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Fig. 4. — Disposition chantier Pinios.

quatre heures. L'installation à cet effet comprenait deux

groupes « excavation-bétonnage ».

La tête du diaphragme était construite en béton armé
conventionnel, de façon à pénétrer dans un chapeau
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5. — Tête de tapis argileux.

argileux plastique de couverture sur une longueur de
3 m environ. (Fig. 5.)

Pour le contrôle de son efficacité, on a procédé à une
série de mesures piézométnques en amont et en aval
du diaphragme. Il est intéressant de signaler que même
en cours de construction (série impaire de panneaux
seulement), l'on pouvait déjà déceler un rabattement
de la nappe souterraine, ce qui montre bien que les

niveaux amont et aval de la nappe d'eau, au droit du

panneau considéré, étaient indépendants.
De pareils diaphragmes ont été exécutés en Grèce

également comme enceinte de fouilles à ciel ouvert pour
réduire les venues d'eau dans la zone d'excavation, et
comme murs de quai en pleine mer jusqu'à 10 m de

profondeur d'eau, l'un des côtés de ce diaphragme-mur
étant remblayé par la suite pour former la plate-forme
du quai.

LE CALCUL DES COUPOLES

À DEGRÉ D'HYPERDÉTERMINATION ÉLEVÉ

par A. ANSERMET, ingénieur, professeur

Lorsque dans un système articulé (coupoles, etc.) le

nombre des éléments surabondants (liaisons, barres) est

peu élevé, le praticien ne se heurte en général pas à de

grandes difficultés ; il peut choisir entre la solution
judicieusement développée à l'aide du calcul matriciel
dans le «Baustatik » du Prof. Dr Stüssi ou celle, analytique

mais très différente, de B. Mayor (voir [1]) basée

surtout sur des équations aux déformations.
Si le degré d'hyperdétermination est élevé, le

problème est plus complexe ; la solution par les inconnues

hyperstatiques n'est pas nécessairement la meilleure.
Dans certaines publications même récentes ([2] p. 77-

92) on préconise le fractionnement du calcul pour éviter
des calculs trop laborieux ; dans les réseaux télé-

métriques on procède parfois de même et on sait l'analogie

existant entre ces deux problèmes 1. Cette conception

est maintenant plus ou moins dépassée grâce aux
progrès réalisés en calcul électronique. En général il y a

lieu d'inverser des matrices symétriques et, dans ce

domaine, on réalise de véritables performances par voie

électronique.

us. vr
1U 5 ?^.

Un élément de base est encore la condition connue
étendue à toutes les barres

(1) A

[pvv] minimum (voir [3]).

2. [v*p)

Il est assez rare que les praticiens de la méthode des

moindres carrés bénéficient de poids p à priori aussi bien
définis. L'interprétation est aisée :

5 efforts axiaux dans les barres (Stabkräfte) ;

£= coefficients d'élasticité;
s longueurs des barres ;

F sections transversales des barres ;

v allongements ou raccourcissements des barres ;

A énergie de déformation.

: p « Die Analogie zwischen den Stabfachwerken und Streckennetzen
wurde bald erkannt», dil-on oulre-Rhin.

Publication au bénéfice de subsides du Fonds national de la
Recherche scientifique et de la Société académique vaudoise.
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On a de plus
(dx), (dy), (dz)

dx, dy, dz

P,P

Variations des coordonnées des nœuds

(solution B. Mayor) ;

Variations des coordonnées des nœuds

(pour réaliser la condition (1) ;

poids respectivement à priori et à

posteriori.

révolution dans le choix des méthodes de calcul. Les
coordonnées des nœuds sont choisies arbitrairement :

Avant de poursuivre il convient de rendre hommage
à B. Mayor pour sa solution analytique portant sur une
combinaison d'équations d'équilibre et d'équations aux
déformations. Ces dernières sont linéaires et homogènes

par rapport aux inconnues (dx), (dy) (dz), S, ce qui les

caractérise. Mais le nombre d'inconnues peut être élevé

(il y a encore les réactions). Les équations aux
déformations en dx, dy, dz ne sont pas homogènes, car l'état
initial, à partir duquel les coordonnées varient, n'est pas
le même.

Liaisons. La forme générale est linéaire et homogène :

F(dx, dy, dz) 0

En pratique on choisira un système de coordonnées
apportant des simplifications par exemple, pour la
coupole du Reichstag :

Nœuds x y z Nœuds x V z

1 13,5 22,88 14,9 7 26,7 32,0 0
2 26,7 22,88 14,9 8 38,2 22,88 0
3 26,7 11,12 14,9 9 38,2 11,12 0
4 13,5 11,12 14,9 10 26,7 2,0 0
5 2,0 22,88 0 11 13,6 2,0 0
6 13,5 32,0 0 12 2,0 11,12 0

dz 0 pour les nœuds 5 à 12

dx 0 » »6 et 10

dy 0 » » 8 et 12

donc en tout douze liaisons simples.
Il y a des ellipsoïdes de déformation pour les nœuds

1 à 4, des ellipses pour les nœuds 5, 7, 9, 11.

