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FONCTIONS D'ÉTAT, BILANS DE TRAVAIL,
PERTES ET RENDEMENT THERMODYNAMIQUESl
par LUCIEN BOREL, professeur à l'Ecole polytechnique de l'Université de Lausanne

Introduction

Les notions d'énergie interne, d'enthalpie, de travail
et de chaleur sont bien connues en thermodynamique.
Elles permettent d'exprimer d'une façon très claire les
bilans d'énergie au sens du premier principe de la
thermodynamique.

Par contre, les notions de pertes et de rendement
thermodynamiques donnent lieu à des interprétations
diverses. Elles conduisent à bien des discussions sur la
manière d'exprimer les bilans de travail au sens du
second principe de la thermodynamique.

Le présent exposé a pour but de présenter une axioma-
tique permettant d'interpréter les notions de pertes et
de rendement thermodynamiques d'une façon aussi
claire, précise et commode que possible. Il s'adresse
essentiellement aux ingénieurs mécaniciens spécialisés
dans le domaine de la thermique, auxquels il voudrait
apporter un outil de travail reposant sur un certain
nombre de règles pratiques. Il devrait permettre de

1 Co travail est publié en langue
liauzcltung, également en 1965.

[lemande dans la Schweizerische.

localiser et d'évaluer aisément les pertes thermodynamiques

survenant dans un système aussi compliqué qu'il
soit, et de déterminer sans ambiguïté le rendement
thermodynamique d'une installation, d'une machine ou
d'un élément de machine thermique.

Toute tentative visant à fournir un outil intellectuel
à l'ingénieur doit nécessairement comporter trois
démarches de la pensée, qui sont :

— la description de concepts clairs ;

— l'établissement d'une symbolique précise et
— la création d'une terminologie commode.
En ce qui concerne les concepts, nous nous sommes

tout d'abord appuyé sur les éminents travaux de nos
prédécesseurs et notamment de ceux qui figurent dans
la bibliographie citée plus bas. Mais nous nous sommes
efforcés de repenser les problèmes, ce qui nous a amené
à proposer certains concepts nouveaux. Ainsi, pour les
systèmes fermés, nous introduisons les notions de « co-
travail associé à la transformation » cl de « cotravail
associé à la chaleur ». De même, pour les systèmes
ouverts en régime permanent, nous introduisons les
notions de « eopuissanec associée à la transformation»
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et de « copuissance associée à la chaleur ». Nous présentons

également une définition nouvelle et extrêmement
générale du rendement thermodynamique.

En ce qui concerne la symbolique et la terminologie,
nous avons été amené à proposer un certain nombre de

notations et de termes nouveaux. Ainsi, nous introduisons

les termes de « coénergie » et de « coenthalpie ».

Peut-être certains lecteurs seront-ils choqués par nos
audaces. Néanmoins, nous espérons que ces lecteurs
voudront bien porter à notre crédit la difficulté de la
tâche entreprise.

Notations

Lettres majuscules

A Travail fourni à l'extérieur par un système fermé.

A ' Travail effectif fourni à l'extérieur par un sys¬
tème fermé.

Travail effectif maximum.

Cotravail effectif associé à la transformation, reçu
de l'extérieur par un système fermé.

Cotravail associé à la chaleur, reçu de l'extérieur
par un système fermé.
Vitesse d'une particule fluide.
Puissance technique fournie à l'extérieur par un
système ouvert.
Puissance technique maximum.

Copuissance technique associée à la transformation,

reçue de l'extérieur par un système ouvert.
Copuissance associée à la chaleur, reçue de
l'extérieur par un système ouvert.
Enthalpie
Enthalpie totale
Coénergie
Coénergie totale
Coénergie effective
Coénergie effective
totale

An
AA

A]

C

É~

El

Ê%

H
Lhz
J
J CZ

J'
J'

CZ

K
m
L
L
M +

p
Pa

Q
+

Q+
R
A
s
T
Ta
U
Ucz

V
z

II u + V P
Hcz ucz + V P
J U — TJS
•J CZ

TT— Wz — TJS
J' U - TaS + 1\V

J'
CZ

ua - TaS + PaV

K II -TaS
Kc.r. H„ — TaS

Coenthalpie
Coenthalpie totale
Pertes thermodynamiques en travail.
Pertes thermodynamiques en puissance.

Masse reçue de l'extérieur.
Débit-masse reçu de l'extérieur.
Pression.
Pression de référence (atmosphère).
Chaleur reçue de l'extérieur.
Flux de chaleur reçu de l'extérieur.
Dissipation.
Puissance de dissipation.
Entropie.
Température absolue.

Température de référence (atmosphère).
Energie interne.
Energie totale : Ccz U + M c + M z

Volume.
Altitude d'une particule fluide.

Lettres minuscules
c2

c Energie cinétique massique : c -k~

c Chaleur spécifique d'un solide ou d'un liquide.

cp Chaleur spécifique isobare.

c„ Chaleur spécifique isochore.
d Indication de différentielle totale exacte.

g Accélération terrestre.
z Energie potentielle massique : ;=gZ
Lettres grecques

OCo Coefficient TP isochore :

B„ Coefficient Tv isobare

OC»
P(TT\

** T [dvjp
5 Indication de forme différentielle.

r|th Rendement thermodynamique,
p Coefficient de dissipation.

Nota : Les signes -f- et — placés en exposant
indiquent qu'une grandeur est reçue de l'extérieur ou
fournie à l'extérieur par le système. Le changement
d'exposant revient à un changement de signe. Exemple :

Q+ - Q~

On passe d'une grandeur absolue à la grandeur
massique (e'est-à-dire référée à l'unité de masse) correspondante

en passant de la lettre majuscule à la lettre
minuscule correspondante. Exemple :

91
M

+
ou q

91
Kl

1. Coénergie

Nous considérons d'emblée la coénergie interne comme
une fonction d'état dérivée, résultant de la combinaison
des fonctions d'état U et S. En fait, nous définissons la

coénergie interne d'un système par la relation simple :

J U—TaS (1.1)

dans laquelle Ta est la température définie plus loin.
En pratique, il est intéressant d'introduire une fonction

d'état légèrement différente de J, que nous appelons

coénergie effective. Nous considérons d'emblée la
coénergie effective comme une fonction d'état dérivée,
résultant de la combinaison des fonctions d'état U, S

et V. En fait, nous définissons la coénergie effective d'un
système par la relation simple :

J'= U— TaS + PttV (1.2)

dans laquelle Pa et Ta sont les valeurs fixes de la pression

et de la température d'un milieu de référence de

dimensions infiniment grandes, en équilibre mécanique
et thermodynamique. Précisons immédiatement que,
pour les problèmes qui se posent en machines thermiques,

ce milieu de référence sera Vatmosphère. Donc,
dans tout ce qui suit, Pa et Ta sont des valeurs moyennes
de la pression et de la température de l'atmosphère.

