Zeitschrift: Bulletin technique de la Suisse romande

Band: 91 (1965)

Heft: 19

Artikel: Fonctions d'état, bilans de travail, pertes et rendement
thermodynamiques

Autor: Borel, Lucien

DOl: https://doi.org/10.5169/seals-67674

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 08.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-67674
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

9le année

Lausanne, 18 septembre 1965 Ne 19

BULLETIN TECHNIQUE
DE LA SUISSE ROMANDE

Paraissant tous les 15 jours

ORGANE OFFICIEL

de la Société suisse des ingénieurs et des architectes

de la Société vaudoise des ingénieurs et des architectes SVIA)

de la Section genevoise de la SIA

de 1'Association des anciens éléves de I'EPUL (Ecole polytechnique
de I'Université de Lausanne)

et des Groupes romands des anciens éléves de I'EPF (Ecole poly-
technique fédérale de Zurich)

COMITE DE PATRONAGE

Président: E. Martin, arch. 3 Genéve
Vice-président: E. d'Okolski, arch. & Lausanne
Secrétaire: S. Rieben, ing. & Genéve

Membres:

Fribourg: H. Gicot, ing.; M. Waeber, arch.

Genéve: G. Bovet, ing.; Cl. Grosgurin, arch.; J.-C. Ott, ing.
Neuchatel: ]. Béguin, arch.; R. Guye, ing.

Valais: G. de Kalbermatten, ing.; D. Burgener, arch.

Vaud: A. Chevalley, ing.; A. Gardel, ing.;

M. Renaud, ing.; J.-P. Vouga, arch.

CONSEIL D’ADMINISTRATION

de la Société anonyme du « Bulletin technique »

Président: D. Bonnard, ing.

Membres: Ed. Bourquin, ing.; G. Bovet, ing.; M. Bridel; J. Favre,
arch.; A. Robert, ing.; J.-P. Stucky, ing.

Adresse: Avenue de la Gare 10, Lausanne

REDACTION

D. Bonnard, E. Schnitzler, S. Rieben, ingénieurs; M. Bevilacqua,
architecte

Rédaction et Editions de la S.A. du « Bulletin technique »

Tirés a part, renseignements

Avenue de Cour 27, 1000 Lausanne

ABONNEMENTS

Lan cos s o %o a Suisse Fr. 40.— Etranger Fr. 44.—
Sociétaires . . . . . » » 33.—

Prix du numéro. . . » » 2 » » 2.50

Chéques postaux : « Bulletin technique de la Suisse romande »,
N° 10 - 5775, Lausanne

Adresser toutes communications concernant abonnement, vente au
numéro, changement d'adresse, expédition, etc., 4 : Imprimerie
La Concorde, Terreaux 29, Lausanne

ANNONCES

Tarif des annonces:

1/1 page . : : . . Fr. 388.—
12 » o o s o » 200.—
1/4 » 6 sl » 102.—
1/8 » R » B2.—

Adresse: Annonces Suisses S.A.
Place Bel-Air 2. Tél. (021) 2233 26. 1000 Lausanne et succursales

Fonctions d’état, bilans de travail, pertes et rendement thermodynamiques, par Lucien Borel, professeur & 'EPUL.

SOMMAIRE
Actualité industrielle (32). — Divers. — Les congres.
Documentation générale. — Documentation du batiment.

FONCTIONS D’ETAT, BILANS DE TRAVAIL,
PERTES ET RENDEMENT THERMODYNAMIQUES '

par LUCIEN BOREL, professeur & I'Ecole polytechnique de 1'Université de Lausanne

Introduction

Les notions d’énergie interne, d’enthalpie, de travail
et de chaleur sont bien connues en thermodynamique.
Elles permettent d’exprimer d’une facon trés claire les
bilans d’énergie au sens du premier principe de la ther-
modynamique.

Par contre, les notions de pertes et de rendement
thermodynamiques donnent lieu & des interprétations
diverses. Elles conduisent a bien des discussions sur la
maniére d’exprimer les bilans de travail au sens du
second principe de la thermodynamique.

Lie présent exposé a pour but de présenter une axioma-
tique permettant d’interpréter les notions de pertes et
de rendement thermodynamiques d’une facon aussi
claire, précise et commode que possible. 11 s’adresse
essentiellement aux ingénieurs mécaniciens spécialisés
dans le domaine de la thermique, auxquels 1l voudrait
apporter un outil de travail reposant sur un certain
nombre de régles pratiques. Il devrait permettre de

' Ce travail est publié en langue allemande dans la Schsweizerische
Bauzeitung, également en 1965,

localiser et d’évaluer aisément les pertes thermodyna-
miques survenant dans un systéme aussi compliqué qu'il
soit, et de déterminer sans ambiguité le rendement ther-
modynamique d’une installation, d’une machine ou
d’un élément de machine thermique.

Toute tentative visant & fournir un outil intellectuel
a Pingénieur doit nécessairement comporter trois dé-
marches de la pensée, qui sont :

— la description de concepts clairs ;

— D'établissement d’une symbolique précise et

— la création d’une terminologie commode.

En ce qui concerne les concepts, nous nous sommes
tout d’abord appuyé sur les éminents travaux de nos
prédécesseurs et notamment de ceux qui figurent dans
la bibliographie citée plus bas. Mais nous nous sommes
ellorcés de repenser les problémes, ce qui nous a amené
& proposer certains concepts nouveaux. Ainsi, pour les
systemes fermés, nous introduisons les notions de « co-
travail associé a la transformation » et de « cotravail
associé a la chaleur». De méme, pour les systémes
ouverts en régime permanent, nous introduisons les
notions de « copuissance associée a la transformation »
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et de « copuissance associée a la chaleur». Nous présen-
tons également une définition nouvelle et extrémement
générale du rendement thermodynamique.

En ce qui concerne la symbolique et la terminologie,
nous avons été amené a proposer un certain nombre de
notations et de termes nouveaux. Ainsi, nous introdui-
sons les termes de « coénergie » et de « coenthalpie ».

Peut-étre certains lecteurs seront-ils choqués par nos
audaces. Néanmoins, nous espérons que ces lecteurs
voudront bien porter & notre crédit la difficulté de la
tache entreprise.

Notations
Lettres majuscules

A Travail fourni a I'extérieur par un systéme fermé.

A" Travail effectif fourni a l'extérieur par un sys-
teme fermé.

Apax Travail effectif maximum.

A’ Cotravail effectif associé a la transformation, recu
de I'extérieur par un systéme fermé.

A%,,_ Cotravail associé a la chaleur, re¢cu de I’extérieur

par un systéme fermé.

Vitesse d’'une particule fluide.

Puissance technique fournie a I'extérieur par un

systéme ouvert.

Enax Puissance technique maximum.

»  Copuissance technique associée a la transforma-

tion, recue de ’extérieur par un systéme ouvert.

E; Copuissance associée a la chaleur, recue de I’ex-

térieur par un systéme ouvert.

