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Fig. 4. — Disposition chantier Pinios.

quatre heures. L'installation & cet effet comprenait deux
groupes « excavation-bétonnage ».

La téte du diaphragme était construite en béton armé
conventionnel, de fagcon & pénétrer dans un chapeau
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Fig. 5. — Téte de tapis argileux.

argileux plastique de couverture sur une longueur de
3 m environ. (Fig. 5.)

Pour le contrdle de son efficacité, on a procédé a une
série de mesures piézométriques en amont et en aval
du diaphragme. Il est intéressant de signaler que méme
en cours de construction (série impaire de panneaux
seulement), I'on pouvait déja déceler un rabattement
de la nappe souterraine, ce qui montre bien que les
niveaux amont et aval de la nappe d’eau, au droit du
panneau considéré, étalent indépendants.

De pareils diaphragmes ont été exécutés en Grece
également comme enceinte de fouilles & ciel ouvert pour
réduire les venues d’eau dans la zone d’excavation, et
comme murs de quai en pleine mer jusqu'a 10 m de
profondeur d’eau, I'un des cotés de ce diaphragme-mur
étant remblayé par la suite pour former la plate-forme
du quai.

LE CALCUL DES COUPOLES

A DEGRE D'HYPERDETERMINATION ELEVE

par A. ANSERMET, ingénieur, professeur

Lorsque dans un systeme articulé (coupoles, ete.) le
nombre des éléments surabondants (liaisons, barres) est
peu élevé, le praticien ne se heurte en général pas a de
grandes diflicultés ; il peut choisir entre la solution
judicieusement développée a I'aide du calcul matriciel
dans le « Baustatik » du Prof. Dr Stiissi ou celle, analy-
tique mais trés différente, de B. Mayor (voir [1]) basée
surtout sur des équations aux déformations.

Si le degré d’hyperdétermination est élevé, le pro-
bleme est plus complexe ; la solution par les inconnues
hyperstatiques n’est pas nécessairement la meilleure.
Dans certaines publications méme récentes ([2] p. 77-
92) on préconise le fractionnement du calcul pour éviter
des calculs trop laborieux; dans les réseaux télé-
métriques on procéde parfois de méme et on sait 'ana-
logie existant entre ces deux problemes 1. Cette concep-
tion est maintenant plus ou moins dépassée grice aux
progrés réalisés en caleul électronique. Fn général il y a
lieu d’inverser des matrices symétriques et, dans ce
domaine, on réalise de véritables performances par voie
électronique.
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Un élément de base est encore la condition connue
étendue a toutes les barres

1) 4= (37) = 2 (@) (35) == =

= [py¢] = minimum (voir [3]).

11 est assez rare que les praticiens de la méthode des
moindres carrés bénéficient de poids p a priori aussi bien
définis. L’interprétation est aisée :

S = efforts axiaux dans les barres (Stabkrifte) ;

E = coeflicients d’élasticité ;

s = longueurs des barres ;

F = sections transversales des barres ; _

¢ = allongements ou raccourcissements des barres ;
A = énergie de déformation.

© §* « Die Analogie zwischen den Stabfachwerken und Streckennetzen
wurde bald erkannt», dit-on outre-Rhin.

Publication au bénéfice de subsides du Fonds national de la
Recherche scientifique et de la Société académique vaudoise.




On a de plus :
(dz), (dy), (dz) Variations des coordonnées des nceuds
(solution B. Mayor) ;

dz, dy, dz Variations des coordonnées des nceuds
(pour réaliser la condition (1)) ;
p, P poids respectivement & priori et a

postériori.

Avant de poursuivre il convient de rendre hommage
a B. Mayor pour sa solution analytique portant sur une
combinaison d’équations d’équilibre et d’équations aux
déformations. Ces derniéres sont linéaires et homogeénes
par rapport aux inconnues (dz), (dy) (dz), S, ce qui les
caractérise. Mais le nombre d’inconnues peut étre élevé
(il y a encore les réactions). Les équations aux défor-
mations en dz, dy, dz ne sont pas homogénes, car I’état
initial, & partir duquel les coordonnées varient, n’est pas
le méme.

Liaisons. La forme générale est linéaire et homogene :
F(dz, dy, dz) = 0

En pratique on choisira un systéme de coordonnées
apportant des simplifications par exemple, pour la
coupole du Reichstag :

Neceuds T y Z Neeuds z y z
1 13,5 22,88 | 14,9 T 26,7 32,0 0
9 26,7 22,88 | 14,9 8 38,2 22,88 0
3 26,7 11,12 | 14,9 9 38,2 11,12 0
4 13,5 11,12 | 14,9 10 26,7 2,0 0
5 2,0 22,88 0 11 13,6 2,0 0
6 13,6 32,0 0 12 2,0 11,121 0

dz = 0 pour les nceuds 5 a 12
de =0 » »  Get10
dy=0 » »  8et12

donc en tout douze liaisons simples.
Il 'y a des ellipsoides de déformation pour les nceuds
1 a 4, des ellipses pour les neeuds 5, 7, 9, 11.