L'introduction de la grandeur ,/' se justifie par le

rôle important qu'elle joue dans l'étude du travail effectif

maximum qu'un système fermé est susceptible de

fournir. Cette étude fait l'objet du chapitre 3.

La notion correspondant à J' a été introduite en
1889 par M. Gouy, qui lui a donné le nom d'« énergie
utilisable ». Nous pensons que cette appellation n'est

pas heureuse. En effet, il nous semble que l'adjectif
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Fig. 1.1. — Famille des courbes d'égale coénergie relatives
à l'eau, dans le diagramme T — s.

« utilisable » est un terme très vague, puisqu'il est
susceptible d'être appliqué à toute grandeur jugée «

utilisable » pour un but quelconque. En recourant à cet
adjectif, M. Gouy a sans doute voulu rappeler que la
grandeur J' est susceptible d'être « utilisée » pour
produire du travail. En fait, nous verrons que ce n'est
pas la grandeur J' elle-même, mais l'accroissement AJ'
qui correspond à un travail. D'autre part, nous pensons
que la grandeur J' est susceptible de prendre une
grande importance pour l'ingénieur, ce qui justifie la
faveur de lui octroyer une appellation individuelle, tout
en conservant l'idée d'énergie interne qui est à son
origine. Pour toutes ces raisons, nous pensons que
l'adjectif « utilisable » est impropre et proposons de

remplacer l'expression « énergie utilisable » par le terme
« coénergie », qui nous paraît conduire à une appellation
claire, précise ct commode.

Les adjectifs « interne » et « effective » ne sont
destinés qu'à distinguer les fonctions J et J' en cas de
nécessité. Dans ce qui suit, nous utiliserons exclusivement

la fonction J'. Toute confusion étant impossible,
l'adjectif « effective » devient superflu. Afin d'alléger le
texte, nous l'omettrons volontairement dans tout ce

chapitre et appellerons simplement « coénergie » la fonction

d'état J'.
Nous appelons coénergie totale la somme de la coénergie,

de l'énergie cinétique et de l'énergie potentielle
gravitique, soit la grandeur :

C2./' ./' M Ms Z (1.3)

qui s'écrit, sous forme massique (c'est-à-dire référée à
l'unité de masse) :

l"„ /" + c + z

Nous avons donc :

,/' - U —TaS + PaV

J' Uc—TJS + PaV

u

"cz

(1.4)

TaS + PaV (1.5)
Tas + Pav (1.6)

Remarquons que, en vertu de la relation de définition

2, la valeur de la coénergie d'un système dans un

100

;

300 WO J
Kkq

Fig. 1.2. — Famille des courbes d'égale coénergie relatives
à l'air, dans le diagramme T — s.

état déterminé est fixée dès que les valeurs de l'énergie
interne et de l'entropie, ainsi que celles de Pa et Ta
sont fixées, c'est-à-dire dès que les constantes additives
de l'énergie interne et de l'entropie ainsi que les valeurs
de Pa et Ta sont choisies.

Remarquons aussi que la coénergie est une fonction
d'état extensive, c'est-à-dire que la coénergie d'un
système polyphase est la somme des coénergies respectives

des différentes phases de ce système. Nous avons
donc :

J' S n J' XK-J (L?)

Afin d'obtenir une vision claire de l'évolution de la
coénergie d'un système, étudions sa représentation dans
le diagramme T — s.

Les figures 1 ct 2 représentent, à titre d'exemples, les

diagrammes T — s relatifs à l'eau et à l'air. Ces

diagrammes ont été établis en utilisant la relation de
définition 5 de la coénergie massique, dans laquelle les
valeurs suivantes ont été admises pour les fonctions
d'état de référence :

1 b Ta 15 C

Dans ces diagrammes figurent la famille des courbes
d'égale coénergie caractérisées par /' Cte, la courbe
isobare définie par Pa 16 et la courbe isotherme
définie par Ta 15 C. De plus, la figure 1 comporte
la courbe de saturation, tandis que la figure 2 comporte
la courbe isochore définie par :

rja
Pa

0,829

Afin d'établir quelques propriétés géométriques des
courbes d'égale coénergie, établissons la relation
différentielle existant entre les fonctions d'étal /', T et s
relatives à une phase.

La relation 5 donne, sous forme différentielle:

df du — I'ads X Padv (1.8)
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En tenant compte des définitions du coefficient
isochore ot„ et de la chaleur spécifique isochore c„, on peut
montrer que :

df= 1
P

avcvdT — a,. — 1 -f-
Ta

T' - cc„ -p-j Tels (1.9)

Les courbes d'égale coénergie, étant caractérisées

par :

/" Cte df 0

présentent donc la pente :

dT_ _ T" ^ ' T
ds

a"T)T
accc 1

Pa

p
(1.10)

Cette relation montre que, en général :

clT
dspour P Pa

c'est-à-dire que toutes les courbes d'égale coénergie
présentent une tangente verticale aux points où elles coupent
l'isobare P Pa

Ta
pour -pp 1 a,-p

dT
ds

0

c'est-à-dire que toutes les courbes d'égale coénergie
présentent une tangente horizontale aux points qui satisfont
à la relation ci-dessus :

T T dT Ta
-P°ur / y« ds=Tv

c'est-à-dire que toutes les courbes d'égale coénergie
présentent la même tangente que les courbes isochores aux
points où elles coupent Visotherme T Ta.

