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LES DEFORMATIONS DES SYSTEMES ARTICULES SPATIAUX

TRES HYPERSTATIQUES

par A. ANSERMET, ingénieur, professeur !

La publication dans le numéro 9 de mai dernier d’une
solution pour le calcul de coupoles a donné lieu, de la
part de praticiens dans le domaine de I'hyperstatique, &
des suggestions de natures diverses ; pour un probléme
aussi complexe, disent ces praticiens, il faut confronter
au moins deux solutions. Il est fait allusion surtout a la
méthode de B. Mayor qui, pour les systémes gauches,
est encore actuelle avee ses équations aux déformations
a la base des calculs ; cette publication de 1926 a vu le
jour grace a I'appui de I'Université de Lausanne et a
celui de la Société académique vaudoise. Elle fut pré-
facée par le professeur M. Paschoud, mais ce dernier se
borna a analyser, de facon tres judicieuse, les cha-
pitres I a IV ; le lecteur se demande pourquoi il n’en fut
pas de méme pour les chapitres Vet VI. Le chapitre V

* Subside n° 3413 du Fonds national de la recherche scientifique

et subside de la Société académique vaudoise et avee la collabora-
tion du centre électronique de 'EPUL pour les calculs,

surtout présente de l'intérét pour I'hyperstatique. La
méthode aux variations de coordonnées des nceuds est
devenue assez générale depuis 1926 ; il y a eu d’autres
publications s’inspirant du méme principe, notamment
dans les Mémoires de I’Association internationale des
ponts et charpentes (voir [3]).

En principe, on peut distinguer deux modes de calcul :
10 Les équations aux déformations n'ont pas de termes

absolus

De plus, on ne forme pas de dérivées partielles de
Iénergie et le nombre des équations est égal & celui des
inconnues (voir [4]). Théoriquement, cette solution est
séduisante ; pratiquement, c’est moins le cas. Pour une
barre quelconque & un seul nceud libre NV on a la forme
générale :

(1)

aDz + b Dy 4 ¢, Dz = mT; = v, (af 4 b7 + of = 1)
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les Dz, Dy, Dz étant les variations de coordonnées du
nceud, 7' la tension, m le module, ¢ la variation de lon-
gueur de la barre. En ajoutant des équations d’équilibre
on obtient un systéme d’équations suflisant. Considé-
rons un cas concret :

Sommet libre d’un pyline

(Cas de caracteére didactique)

1 = |barres a; bi ¢ m; P
1 1-2 | + 0,490 | + 0,653 | + 0,577 1,33 0,75
2 (13| + 0,653 | — 0,490 | + 0,577 | 1,33 0,75
3 1-4 | — 0,490 | — 0,653 | + 0,577 1,33 0,75
4 [1-5 [ — 0,653 | + 0,490 | + 0,577 1,33 0,75
5 [1-6 | + 0,707 | — 0,408 | + 0,577 | 1,00 1,00
6" 47 0,00 -+ 0,816 | + 0,577 1,00 1,00
7 |18 —0,707 | — 0,408 | + 0,577 | 1,00 1,00

Ces modules m des barres (Federungen) jouent un
grand role ; ils dépendent de la structure (coeflicient )
et des dimensions (longueur, section). On a 7 équations
aux déformations et 3 équations d’équilibre pour le
sommet libre 1, done en tout 10 équations permettant
de déterminer les Dx, Dy, Dz et les 7 efforts axiaux ; par
hypothése, le déterminant principal des équations n’est
pas nul et ne prend pas des valeurs dangereusement
petites. Cette éventualité sera examinée plus loin. Dans
les équations d’équilibre seulement, il y a des termes
absolus. Pour mémoire, rappelons que ce systeme com-
porterait quatre inconnues llypersta'tiques.