Etats transitoires. Dans les réseaux radiotélémétrés
on coupe les côtés surabondants ; dans les systèmes
articulés on fait de même avec les barres. Au point de vue
théorique il est essentiel de remarquer que ces états sont
arbitraires. Le calcul du système, après qu'on a

remplacé les barres coupées par des forces, donne lieu à

à l'application de la représentation plane d'après
B. Mayor; ce fut une idée géniale de matérialiser les

nœuds par des plaques mobiles. Cette étape du calcul
fournit les termes absolus des équations aux déformations;

mais ces éléments ne sont pas même nécessaires

lorsqu'on veut savoir si les ellipsoïdes de déformation
sont pfïrs ou moins aplatis ou allongés. C'est ce que le

cas concret ci-après montrera.

Calcul d'une coupole Schwedlcr

Cet exemple est tiré de la « Baustatik » ([3] p. 305) ;

il ne donnera lieu qu'à dix barres surabondantes mais
le calcul gagnera en clarté.

Par voie électronique l'inversion de la matrice
symétrique des coefficients des équations normales dure
45 secondes seulement ; on peut donc envisager une vraie

\Tœuds x y Z

1 + 1 0 + 1

2 0 — i + 1

3 — 1 0 + 1

4 0 + 1 + 1

0 + 2 0 0
6 0 — 2 0
7 — 2 0 0
8 0 + 2 0

L'unité est quelconque 8m, 10m, 12m

C'est un exemple de caractère didactique. Il n'est fait
aucune hypothèse sur les forces extérieures.

A la base du calcul il y a une équation aux
déformations par barre comme dans la solution analytique
de B. Mayor ; au maximum il y a 28 barres et au moins
6 liaisons, donc 6 variations de coordonnées nulles au
lieu de 12 pour la coupole du Beichstag. L'état
fondamental (Grundsystem) donne lieu à l'application de la

représentation plane, solution connue (voir [1]).
C'est la condition du minimum pour [pvv] qui importe

(2) v{ Ui(dxg — dxh) + bi(dyg — dyh) +
et (dzg — dzh) + fi (poids pf)

pour la barre g — h d'indice i, les variations de coordonnées

étant les inconnues. On verra que dans la première
partie des calculs les termes absolus n'interviennent
pas ; quant aux poids à priori ils sont proportionnels à

(EiFijsi). Ils furent choisis ici pour réduire l'influence
des éléments non diagonaux de la matrice inverse ;

le cas idéal, à certains égards, est celui où cette matrice
est diagonale, mais ce n'est pas facile à réaliser. Pour
réduire à 12 le nombre des inconnues, admettons
12 liaisons, c'est-à-dire que les dx, dy, dz des 4 nœuds

5, 6, 7, 8 sont nuls. Seuls les nœuds 1, 2, 3, 4 sont libres ;

il y a 22 barres, 10 de celles-ci étant surabondantes.
Le nombre des inconnues pourrait être inférieur à celui
des barres surabondantes.

Le calcul est rapide : on forme successivement les

coefficients en, bi, c,- puis les équations normales (demi-
dérivées de l'énergie) et enfin la matrice aux coefficients
de poids (en diagonale les quadratiques). Ce problème
fut déjà traité (voir [4] et [5]) sous divers aspects.

Coefficients :

[paa], [pbb].
[pab], [pac]
Termes absolus

[paf], [pbf]....

Déformation quadratique moyenne
relative à l'unité de poids :

mj ^ [pvv] : 10. Provisoirement on'o :

pose par fois : 1

Valeurs indépendantes des

fi

y' 0,339 0,582

¦y/t 0,535 0,731

V 0,935 0,967

Grâce au choix des axes de coordonnées on obtient
les demi-axes principaux des cpiatre ellipsoïdes de
déformation (pour m'Q 1) soit 0,582, 0,731, 0,967 la somme
(0,339 + 0,535 + 0,935 1,809) est un invariant. Le
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Tableau des coefficients des équations aux déformations et des poids