Dans le cas des gaz semi-parfaits 1, la relation 10

devient :

(Ta Pa\
dT
ds

T T
PPa(ï

I
Pa

P

ce qui montre que :

— pour P Pa

¦(P — Pa)

dT
-r- OO
as

(1.11)

(propriété déjà vue ci-dessus)

dT
' va -r-ds

— pour 0

c'est-à-dire que toutes les courbes d'égale coénergie
présentent une tangente horizontale aux points où elles

coupent l' isoclwre v va ;

dT
pour T Ta

Ta

ds
Cte

Cv (Ta)

c'est-à-dire cjue toutes les courbes d'égale coénergie
présentent la même tangente aux points où elles coupent
l'isotherme T T„, celle tangente étant la même que celle
des courbes isochores.

Toutes les propriétés géométriques établies ci-dessus
apparaissent clairement dans les figures 1 et 2, l'air
pouvant, avec une bonne approximation, être assimilé

1 Nous appelons fi gaz semi-parfait » tout gaz caractérisé par
l'équation d'état : vP rT. On sait que celle relation entraîne lo
Fait que en Pp : 1 el que //, //, ,-r et cp ne ^mil Idnctions que de T.

à un gaz semi-parfait dans le domaine de pression et
de température considéré.

Ainsi cjue le montre particulièrement la figure 2, les

courbes d'égale coénergie sont fermées sur elles-mêmes
et entourent concentriquement le point F défini par
les valeurs de référence Pa et Ta. En ce point F, la
surface d'état :

/' i'(T, s)

présente donc un extrémum. Déterminons la nature de

cet extrémum.

La relation 9 donne, pour P Pa :

df (T — Ta) ds

En suivant l'isobare P Pa de la gauche vers la
droite, nous avons ds > 0, de sorte que :

— pour T ±= Ta df -=. 0

— pour T ^ Ta df Xz 0

ce qui montre cjue l'extrémum considéré est un minimum.
Dans ce qui suit, nous l'appellerons fmin. Donc, la
surface d'état f (T, s) a V allure d'une fosse dont le fond
est le point F défini par les valeurs cle référence Pa et

Ta et situé ci la cote /'min-
Cette propriété de la coénergie massique est extrêmement

remarquable. Nous verrons sous 3 que le point F
est atteint lorsque le système est en équilibre mécanique

et thermique avec l'atmosphère, cet équilibre
étant stable. Cette remarque laisse déjà entrevoir
l'intérêt que présente la notion de coénergie pour
l'ingénieur.

2. Coenthalpie

Ainsi que nous l'avons fait au chapitre précédent
pour définir la coénergie, nous considérons d'emblée la
coenthalpie comme une fonction d'état dérivée, résultant

de la combinaison des fonctions d'état // et 5.
En fait, nous définissons la coenthalpie d'un système

par la relation :

A" II — TaS (2.1)

dans laquelle Ta est comme précédemment une valeur
moyenne de la température de l'atmosphère.

L'introduction de la grandeur A" se justifie par le
rôle important qu'elle joue dans l'étude du travail
technique maximum qu'un système ouvert est susceptible
de fournir. Cette étude fait l'objet du chapitre 4.

A la suite des travaux de M. Gouy, la notion
correspondant à A' et les notions dérivant de A" ont été
étudiées, approfondies et développées par un certain nombre

de chercheurs et de praticiens. Malheureusement,
l'unification n'a pas encore été faite, ni sur les concepts,
ni sur la terminologie, ni sur la symbolique. Voici par
exemple les termes que l'on trouve à ce sujet dans les

ouvrages : enthalpie utilisable, travail maximum,
travail utilisable, travail maximum utilisable, travail
technique maximum, travail disponible, « technische
Arbeitsfähigkeit », cxei'gie. Il arrive qu'il y ail. confusion
entre la fonction d'état A" elle-même, l'accroissement
K de celle fonction d'état cl le travail technique
maximum Fm:n qu'il est possible d'obtenir. 11 résulte
de tout ceci un certain embarras qui explique peut-être
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Fig. 2.1. — Famille des courbes d'égale coenthalpie
relatives à l'eau, dans le diagramme T — s.

Fig. 2.2. — Famille des courbes d'égale coenthalpie
relatives à l'air, dans le diagramme T — s.

le peu d'empressement avec lequel les praticiens utilisent

ces notions pourtant si fécondes.
A première vue, il semblera que nous compliquons

encore la situation eu proposant le nouveau terme
« coenthalpie ». Nous pensons au contraire que, pour
les mêmes raisons que celles exposées dans le chapitre
précédent, ce terme conduit à une appellation claire,
précise et commode. Remarquons notamment que :

— les termes « coénergie » et « coenthalpie » sont
symétriques l'un par rapport à l'autre, ce qui
traduit bien la symétrie qui existe entre leurs définitions

;

— les termes « coénergie » et « coenthalpie » se tra¬
duisent aisément dans toutes les langues (en
allemand : « Coénergie » et « Coenthalpie » ; en
anglais : « coenergy » ct « cocnthalpy » ; en italien :

« coenergia » et « coentalpia ») ;

— les termes « coénergie totale » et « coenthalpie
totale » permettent sans aucun frais de terminologie

supplémentaire de tenir compte de l'énergie
cinétique et de l'énergie potentielle gravitique.

Par analogie avec la coénergie totale définie par la
relation 1.3, nous définissons la coenthalpie totale par
la relation :

Kœ^K + M^ + MgZ

qui s'écrit sous forme massique :

hez h + c -f z

Nous avons donc :

K Il — TaS k h

Kcz liez — TaS kcz h.

— Tas

TaS

12 2)

(2.3)

(2.4)

Remarquons que, en vertu de la relation de définition

1, la valeur de la coenthalpie d'un système dans
un état déterminé est fixée dès que les valeurs de l'en-
thalpie et de l'entropie, ainsi que relie de Tn sont
fixées, c'est-à-dire dès cjue les constantes additives de

l'enthalpie et de l'entropie ainsi que la valeur de Ta

sont choisies.

Remarquons aussi que la coenthalpie est une fonction

d'état extensive, c'est-à-dire que la coenthalpie
d'un système polyphase est la somme des coenthalpies
respectives des différentes phases de ce système. Nous
avons donc :

K V [Ka] Kcz V [Kcza] 12 .6)

Afin d'obtenir une vision claire de l'évolution de la
coenthalpie d'un système, étudions sa représentation
dans les diagrammes T — s et h — s.