20 Les équations aux déformations ont des termes absolus
Ces termes ne sont pas nécessairement tous différents
de zéro ; en général, il y a beaucoup trop d’équations,
mais il est facile de lever cette ambiguité car les dérivées
partielles de Iénergie sont formées.
Toujours pour le cas d’un nceud libre N, I’équation
aux déformations est :

(2) aidy + bidy + cidz + f; = vy = m;T;

(module m; poids p;
I P

Iei, I’état initial pour la variation des coordonnées est
arbitraire ; des barres sont fictivement coupées et rem-
placées par des forces. Cette étape du calcul est trop
connue pour nécessiter des commentaires ; par hypo-
thése, le terme absolu [ est donc calculé. Pour chaque
barre une équation. Cette solution permet de pousser a
fond une théorie des déformations. Toujours en ce qui
concerne le pylone on a 7 équations (2) et 3 inconnues,
Iei, la condition du minimum pour le travail de défor-
mation intervient ; en d’autres termes, les modules m
étant les inverses des poids p, il faut rendre minimum la

2
o2

somme des m7?2 ou celle des — ou encore celle des pe2.
m r

Implicitement, le principe des moindres carrés se confond
avec la condition relative au travail de déformation ;
¢est ce qulavail exprimé par exemple K. Friedrich
(Die Richtigkeit der Methode der kleinsten Quadrate auws
der Grundsdtzen der Mechantlk abgeleitet). Les m ou p
interviennent ici par leurs valeurs relatives ; ils n’ont
pas les mémes dimensions. Pratiquement, les a;, by, ¢;
sont les mémes pour (1) et (2).

Iin formant les dérivées partielles par rapport a du, dy,
dz, on constate que les sommes des pag, pbe et pee sont
nulles séparément ; ce sont les équations normales sous
forme implicite (voir Bulletin technique, n® 19, 1964). En

combinant avec les équations (2) on trouve la matrice
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symétrique aux coeflicients des inconnues, puis son
inverse aux coeflicients de poids des inconnues.

Les é¢léments diagonaux | 2 0 0 0,5 0 0
sont les sommes des paa,
pbb, pce. 2 0 050
Les sommes des pab, pac,
pbe sont nulles ) 2 0,5

Qa:x = Qg/y e Ozz e 0’5
Oy = Ozz = @y =0

Ellipsoide de déformations. Désignons par P, le point
répondant & la condition du minimum et considérons ce
point comme origine d’'un nouveau systéme de coor-
données (dx), (dy), (dz). Dans le voisinage de P, on a :

(3) v, = v; + a;(dz) + bi(dy) + c;(dz).

Les lieux des points pour lesquels le travail de défor-
mation est constant s’obtient en formant les sommes
des po'v’ et pee; ces surfaces sont ici sphériques avec
P, comme centre,

2(dz)? 4+ 2(dy)?® + 2(dz)? = const.
(e | (dy)? | (dz)?

Oz '+ Qu = Q=

; ; : . .
mais le rayon de la sphére dite moyenne exige qu on

(4) ou = const.

fasse intervenir les ¢. Ce qui importe, pour les praticiens,
¢’est la forme de ces surfaces et leur orientation.

Structure a deux neeuds libres. C'est de nouveau une
application de caractere didactique ; icl encore, on envi-
sage deux solutions :

Premiére solution : Celle de B. Mayor comporte les
neuf équations aux déformations suivantes :

(5)
a Dz, = b Dy e, Dz, |- ((;I)‘ltﬁ — b;DyG — c;D:6 =

iy =00 (=12l 9)
i = | barres a; bi c; a; bi ¢ m;
1. 1-2 + 0,5 0 + 0,866
2 1-3 + 0,5 0 — 0,866 :
3 1-4 + 0,6 |+ 0,866 0 &
4 1-5 4+ 0,5 |— 0,866 0 Ly
5 1-6 +1 0 0 —1 0 0 4
6 6-7 —06 0 — 0,866 | o
7 6-8 — 0,5 0 + 0,866 | 3
8 6-9 — 0,5 |— 0,866 0 =
9 6-10 - 0,5 [+ 0,866 0

Les nceuds 2, 3, 4,5, 7, 8,9, 10 sont fixes. Il n’est fait
aucune hypothése sur les forces extérieures. La barre 1-6
est paralléle a 'axe des @. Il y aurait encore les réactions
a considérer, mais on en fait abstraction ici. Cette pre-
miére solution comporte done 15 inconnues: G varia-
tions de coordonnées (nceuds libres 1 et 6) et 9 efforts
axiaux (9 barres) ; les équations sont au nombre de 15
en comptant les 6 conditions d’équilibre. 11 n’y a des
termes absolus que dans ces 6 équations (nceuds 1 et 6).

Deuxiéme solution : On a le systéme
(6)

v, = adr, + by, + ¢dz + adag + {);rl]/ﬁ + cdzg + f;
(poids p;)

Les m; é¢tant égaux, on pose p; = 1, ce 1 ayant une
dimension (: =1,2 ... 9).