H Enthalpie : H =U 4+ VP
H,  Enthalpie totale : H,=U.,+ VP
J Coénergie : J =0 =TgS
Jes Coénergie totale : Jo = U, —TaS
JE Coénergie eftective: J' = U —T4S + P,V
i Coénergie effective
“ totale : J = Us —TuS + PV
K Coenthalpie : K =H —T,S
K., Coenthalpie totale : K. = H,. —T,S
L Pertes thermodynamiques en travail.
L Pertes thermodynamiques en puissance.

M"Y Masse reque de I'extérieur.

Mt Débit-masse recu de 'extérieur.
Pression.

Pression de référence (atmosphere).

P

P,

Q+ Chaleur regue de I'extérieur.

O+ Flux de chaleur re¢u de I'extérieur.

R Dissipation.

R Puissance de dissipation.

S Entropie.

r Température absolue.

Lz Température de référence (atmospheére).
U Energie interne.

U,  Energie totale : Us,=U+Mc+ Mz
V Volume.

VA Altitude d’une particule fluide.

Lettres minuscules

2 Ve . (e
c Energie cinétique massique : ¢ = 7
c Chaleur spécifique d’un solide ou d’un liquide.
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p Chaleur spécifique isobare.

(0 Chaleur spécifique isochore.

d Indication de différentielle totale exacte.
g Accélération terrestre.

7 Energie potentielle massique: z=gZ

Lettres grecques

P /9T
p Coeflicient 7P isochore : %= 7 (§—P>
v
’ . g (T
By Coefficient 7T'¢ isobare : Bp— 7 <§V—>P
) Indication de forme différentielle.
Mth Rendement thermodynamique.
P Coeflicient de dissipation.
Nota : Les signes + et — placés en exposant indi-

quent qu'une grandeur est regue de I'extérieur ou
fournie a l'extérieur par le systéme. Le changement
d’exposant revient & un changement de signe. Exemple :

"=—0
On passe d’une grandeur absolue & la grandeur mas-
sique (c’est-a-dire référée a 'unité de masse) correspon-
dante en passant de la lettre majuscule a la lettre
minuscule correspondante. Exemple :
+ +
+_ 0 £ 00
B 7 L

1. Coénergie

Nous considérons d’emblée la coénergie interne comme
une fonction d’état dérivée, résultant de la combinaison
des fonctions d’état U et S. En fait, nous définissons la
coénergie interne d’un systéme par la relation simple :

ARy L (1.1)

dans laquelle 7 est la température définie plus loin.

En pratique, il est intéressant d’introduire une fonc-
tion d’état légérement différente de J, que nous appe-
lons coénergie effective. Nous considérons d’emblée la
coénergie effective comme une fonction d’état dérivée,
résultant de la combinaison des fonctions d’état U, S
et V. En fait, nous définissons la coénergie effective d’'un
systéeme par la relation simple :

I =U-=TS 4 P,V (1.:

|8

dans laquelle P, et T, sont les valeurs fizes de la pres-
sion et de la température d’'un miliew de référence de
dimensions infiniment grandes, en équilibre mécanique
et thermodynamique. Précisons immédiatement que,
pour les problémes qui se posent en machines thermi-
ques, ce milieu de référence sera 1'atmosphére. Done,
dans tout ce qui suit, P, et 7, sont des valeurs moyennes
de la pression et de la température de I'atmosphere.

L’introduction de la grandeur J' se justifie par le
role important qu’elle joue dans I'étude du travail effec-
tif maximum qu’un systéme fermé est susceptible de
fournir. Cette étude fait I'objet du chapitre 3.

La notion correspondant a J' a été introduite en
1889 par M. Gouy, qui lut a donné le nom d’« énergie
utilisable ». Nous pensons que cette appellation n’est
pas heureuse. En effet, il nous semble que 'adjectif
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Fig. 1.1. — Famille des courbes d’égale coénergie relatives

a l'eau, dans le diagramme T — s.

«utilisable » est un terme trés vague, puisqu’il est sus-
ceptible d’étre appliqué a toute grandeur jugée « utili-
sable » pour un but quelconque. En recourant a cet
adjectif, M. Gouy a sans doute voulu rappeler que la
grandeur J’ est susceptible d’étre « utilisée » pour pro-
duire du travail. En fait, nous verrons que ce n’est
pas la grandeur J’ elle-méme, mais I'accroissement AJ’
qui correspond a un travail. D’autre part, nous pensons
que la grandeur J’ est susceptible de prendre une
grande importance pour 'ingénieur, ce qui justifie la
faveur de lul octroyer une appellation individuelle, tout
en conservant l'idée d’énergie interne qui est a son
origine. Pour toutes ces raisons, nous pensons que
ladjectif «utilisable » est impropre et proposons de
remplacer I'expression « énergie utilisable » par le terme
« coénergie », qui nous parait conduire a une appellation
claire, précise et commode.

Les adjectifs «interne» et «effective » ne sont des-
tinés qu’a distinguer les fonctions J et J' en cas de
nécessité. Dans ce qui suit, nous utiliserons exclusive-
ment la fonction J'. Toute confusion étant impossible,
ladjectif «effective » devient superflu. Afin d’alléger le
texte, nous l'omettrons volontairement dans tout ce
chapitre et appellerons simplement « coénergie » la fonc-
tion d’état J'.

Nous appelons coénergie totale la somme de la coéner-
gie, de DI'énergic cinétique et de I'énergie potentielle
gravitique, soit la grandeur :

g : c?
J,o=J+MZ +MgZ (1.3)

qui s’éerit, sous forme massique (c’est-a-dire référée a

I'unité de masse) :
o o /
;=7 4¢+z (1.4)
cz

Nous avons donc :
J =U —T,S + P,V
Jl

cz

J' =u — Tes + Py (1.5)
chz— TuS ‘I‘ IJaV ];z = Uez— THS -+ 1)(," (]G)

Remarquons que, en vertu de la relation de défini-
tion 2, la valeur de la coénergie d’un systéme dans un
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Fig. 1.2. — Famille des courbes d’égale coénergie relatives

a l’air, dans le diagramme 7' — s.

état déterminé est fixée dés que les valeurs de 'énergie
interne et de l'entropie, ainsi que celles de P, et T,
sont fixées, c’est-a-dire dés que les constantes additives
de I’énergie interne et de I'entropie ainsi que les valeurs
de P, et T, sont choisies.

Remarquons aussi que la coénergie est une fonction
d’état extensive, c’est-a-dire que la coénergie d’un
systéme polyphase est la somme des coénergies respec-
tives des différentes phases de ce systéeme. Nous avons
done :

J'ZE[J;] I8 L

Afin d’obtenir une vision claire de I'évolution de la
coénergie d’un systéme, étudions sa représentation dans
le diagramme 7" —s.