Les figures 1 et 2 représentent, à titre d'exemples,
les diagrammes T — s relatifs à l'eau et à l'air. Ces

diagrammes ont été établis en utilisant la relation de

définition 4 de la coenthalpie massique, dans laquelle la
valeur suivante a été admise pour la fonction d'état de
référence :

T 15 C

Dans ces diagrammes figure la famille des courbes

d'égale coenthalpie caractérisées par k Cte. De plus,
la figure 1 comporte la courbe de saturation.

Afin d'établir quelques propriétés géométriques des
courbes d'égale coenthalpie, établissons la relation
différentielle existant entre les fonctions d'état k, T et s

relatives à une phase.

La relation 4 donne, sous forme différentielle :

dk dh — Tads (2.7)

En tenant compte des définitions du coefficient
isobare (3p et de la chaleur spécifique isobare ep, on peut
montrer que :

dk prcp,lT — (&p — 1 + y) T ds (2.8)

Les courbes d'égale coenthalpie, étant caractérisées

par :

k Cte dk 0

preüsentent donc la pente
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Fig. 2.3. — Famille des courbes d'égale coenthalpie
relatives à l'eau, dans le diagramme h — s.

dT
ds

T T
T

.9)

PpCp

Celte relation montre que, d'une façon générale:
Ta dT

— pour -=- 1 — pp 0
T ~ x " d*

c'est-à-dire que toutes les courbes d'égale coenthalpie

présentent une tangente horizontale aux points qui satisfont

à la relation ci-dessus.

Dans le cas des gaz semi-parfaits, la relation 9 devient :

/ (T)ds Cp{T)

c'est-à-dire que toutes les courbes d'égale coenthalpie

présentent la même tangente aux points où elles coupent
une même isotherme T. En particulier, aux points où

elles coupent l'isotherme T Ta, cette tangente est la
même que celle des courbes isobares. Nous pouvons
dire aussi que toutes les courbes d'égale coenthalpie

peuvent se déduire l'une de Vautre par une translation
horizontale suivant l'axe s.

Dans le cas des gaz parfaits, la relation 9 devient :

dT Ta
¦y- — Cte
as cp

c'est-à-dire que toutes les courbes d'égale coenthalpie
sont des droites parallèles de pente égale à celle que
présentent les courbes isobares aux points où elles coupent
Visotherme T 7'„.

Toutes les propriétés géométriques établies ci-dessus

apparaissent clairement dans les figures 1 ct 2, l'air
pouvant, avec une bonne approximation, être assimilé
à un gaz semi-parfait dans le domaine de pression et

de température considéré.
Contrairement à ce que nous avons vu pour les

courbes d'égale coénergie, les courbes d'égale coenthalpie
ne sont pas fermées sur elles-mêmes. La surface d'état :

MO J

Kkg
400

ÏSr

Fig. 2.4. — Famille des courbes d'égale coenthalpie
relatives à l'air dans le diagramme h — 6'.

k k [T, s)

ne présente pas d'extrémum. Elle a, non pas l'allure
d'une fosse, mais celle d'un flanc de coteau qui dégénère :

— dans le cas des gaz semi-parfaits, en une surface

réglée à génératrices rectilignes situées dans des

plans perpendiculaires à l'axe T, car la relation 8

devient :

dk cp (T) dT — Tads (2.10)

— dans le cas des gaz parfaits, en un plan incliné,
car la relation 8 prend alors la forme linéaire :

dk cpdT — Tads (2.11)

Les figures 3 et 4 représentent, à titre d'exemples,
les diagrammes h — s relatifs à l'eau et à l'air. Ces

diagrammes ont été établis de la même manière que
les diagrammes T — s.

La relation différentielle existant entre les fonctions

d'état k, h et s d'une phase n'est autre que la

relation 7.

Les courbes d'égale coenthalpie présentent donc la

pente :

g-r.-Cf (2.12)

Cette relation montre que, d'une façon générale,
toutes les courbes d'égale coenthalpie sont des droites parallèles

de pente égale à la température T„. Cette propriété
géométrique apparaît clairement dans les figures 3 et 4.

La surface d'état :

k k{h,s)

est tout simplement un plan incliné, puisque la relation

7 a une forme parfaitement linéaire.

Remarquons encore que les figures 3 et 4 mollirent
bien la différence fondamentale qui existe entre les

notions d'enthalpie h et de coenthalpie />.
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3. Système fermé — Cotravail — Travail maximum —
Pertes thermodynamiques

Considérons le système fermé représenté par la

figure 1 a) ou plus généralement 1 b).
Ce système est susceptible d'échanger de la chaleur

avec différentes sources thermiques. D'une façon générale,

soit :

BQ i la chaleur reçue pendant le temps dt de la source
thermique i ;

T{ la température commune à la source i et au sys¬

tème, le long de la frontière représentée par un
trait pointillé. (Dans le cas particulier du rayonnement,

Ti est la température soit à l'endroit où

l'énergie rayonnante se manifeste sous forme de

chaleur par suite du phénomène d'absorption, soit
à l'endroit où elle se manifeste sous forme de chaleur

par suite du phénomène d'émission.) ;

5.4 le travail fourni pendant le temps dt à l'extérieur.
En vertu du premier principe de la thermodynamique,

la variation de l'énergie totale du système est :

dU, Steîi-w- (3.1)

Remarquons cjue le travail 5/1 comprend le travail
correspondant aux forces de pression Pa exercées en
général par le système sur l'atmosphère, au niveau de

sa frontière. Ces forces travaillent dès que la frontière
se déplace, c'est-à-dire dès que le volume du système
varie. Elles mettent en jeu le travail PadV, de sorte
que le travail vraiment utile à l'ingénieur, appelé travail
effectif échangé, est :

SA ' 6_r PadV (3.2)

(Afin d'alléger le texte, nous omettrons volontairement

dans tout ce chapitre l'adjectif «effectif».)
La variation de l'entropie du système est :

— pour les échanges de chaleur entre le système et
l'extérieur :

dS" -S 5Q1
L Ti

— pour les échanges de masse entre le système et
l'extérieur :

dT 0

car le système est fermé ;

— pour les frottements internes :

dT £ S/?a

Ta

Ra étant la dissipation à l'intérieur de la phase a
du système ;

pour les transmissions internes de chaleur :

* 2
i

rj *®

Qp étant la chaleur passant de la phase a, dont
la température est Ta, à la phase ß, dont la
température est 7'p ;

cJQh

sa* 6k

•---Aqî

SPC

T >~a/<5Q;

Paroi conductrice.déformable et fermée

a) b)

Fig. 3.1. — Systèmes thermodynamiques fermés.
fl) Système simple.
6) Système quelconque.