Etats transitoires. Dans les réseaux radiotélémétrés
on coupe les edtés surabondants ; dans les systémes arti-
culés on fait de méme avec les barres. Au point de vue
théorique il est essentiel de remarquer que ces états sont
arbitraires. Le calcul du systéme, aprés qu'on a rem-
placé les barres coupées par des forces, donne lieu a
a lapplication de la représentation plane d’apreés
B. Mayor; ce fut une idée géniale de matérialiser les
neeuds par des plaques mobiles. Cette étape du caleul
fournit les termes absolus des équations aux déforma-
tions; mais ces éléments ne sont pas méme nécessaires
lorsqu’on veut savoir si les ellipsoides de déformation
sont plits ou moins aplatis ou allongés. C’est ce que le
cas concret ci-aprés montrera,

Calcul d’une coupole Schwedler
Cet exemple est tiré de la « Baustatik » ([3] p. 305) ;
il ne donnera lieu qu’a dix barres surabondantes mais
le calcul gagnera en clarté.
Par, voie électronique Pinversion de la matrice
symétrique des coeflicients des équations normales dure
45 secondes seulement ; on peut done envisager une vraie

révolution dans le choix des méthodes de calcul. Les
coordonnées des nceuds sont choisies arbitrairement :

Ay
: Neeuds | @ y z
1 +1 0 |+1
2 0 [—1]+1
3 —1 0 |+1
_____ . A 0 [+1]+1
% 5 + 2 0 0
6 0 [—2] O
y 7 —2] 0 0
8 0 |4+2]| 0 1
%

L’unité est quelconque 8m, 10m 12m .

C’est un exemple de caractére didactique. Il n’est fait
aucune hypothese sur les forces extérieures.

A la base du calcul il y a une équation aux défor-
mations par barre comme dans la solution analytique
de B. Mayor ; au maximum il y a 28 barres et au moins
6 liaisons, donc 6 variations de coordonnées nulles au
lieu de 12 pour la coupole du Reichstag. L’état fonda-
mental (Grundsystem) donne lieu a 'application de la
représentation plane, solution connue (voir [1]).

(’est la condition du minimum pour [pe¢] qui importe

) vi = ai(dxg — day) + bi(dy, — dyn) +
ci (dzg — dz) + fi (poids pi)

pour la barre g — & d’indice i, les variations de coordon-
nées étant les inconnues. On verra que dans la premiere
partie des calculs les termes absolus n’interviennent
pas ; quant aux poids a priori ils sont proportionnels a
(E;F;/s;). 1ls furent choisis ici pour réduire I'influence
des éléments non diagonaux de la matrice inverse ;
le cas idéal, a certains égards, est celui ou cette matrice
est diagonale, mais ce n’est pas facile a réaliser. Pour
réduire a4 12 le nombre des inconnues, admettons
12 liaisons, c’est-a-dire que les dw, dy, dz des 4 nceuds
5, 6, 7, 8 sont nuls. Seuls les nceuds 1, 2, 3, 4 sont libres ;
il y a 22 barres, 10 de celles-ci étant surabondantes.
Le nombre des inconnues pourrait étre inférieur a celui
des barres surabondantes.

Le calcul est rapide: on forme successivement les
coeflicients a;, b;, ¢; puis les équations normales (demi-
dérivées de I'énergie) et enfin la matrice aux coeflicients
de poids (en diagonale les quadratiques). Ce probléme
fut déja traité (voir [4] et [D]) sous divers aspects.

Coeflicients : Déformation quadratique moyenne
Tpaal, [pbb]..... relative & 'unité de poids :

[pabl, [pac]..... mg = [pee] : 10. Provisoirement on
Termes absolus

(pafl, [pbf].. ...

: s
pose parfois: my = 1

l 2/ 0,339 = 0,582
Valeurs indépendantes des \/‘ 0,535 = 0,731
fi l\/ 0,935 = 0,967

Grace au choix des axes de coordonnées on obtient
les demi-axes principaux des quatre ellipsoides de défor-
mation (pour mf, = 1) soit 0,582, 0,731, 0,967 la somme
(0,339 + 0,635 4 0,935 = 1,809) est un invariant. Le
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Tableau des coefficients des équations aux déformations et des poids

