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LES DEFORMATIONS DES SYSTEMES ARTICULES SPATIAUX
TRÈS HYPERSTATIQUES

par A. ANSERMET, ingénieur, professeur1

La publication dans le numéro 3 de mai dernier d'une
solution pour le calcul de coupoles a donné lieu, de la
part de praticiens dans le domaine de l'hyperstatique, à
des suggestions de natures diverses ; pour un problème
aussi complexe, disent ces praticiens, il faut confronter
au moins deux solutions. Il est fait allusion surtout à la
méthode de B. Mayor qui, pour les systèmes gauches,
est encore actuelle avec ses équations aux déformations
à la base des calculs ; cette publication de 1926 a vu le
jour grâce à l'appui de l'Université de Lausanne et à
celui de la Société académique vaudoise. Elle fut
préfacée par le professeur M. Paschoud, mais ce dernier se
borna à analyser, de façon très judicieuse, les
chapitres I à IV ; lc lecteur se demande pourquoi il n'en fut
pas de même pour les chapitres V cl VI. Le chapitre V

1 Subside n° 3413 du Fonds national de la recherche scientifique
et subside de la Société académique vaudoise et avec la collaboration

du centre électronique de l'EPUL pour les calculs.

surtout présente de l'intérêt pour l'hyperstatique. La
méthode aux variations de coordonnées des nœuds est
devenue assez générale depuis 1926 ; il y a eu d'autres
publications s'inspirant du même principe, notamment
dans les Mémoires de l'Association internationale des

ponts et charpentes (voir [3]).
En principe, on peut distinguer deux modes de calcul :

1° Les équations aux déformations n'ont pas de termes
absolus

De plus, on ne forme pas de dérivées partielles de
l'énergie et le nombre des équations est égal à celui des
inconnues (voir [4]). Théoriquement, cette solution est
séduisante ; pratiquement, c'est moins le cas. Pour une
barre quelconque à un seul nœud libre N on a la forme
générale :

(1)

a,l)r y btDy y e(Dz mtTi v («Î + 6. + «.-!)
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les Dx, Dy, Dz étant les variations de coordonnées du

nœud, T la tension, m le module, v la variation de

longueur de la barre. En ajoutant des équations d'équilibre
on obtient un système d'équations suffisant. Considérons

un cas concret :

Sommet libre d'un pylône
(Cas de caractère didactique)

i barres

1 1-2
2 1-3
o 1-4
4 1-5
5 1-6
6 1-7
7 1-8

H

+ 0,490
+ 0,653

- 0,490
— 0,653
+ 0,707

0,00
— 0,707

0,653
0,490
0,653
0,490
0,408
0,816

¦0,408

+ 0,577
+ 0,577
+ 0,577
+ 0,577
+ 0,577
-j- 0,577
+ 0,577

"H Pi

1,33 0,75
1,33 0,75
1,33 0,75
1,33 0,75
1,00 1,00
1,00 1,00
1,00 1,00

Ces modules m des barres (Federungen) jouent un
grand rôle ; ils dépendent de la structure (coefficient E)
et des dimensions (longueur, section). On a 7 équations
aux déformations et 3 équations d'équilibre pour le

sommet libre 1, donc en tout 10 équations permettant
de déterminer les Dx, Dy, Dz et les 7 efforts axiaux ; par
hypothèse, le déterminant principal des équations n'est

pas nul et ne prend pas des valeurs dangereusement
petites. Cette éventualité sera examinée plus loin. Dans
les équations d'équilibre seulement, il y a des termes
absolus. Pour mémoire, rappelons que ce système
comporterait quatre inconnues hyperstatiques.

2° Les équations aux déformations ont des termes absolus
Ces termes ne sont pas nécessairement tous différents

de zéro ; en général, il y a beaucoup trop d'équations,
mais il est facile de lever cette ambiguïté car les dérivées

partielles de l'énergie sont formées.