— pour les autres irréversibilités internes, physiques
(ex. : mélange), chimiques (ex. : combustion) ou
nucléaires (ex. : fission) :

dS*

Donc, la variation de l'entropie du système est :

— pour les opérations externes :

dS y\T* SQ-,

T-

— pour les opérations internes :

dT 5Ra y, [{TTFrV -dS* (3.3)

Finalement, la variation d'entropie du système est:

ds y Sgl
L Ti

+ dSu (3.4)

L'élimination de 5.4 entre les relations 1 et 2 donne :

5-4-' - (dUC2 + PadV) + J [5Ç|]
i

En multipliant tous les termes de la relation 4 par
la température de référence Ta définie sous 1 (température

moyenne de l'atmosphère), nous pouvons écrire :

0 TadS V P5Ç|
11

TadS

Puis, en additionnant membre à membre les deux
relations précédentes et en tenant compte de la relation

1.6 sous forme différentielle, nous obtenons la
relation :

6.4-' _ dj;2 + V [^5ç+] - 7>/.S° (3.5)
i

dans laquelle l'expression :

(3.6)r\a 1
Tt

- <1

est le rendement de Carnot relatif aux températures Ti
el Ta.
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Fig. 3.2. — Variation du rendement de Carnot i]1 en fonction

de la température Ti de la source thermique i.

Enfin, en intégrant entre un état initial 1 et un état
final 2, nous obtenons (en omettant volontairement les

bornes d'intégration 1 et 2) :

AJ;+2 [JV-BÇt] - TJU? (3.7)A '

Afin de familiariser l'ingénieur avec les notions exprimées

par ce bilan et lui permettre d'utiliser les termes
correspondants de façon concrète, il nous semble à la
fois logique et indispensable de les noter en leur
octroyant un symbole et de les baptiser en les désignant
par une appellation aussi claire, précise et commode

que possible. Dans cet esprit, nous proposons les
symboles et appellations suivantes :

Cotravail associé ci la transformation :

^Imcc — t\JCz(x — -'-»ce IA]C.

Cotravail associé à la chaleur :

[+ f îl*6Ç+

Pertes thermodynamiques en travail

L TaAS ^ 0

(3.8)

(3.9)

(3.10)

En vertu de ces définitions, la relation 7 donne, pour
le travail échangé :

A-'-Swy + EUj]-* (3.11)

Si toutes les opérations internes étaient réversibles,
c'est-à-dire si :

A.S'° 0 L 0

alors nous obtiendrions le travail écliansé maximum :

AT, V [4Ü] + V [_u+- (3.12)

Cette relation suppose que lo système subit exactement

la même transformation thermodynamique résultante

et que les chaleurs échangées 5(), restent les

mêmes (sauf la chaleur échangée avec l'atmosphère à

la température Ta, ce qui n'altère pas le bilan, puisque
le cotravail associé à celle chaleur esl nul). Mais
contrairement au cas réel, il n'y a pas de frottement interne

(pas de dissipation interne), toutes les transmissions
internes de chaleur se font sans chute de température
(pas de dévalorisation interne) et toutes les autres
opérations internes sont réversibles.

Dans le cas réel, les irréversibilités internes ont pour
conséquence pratique pour l'ingénieur de diminuer le
travail échangé de la quantité L qui ne peut être que
positive ou nulle. Le terme L englobe donc toutes les

pertes dues aux irréversibilités internes. Il constitue
bien ce que nous appelons les pertes thermodynamiques
en travail.

Les relations précédentes mettent en évidence les

propriétés fondamentales suivantes :

— Le cotravail associé à la transformation d'une phase
est égal à la variation de la coénergie totale de cette

phase.
— Le cotravail associé à la chaleur esl égal au produit

du rendement de Carnot par la chaleur échangée.

— Les pertes thermodynamiques en travail sont égales

au produit de la température Tu par l'accroissement

cl entropie due aux irréversibilités internes.

— Le travail échangé est égal à la somme des cotravaux,
diminuée des pertes thermodynamiques en travail.

— Le travail échangé maximum est égal ci la somme
des cotravaux.

Examinons maintenant un peu plus en détail la

signification des termes contenus dans la relation 11.

a) Le terme Ama indique quel est le travail maximum
qu'il est possible d'obtenir grâce au seul fait de la
transformation thermodynamique de la phase a. A ce point
de vue, nous constatons que la fonction d'état
déterminante n'est autre que la coénergie totale, ce qui
justifie le soin avec lequel cette grandeur a été étudiée
sous 1.

Le signe — montre que la phase oc est susceptible de

fournir du travail lorsque sa coénergie totale diminue.
/;) Le terme Aqi indique quel est le travail maximum

qu'il est possible d'obtenir grâce à la chaleur reçue de

la source i à la température Ti.
Remarquons que seule une partie de cette chaleur,

déterminée par le rendement de Carnot T)a, est susceptible
d'être transformée en travail.

La figure 2 représente la variation du rendement de

Carnot T|* en fonction de la température Ti de la source

thermique i, conformément à la définition 6.

Nous constatons que :

— pour Ti oo, la chaleur §Q ; serait susceptible
d'être transformée intégralement en travail ;

— pour Ta < Ti < oo, la chaleur SQ i n'est suscep¬
tible d'être transformée en travail que partiellement,

la proportion étant donnée par le rendement

de Carnot dont la valeur est d'autant plus
faible que celle de 7\ est faible ;

- pour T{ T,,, la chaleur 5Q |; n'est susceptible
de donner aucun travail ;

- pour 0 < Ti < Ttt, la chaleur 5Q ,- non seulement

n'est susceptible de donner aucun travail,
mais au contraire exige qu'un certain travail soit
fourni au système.