Il faut rendre nulles les sommes des pay, pbe ... pc'e,

d’ou les matrices aux coeflicients des équations normales




et les inverses aux coeflicients de poids des inconnues
(toutes deux symétriques). Elles ne sont pas rigoureu-
sement diagonales ; malgré cela, on peut réaliser la
forme sphérique pour les ellipsoides de déformation aux
nceuds libres 1 et 6.

00 0% 0 2130 0. 0L AS DD
1,5 0 000 2/3 0 005 =0
LR R 2/3 0000
010510 2/3 0 0

1,5 0 2/3 0

1,5 2/3

Qrz i Ow/ T Oaz = 2/3

pour les deux nceuds

er = Oyz = Ozx =0

Les termes absolus sont les sommes des paf, pbf . ..
pc'f.

Pour plus de deux nceuds libres, il est difficile de réa-
liser la forme sphérique rigoureuse ; pratiquement, une
sphéricité approchée sulffit.

L’équation (4) montre que les longueurs des axes
principaux sont proportionnelles aux racines carrées des
Oisy Oyzv @i s les Qzy, Qyz, Q.z sont nuls. Ci-apres, cette
propriété sera appliquée.

Quant a la méthode par les inconnues hyperstatiques,
elle donne lieu parfois a des valeurs dangereusement
petites pour le déterminant principal des équations
d’élasticité (voir [5]). Avec la nouvelle théorie, ce n’est
guére a craindre, comme Jacobi I'a montré (voir [8]).

Les termes absolus f; sont fournis par le systéme iso-
statique de référence caleulé éventuellement par la
méthode de B. Mayor de la représentation plane ; les
nceuds spatiaux sont matérialisés par des plaques
mobiles. L’inconnue dz est convertie en une rotation.

Solution générale. Dans les exemples précédents, les
éléments Qgy, Oy, Q. étaient nuls ; si ce n’est pas le cas,
il faut résoudre Péquation en k

il O;cz_k O,r y ():zz
( / ) (iyz () yz/"k Q _z/z_ =50

2z 2y zz

ou les racines sont proportionnelles aux carrés des
longueurs des axes principaux (voir Bulletin lechnique,
n0 24, 1961) ; un calcul semi-graphique sulfit parfois.

Application. Considérons (fig. 1) une structure a
30 barres dont 15 surabondantes ; ainsi ’argument por-
tant sur le nombre d’inconnues n’intervient pas, car il y
a 5 neeuds libres, donc 15 variations de coordonnées.
Aucune hypothése n’est formulée quant aux forces exté-
rieures ; 'unité de mesure pour les x, y, z est arbitraire
(BB ETm o Gy

\l;]l”“‘d: Y z Neeuds x Y 2

1 — 0,62 6 — 2,00 0 0

2 — 0,19 7 | —0.62 | + 1,90 0

3 + 0,50 8 + 1,62 -+ 1,18 0 Nceuds

4 + 0,50 (TS ISR Y DI (BRI 0 fixes

8. li=lo19 10 | —o0,62 L90 | 0

Longueurs des barres :
1-2 =2:3=10.73 1-6 = 2-7=1,90
1-7 =110 = 2-6 = 2,305 ; 1-8 = 1-9 = 2,845

Pour la déformation quadratique moyenne, on admet

2 i : ; 3
m, = 4+ 1 ou m) = [pee] : 15, mais ce 1 a une dimension.
Les poids p sont donc inversement proportionnels

aux modules m des barres (Federungen).

Solution d’aprés B. Mayor
Pour une barre d’indice ¢ et des nceuds Ny Nyonat
(8)
ai(Dxy — Day) + bi(Dy, — Dyy) + ¢i(Dzy— Dzp) = m;T;
module m; ou mg, poids p; ou Pon

Le fait de changer d’état initial pour passer des varia-
tions D, Dy, Dz aux dz, dy, dz est pratiquement sans
influence sur les a;, by, ¢; ; ces coellicients pourraient étre
calculés par voie semi-graphique. On aurait 30 équations
du type (8) puis 15 équations d’équilibre, soit i = 1, 2,
3 ...30; g=10 et h = 10. Les réactions peuvent étre
traitées a part ; les Dz, Dy, Dz et da, dy, dz sont nuls pour
les nceuds Ng & Ny En tout 45 équations, les liaisons
non comprises.

Figure 1.