Les figures 1 et 2 représentent, a titre d’exemples, les
diagrammes T — s relatifs a I’eau et a I'air. Ces dia-
grammes ont été établis en utilisant la relation de défi-
nition 5 de la coénergie massique, dans laquelle les
valeurs suivantes ont été admises pour les fonctions
d’état de référence :

Py=1b Ts=15¢C

Dans ces diagrammes figurent la famille des courbes
d’égale coénergie caractérisées par j' = Cte, la courbe
1sobare définie par P, = 1 b et la courbe isotherme

5 . ~O ~
définie par 7 = 15C. De plus, la figure 1 comporte
la courbe de saturation, tandis que la figure 2 comporte
la courbe isochore définie par :

r 1 m?

v = —5 = 0,829 —
a P L

D, <o

Afin d’établir quelques propriétés géométriques des
courbes d’égale coénergie, établissons la relation diffé-
renticlle existant entre les fonctions d’état j', 7 et s

relatives & une phase.
La relation 5 donne, sous forme différentielle :
dj' = du— Tads -+ Pdy (1.8)
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En tenant compte des définitions du coeflicient 1so-
chore a, et de la chaleur spécifique isochore ¢,, on peut
montrer que :

- Pa Tn, Pu 7
dj'= <1~ﬁ> ql-cl-clT—(dc*‘l — 7 G ﬁ) Tds (1.9)

Les courbes d’égale coénergie, étant caractérisées

par‘ :
;' = Cte di'=0
présentent donc la pente :
Tﬂ Pa
a (o1t 7w
T — D, (1.10)
Al <1 = F)
Cette relation montre que, en général :
dr
— pour P =P, s =

c’est-a-dire que toutes les courbes d’égale coénergie pré-
sentent une tangente verticale aux points ot elles coupent

Uisobare P = P,

o P, dT
— pour *1_0(”_1—0“']7 5—0

c’est-a-dire que toutes les courbes d’égale coénergie pré-
sentent une tangente horizontale aux points qui satisfont
a la relation ci-dessus :
— pour 1'=T, (E::I_VSL
ds Cy

c’est-a-dire que toutes les courbes d’égale coénergie pré-
sentent la méme tangenle que les courbes isochores aux
points ow elles coupent Uisotherme T = T,.

Dans le cas des gaz semi-parfaitst, la relation 10
devient :

(T Pg g
(lT_ ’]‘_p_) __Ppa(v_—pll) 111
ds 1 P, re,(P—DPy) (4
]
ce qui montre que :
dT
Pl D__ D il A
pour P =D, r

(propriété déja vue ci-dessus) ;
dT
ds

— pour ¢ =g, 0
O 1 g ; : :
c’est-a-dire que toutes les courbes d’égale coénergie pré-
sentent une langente horizontale aux points ot elles cou-
pent Uisochore ¢ = ¢, ;
aT T .

= . = (,LC

T="T. @ = o (Td

— pour
c’est-a-dire que toules les courbes d’égale coénergie pré-
sentent la méme langenle aux points ow elles coupent
Uisotherme T = T',, cetle tangente élant la méme que celle
des courbes isochores.

Toutes les propriétés géométriques établies ci-dessus
apparaissent clairement dans les figures 1 et 2, lair
pouvant, avec une bonne approximation, étre assimilé

! Nous appelons «gaz semi-parfait » tout gaz caractérisé par
I'équation d'état: ¢P = rT. On sait que cetle relation entraine le
fait que ar = Pp =1 et que u, h, ¢y et cp ne sont fonctions que de 7'

284

a un gaz semi-parfait dans le domaine de pression et
de température considéré.

Ainsi que le montre particuliérement la figure 2, les
courbes d’égale coénergie sont fermées sur elles-mémes
et entourent concentriquement le point /* défini par
les valeurs de référence P, et 7. En ce point F, la
surface d’état :

o, el
1=7,s)
présente done un extrémum. Déterminons la nature de
cet extrémum.

La relation 9 donne, pour P = P, :
dj' = (T — 1T, ds

En suivant l'isobare P = P, de la gauche vers la
droite, nous avons ds > 0, de sorte que:

— pour =T dj' =0
— pour =T, dj’ =0

ce qui montre que 'extrémum considéré est un minimum.
Dans ce qui suit, nous lappellerons ;'min. Done, la
surface d’état (T, s) a Uallure d’une fosse dont le fond
est le point I' défini par les valeurs de référence P, et
Ty et situé a la cote j'min.

Cette propriété de la coénergie massique est extréme-
ment remarquable. Nous verrons sous 3 que le point F
est atteint lorsque le systéme est en équilibre méca-
nique et thermique avec l'atmosphére, cet équilibre
étant stable. Cette remarque laisse déja entrevoir
I'intérét que présente la notion de coénergie pour
I'ingénieur.

2. Coenthalpie

Ainsi que nous l'avons fait au chapitre précédent
pour définir la coénergie, nous considérons d’emblée la
coenthalpie comme une fonction d’état dérivée, résul-
tant de la combinaison des fonctions d’état H et S.
En fait, nous définissons la coenthalpie d’un systéme
par la relation :

K=H—T,8 (2.1)

dans laquelle 7', est comme précédemment une valeur
moyenne de la température de 'atmosphere.

L’introduction de la grandeur K se justifie par le
role important qu’elle joue dans I'étude du travail tech-
nique maximum qu'un systéme ouvert est susceptible
de fournir. Cette étude fait I'objet du chapitre 4.

A la suite des travaux de M. Gouy, la notion corres-
pondant a K et les notions dérivant de K ont été étu-
diées, approfondies et développées par un certain nom-
bre de chercheurs et de praticiens. Malheureusement,
'unification n’a pas encore été faite, ni sur les concepts,
ni sur la terminologie, ni sur la symbolique. Voici par
exemple les termes que 'on trouve a ce sujet dans les
ouvrages : enthalpie utilisable, travail maximum, tra-
vail utilisable, travail maximum utilisable, travail tech-
nique maximum, travail disponible, « technische Ar-
beitslihigkeit », exergie. Il arrive qu’il y ait confusion
entre la fonetion d’état K elle-méme, 'accroissement
K de cette fonction d’état et le travail technique
maximum Fyae qu'il est possible d’obtenir. 11 résulte
de tout ceci un certain embarras qui explique peut-étre
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Fig. 2.1. — Famille des courbes d’égale coenthalpie rela-
tives a l’eau, dans le diagramme 7" —s.

le peu d’empressement avec lequel les praticiens utili-
sent ces notions pourtant si fécondes.

A premiére vue, il semblera que nous compliquons
encore la situation en proposant le nouveau terme
« coenthalpie ». Nous pensons au contraire que, pour
les mémes raisons que celles exposées dans le chapitre
précédent, ce terme conduit a une appellation claire,
précise et commode. Remarquons notamment que :

— les termes «coénergie » et «coenthalpie» sont
symétriques 'un par rapport a I’autre, ce qui tra-
duit bien la symétrie qui existe entre leurs défini-
tions ;

— les termes « coénergie » et « coenthalpie » se tra-
duisent aisément dans toutes les langues (en alle-
mand : « Coenergie » et « Coenthalpie»; en an-
glais : « coenergy » et « coenthalpy »; en italien :
« coenergia » et « coentalpia ») ;

— les termes «coénergie totale» et «coenthalpie
totale » permettent sans aucun frais de termino-
logie supplémentaire de tenir compte de I’énergie
cinétique et de 'énergie potentielle gravitique.