Nous arrivons ainsi au résultat bien connu selon
lequel, au point de vue production de travail, une chaleur
déterminée présente un intérêt d'autant plus grand que la
température l'i à laquelle elle est livrée est élevée.
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Cet intérêt baisse selon la loi représentée sur la

figure 2 lorsque 1\ diminue. Quand 7\ Ta, cette chaleur

ne présente plus aucun intérêt. Enfin, quand
Ti < Ta, il faut même dépenser du travail. Ces

considérations expliquent la raison pour laquelle les grands
systèmes naturels en équilibre avec l'atmosphère,
comme les rivières, les lacs, les mers et l'atmosphère
elle-même, ne présentent en tant cjue systèmes isolés

aucun intérêt au point de vue production de travail,
ceci malgré leurs grandes dimensions et l'énorme énergie
interne qu'ils contiennent.

c) Le terme L indique quelles sont les pertes
thermodynamiques que subit le système.

Les relations 3 et 10 donnent :

a aß
-£W] + TaàST0

(3.13)

Le premier terme du membre de droite de cette
relation indique quelle est la perte thermodynamique
résultant de la dissipation 5Ra. Nous constatons que :

— pour Ta oo, la perle serait nulle ;

— pour Ta < Ta < oo, la perte n'est qu'une frac¬
tion de 5Ra, cette fraction étant donnée par le

Ti a
rapport 7 c

dont la valeur est d'autant plus

élevée que celle de Ta est faible ;

— pour Ta Ta, la perte est égale intégralement
à 5Ra ;

— pour Ta < Ta, la perte est un multiple de SRa,

Ta
la multiplication étant toujours donnée par Ta

Nous arrivons ainsi au résultat bien connu selon lequel
une dissipation déterminée conduit à une perle
thermodynamique d'autant plus faible qu'elle se produit ci température

élevée. Ceci se conçoit par le fait que, conformément

à ce qui a été vu sous /;, la chaleur résultant de
la dissipation est susceptible de produire d'autant plus
de travail qu'elle est engendrée à un « niveau » élevé.

Le deuxième terme du membre de droite de la relation

13 indique quelle est la perte thermodynamique
résultant de la transmission de chaleur SQp sous la
chute de température Ta—Tp. Nous constatons que:

— pour Ta Tp, la perte serait nulle ;

— pour rTa z/z Tp, la perte est déterminée par l'ex-
'Ta Ta

pression (¦=- —¦=-1, dont la valeur est d'autant

plus élevée cpie celles de Ta et Tp sont faibles et
différentes l'une de l'autre.

Nous retrouvons ainsi le résultat bien connu selon
lequel une transmission de chaleur déterminée conduit à

une perle thermodynamique d'autant plus faible que les

températures des deux phases sont élevées et voisines l'une
de l'autre.

Le troisième terme du membre de droite de la relation

13 indique quelle est la perte thermodynamique
résultant de toutes les autres irréversibilités internes.

'foutes les considérations précédentes mettent bien
en relief le rôle remarquable joué par l'étal de l'atmosphère.

Pour concevoir ce rôle encore plus nettement,
considérons un système fermé qui n'échange, de la chaleur

qu'avec l'atmosphère, à la température Ta.

Dans ce cas, le rendement de Carnot r\a est nul, de

sorte que la relation 12 se réduit à :

AT, -4„V - AJ'cz — M Afcz (3.14)

Donc, pour un système fermé n'échangeant de la chaleur

qu'avec l'atmosphère, l'obtention de travail se paie
par la diminution de la coénergie totale du système.

Or, nous avons vu sous 1 que /' présente un minimum

/min lorsque le point représentatif de son état
thermodynamique dans le diagramme T — s coïncide avec le

fond F de la fosse de la surface d'état du système.
D'autre part, nous savons que les minima de l'énergie

C2 —
cinétique M tj- et potentielle gravitique 47g Z sont nuls.

Donc fez admet également comme minimum la valeur
/min. Il en résulte cjue la valeur maximum du travail
échangé maximum qu'il est possible d'obtenir à partir
d'un système caractérisé par J'Cz est, en vertu de la
relation 14 :

-Mnas max Jcz ^min M \Jcz /iniu) (o iOJ

En d'autres termes, la possibilité de production de

travail d'un système fermé n'échangeant de la chaleur
qu'avec l'atmosphère est mesurée par l'écart entre sa

coénergie totale et la valeur minimum de celte dernière.
Considérons maintenant un système fermé qui, non

seulement n'échange de la chaleur cpi'avec l'atmosphère,

mais encore n'échange aucun travail avec
l'extérieur. Dans ce cas, la relation 5 donne :

dJ'a — TadS° ^ 0 (3.16)

Donc, la coénergie totale d'un système sans travail
échangé et n'échangeant de la chaleur qu'avec l'atmosphère
ne peut que, diminuer, à cause des irréversibilités internes.
Au mieux, elle resterait constante en l'absence d'irréversibilités

internes.

Toutefois, il y a une limite à la diminution de J'Cz.

Cette limite est atteinte lorsque le système arrive en équilibre

mécanique et thermique avec l'atmosphère. Alors son
état thermodynamique est représenté par le point F
situé au fond de la fosse de la surface d'état, sa

coénergie totale est égale à J^iu et plus rien nc peut
se passer, ce qui signifie que l'équilibre ainsi atteint est
stable.

Comme nous l'avons déjà relevé, la notion de

coénergie est intéressante au point de vue technique. En
effet, elle répond aux préoccupations de l'ingénieur dont
la mission est de produire du travail à l'aide de machines
thermiques, tout en étant asservi de façon inéluctable
aux impératifs du milieu dans lequel nous vivons, c'est-
à-dire l'atmosphère.

La notion de coénergie donne un cadre de raisonnement

logique permettant de concevoir pour quelle
raison tout corps en déséquilibre mécanique et
thermique avec l'atmosphère représente une richesse au
point de vue économique, aussi bien s'il se trouve en
dépression qu'en surpression el aussi bien s'il se trouve
à température plus basse qu'à température plus haute

par rapport à l'atmosphère. C'est pourquoi aussi bien
un réservoir en dépression qu'une bouteille d'air
comprimé, et aussi bien un bloc de glace qu'une, masse
d'eau bouillante possèdent une valeur commerciale. 11

faut soit dépenser de l'énergie pour les fabriquer, soit
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dépenser de l'argent pour les acquérir, ce qui revient
au même.