Barres dxl A/l dzt dx2 dy2 dz2 dx3 */3 dz, dx/. dy. dzi Vi Barres

1-2 + 0,707 + 0,707 — 0,707 — 0,707 0,80 1-2
2-3 + 0,707 — 0,707 — 0,707 + 0,707 0,80 2-3
3-4 — 0,707 — 0,707 + 0,707 + 0,707 0,80 3-4
4-1 + 0,707 — 0,707 — 0,707 + 0,707 0,80 4-1
1-3 + 1,00 — 1,00 0,70 1-3
2-4 — 1,00 + 1,00 0,70 2-4
1-5 — 0,707 0,00 + 0,707 1,27 1-5
1-6 + 0,41 + 0,815 + 0,41 1,00 1-6
1-7 + 0,949 0,00 + 0,316 1,00 1-7
1-8 + 0,41 — 0,815 + 0,41 1,00 1-8
2-5 — 0,815 — 0,41 + 0,41 1,00 2-5
2-6 0,00 + 0,707 + 0,707 1,27 2-6
2-7 + 0,815 — 0,41 + 0,41 1,00 2-7
2-8 0,00 — 0,949 + 0,316 1,00 2-8
3-5 — 0,949 0,00 + 0,316 1,00 3-5
3-6 — 0,41 + 0,815 + 0,41 1,00 3-6
3-7 + 0,707 0,00 + 0,707 1,27 3-7
3-8 — 0,41 — 0,815 + 0,41 1,00 3-8
4-5 — 0,815 + 0,41 + 0,41 1,00 4-5
4-6 0,00 + 0,949 + 0,315 1,00 4-6
4-7 + 0,815 + 0,41 + 0,41 1,00 4-7
4-8 0,00 — 0,707 + 0,707 1,27 4-8

Malrice symétrique des coefficients des équations normales (Résolution par calcul électronique)

3,37 0,00 0,00 — 0,40 — 0,40 0,00 — 0,70 0,00 0,00 + 0,40 + 0,40 0,00
2,14 0,00 — 0,40 — 0,40 0,00 0,00 0,00 0,00 +"0,40 — 0,40 0,00

1,07 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
2,14 0,00 0,00 — 0,40 + 0,40 0,00 0,00 0,00 0,00

3,37 0,00 + 0,40 — 0,40 0,00 0,00 — 0,70 0,00
1,07 0,00 0,00 0,00 0,00 0,00 0,00

3,37 0,00
2,14

0,00
0,00
1,07

— 0,40
— 0,40

0,00
2,14

— 0,40
— 0,40

0,00
0,00
3,37

0,00
0,00
0,00
0,00
0,00
1,07

Matrice symétrique aux coefficients de poids (inverse de la précédente)
(Calcul par le centre de calcul électronique de l'EPUL)

0,339 0
0,535

0
0

0,935

+ 0,079
+ 0,102

0

0,535

+ 0,025
+ 0,079

0
0

0,339

0

0
0
0
0

0,935

+"0,083'
0
0

+ 0,079
— 0,025

0
0,339

0

— 0,102
0

— 0,102
+ 0,079

0
0
0,535

0
0
0
0
0
0
0
0

0,935

+ 0,079
— 0,008

0
— 0,008

0
0

+ 0,079
+ 0,102

0
0,535

— 0.025
+ 0,079

0
0

+ 0,008
0

+ 0,025
+ 0,079

0
0
0,339

0
0
0
0
0
0
0
0
0
0
0

0,935

nœud 1

nœud 2

nœud 3

nœud 4

grand axe est vertical et le petit dirigé suivant la
diagonale 1-3. Le calcul devient définitif quand mjj est
connu (dimensions fournies par l'équation(l) Mais
jusque-là les termes absolus /j ne jouent pas de rôle.

Poids des barres à posteriori Pi. On sait que la somme
[pi : Pî] est égale au nombre des inconnues, ce qui
caractérise la méthode des moindres carrés. Ces Pi sont
les poids des binômes (—fi + vf)

On trouve : pi : Pi
Arêtes supérieures

(1-2,2-3,3-4,4-1) 0,472 x 4 1,89
Diagonales face supé-

0,358 X 2rieure (1—3,2-4)
Arêtes 1-5, 2-6,

3-7, 4-8
Diagonales faces la

i-alcs

(1-6,2-5.
Barres 1-7, 2-8,

3-5, 4-6

0,81

0,572 x 8

0,398 X 4

[&: Pi]

0,716 Ici les poids
les plus fai-

3,24 blés sont am¬

plifiés plus
fortement

4,576 que les

autres
1,59

12,01 (nombre
d'inconnues)

par exemple pour la diagonale 1 - 3 :

1 : Ps 0,339 + 0,339 - 2 x 0,083 0,512 ;

p5:P5 0,70 x 0,512 0,358
Ces calculs constituent un précieux contrôle.

En résumé, à part des solutions par approximations,
on peut former les dérivées de l'énergie en fonction des
inconnues hyperstatiques ou faire varier les coordonnées
des nœuds (B. Mayor) ; la solution nouvelle fait appliquer

des dérivées mais en fonction des variations de
coordonnées, ce qui lui confère un caractère général,
surtout quant à l'étude des déformations.
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