Par analogie avec la coénergie totale définie par la
relation 1.3, nous délinissons la coenthalpie totale par
la relation :

Kp=K4+ M % + MgZ (2.2)
qui s’écrit sous forme massique :
hee=1k+c+z (2.3)
Nous avons donec :
K =H — 78 e =B T 2
Koo = M. — T3S ke = hey — Tas (2.5)

Remarquons que, en vertu de la relation de défini-
tion 1, la valeur de la coenthalpie d’'un systéme dans
un état déterminé est fixée deés que les valeurs de Pen-
thalpie et de Pentropie, ainsi que celle de 7, sont
fixées, c’est-a-dire dés que les constantes additives de
Penthalpie et de Pentropie ainsi que la valeur de 7,
sont choisies.
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Fig. 2.2. — TFamille des courbes d’égale coenthalpie rela-
tives a l’air, dans le diagramme 7" —s.

Remarquons aussi que la coenthalpie est une fonc-
tion d’état extensive, c’est-a-dire que la coenthalpie
d’un systéme polyphase est la somme des coenthalpies
respectives des différentes phases de ce systéme. Nous
avons donc :

K=Y [K] Ko=) [Kua] (2.6)

Afin d’obtenir une vision claire de I'évolution de la
coenthalpie d’un systéme, étudions sa représentation
dans les diagrammes 7' —s et & —s.

Les figures 1 et 2 représentent, a titre d’exemples,
les diagrammes T — s relatifs & I'eau et a l'air. Ces
diagrammes ont été établis en utilisant la relation de
définition 4 de la coenthalpie massique, dans laquelle la
valeur suivante a été admise pour la fonction d’état de
référence :

Dans ces diagrammes figure la famille des courbes
d’égale coenthalpie caractérisées par k = Cte. De plus,
la figure 1 comporte la courbe de saturation.

Afin d’établir quelques propriétés géométriques des
courbes d’égale coenthalpie, établissons la relation diffé-
rentielle existant entre les fonctions d’état k, 7' et s
relatives 4 une phase.

La relation 4 donne, sous forme différentielle :

dk = dh — Tds (2.7)

En tenant compte des définitions du coeflicient iso-
bare B, et de la chaleur spécifique isobare ¢p, on peut
montrer que :

Y

7(1
dk = PByopdT — (5,,~ 14 7) Tds  (2.8)

IACS C()u]'])(‘.f (l‘é‘ralc ('()(?Ilt]lﬂ] )i( ("tﬂ“l (‘{\Pa(‘l(;l‘iSC‘CS
S 2 ’
ar :

/\' = Cte (”\‘ == 0

présenlonL done la pente :
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Fig. 2.3. — Famille des courbes d’égale coenthalpie rela-
tives a l’eau, dans le diagramme 7 —s.
Ty
- —1 ) A
ir (91’ + 7 (2.9)
ds Bocp
Cette relation montre que, d'une fagon générale :
Te arT
— pour ,T,:’l—ﬁp e

c'est-d-dire que toutes les courbes d’égale coenthalpie

présentent une tangente horizontale aux points qui satis-
font a la relation ci-dessus.

Dans le cas des gaz semi-parfaits,la relation 9 devient :

ar 74 e

& = om 1 )

c’est-a-dire que toutes les courbes d’égale coenthalpie

présentent la méme tangente aux points ou elles coupent
une méme isotherme T. En particulier, aux points ou
elles coupent I'isotherme 7" = T, cette tangente est la
méme que celle des courbes isobares. Nous pouvons
dire aussi que toules les courbes d’égale coenthalpie
peuvent se déduire Uune de Uautre par une translation
horizontale sutvant Uaze s.
Dans le cas des gaz parfaits, la relation 9 devient :
dr  T.
(1? = C;p = Gte
cest-da-dire que toutes les courbes d’égale coenthalpie
sont des droites paralléles de pente égale a celle que pré-
sentent les courbes isobares aux points ot elles coupent
Uisotherme T = T,.

Toutes les propriétés géométriques établies ci-dessus
apparaissent clairement dans les figures 1 et 2, lair
pouvant, avec une bonne approximation, étre assimilé
4 un gaz semi-parfait dans le domaine de pression et
de température considéré,

Contrairement & ce que nous avons vu pour les
courbes d’égale coénergie, les courbes d’égale coenthalpie
ne sont pas fermées sur elles-mémes. La surface d’état :
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Fig. 2.4. — Famille des courbes d’égale coenthalpie rela-
tives a 'air dans le diagramme h —s.

k=Fk(T,s)

ne présente pas d’extrémum. Elle a, non pas l'allure
d’une fosse, mais celle d’un flanc de coteaw qui dégénére :
— dans le cas des gaz semi-parfaits, en une surface
réglée & génératrices rectilignes situées dans des
plans perpendiculaires a I'axe 7', car la relation 8
devient :

dle = ¢p (T) dT — Tuds (2.10)

— dans le cas des gaz parfaits, en un plan incliné,
car la relation 8 prend alors la forme linéaire :

dk = cp T — Tods (2.11)

Les figures 3 et 4 représentent, a titre d’exemples,
les diagrammes h— s relatifs a I'eau et a lair. Ces
diagrammes ont été établis de la méme maniére que
les diagrammes 7" —s.

La relation différentielle existant entre les fonctions
d’¢tat &, h et s d’une phase n’est autre que la
relation 7.

Les courbes d’égale coenthalpie présentent donc la
pente :

dh
—f = T, = Cte

o
- (2.12)

Cette relation montre que, d'une facon générale,
toutes les courbes d’égale coenthalpie sont des droites paral-
léles de pente égale a la température T,. Cette propriété
géométrique apparait clairement dans les figures 3 et 4.

La surface d’état :

k= k(h,s)

est tout simplement un plan tncliné, puisque la rela-
tion 7 a une forme parfaitement linéaire.

Remarquons encore que les figures 3 et 4 montrent
bien la différence fondamentale qui existe entre les
notions d’enthalpie /& et de coenthalpie k.




3. Systéme fermé — Cotravail — Travail maximum —
Pertes thermodynamiques

Considérons le systéme fermé représenté par la
figure 1 a) ou plus généralement 1 b).

