.5) et (3.4), on a:

o ] i - =] 2w ]
O il ) cos @ cos? o+ v sin? o s
u
T L cos & (1 4 v) sin? s (3.6)
y | =— ————5— | — — v) sin? o cos o — :
- (1 —v?) sin® « * 2‘ dudy
; D
g cos?2 o +vsin?a — 2 cos o 1 J o
B s BEieen
St on définit les moments M, M,,, M, par :
h LR nh
il Th pirs
M, = / ouzdz, My = / Ty % 05 g M= / o<l 744 (3.7)
2 h = h i h
T2 P R
I'expression des moments s’écrit :
] & y : B B R o
M, 1 — 2 cos cos? o + v sin? o s
Ju
— D 22w
M =——7— | —cos « — (1 4+ v) sin2 ¢ — cos 3.8
“ sind o S{_}L ) Judy = 5)
=30 20
M, cos?a + vsin2a — 2 cos a ik %2-
— — — o - V —_—
De la méme maniére que pour les formules (2.12), on v 1 v % 92 %
vérifie que les efforts tranchants 7, et 7, sont donnés e e 42 My, Suds + M, 95
par :
En introduisant les constantes Cy, C,, Ca, C, :
T oM, ‘ IM .y 1 Loy L3, Uy
o T D
2 (3.9) 6= 9 ins
7, {) \[ ()1"1111‘ Shes o
¥.= 3
@ Ju Cy = C; 2 (cos® o + v sin? q) (3.11)

3.3 Energie de déformation et potentiel des forces exté-
rieures

Reprenons l'expression de I'énergie de déformation
(2.13) et appliquons-lui les formules de transformation
(3.1). Le Jacobien de la transformation est :

J = sina

et 'énergie de déformation s’écrit :

U [w] = // V' sin o-du do = // V du dy
5 5
avec
e D 2w D> .9 D% )%y
st o : ;)162) F T (cos?a+vsin?q) TR IR
)25y v P
—deosa (o2 45522 4+ (3.0
s g ()Vz) Judy G

9

; i [ PP
+ 22— 1+ v)sin?aq) <( —)

Judy

St I'on considére les formules (3.8) et (3.10), on a:

A% 1 A% AV
i (r}zw ) Muy=— 2 )(()zw j’ s ) %\
7 ‘()«75) “N\ouav, . (M)

et la densité d’énergic V peul se mettre sous la forme :

C3=Cy(—4cosa)
Cy=0C12(2— (1 + v)sin?q)

U, [w] s’écrit :

9

o % 2w\ | Py P
] © /{ [ 9‘”‘) i <7V2)} ny Cgﬁ : D92

S’

2 )20 2xs
+ C )Jlli)‘p ()u‘i (z) ‘; )} du dy
o (3.12)
e ey ;
+(/L/ Cd <(7lt_(7‘—’) (lu (lp —

= I, [w] + I, [w]

L’expression (1.15) pour le potentiel des forces exté-
rieures devient :

Uy[w] = // p(u, 0) wlu,¢) sin axdudy -+ / p(s) w(s) ds +
SR [T
i >
_\_4 Py (ugy vi) + / M, (v) { ‘—‘— dy + / My (u) T 4114 =
. l )
’ I!'I + My q rs + I
= I3 [w] + I, [w] (3.13)

Les deux premiéres intégrales et la somme consti-
tuent /4[ew].
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F=TI;+ T+ g+ Iy désigne la frontiére de la
plaque ;

I, et T, sont les frontieres paralléles a l'axe Oy, Tyet [y
les frontiéres paralléles a I'axe Ou (voir fig. 1.7) ;

[ désigne d’éventuelles lignes d’appui, s 'abscisse cur-
viligne ;

p(u, ¢) est la répartition de surface des forces verticales,
p(s) une répartition de ligne des forces verticales (pour
les lignes d’appui par exemple) et P la force appli-
quée au point (ug, vz) ;

aw  Iw : ; .
~— et — sont les angles de rotation parallélement a
Ju Jv
Ou respectivement O et pris sur les bords 'y, [y respec-
tivement [, ;. Ces deux dérivées sont dirigées vers

Iextérieur ;

M,(v) et M,(u) sont des moments par unité de longueur
appliquées respectivement aux bords 'y, Ty et T, [y

Les expressions (3.12) et (3.13) montrent que Uy et U,
peuvent étre considérées comme des fonctionnelles de
w(u, ¢). La fonction w(u, ¢) cherchée doit rendre mini-
mum la fonctionnelle U[w] = Uy[w] — U,[w] et satis-
faire & toutes les conditions géométriques imposées :

Bord encastré: w =0 g—: = 0;sur [yletds
w:()g—:v:() sur I3 et Ty

(3.14)
Bord appuyé: w =0
Ligne ou point

d’appui : w =0
(A suivre.)
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but (tels que les tomes I et Il du T'raité de mécanique
rationnelle de Paul Appell), d’abord par I’heureuse con-
cision du texte, associée a une remarquable clarté. Il
s’en distingue aussi par la qualité des figures, qui sont
extrémement expressives et facilitent grandement la
lecture.

Mais ce qui distingue le plus ce livre, c’est le constant
souci qu’a Pauteur de faire ressortir la signification phy-
sique, c’est-a-dire réelle, des phénomenes étudiés, et
cela méme avant leur traduction mathématique. C’est
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des et théorémes généraux (Théorémes généraux et indé-
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cinétique. Méthode générale, théoréme et principe du
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travail virtuel. Exercices d’application. Paramétres géné-
ralisés. Equations de Lagrange. Notions de mécanique
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intéressant et utile complément, intitulé Notions som-
maires de Uhistoire de la mécanique, rédigé par un savant
qui fut un des meilleurs historiens modernes de la méca-
nique, le regretté René Dugas.

En résumé, le livre de M. Maurice Roy est conforme
aux meilleures traditions des éditions scientifiques fran-
caises, tout en étant extrémement original et person-
nel. C’est ce qui en fait sa véritable valeur. Nous ne
pouvons qu’étre reconnaissants a M. Roy d’avoir su
trouver le temps de publier ce volume, précisément a
une époque de sa carriére ou il est certainement sur-
chargé de travail. N'est-il pas en effet aujourd’hui pré-
sident de COSPAR, président de I'Union internationale
de mécanique théorique et appliquée (IUTAM) et pré-
sident de I’Académie des sciences de 1'Institut de
France, tout en étant le titulaire de la chaire de méca-
nique de I'Ecole polytechnique de Paris ? La maitrise
avec laquelle il a écrit son livre est en tout cas un élo-
quent témoignage de ses belles qualités de chercheur et
de pédagogue. Nous recommandons vivement la lec-
ture de cet ouvrage, qui fait aussi bien honneur a son
auteur qu’a la maison Dunod, qui I'a remarquablement
édité.
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Ce livre montre comment ’économie politique s’est
constituée comme science au XVIIIe siécle a partir
d’une «philosophie morale» indifférenciée, traversée
par I'idéologie rationnelle du progres. Il en est de méme
des autres sciences humaines auxquelles la pensée éco-
nomique emprunte ses fondements.
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