Toujours pour le cas d'un nœud libre N, l'équation
aux déformations est :

(2) (tidx y bjdy y C{dz y fi vt miTi
(module m,- poids pf)

Ici, l'état initial pour la variation des coordonnées est

arbitraire ; des barres sont fictivement coupées et
remplacées par des forces. Cette étape du calcul est trop
connue pour nécessiter des commentaires ; par
hypothèse, le terme absolu / est donc calculé. Pour chaque
barre une équation. Celte solution permet de pousser à

fond une théorie des déformations. Toujours en ce qui
concerne le pylône on a 7 équations (2) et 3 inconnues.
Ici, la condition du minimum pour le travail de

déformation intervient ; en d'autres termes, les modules m

étant les inverses des poids p, il faut rendre minimum la

y
somme des niT2 ou celle des — ou encore celle des pv2.

m

Implicitement, le principe des moindres carrés se confond

avec la condition relative au travail de déformation ;

c'est ce qu'avait exprimé par exemple K. Friedrich
(Die Richtigkeit der Methode der kleinsten Quadrate aus
der Grundsätzen der Mechanik abgeleitet). Les m ou p
interviennent ici par leurs valeurs relatives; ils n'ont

pas les mêmes dimensions. Pratiquement, les «,-, /;,-, c<

sont les mêmes pour (1) et (2).
Kn formant les dérivées partielles par rapport à il.v, dy,

dz, on constate que les sommes des pav, pbv cl pev sont
nulles séparément ; ce sonl les équations normales sous
forme implicite (voir Bulletin technique, n° I!), 1964). En
combinant avec les équations (2) on trouve la matrice

2 0 0 0,5 0 0

2 0 0,5 0

Q 0,5

symétrique aux coefficients des inconnues, puis son
inverse aux coefficients de poids des inconnues.

Les éléments diagonaux
sont les sommes des paa,
pbb, pcc.
Les sommes des pab, pac,
pbc sont nulles

Qxx Qyy Qzz 0,5

fe fe fe 0

Ellipsoïde de déformations. Désignons par P„ le point
répondant à la condition du minimum et considérons ce

point comme origine d'un nouveau système de

coordonnées (dx), (dy), (dz). Dans le voisinage de P0 on a :

(3) cti(dx) y bi(dy) + ct(dz).

Les lieux des points pour lesquels le travail de
déformation est constant s'obtient en formant les sommes
des pv'v' et pvv ; ces surfaces sont ici sphériques avec
P0 comme centre.

2(dxf y 2(dy)2 y 2(dz)2 const.

y)2
Q*

(dy? (dzl_

fe fe
const.

mais le rayon de la sphère dite moyenne exige qu'on
fasse intervenir les v. Ce qui importe, pour les praticiens,
c'est la forme de ces surfaces et leur orientation.

Structure à deux nœuds libres. C'est de nouveau une
application de caractère didactique ; ici encore, on envisage

deux solutions :

Première solution : Celle de R. Mayor comporte les

neuf équations aux déformations suivantes :

(5)

«py y hiD'.h y yy + «'/y + y^ + ^fe
miTi vi (/ -!, 2 9)

i barres "i ''i ci a. <>i c. '"i
1

3

1-2
1-3
1-4

+ 0,5
+ 0,5

+ 0.5

0
0

+ 0,860

+ 0,866
— 0,866

0
.»

1

5

6

S

1-5
1-6
6-7
6-8
6-9

+ 0,5
+ 1

— 0,866
0

0
0 — 1

— 0,5
— 0,5
— 0.5

0
0
0

— 0,860

0

— 0,806
+¦ 0,806

0

1 *

9 6-10 -- 0,5 + 0,800 0

Les nœuds 2, 3, 4, 5, 7, 8, 9, 10 sont fixes. Il n'est fait
aucune hypothèse sur les forces extérieures. La barre 1-6

est parallèle à l'axe des x. Il y aurait encore les réactions
à considérer, mais on cn fait abstraction ici. Cette
première solution comporte donc 15 inconnues : 6 variations

de coordonnées (nœuds libres 1 et 6) et 9 efforts
axiaux (9 barres) ; les équations sont au nombre de 15

en comptant les 6 conditions d'équilibre. Il n'y a des

termes absolus que dans ces 6 équations (nœuds 1 et 6).

Deuxième solution : On a le système

(6)

v{ «,.<<.!', + v'.'/i y y-: y »y« + 'y'.v,; + yy. + /,:

(poids p()

Les nij étant égaux, on pose p, 1, ce I ayanl une
dimension (i 1,2 9).