Ce systéme est susceptible d’échanger de la chaleur
avec différentes sources thermiques. D’une fagcon géné-
rale, soit :

SQT la chaleur regue pendant le temps dt de la source
thermique i;

T; la température commune & la source 7 et au sys-
téme, le long de la frontiére représentée par un
trait pointillé. (Dans le cas particulier du rayonne-
ment, 7; est la température soit & I’endroit ou
I'énergie rayonnante se manifeste sous forme de
chaleur par suite du phénomene d’absorption, soit
a 'endroit ou elle se manifeste sous forme de cha-
leur par suite du phénomene d’émission.);

8A" le travail fourni pendant le temps dt & Iextérieur.
En vertu du premier principe de la thermodyna-
mique, la variation de I’énergie totale du systéme est :

AU = E [Bot] g4 (3.1)

Remarquons que le travail 84 comprend le travail
correspondant aux forces de pression P, exercées en
général par le systéme sur I'atmosphére, au niveau de
sa frontiére. Ces forces travaillent dés que la frontiére
se déplace, c’est-a-dire dés que le volume du systéme
varie. Elles mettent en jeu le travail P,dV, de sorte
que le travail vraiment utile & I'ingénieur, appelé travail
effectif échangé, est :

SAT' = 8AT — PV (3.2)

(Afin d’alléger le texte, nous omettrons volontaire-
ment dans tout ce chapitre l'adjectif « effectif ».)
La variation de Ientropie du systéme est :
— pour les échanges de chaleur entre le systéme et
Iextérieur :
4

as" = ) [510+

7

— pour les échanges de masse entre le systéme et
I'extérieur :
m
dS" =0

car le systéme est fermé ;
— pour les frottements internes :

- 5R«
a5 =2, &

Ry étant la dissipation a Pintérieur de la phase o
du systeme ;

— pour les transmissions internes de chaleur :
¢ 1 1 o
a5t =3 [(,/,—ﬁ— Ta) 80]3]
ap

()g étant la chaleur passant de la phase o, dont
la température est 7', 4 la phase B, dont la tem-
pérature est 7'p ;

| /
/
; SA
\
\ }\
~ 4
0,
Paroi conductrice,déformable et fermée
a) b)
Fig. 3.1. — Systémes thermodynamiques fermés.

a) Systéme simple.
b) Systéme quelconque.

— pour les autres irréversibilités internes, physiques
(ex.: mélange), chimiques (ex.: combustion) ou
nucléaires (ex.: fission) :

s’

Done, la variation de I’entropie du systéme est :
— pour les opérations externes :

-3y

i T
— pour les opérations internes :
: ; 1 :
a8’ =Yy [Sﬁ]+y [(i——)ar)"] +ds* (3.3)
STl T TR
Finalement, la variation d’entropie du systéme est:

+
s =N [?%} + ds° (3.4)

7

L’élimination de 84~ entre les relations 1 et 2 donne :
it g \! +
SA™' = — (U + PudV) + Z [507%]
1

En multipliant tous les termes de la relation 4 par
la température de référence 7', définie sous 1 (tempé-
rature moyenne de I'atmosphére), nous pouvons écrire :

Ta el a0
= TdS— )| [[— s(ﬁ] — TadS

1

Puis, en additionnant membre & membre les deux
relations précédentes et en tenant compte de la rela-
tion 1.6 sous forme différentielle, nous obtenons la
relation :

84 = —dJi + Y [nisQ}] — TadS® (3.5)

(2

dans laquelle I'expression :

) 7‘11.
= P 2Bzl (3.6)
T;

est le rendement de Carnot relatif aux températures Ty
et Tg.
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I'ig. 3.2. — Variation du rendement de Carnot 'r]ft en fone-

tion de la température 7'; de la source thermique 1.

Enfin, en intégrant entre un état initial 1 et un état
final 2, nous obtenons (en omettant volontairement les
bornes d’intégration 1 et 2) :

AT ==+ Y | [niset| — Tabs® (3.7)

Afin de familiariser I'ingénieur avec les notions expri-
mées par ce bilan et lui permettre d’utiliser les termes
correspondants de fagon concréte, il nous semble a la
fois logique et indispensable de les noter en leur oc-
troyant un symbole et de les baptiser en les désignant
par une appellation aussi claire, précise et commode
que possible. Dans cet esprit, nous proposons les sym-
boles et appellations suivantes :

Cotravail associé @ la transformation :

Apd = — Aiwg = — Me Djiza (3-8)
Cotravail associé a la chaleur :
Af = J nisQT (3.9)
Pertes thermodynamiques en travail :
L =TS’ >0 (3.10)

En vertu de ces définitions, la relation 7 donne, pour
le travail échangé :

AT =N [ak]) + Y [4f]—L | 3.11)
x 3

Si toutes les opérations internes étaient réversibles,
c’est-a-dire si :

AS® =0 L=

alors nous obtiendrions le travail échangé maximum :

d
i

Amix = 2 [Ama] + Y [45] (3.12)
x

Cette relation suppose que le systéme subit exacte-
ment la méme transformation thermodynamique résul-
tante et que les chaleurs échangées SOT restent les
mémes (sauf la chaleur échangée avec atmosphere a
la température 7', ce qui n’altére pas le bilan, puisque
le cotravail associé a cetle chaleur est nul). Mais con-

trairement au cas réel; il n’y a pas de frottement interne
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(pas de dissipation interne), toutes les transmissions
internes de chaleur se font sans chute de température
(pas de dévalorisation interne) et toutes les autres opé-
rations internes sont réversibles.

Dans le cas réel, les irréversibilités internes ont pour
conséquence pratique pour l'ingénieur de diminuer le
travail échangé de la quantité I, qui ne peut étre que
positive ou nulle. Le terme L englobe donc toutes les
pertes dues aux irréversibilités internes. Il constitue
bien ce que nous appelons les peries thermodynamiques
en travadl.

Les relations précédentes mettent en évidence les
propriétés fondamentales suivantes :

—— Le cotravail associé a la transformation d’une phase
est égal a la variation de la coénergie tolale de cette
phase.

—— Le cotravail assocté a la chaleur est égal au produil
du rendement de Carnot par la chaleur échangée.

—— Les pertes thermodynamiques en travail sont égales
aw produit de la température T, par Uaccroisse-
ment d’entropie due aux trréversibilités internes.

—— Le travail échangé est égal a la somme des cotravaux,
diminuée des pertes thermodynamiques en trasvail.

— Le travail échangé maximum est égal a la somme
des colravauz.

Examinons maintenant un peu plus en détail la

signification des termes contenus dans la relation 11.

@) Le terme Ass indique quel est le travail maximum
qu’il est possible d’obtenir grice au seul fait de la trans-
formation thermodynamique de la phase . A ce point
de vue, nous constatons que la fonction d’état déter-
minante n’est autre que la coénergie totale, ce qui jus-
tifie le soin avec lequel cette grandeur a été étudiée
sous 1.

Le signe — montre que la phase o est susceptible de
fournir du travail lorsque sa coénergie totale diminue.

b) Le terme l,; indique quel est le travail maximum
qu’il est possible d’obtenir grice a la chaleur recue de
la source 7 a la température 7.

Remarquons que seule une partie de cette chaleur,
déterminée par le rendement de Carnot T]la, est susceptible
d’étre transformée en travail.