En fait, dans cette solution, le nombre des inconnues
dépasse ce qui serait strictement nécessaire ; mais on
évite les coupures de barres, la formation des dérivées
partielles de Iénergie.

Dans les Mémoires de I’Association internationale des
ponts et charpentes, un treillis tridimensionnel fut cal-
culé, mais avec quatre barres surabondantes seulement
(voir [3]) ;il y a une combinaison d’équations aux défor-
mations et d’équilibre.

Tableaw des poids p; ou py

(inverses des modules m; des barres)

Nouds h=1 2 3 | 5 6 7 8 9 10
g =
1 0,7 1155 % 0,8 0, 850150,
2 0,7 1 116401 08 | 08
3 0,7 0.8 1 1,16 |11 0,8
| 0,7 | 08 0,8 1 L1671
5 0,7 1 0,8 0,8 i 1,15

Ces poids pourraient étre tous multipliés par un cer-
tain facteur.

Les praticiens évitent d’avoir des poids ou trés grands
ou trés petits (plusieurs décimales). Il y a ci-dessus

30 valeurs pour 30 barres (1-2, 2-3 91, 2 b=10)¢
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Equations aux déformations

— f1 + 1 = — 0,59(da; — dwy) —

Pour les autres barres,

Barres

‘a

bg

on a les coeflicients ci-apreés :

Neeud 1 : Les axes principaux de Pellipsoide de défor-
mation sont proportionnels a

A/ 0,51 = 0,714, 4/ 0,44 = 0,664,

ce qui n’est pas défavorable. Ces valeurs sont indépen-

4/0,66 = 0,812

dantes des termes absolus f;.

Potds des barres a postériori. Le calcul de ces poids est
parfois laborieux et les praticiens de la méthode des
moindres carrés y renoncent ; par cette méthode, les
poids sont amplifiés dans la plus forte mesure.

Par exemple pour la barre 1-6 on considére le bindme :
0,73 dx; + 0,684 dz; d’on, en fonction des coeflicients de
0,732% 0,509 + 0,6842x 0,663 =

) Lo
g'est I'inverse du ])()I(lS a I)OS‘U‘]]()II.

poids, on obtient :
=10,581 3

La somme des quotients des poids p; par ceux & pos-
tériori P; est égal au nombre des inconnues, ici 15 ; cette

propriété est importante.

40

7 L)
— 0,81(dy; — dys) 1-6 40,73 0 + 0,684
» 23 —fy + v, = — 0,95(dx, — dzg) + 17 0 — 0,824 s 0,564
f2 +20 314, —<d1/2) d 1-8 =) — 0,412 + 0,457
, ) Y2 J3 1-9 — 0,79 + 0,412 -+ 0,437
» 34 —f3+ vg=dy;—dy, 1-10 0 + 0,824 + 0,564
» 45 — [+ vy =+ 0,95(dz, — dz;) + : :
-6, 2-7, 2-8 ...
b — ) Il viendrait encore 2-6, 2-7, 2-8 ..
» b1 —fs+ v5=—0,59(dx; —da;) + "Chaque nceud libre 1, 2, 3, 4; 5 est relié aux nceuds
+ 0,81(dy; — dys) fixes 6, 7, 8, 9, 10.
Matrice symétrique des coefficients des équations normales (dérivées de I'énergie)
Résolution par voie électronique
2,415 0 0 [—0,244 |—0,335 0 0 0 0 0 0 0 —0,244 | +0,335 0
2455 0 '1—0,385 [—0,459 | - 0 0 0 0 0 0 0 -+0,335 | —0,459 0
1:51 0 0 0 0 0 0 0 0 0 0 0 0
2,51 |+0,127 0 |—0,632 |+40,206 0 0 0 0 0 0 0
242 0 -+0,206 [—0,067 0 0 0 0 0 0 0
1,51 0 0 0 0 0 0 0 0 0
9 a5 2,25 |—0,222 0 0 0 0 0 0 0
my o< [pev] : 251 0 0o =070 0 0 0 0
Cet élément présente de l'intérét. 1,51 0 0 0 0 0 0
2,25 |40,222 0 —0,632 | —0,206 0
Solution de B. Mayor 2,51 1 & #0’()206 ——0’867 8
Elle donne lieu a 30 equations aux déformations, ’ 2,51 |—0,127 0
15 équations d’équilibre (nceuds 1,2, 3, 4, 5): 2:42 0
Inconnues : 15 variations de Coordonnees 1,51
30 efforts axiaux 7'
Matrice symétrique inverse aux coefficients de poids des inconnues
(Calcul par le centre de calcul ¢lectronique de IEPUL)
-+0,509 0 0 -+0,047 {40,077 0 -+0,006 [—0,001 0 -+0,006 {40,001 0 +0,047 [—0,077 0
0,440 0 -+0,056 {40,091 0 -+0,007 |—0,002 0 —0,007 |—0,002 0 |—0,056 |+40,091 0
0,663 0 0 0 0 0 0 0 0 0 0 0 0
nceud 1 0,445 [—0,020 0 -+0,124 |—0,028 0 0 —0,008 0 |—0,003 [+0,004 0
. 0,510 0 |—0,051 |+0,012 0 [—0,001 {40,003 0 |—0,004& |{+0,007 0
0,662 0 0 0 0 0 0 0 0 0
neeud 2 0,487 |+0,034 0 [(—0,001 {40,010 0 0 -+0,001 0
. 0,439 0 |—0,010 |40,124 0 |-40,008 |+0,003 0
0,662 0 0 0 0 0 0
nceud 3 0,487 |—0,034 0 40,124 [+40,051 0
0,439 0 ([+0,028 |40,012 0
0,662 0 0 0
nceud 4 0,445 |+40,020 0
0,510 0
noaud 505662