Il faul rendre nulles les sommes des pav, pbv pc'v,
d'où les matrices aux coefficients îles équations normales
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et les inverses aux coefficients de poids des inconnues
(toutes deux symétriques). Elles ne sont pas rigoureusement

diagonales ; malgré cela, on peut réaliser la
forme sphérique pour les ellipsoïdes de déformation aux
nœuds libres 1 et 6.

2 0 0
0

1,5

0
0
0
0

1.5

0 r
0
0

0
0

1,5 i

2 3 0
2/3

0
0

2/3

+ 1/3 0
0 0
0 0

2/3 0

2/3

0
0

0

0

0

2/3

fe fe fe 2/3 fe fe fe 0

pour les deux nœuds

Les termes absolus sont les sommes des paf, pbf
pc'f.

Pour plus de deux nœuds libres, il est difficile de
réaliser la forme sphérique rigoureuse ; pratiquement, une
sphéricité approchée suffit.

L'équation (4) montre que les longueurs des axes
principaux sont proportionnelles aux racines carrées des
Qxx, fe, fe si les fe, fe, fe sont nuls. Ci-après, cette
propriété sera appliquée.

Quant à la méthode par les inconnues hyperstatiques,
elle donne lieu parfois à des valeurs dangereusement
petites pour le déterminant principal des équations
d'élasticité (voir [5]). Avec la nouvelle théorie, ce n'est
guère à craindre, comme Jacobi l'a montré (voir [8]).

Les termes absolus /; sont fournis par le système iso-
statique de référence calculé éventuellement par la
méthode de B. Mayor de la représentation plane ; les
nœuds spatiaux sont matérialisés par des plaques
mobiles. L'inconnue dz est convertie en une rotation.

Solution génércde. Dans les exemples précédents, les
éléments fe,, fe-, fe- étaient nuls ; si ce n'est pas le cas,
il faut résoudre l'équation en k :

(7)
fe-* fe/ fe
fe fe-* fe
fe fe fe-*

0

où les racines sont proportionnelles aux carrés des
longueurs des axes principaux (voir Rulletin technique,
n° 24, 1961) ; un calcul semi-graphique suffit parfois.

Application. Considérons (fig. 1) une structure à
30 barres dont 15 surabondantes ; ainsi l'argument
portant sur le nombre d'inconnues n'intervient pas, car il y
a 5 nœuds libres, donc 15 variations de coordonnées.
Aucune hypothèse n'est formulée quant aux forces
extérieures ; l'unité de mesure pour les x, y, z est arbitraire
(5m, 0m, 7m

Nœuds
libres

— 0,62 0 + 1,3 6 — 2,00 0 0
— 0,19 + 0,59 + 1,3 7 — 0.62 + 1,90 0
+ 0,50 + 0,365 + 1,3 8 + 1,62 + 1,18 0
+ 0,50 — 0,365 + 1,3 9 : 1,62 — 1,18 n
— 0,19 — 0,59 + 1,3 10 — 0,62 - 1,90 o

Nœuds
lixes

Longueurs des barres :

1-2 2-3 0,73 1-6 2-7 1,90
1-7 1-10 2-6 2,305 ; 1-8 1-9 2,845

Pour la déformation quadralique moyenne, on admet
m0 y \ ou m0 [pvv\ : 15, mais ce I a une dimension.

Les poids p sonl. donc inversement proportionnels
aux modules m des barres (Federungen).

Solution d'après R. Mayor
Pour une barre d'indice i et des nœuds Ng, N

(8)

cn(Dxg — Dxh) y h(Dy, — Dyh) + a(Dzg—Dzh)
module m, ou mrJj, poids p,- ou pgi,

/, on a :

niiTi

Le fait de changer d'état initial pour passer des variations

Dx, Dy, Dz aux dx, dy, dz est pratiquement sans
influence sur les «,-. bi, c, ; ces coefficients pourraient être
calculés par voie semi-graphique. On aurait 30 équations
du type (8) puis 15 équations d'équilibre, soit i 1, 2,
3 30 ; g 10 et h y 10. Les réactions peuvent être
traitées à part ; les Dx, Dy, Dz et dx, dy, dz sont nuls pour
les nœuds Ne à iV10. En tout 45 équations, les liaisons
non comprises.

1/

Figure 1.

En fait, dans cette solution, le nombre des inconnues
dépasse ce qui serait strictement nécessaire ; mais on
évite les coupures de barres, la formation des dérivées
partielles de l'énergie.