La figure 2 représente la variation du rendement de
Carnot ni en fonction de la température 7 de la source
thermique ¢, conformément a la définition 6.

Nous constatons que :

— pour T; = oo, la chaleur 807 serait susceptible

d’étre transformée intégralement en travail ;

— pour Ty < T'; < oo, la chaleur SQT n'est suscep-
tible d’étre transformée en travail que partielle-
ment, la proportion étant donnée par le rende-
ment de Carnot dont la valeur est d’autant plus
faible que celle de 7% est faible ;

- pour Ty = T4, la chaleur 8();r n'est susceptible
de donner aucun travail ;

- pour 0 < 7T; < T4, la chaleur 8()";, non seule-
ment n’est susceplible de donner aucun travail,
mais au contraire exige qu'un certain travail soit
fournt au systéme.

Nous arrivons ainsi au résultat bien connu selon
lequel, aw point de vue production de travail, une chaleur
déterminée présente un intérét d’autant plus grand que la
température Ty a laquelle elle est liorée est élevée.




Cet 1intérét baisse selon la loi représentée sur la
figure 2 lorsque 7'; diminue. Quand 7'; = 7', cette cha-
leur ne présente plus aucun intérét. Enfin, quand
T; < Tq, 1l faut méme dépenser du travail. Ces consi-
dérations expliquent la raison pour laquelle les grands
systémes naturels en équilibre avec I'atmosphere,
comme les riviéres, les lacs, les mers et I'atmosphere
elle-méme, ne présentent en tant que systéemes isolés
aucun intérét au point de vue production de travail,
ceci malgré leurs grandes dimensions et I'énorme énergie
interne qu’ils contiennent.

¢) Le terme L indique quelles sont les pertes thermo-
dynamiques que subit le systéme.

Les relations 3 et 10 donnent :

_\ Ta .\ [ Ta T i
I~y [ T,GSRG] + \B U (ﬁ—ﬁ)sgg} +TAS'=0
[0 [ed

(3.13)

Le premier terme du membre de droite de cette
relation indique quelle est la perte thermodynamique
résultant de la dissipation 8/i. Nous constatons que :

— pour 7'y = oo, la perte serait nulle ;

— pour Ty, < T'q << oo, la perte n’est qu'une frac-

tion de 8R4, cette fraction étant donnée par le

rapport dont la valeur est d’autant plus

1 a
’72)
élevée que celle de T est faible ;
— pour T'q = T, la perte est égale intégralement
a4 8Rq;
— pour T < Ty, la perte est un multiple de 8HRq,
A : Ta
la multiplication étant toujours donnée par T
@
Nous arrivons ainsi au résultat bien connu selon lequel
une dissipation déterminée conduit a une perte thermo-
dynamique d’autant plus faible qu’elle se produit a tempé-
rature élegée. Ceci se congoit par le fait que, conformé-
ment a ce qui a été vu sous b, la chaleur résultant de
la dissipation est susceptible de produire d’autant plus
de travail qu’elle est engendrée & un « niveau» élevé,
Le deuxieme terme du membre de droite de la rela-
tion 13 indique quelle est la perte thermodynamique

résultant de la transmission de chaleur 80; sous la
chute de température 7'¢— 7's. Nous constatons que :

— pour T'q = Tp, la perte serait nulle;

— pour T'q # Tp, la perte est déterminée par I'ex-
Trt r]’a\ 3
[—[3—7—0(), dont la valeur est d’autant

plus élevée que celles de Ty et 7 sont faibles et
différentes 'une de lautre.
Nous retrouvons ainsi le résultat bien connu selon

pression (

lequel une transmission de chaleur déterminée conduit a
une perte thermodynamique d autant plus faible que les
températures des deux phases sont élevées et voisines Uune
de Uautre.

Le troisieme terme du membre de droite de la rela-
tion 13 indique quelle est la perte thermodynamique
résultant de toutes les autres irréversibilités internes.

Toutes les considérations précédentes mettent bien
en relief le role remarquable joué par I'état de Patmo-
sphere. Pour concevoir ce role encore plus nettement,
considérons un systéme fermé qui n’échange de la cha-

leur qu’avee I'atmosphere, & la température 7.

a
Dans ce cas, le rendement de Carnot me est nul, de
sorte que la relation 12 se réduit a:

Ar;ix = Am’ = T2 Acléz =—M A]‘éz (314)

Done, pour un systéme fermé n’échangeant de la cha-
leur qu’avec Uatmosphére, Uobtention de travail se paie
par la diminution de la coénergie totale du systéme.

Or, nous avons vu sous 1 que j* présente un minimum
Jinin lorsque le point représentatif de son état thermo-
dynamique dans le diagramme 7" —- s coincide avec le
fond F de la fosse de la surface d’état du systéme.

D’autre part, nous savons que les minima de I'énergie
2

cinétique M —- et potentielle gravitique Mg Z sont nuls.

Donc je. admet également comme minimum la valeur
Jmin- 1l en résulte que la valeur maximum du travail
échangé maximum qu’il est possible d’obtenir a partir
d’un systéme caractérisé par Jeo est, en vertu de la
relation 14 :

Amax mox = Jéz— Jomin = M (].Z'z — ]'xrniu:‘ (3.15)

En d’autres termes, la possibilité de production de
travatl d’un systéme fermé n’échangeant de la chaleur
qu'avec Uatmosphére est mesurée par Uécart enire sa co-
énergie totale et la valeur minimum de cetle derniére.

Considérons maintenant un systéme fermé qui, non
seulement n’échange de la chaleur qu’avec I'atmo-
spheére, mais encore n’échange aucun travail avec I'ex-
térieur. Dans ce cas, la relation 5 donne :

At = — TodS° < 0 (3.16)

Done, la coénergie totale d’un systéme sans travail
échangé et n’échangeant de la chaleur qu’avec Uatmosphére
ne peut que diminuer, a cause des rréversibilités internes.
Auw mreuw, elle resterait constante en 'absence d’irréver-
sibilités internes.

Toutefois, 1l y a une limite a la diminution de J¢.
Cette limite est atteinte lorsque le systéme arrive en équi-
libre mécanique et thermique apec U'atmosphére. Alors son
état thermodynamique est représenté par le point [/
situé au fond de la fosse de la surface d’état, sa co-
énergie totale est égale & Juin et plus rien ne peut
se passer, ce qui signifie que 'équiltbre ainsi atteint est
stable.

Comme nous P'avons déja relevé, la notion de co-
énergie est intéressante au point de vue technique. En
elfet, elle répond aux préoccupations de I'ingénieur dont
la mission est de produire du travail a 'aide de machines
thermiques, tout en étant asservi de facon inéluctable
aux impératifs du milieu dans lequel nous vivons, c’est-
a-dire 'atmosphere.