Remarquons toutefois que la notion d'équilibre
intervenant dans ce chapitre n'est simple que parce que le

système est fermé, ear elle se limite à l'équilibre mécanique

et thermique. Par contre, elle se complique
considérablement dès que le système est ouvert, car alors
elle englobe nécessairement l'équilibre physique et
chimique.

4. Système ouvert, en régime permanent — Copuissance

— Puissance maximum — Pertes
thermodynamiques

Considérons le système ouvert, en régime permanent,

représenté par la figure 1 a. Ce cas serait par
exemple celui d'une turbine dans laquelle le fluide serait
chauffé en cours de détente. Plus généralement,
considérons le système représenté par la figure 1 b.

Ce système est susceptible d'échanger de la chaleur
avec différentes sources thermiques et de la masse avec
l'extérieur. D'une façon générale, soit :

SQ i le flux de chaleur élémentaire reçu de la source
thermique i, dont la température 7', peut varier
d'un point à un autre ;

Ma le débit-masse reçu de l'extérieur par la section Sa :

E la puissance technique fournie à l'extérieur. (Afin
d'alléger le texte, nous omettrons volontairement
dans tout ce chapitre l'adjectif « technique ».)

Comme le régime est permanent, le système considéré
n'est le siège ni d'accumulation, ni de déperdition
d'énergie totale. Le taux de variation de l'énergie totale
est nul. En vertu du premier principe de la
thermodynamique, nous avons donc :

dUg _

dl
Ê + E [/6#] + 21 [*-*#£! 0

c'est-à-dire :

è- y sçl y [hczcjùi (4.1)

Précisons que l'intégrale figurant devant 5Q~ï est
une intégrale par rapport à l'espace et non par rapport
au temps. Ce sera par exemple l'intégrale le long d'un
tube de chaudière.

L'hypothèse du régime permanent contient implicitement

le fait que la frontière du système est indéformable.

Il en résulte que le système n'échange pas de

travail avec l'atmosphère. Donc, contrairement à ce

qui a été fait dans le chapitre précédent pour un
système fermé, il n'y a pas lieu d'introduire de distinction
entre la puissance et la puissance effective.

Le taux de variation de l'entropie du système est :

— pour les flux de chaleur 8Q t échangés entre le

système et l'extérieur :

dS?

dt -y, Ti

pour les débits-masse Ma échangés entre le
système et l'extérieur :

dS"

dl S [satàî]

X
rr

3

m:
60

*\/
eso:ri -«—

E
<5Q

:—r
"73

Paroi conductrice, indéformable el" ouverte

a) b)

Fig. 4.1. — Systèmes thermodynamiques ouverts, en
régime permanent.

a) Système simple.
h) Système quelconque.

pour la puissance de frottement interne S/ta :

dS

dt
Y SRa

Ta

Ra étant la puissance dissipée à l'intérieur de la

phase a du système ;

— pour la puissance de transmission interne de

chaleur :

dS
dt

Y i i
n - Ta) 5^p

Qp étant le flux de chaleur passant de la phase a,
dont la température est Ta, à la phase ß, dont la
température est Tp;

pour les puissances correspondant aux autres
irréversibilités internes, physiques (ex. : mélange),
chimiques (ex. : combustion) ou nucléaires (ex. :

fission) :

dSi

dt

Donc, le taux de variation de l'entropie du système
est :

— pour les opérations externes :

dS
Tt

dT
dt

V J54x] + s k*î]
pour les opérations internes :

S/taÇSRc
J Ta

+ Y 1 1 \T,-rT T <«>

Comme le régime est permanent, le système considéré
n'est le siège ni d'accumulation, ni de déperdition
d'entropie. Le taux de variation de l'entropie est nul. Nous

avons donc finalement :

d_S _ y
dt ~~ ~>

501
Ti + Y [,s.aü/+]+^ :=0 (4.3)

En multipliant tous les termes de celte relation par
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la température de référence Ta définie sous 1 (température

moyenne de l'atmosphère), nous pouvons écrire :

.y psçî ^[7Wv/J]-r/| (4.4)

Enfin, en additionnant membre à membre les
relations 1 et 4 et en tenant compte de la relation 2.5,
nous obtenons la relation :

Y [kraJUi] + ^ [JîlâSÇt] -Ta%i (4.5

dans laquelle l'expression :

(4.6)

est, comme précédemment, le rendement de Carnot relatif
aux températures Ti et Tu.

Nous allons maintenant introduire une nouvelle
manière de présenter le premier terme du second membre

de la relation 5.

Considérons le schéma de la figure 2 a. Le système
étant en régime permanent, il est évident, à cause de

la continuité, qu'à tout débit-masse Afa pénétrant
dans le système correspond un débit-masse Ma sortant
du système, de telle sorte que :

M+a Ma

Il est donc commode de grouper deux à deux les

termes qui sont relatifs au même débit-masse et de

mettre sa valeur absolue Ma en facteur. Nous obtenons
alors :

2 [W#a]=— 2 [4M(

SQl

cSQ

5Q, \

I "a

oX.

i 60.

6Q

(4.7)

Paroi conductrice,indéformable el" ouverte

a) b)

Fig. 4.2. — Réseaux d'écoulement traversant un système
thermodynamique ouvert, en régime permanent.

physiques, chimiques ou nucléaires. Relevons en
passant qu'il en est de même pour l'énergie interne et
l'enthalpie dans les calculs classiques de combustion
isochore et isobare faisant intervenir seulement le
premier principe de la thermodynamique. Dans un cas

comme dans l'autre, c'est le physicien ou le chimiste
qui doit fournir à l'ingénieur les valeurs à donner aux
constantes relatives à u, h et s pour les différentes
substances considérées.

Nous verrons dans ce qui suit que cette façon de
considérer l'effet dû à l'évolution thermodynamique
d'une substance qui traverse le système conduit à une
interprétation extrêmement claire des phénomènes, à

un établissement très précis du bilan énergétique et à

une détermination irréprochable du rendement
thermodynamique d'un système ouvert quelconque en régime
permanent.