La déformation quadratique moyenne est my (poids 1)

1/P;

5 barres p;= 0,7 5x0,7 x0,630 = 221
5 » pi=115 5x1,15x0,581 = 3,35
100 v pee . 40X X 0PI =540
10 » p=08 10x0,8 x0,533 = 427

somme p;/P; = 14,95

(Théoriquement 15)

Cest le poids p; le plus fort 1,15 qui est le moins
amplifié,

Iin dernier lieu, consacrons quelques lignes a une
coupole Schevedler (fig. 2).

La

T o

valeur de lunité est aussi arbitraire (dW, 6™,
.). On posséde tous les ¢léments pour calculer les
coeflicients des équations aux déformations ; si, de plus,
les poids p; sont connus, on peut déterminer la matrice




Coupole Schsyedler.

Nceuds T Y J. N¢euds ]
1 — 0,62 0 + 1,84 6 =131
2 — 0,19 + 0,59 + 1,84 i1 — 0,405
3 + 0,50 -+ 0,365 + 1,84 8 + 1,06
4 G (e T 41,84 9 11,06
) — 0,19 — 0,59 + 1,84 10 — 0,405

des coefficients des équations normales et sa réciproque
aux coeflicients de poids des inconnues.

Le nombre des barres surabondantes peut devenir
élevé ; elles ne sont pas toutes tracées sur la figure. La
suite des calculs ne donne pas lieu & des commentaires.

Fig. 2. — Les forces extérieures seront choisies arbitrairement.

Conclusions. La solution par la variation des coor-
données des neeuds gagne toujours plus de terrain, sur-
gag J )

tout si le degré d’hyperstaticité est élevé. B. Mayor est
t=] b

dans ce domaine, un précurseur mais, en représentation
plane, ses équations aux déformations ne sont plus
linéaires, ce que I’on peut modifier. I/ellipsoide de défor-

ki

v z Neeuds z v z
fixes

0 + 0,92 11 — 2,00 0 0

+ 1,245 -+ 0,92 12 — 0,62 + 1,90 0

-+ 0,772 -+ 0,92 13 + 1,62 + 1,18 0

250,779 5 asi0:92 2516 = 18 0

— 1,245 + 0,92 15 — 0,62 | —1,90 0

mation est un critére nouveau ; par exemple, ci-dessus,
les longueurs des axes principaux sont proportionnelles
a 0,71, 0,66 et 0,81, ce qui est assez favorable. Le but
de ces lignes ¢était surtout de montrer, aprés K. Fried-
rich, que le principe des moindres carrés et la condition
du travail de déformations ne pouvaient pas étre dis-
sociés. Quant & la solution par les équations d’élasticité
(voir [5]), elle donne parfois lieu a des difficultés. Le
probléeme est vaste et se prétera encore a bien des déve-
loppements. L’auteur de ces lignes exprime en outre sa
reconnaissance a la chaire de statique de 'EPF qui a
bien voulu traduire son texte relatif aux coupoles (voir
[10]) et vérifier les calculs.
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