Dans les Mémoires de l'Association internationale des
ponts et charpentes, un treillis tridimensionnel fut
calculé, mais avec quatre barres surabondantes seulement
(voir [3]) ; il y a une combinaison d'équations aux
déformations et d'équilibre.

Tableau des pouls p, ou p,ji,

Nœuds h 1

il

(inverses des modules mi tics barres)
2 3 1 5 6 7 S 9 10

1

0,8
0,8
1

1,15

0,7
0,7

0,7
0,7

1,15
1

II,s
0,8

1

1,15
1

0,8

0,8
1

1,15
1

0,8
0,8
1

1,15
0,7 1 0,8 0,8 1

Ces poids pourraient être tous multipliés par un
certain facteur.

Les praticiens évitent d'avoir des poids ou très grands
ou très petits (plusieurs décimales). Il y a ci-dessus
30 valeurs pour 30 barres (1-2. 2-3 5-1, 5-10).
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Equations aux déformations

barre 1-2 — /- + v1 — 0,59(<&k[ — dx2) —
— 0,8l(dyi — dy*)

» 2-3 - U y "2 ~ 0,95(t/.r2 - dx3) +
+ 0,31(^-^1

3-4
4,-5

^ fa y v3 dij3 — <%4

- h y <'4 + 0,95(oIt4 — dx&) y
y 0,3l(dyt - dy.)

5-1 — /„ y "6 — 0,59(^1', — dx5) y
+ 0,81(dij1-dy5)

Pour les autres barres, on a les coefficients ci-après

1-6 + 0,73 0 + 0,684
1-7 0 — 0,824 + 0,564
1-8 — 0,79 — 0,412 + 0,457
1-9 — 0,79 + 0,412 + 0,457
1-10 0 + 0,824 + 0,564

Il viendrait encore 2-6, 2-7, 2-8

Chaque nœud libre 1, 2, 3, 4, 5 est relié aux nœuds

fixes 6, 7, 8, 9, 10.

Matrice symétrique des coefficients des équations normales (dérivées de l'énergie)

Résolution par voie électronique

2,115 0 0 —0,244 —0,335 0 0 0 0 0 0 0 —0,244 + 0,335 0

2,55 0 —0,335 —0,459 0 0 0 0 0 0 0 + 0,335 —0,459 0

1,51 0 0 0 0 0 0 0 0 0 0 0 0

2,51 + 0,127 0 —0,632 + 0,206 0 0 0 0 0 0 0

2,12 0 +0,206 —0,067 0 0 0 0 0 0 0

1,51 0 0 0 0 0 0 0 0 0

ml c^ [pvv] : 15
2,25 —0,222 0 0 0 0 0 0 0

2,51 0 0 —0,70 0 0 0 0

Cet élément présente de l'intérêt. 1,51 0 0 0 0 0 0

2,25 + 0,222 0 —0,632 —0,206 0

Solution de B. Mayor
2,51 0

1,51
—0,206

0
—0,067

0
0
0

Elle donne lieu à 30 équations aux déformations, 2,51 —0,127 0

15 équations d'équilibre (nœuds 1, 2, 3, 4,5). 2,12 0

Inconnues : 15 variations de coordonnées 1,51

30 efforts a xiaux 1 i

Matrice symétrique inverse aux coefficients de poids des inconnues

(Calcul par le centre de calcul électronique de l'EPUL)

+ 0,509 0 0 + 0,047 + 0,077 0 + 0,006 —0,001 0 +0,006 + 0,001 0 + 0,047 —0,077 0

0,440 0 + 0,056 + 0,091 0 + 0,007 —0,002 0 —0,007 —0,002 0 —0,056 + 0,091 0

0,663 0 0 0 0 0 0 0 0 0 0 0 0

nœud 1 0,445 — 0,020 0 + 0,124 —0,028 0 0 —0,008 0 —0,003 + 0,004 0

0,510 0 —0,051 + 0,012 0 —0,001 + 0,003 0 —0,004 + 0,007 0

0,662 0 0 0 0 0 0 0 0 0

nœud 2 0,487 + 0,034 0 —0,001 +0,010 0 0 +0,001 0

t 0,439 0 —0,010 + 0,124 0 + 0,008 + 0,003 0

0,662 0 0 0 0 0 0

nœud 3 0,487 —0,034 0 + 0,124 +0,051 0

0,439 0
0,662

+0,028
0

+0,012
0

0

0

nœud 4 0,445 + 0,020
0,510

0
0

-

nœud 5 0,662

Nœud 1 : Les axes principaux de l'ellipsoïde de

déformation sont proportionnels à

V 0,51 0,714, V 0,44 0,664, \/ 0,66 0,812

ce qui n'est pas défavorable. Ces valeurs sont indépendantes

des termes absolus /1.