La notion de coénergie donne un cadre de raisonne-
ment logique permettant de concevoir pour quelle
raison tout corps en déséquilibre mécanique et ther-
mique avec 'atmosphére représente une richesse au
point de vue économique, aussi bien s’il se trouve en
dépression qu’en surpression et aussi bien s’il se trouve
a température plus basse qu’a température plus haute
par rapport & 'atmospheére. Cest pourquoi aussi bien
un réservoir en dépression qu’une bouteille d’air com-
primé, et aussi bien un bloc de glace qu'une masse
d’eau bouillante possédent une valeur commerciale. 11
faut soit dépenser de I'énergie pour les fabriquer, soit
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dépenser de I'argent pour les acquérir, ce qui revient
au méme.

Remarquons toutefois que la notion d’équilibre inter-
venant dans ce chapitre n’est simple que parce que le
systéme est fermé, car elle se limite & I’équilibre méca-
nique et thermique. Par contre, elle se complique consi-
dérablement deés que le systéme est ouvert, car alors
elle englobe nécessairement I’équilibre physique et chi-
mique.

4. Systéme ouvert, en régime permanent — Copuis-
sance — Puissance maximum — Pertes thermo-
dynamiques

Considérons le systéme ouvert, en régime perma-
nent, représenté par la figure 1 a. Ce cas serait par
exemple celui d’une turbine dans laquelle le fluide serait
chauffé en cours de détente. Plus généralement, consi-
dérons le systéme représenté par la figure 1 b.

Ce systéme est susceptible d’échanger de la chaleur
avec différentes sources thermiques et de la masse avec
I'extérieur. D’une facon générale, soit :

8()-1— le flux de chaleur élémentaire recu de la source
thermique 7, dont la température 7'; peut varier
d’un point a4 un autre ;

]Vl: le débit-masse re¢u de I’extérieur par la section Sq;

E la puissance technique fournie & I'extérieur. (Afin
d’alléger le texte, nous omettrons volontairement
dans tout ce chapitre l'adjectif « technique ».)

Comme le régime est permanent, le systéme considéré
n'est le siége ni d’accumulation, ni de déperdition
d’énergie totale. Le taux de variation de I’énergie totale
est nul. En vertu du premier principe de la thermo-
dynamique, nous avons done :

dUg _ = [fSQ ] y [hcqu;] = [

dt

¢’est-a-dire :

“= 2 [[80t] + ¥ [headtz]  g1)

x

Précisons que l'intégrale figurant devant SQT est
une intégrale par rapport & I'espace et non par rapport
au temps. Ce sera par exemple 'intégrale le long d’un
tube de chaudiére.

L’hypothése du régime permanent contient implicite-
ment le fait que la frontiére du systéme est indéfor-
mable. Il en résulte que le systéme n’échange pas de
travail avec I'atmosphére. Done, contrairement a ce
qui a été fait dans le chapitre précédent pour un sys-
teme fermé, il n’y a pas lieu d’introduire de distinction
entre la puissance et la puissance effective.

Le taux de variation de I'entropie du systéme est :

— pour les flux de chaleur SOT échangés entre le

systeme et I'extérieur :

ds" _ N\ [ (807
dt —lJ [fT

o ot ;
— pour les débits-masse Mg échangés entre le sys-
téme et I'extérieur :

ds™ )
7 E [qu;]

dt

290

—~
7 N mM* ‘
ao;\\/ )\/ i |
(4 \
1 |
SN
M\ s
}’// 4Q; ‘
- :
. s
AN il |
L 7/
Mg / \
Paroi conductrice, indéformable et ouverre( |
a) b)
Fig. 4.1. — Systémes thermodynamiques ouverts, en

régime permanent.
a) Systéme simple.
b) Systéme quelconque.

— pour la puissance de frottement interne 3Ry :

il

Ry étant la puissance dissipée a I'intérieur de la
phase o du systéme ;

— pour la puissance de transmission interne de
chaleur :

s’ o 1 [y
B oy U(ra TT,) SQf"]
e
étant e Ilux de chaleur passant de la nase o
B le flux de chaleur j de la pt 3

dont la température est 7', & la phase B, dont la
température est 7'p;

— pour les puissances correspondant aux autres irré-
versibilités internes, physiques (ex.: mélange),
chimiques (ex.: combustion) ou nucléaires (ex. :
fission) :

a8
dt

Donc, le taux de variation de I'entropie du systéme
est :

— pour les opérations externes :
5" _ v [ [30%] N1 e
& ST [sat &]

) Q

— pour les opéralions internes :

7 = ST S G e % e

Comme le régime est permanent, le systéme considéré
n’est le siege ni d’accumulation, ni de déperdition d’en-
tropie. Le taux de variation de I'entropie est nul. Nous
avons donc finalement :

dS N\ 807 \ dS°
I:-‘;*[T‘JJF [sadf] +22 =0 (4.3)

En multipliant tous les termes de cette relation par




la température de référence 7, définie sous 1 (tempé-
rature moyenne de 'atmosphére), nous pouvons éerire :

>1 Ta L \“ ot LlSo
oz___l[fﬁsoi —_,._‘[Taquq]ﬁTaE (4.4)
g o

Enfin, en additionnant membre 4 membre les rela-
tions 1 et 4 et en tenant compte de la relation 2.5,
nous obtenons la relation :

p— ; )\ ig ds°
B = Y [keatd] + ([ nisot] — 7. = (4.5)

dans laquelle I’expression :

<1 (4.6)

est, comme précédemment, le rendement de Carnot relatif
aux températures Ty et T',.

Nous allons maintenant introduire une nouvelle
maniére de présenter le premier terme du second mem-
bre de la relation 5.

Considérons le schéma de la figure 2 a. Le systéme
étant en régime permanent, il est évident, a cause de
la continuité, qu'a tout débit-masse M¢ pénétrant
dans le systéme correspond un débit-masse Mo sortant
du systéeme, de telle sorte que :

ME = Mg

Il est donc commode de grouper deux a deux les
termes qui sont relatifs au méme débit-masse et de
mettre sa valeur absolue My en facteur. Nous obtenons
alors :

2 [/f”"M;‘I-] == E [Mor A/fcza] (4.7)

a o4

ot Akpo est Paccroissement de la coenthalpie totale
de la substance o entre son entrée dans le systéme et
sa sortie du systéme, c’est-a-dire :

A/\'cza = Kz Sortie — Keza Entrée (4 . 8)

Remarquons que le raisonnement ci-dessus est abso-
lument général. En effet :

a) 1l est indépendant du fait que le débit-masse Mqy
résulte de la confluence de plusieurs débits-masses ou
se subdivise en plusicurs débits-masses a lintérieur
méme du systéme. Comme le montre la figure 2 b, le
débit-masse My est la somme des déhits-masses faisant
partie d’'un méme réseau d’écoulement o.

b) Il est indépendant du fait que le réseau d’écoule-
ment o subisse ou non une modification physique (ex. :
mélange), chimique (ex.: combustion) ou nucléaire
(ex. : fission) au cours de son passage a Pintérieur méme
du systéme. Il est bien entendu que, dans ces cas, il
est absolument indispensable que les constantes des co-
enthalpies d’entrée et de sortie soient cohérentes. Seule
I'une d’elles peut encore étre arbitraire, les autres étant
harmonisées de fagon i tenir compte des phénoménes

/
Paroi conductrice,indéformable et ouverte

a) b)

Fig. 4.2. — Réseaux d’écoulement traversant un systéme
thermodynamique ouvert, en régime permanent.

physiques, chimiques ou nucléaires. Relevons en pas-
sant qu’il en est de méme pour l’énergie interne et
I'enthalpie dans les calculs classiques de combustion
isochore et isobare faisant intervenir seulement le pre-
mier principe de la thermodynamique. Dans un cas
comme dans l'autre, c’est le physicien ou le chimiste
qui doit fournir a I'ingénieur les valeurs a donner aux
constantes relatives a wu, h et s pour les différentes subs-
tances considérées.