Barres dzy dyy dzy dz, dys dzg drg dyg dzgy dxy dyg dzy i Barres
12 | 40,707 | + 0,707 —0,707 | —0,707 0,80 | 1-2
2-3 + 0,707 | — 0,707 —0,707 | + 0,707 0,80 | 23
3-4 — 0,707 | — 0,707 + 0,707 | + 0,707 0,80 | 34
41 | 40,707 | —0,707 —0,707 | + 0,707 0,80 | 41
13 | +1,00 —1,00 0,70 | 1-3
2-4 —1,00 + 1,00 0,70 | 24
15 | —0,707 0,00 | + 0,707 1,27 | 15
16 | +041 | +0,815 | + 041 1,00 | 16
17 | + 0,949 0,00 | + 0,316 1,00 | 17
18 | 4041 | —0815 | 4 041 1,00 | 18
2.5 —0815 | —041 | + o041 1,00 | 25
26 0,00 | 40,707 | + 0,707 1,27 | 26
27 +0815 | —041 | + 041 1,00 | 27
2-8 0,00 | —0,949 | + 0,316 1,00 | 28
35 — 0,049 0,00 | + 0,316 1,00 | 35
3-6 —041 | + 0815 | + 041 1,00 | 36
3-7 + 0,707 0,00 | + 0,707 1,27 | 37
3-8 —041 | —0,815 | 4 041 1,00 | 38
4-5 —0815 | +041 | +041 | 1,00 | 45
46 0,00 |+ 0,949 [ + 0315 | 1,00 | 4-6
47 +0815 | +041 | 4041 [ 1,00| 47
4-8 0,00 |—0,707 | 40,707 | 1,27 | 4-8
Matrice symétrique des coefficients des équations normales (Résolution par calcul électronique)
3,37 0,00 0,00 — 0,40 — 0,40 0,00 — 0,70 0,00 0,00 + 0,40 + 0,40 0,00
2,14 0,00 — 0,40 —0,40 0,00 0,00 0,00 0,00 470,40 — 0,40 0,00
1,07 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
214 0,00 0,00 — 0,40 + 0,40 0,00 0,00 0,00 0,00
3,37 0,00 + 0,40 — 0,40 0,00 0,00 —0,70 0,00
1,07 0,00 0,00 0,00 0,00 0,00 0,00
3,37 0,00 0,00 — 0,40 — 0,40 0,00
9,14 0,00 — 0,40 — 0,40 0,00
1,07 0,00 0,00 0,00
2,14 0,00 0,00
3,37 0,00
1,07
Matrice symétrique aux coefficients de poids (inverse de la précédente)
(Calcul par le centre de calcul électronique de I'EPUL)
0,339 0 0 + 0,079 + 0,025 0 170,083 0 0 + 0,079 — 0,025 0
0,535 0 + 0,102 + 0,079 0 0 0,102 0 — 0,008 + 0,079 0
0,935 0. 0 0 0 0 0 0 0 0
0,53: 0 0 + 0,079 — 0,102 0 — 0,008 0 0
0,339 0 — 0,025 + 0,079 0 0 + 0,008 0
neeud 1 0,935 0 0 0 0 0 0
0,339 0 0 + 0,079 + 0,025 0
0,535 0 + 0,102 + 0,079 0
neeud 2 0,935 0 0 0
0,535 0 0
0,339 0
neeud 3 0,935
neeud 4
grand axe est vertical et le petit dirigé suivant la dia- par exemple pour la diagonale 1 —3:
gonale 1-3. Le calcul devient définitif quand m{ est 1.z P5 = 0,339 4 0,339 -2 x 0,083 = 0,512 ;
connu (dimensions fournies par 1'équation(l)). Mais s Py = 0,70 % 0, ol = 0,358
jusque-la les termes absolus f; ne jouent pas de role. Ces calculs constituent un précieux controle.
Poids des barres a postériore P;. On sait que la somme
[pi: P;] est égale au nombre des inconnues, ce qui En résumé, a part des solutions par approximations,
caractérise la méthode des moindres carrés. Ces P; sont on peut former les dérivées de I’énergie en fonction des
les poids des bindmes (—f; + ¢;) mconnues hyperstatiques ou faire varier les coordonnées
0 p des neeuds (B. Mayor) ; la solution nouvelle fait appli-
n trouve : g3 Py W : : “ e
fzouwe Di J quer des dérivées mais en fonction des variations de

Arétm %upérioures

(1-2,2-3,3-4,4-1) 0,472 X 4= 1,89
Diagonalesfacesupé-

rieure (1-3,2-4) 0,358 x 2 = 0,716 Ici les poids

coordonnées, ce qui lui confére un caractére général,
surtout quant a I'étude des déformations.

LITTERATURE

Arétes 1-5, 2-6, les plus fai-
3-7, 4-8 0,81 X 4= 3,24 bles sont am- [1] Mavor, B.: Introduction aw caleul des systemes statiques
Diagonales faces la- plifiés plus {Payot, Lausanne].
rales fortement (2] Savres, F.: Initiation a la théorie de I'énergie élastique
(1-6,2-5. .. .. ) 0,572 % 8 = 4,576 que les (Dunod, Paris).
Barres 1-7, 2-8, aulres [3] Srisst, . : Baustatik I, 11 (Birkhiuser, Basel).
3-5, 4-6 0,398 x 4 = 1,59 [4] AxsermeT, A.: « Nouvelle méthode de caleul des cou-
[pi: Pi] = 12,01 (nombre poles» (1964). Bulletin technique n° 19.
d’inconnues) [5] Zurminn: Matrizen (Springer Verlag).
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