Pour les mêmes raisons que celles exposées au
chapitre précédent, nous proposons les symboles et appellations

suivantes :

où AkCza est l'accroissement de la coenthalpie totale
de la substance a entre son entrée dans le système et
sa sortie du système, c'est-à-dire :

t-^h'cza — h'czcx Sortie h'cza Entrée (4.8)

Remarquons que le raisonnement ci-dessus est
absolument général. En effet :

a) Il est indépendant du fait que le débit-masse Ma
résulte de la confluence de plusieurs débits-masses ou
se subdivise en plusieurs débits-masses à l'intérieur
même du système. Comme le montre la figure 2 b, le
débit-masse Ma est la somme des débits-masses faisant
partie d'un même réseau d'écoulement a.

b) Il est indépendant du fait que le réseau d'écoulement

a subisse ou non une modification physique (ex. :

mélange), chimique (ex. : combustion) ou nucléaire
(ex. : fission) au cours de son passage à l'intérieur même
du système. Il est bien entendu que, dans ces cas, il
est absolument indispensable que les constantes des co-

enllialpies d'entrée el de sortie soient cohérentes. Seule
l'une d'elles peut encore être arbitraire, les autres étant
harmonisées de façon à tenir compte des phénomènes

Copuissance associée êi la transformation :

T, - Ma AA'«a (4.9)

Copuissance associée à la chaleur

È,p J r\a5Q, (4.10)

Pertes thermodynamiques en puissance :

L .r.ga.0 (4.11)

En verlu de ces définitions, la relation 5 donne, pour
la puissance échangée :

^=2[i&]+2[#]-z (4.12)
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Si toutes les opérations internes étaient réversibles,
c'est-à-dire si :

dS° 0 L 0

alors nous obtiendrions la puissance échangée maximum :

y [èt] x y m] (4.13)

Cette relation suppose que le système subit exactement

la même transformation thermodynamique résultante

et que les flux de chaleur échangés §Q i restent
les mêmes (sauf le flux de chaleur échangé avec
l'atmosphère à la température Ta, ce qui n'altère
pas le bilan, puisque la copuissance associée à celte
chaleur est nulle). Mais, contrairement au cas réel,
il n'y a pas de frottement interne (pas de dissipation
interne), toutes les transmissions internes de chaleur se

font sans chute de température (pas de dévalorisation
interne) et toutes les autres opérations internes sont
réversibles.

Dans le cas réel, les irréversibilités internes ont pour
conséquence pratique pour l'ingénieur de diminuer la

puissance échangée de la quantité L qui ne peut être

que positive ou nulle. Le terme L englobe donc toutes
les pertes dues aux irréversibilités internes. Il constitue
bien ce que nous appelons les perles thermodynamiques
en puissance.

Les relations précédentes mettent en évidence les

propriétés fondamentales suivantes :

— La copuissance associée à la transformation est égale

au produit du débit-masse d'un réseau d'écoulement par la
variation de la coenthalpie totale massique entre l'entrée
et la sortie du système.

— La copuissance associée à la chaleur est égale au
produit du rendement de Carnot par le flux de chaleur
échangé.

— I,es pertes thermodynamiques en puissance sont
égales au produit de la température Ta par le taux
d'accroissement d'entropie due aux irréversibilités internes.

— La puissance échangée est égale à la somme des

copuissances, diminuée des pertes thermodynamiques en

puissance.

— La puissance échangée maximum esl égale à ta

somme des copuissances.

1

Fro '- :

ech'on S,: kc,|

Frontière A

du canal

Ä

b

Section S2: kc,2

Fig. 4.3. — Canal mobile, traversé par un fluide en régime
permanent et échangeant de la chaleur avec vm fluide b.

Examinons maintenant un peu plus en détail la
signification des termes contenus dans la relation 12 :

a) Le terme Ema indique quelle est la puissance maximum

qu'il est possible d'obtenir grâce au seul fait de

l'évolution thermodynamique du réseau d'écoulement a
traversant le système. A ce point de vue, nous constatons

que la fonction d'état déterminante n'est autre
que la coenthalpie totale massique, ce qui justifie le
soin avec lequel cette fonction a été étudiée sous 2.

Le signe — montre qu'un réseau d'écoulement est
susceptible de fournir de la puissance lorsque sa

coenthalpie totale massique diminue.

6) et c) Les termes Êqi et L donnent heu exactement

aux mêmes considérations que celles qui ont été
faites dans le chapitre précédent. Nous n'y revenons
pas.

Précisons seulement que les chaleurs sont remplacées
par des flux de chaleur et les énergies par des puissances.

D'autre part, il est bien entendu que les intégrations
se font par rapport à l'espace et non par rapport au
temps.

Enfin, remarquons que les relations 2 et 11 permettent

de donner aux pertes thermodynamiques la forme :

L= y T
"5Ä, Y fp~fjb m-°

(4.14)

Afin d'illustrer la théorie précédente, nous allons
traiter quelques exemples d'applications pratiques.

(A suivre)

ACTUALITE INDUSTRIELLE (32)

Septièmes journées du Mont-Pèlerin
L'avenir de l'industrie suisse d'exportation
de biens d'équipement de haute technicité

Une cinquantaine de personnes oui pris part aux
Journées 1965 du Mont-Pèlerin, septième du nom, qui
se sont tenues les 1er et 2 mai, à l'Hôtel du Parc.
Organisées conjointement par la Section genevoise de la
SIA, la Société vaudoise des ingénieurs et des
architectes, la Société d'études économiques et sociales du
Haut-Léman, Vevey, ces journées, qui avaient pour
thème : L'avenir de l'industrie suisse d'exportation de
biens d'équipement de haute technicité, ont été présidées,
la première par M. S. Rieben et la seconde par M. F.
Maillard.

Ainsi que le programme le rappelait, les Journées du
Mont-Pèlerin ont été créées en 1959 par le Groupe des
ingénieurs de l'industrie de la SIA, section genevoise ;

elles ont rapidement démontré qu'elles répondaient à un
véritable besoin, tant par l'information qu'elles distribuent

que par les échanges d'idées qui s'établissent et
les contacts personnels qu'elles favorisent. Les thèmes
suivants ont été traités :

1959
1960
1961
1962

1963 :

1964 :

19G5 :

L'ingénieur suisse et l'Europe.
L'automatique et l'homme.
L'interdépendance de l'économie el de la technique.
L'ingénieur et L'économiste dans l'entreprise, leur
formation et leur collaboration.
Aspecls scientifiques et économiques de la recherche.

Aspects humains de l'administration de l'entreprise.
L'avenir de l'industrie suisse d'exportation de
biens d'équipement de haute technicité.
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