Nous verrons dans ce qui suit que cette facon de
considérer D'effet di a I'évolution thermodynamique
d’une substance qui traverse le systéme conduit & une
interprétation extrémement claire des phénoménes, a
un établissement trés précis du bilan énergétique et a
une détermination irréprochable du rendement thermo-
dynamique d’un systéme ouvert quelconque en régime
permanent.

Pour les mémes raisons que celles exposées au cha-
pitre précédent, nous proposons les symboles et appella-
tions suivantes :

Copuissance assoctée a la transformation :

rj;cx === Mo: Al‘t'czc: (49)

Copuissance associée a la chaleur :

By = [ nis0t (4.10)

Pertes thermodynamiques en puissance :

. ds®

=T, — 4.11
L Ta g, =0 ( )

En vertu de ces définitions, la relation 5 donne, pour
la puissance échangée :

B = X [Ere] + E (85 ]—& (4.12)
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S1 toutes les opérations internes étaient réversibles,
c’est-a-dire si :
0 ,
dS" =0 L=0

alors nous obtiendrions la puissance échangée maximum :

bax = Y [B7a] + Y [£3F] (4.13)

i

Cette relation suppose que le systéme subit exacte-
ment la méme transformation thermodynamique résul-
tante et que les flux de chaleur échangés SQT restent
les mémes (sauf le flux de chaleur échangé avec
I'atmosphére a la température T,, ce qui n’altére
pas le bilan, puisque la copuissance associée a cette
chaleur est nulle). Mais, contrairement au cas réel,
il n”’y a pas de frottement interne (pas de dissipation
interne), toutes les transmissions internes de chaleur se
font sans chute de température (pas de dévalorisation
interne) et toutes les autres opérations internes sont
réversibles.

Dans le cas réel, les irréversibilités internes ont pour
conséquence pratique pour l'ingénieur de diminuer la
puissance échangée de la quantité L qui ne peut &tre
que positive ou nulle. Le terme L englobe done toutes
les pertes dues aux irréversibilités internes. Il constitue
bien ce que nous appelons les pertes thermodynamiques
en putssance.

Les relations précédentes mettent en évidence les
propriétés fondamentales suivantes :

— La copuissance associée a la transformation est égale
aw produit du débit-masse d’un réseaw d’écoulement par la
variation de la coenthalpie totale massique entre Uentrée
et la sortie du systéme.

— La copuissance associée a la chaleur est égale au
produit du rendement de Carnot par le flux de chaleur
échangé.

— Les pertes thermodynamiques en puissance sont
égales aw produit de la température T, par le taux d’ac-
crotssement d’entropie due aux irréversibilités internes.

— La puissance échangée est égale a la somme des
copuissances, diminuée des pertes thermodynamiques en
puissance.

— La puissance échangée maximum est égale a la
somme des copuissances.

Canal mobile

Fluide b
Section Sy : kc}z

Tig. 4.3. — Canal mobile, traversé par un fluide en régime
permanent et échangeant de la chaleur avec un fluide b.

Examinons maintenant un peu plus en détail la
signification des termes contenus dans la relation 12 :

a) Le terme Iz,ﬁa indique quelle est la puissance maxi-
mum qu’il est possible d’obtenir grace au seul fait de
I'évolution thermodynamique du réseau d’écoulement o
traversant le systéeme. A ce point de vue, nous consta-
tons que la fonction d’état déterminante n’est autre
que la coenthalpie totale massique, ce qui justifie le
soin avec lequel cette fonction a été étudiée sous 2.

Le signe montre qu'un réseau d’écoulement est
susceptible de fournir de la puissance lorsque sa coen-

thalpie totale massique diminue.

b) et ¢) Les termes eq et I donnent lieu exacte-
ment aux mémes considérations que celles qui ont été
faites dans le chapitre précédent. Nous n’y revenons
pas.

Précisons seulement que les chaleurs sont remplacées
par des flux de chaleur et les énergies par des puissances.

D’autre part, il est bien entendu que les intégrations
se font par rapport a I'espace et non par rapport au
temps.

Enfin, remarquons que les relations 2 et 11 permet-
tent de donner aux pertes thermodynamiques la forme :

1

N[ (Te \ &_TJ) - ds’
L_‘%UTGS}?G * (Tp 70) 80| + Tug, =0

(4.14)

Afin d’illustrer la théorie précédente, nous allons
traiter quelques exemples d’applications pratiques.

(A suipre)

ACTUALITE INDUSTRIELLE (32)

Septiémes journées du Mont-Pélerin

L’avenir de l'industrie suisse d’exportation
de biens d’équipement de haute technicité

Une cinquantaine de personnes ont pris parl aux
Journées 1965 du Mont-Pélerin, septi¢me du nom, qui
se sont tenues les 16T et 2 mai, a I’Hotel du Parc. Orga-
nisées conjointement par la Section genevoise de la
SIA, la Société vaudoise des ingénieurs et des archi-
tectes, la Société d’études économiques et sociales du
Haut-Léman, Vevey, ces journées, qui avaient pour
theme : L'avenir de Uindustrie suisse d’exportation de
biens d’équipement de haute technicité, ont été présidées,
la premiére par M. S. Rieben ct la seconde par M. F.

Maillard.
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Ainsi que le programme le rappelait, les Journées du
Mont-Pélerin ont été créées en 1959 par le Groupe des
ingénieurs de I'industrie de la STA, section genevoise ;
elles ont rapidement démontré qu’elles répondaient a un
véritable besoin, tant par I'information qu’elles distri-
buent que par les échanges d'idées qui s’établissent et
les contacts personnels qu’elles favorisent. Les thémes
suivants ont été traités :

1959 : L'ingénieur suisse et I'Europe.

1960 : L'automatique et I'homme.

1961 : L’interdépendance de I'économie et de la technique.

1962 : L’ingénieur et 'économiste dans I'entreprise, leur
formation et leur collaboration.

1963 : Aspects scientifiques et économiques de la recher-
che.

1964 : Aspects humains de 'administration de I'entreprise.

1965 : L’avenir de lindustrie suisse d’exportation de
biens d’¢quipement de haute technicité.
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