Poids des barres à posteriori. Le calcul de ces poids est

parfois laborieux et les praticiens de la méthode des

moindres carrés y renoncent ; par cette méthode, les

poids sont amplifiés dans la plus forte mesure.
Par exemple pour la barre 1-6 on considère lc binôme :

0,73 dx1 y 0,684 dz1 d'où, en fonction des coefficients de

poids, on obtient: lV732x 0,509 + ÖSÖ842X 0,063

0,581 ; c'est l'inverse du poids à posteriori.
La somme des quotients des poids pi par ceux à

posteriori Pi est égal au nombre des inconnues, ici 15 ; cette

propriété est importante.

La déformation quadratique moyenne est m0 (poids 1)

ypt
5 barres p, 0,7 5x0,7x0,630= 2,21
5 » Pi =1,15 5x1,15x0,581= 3,35

10 »> p, 1 10x1 X 0,512= 5,12
10 » p, 0,8 10x0,8 x 0,533= 4,27

somme pi/Pi 14,95

(Théoriquement 15)

poids pi le plus fort 1,15 qui est le moinsC'est

amplifié.
En dernici lieu, consacrons quelques lignes à une

coupole Scluvedler (fig. 2).

La valeur de l'unité est aussi arbitraire (5m, 6m,

7m On possède tous les éléments pour calculer les

coefficients des équations aux déformations ; si, de plus,
les poids pi sont connus, on peut déterminer la matrice
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Coupole Schn>edler.

Nœuds x v Z Xcemis X y Z Nœuds
fixes

X y Z

1

2

3
4
5

— 0,62
— 0,19
+ 0,50
+ 0,50
— 0,19

0

+ 0,59
+ 0,365
— 0,365
-0,59

y i,84
+ 1,84
+ L84
+ 1,84
+ 1,84

6

7

8

9

10

— 1,31
— 0,405
+ 1,06
+ 1,06
— 0,405

0

+ 1,245
+ 0,772
— 0,772
— 1,245

+ 0,92
+ 0,92
+ 0,92
+ 0,92
+ 0,92

11
12
13
14
15

— 2,00
— 0,62
+ 1,62
+ 1,62
— 0,62

0

+ 1,90
+ 1,18
— 1,18
— 1,90

0
0
0
0
0

des coefficients des équations normales et sa réciproque
aux coefficients de poids des inconnues.

Le nombre des barres surabondantes peut devenir
élevé ; elles ne sont pas toutes tracées sur la figure. La
suite des calculs ne donne pas lieu à des commentaires.

15

71 «

Fig. 2. — Les forces extérieures seront choisies arbitrairement.

Conclusions. La solution par la variation des
coordonnées des nœuds gagne toujours plus de terrain,
surtout si le degré d'hyperstaticité est élevé. B. Mayor est,
dans ce domaine, un précurseur mais, en représentation
plane, ses équations aux déformations ne sont plus
linéaires, ce que l'on peut modifier. L ellipsoïde de défor¬

mation est un critère nouveau ; par exemple, ci-dessus,
les longueurs des axes principaux sont proportionnelles
à 0,71, 0,66 et 0,81, ce qui est assez favorable. Le but
de ces lignes était surtout de montrer, après K. Friedrich,

que le principe des moindres carrés et la condition
du travail de déformations ne pouvaient pas être
dissociés. Quant à la solution par les équations d'élasticité
(voir [5]), elle donne parfois lieu à des difficultés. Le
problème est vaste et se prêtera encore à bien des
développements. L'auteur de ces lignes exprime en outre sa
reconnaissance à la chaire de statique de l'EPF qui a
bien voulu traduire son texte relatif aux coupoles (voir
[10]) et vérifier les calculs.
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