Zeitschrift: Bulletin technique de la Suisse romande

Band: 91 (1965)

Heft: 1

Vereinsnachrichten

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Les déformations y_{a_2} et y_{a_3} sont facilement exprimées en

$$y_{a_2} = \frac{1}{3} y_4 + \frac{2}{3} y_1$$

et de même pour y_{a_3} .

Les déformations y_{c_2} et y_{c_3} peuvent être exprimées en fonction de p_1 , p_2 , p_3 , p_4 en recherchant la déformée totale d'une poutre sur deux appuis sollicitée successivement par des charges triangulaires.

On trouve ainsi:

$$y_{c_2} = \frac{p \ 4 \ a^4}{1080 \ EI} p_1 + \frac{429 \ a^4}{1080 \ EI} \ p_2 + \frac{390}{1080 \ EI} p_3 + \frac{77 \ a_4}{1080 \ EI} \ p_4$$

et de même pour y_{c_3} .

On pose

$$N = \frac{1080 EI}{a_4}$$

avec E module d'élasticité de la poutre, et I son moment d'inertie.

Enfin, les déformations y_{b_2} et y_{b_3} dépendent uniquement de la charge extérieure q et se calculent en fonction de

$$y_1 = \frac{p_1}{K_1}$$
 $y =_2 \frac{p_2}{K_2}$ $y_4 = \frac{p_3}{K_3}$ $y_4 = \frac{p_4}{K_4}$

 K_1 , K_2 , K_3 et K_4 étant les coefficients de raideur aux points 1, 2, 3 et 4 et on remplace dans les équations (3) et (4) les valeurs des y en fonction des p. On obtient finalement:

$$\left(94 - \frac{2}{3} \frac{1}{R_1}\right) p_1 + \left(429 + \frac{1}{K_2} N\right) p_2 + 390 p_3 +
+ \left(77 - \frac{1}{3} \cdot \frac{1}{K_4} N\right) p_4 = Nyb_2$$
(7)

$$\left(77 + \frac{1}{3} \cdot \frac{1}{K_1} N\right) p_1 + 390 p_2 + \left(429 + \frac{1}{K_3} N\right) p_3 + \\
+ \left(94 - \frac{2}{3} \frac{1}{K_4} N\right) p_4 = N y_{b_3}$$
(8)

Les quatre équations linéaires (5) (6) (7) et (8) permettent de déterminer les quatre pressions p_1 , p_2 , p_3 et p_4 .

Si la charge q est symétrique, le nombre d'inconnues se réduit à deux et on obtient les deux équations :

$$p_1 + 2 p_2 = \frac{\sum P}{a}$$

$$\left(19 - \frac{N}{K_1}\right) p_1 + \left(91 + \frac{N}{K_2}\right) p_2 = Ny_{b_2}$$

avec
$$N = \frac{120 EI}{a4}$$

et $\Sigma P =$ somme de toutes les forces symétriques sur la

Grasshoff a également effectué le calcul pour des subdivisions de la poutre en cinq et en sept parties égales. Au point de vue des applications à la pratique, la subdivision en trois parties égales est en général suffisante.

Pour appliquer la méthode, on doit connaître les coefficients de raideur K1, K2, K3, K4 on peut déterminer ceux-ci en considérant une charge uniforme p1 de la même longueur et largeur que la poutre et faire le calcul des tassements correspondants, c'est-à-dire des valeurs y_1 . Les valeurs des coefficients de raideur sont obtenues par la relation:

$$K = \frac{p_1}{y_1} \cdot$$

Ces coefficients de raideur ne sont pas exacts, car on a supposé une répartition uniforme des pressions. A partir des coefficients de raideur approximatifs ainsi déterminés, on peut calculer la répartition des pressions p par la méthode indiquée et l'on peut recommencer un calcul de tassement à partir des pressions trouvées, ce qui donnera des coefficients de raideur plus exacts. On peut continuer ainsi de suite.

Grasshoff a développé une méthode de détermination des coefficients de raideur basée sur la répartition des pressions dans le sol et la détermination de la ligne d'influence du tassement d'un point de la surface du sol.

DIVERS

Postes à pourvoir

L'Organisation européenne de recherches spatiales met au concours les postes suivants d'assistants au directeur adjoint de la Division de contrôle et de stabilisation, à la Direction des recherches appliquées du Centre européen de technologie spatiale de Delft :

Chef de la section des systèmes de stabilisation par variation du moment angulaire (poste TH 57).

Chef de la section des composants mécaniques (poste TH 58).

Chef de la section des systèmes de stabilisation par jets de gaz (poste TH 56).

SOCIÉTÉ SUISSE DES INGÉNIEURS ET DES ARCHITECTES

69e assemblée générale de la SIA 1

En raison de difficultés de logement à la date primitivement prévue, la 69e assemblée générale aura lieu à Bâle non pas du 18 au 20 juin, mais du 11 au 13 juin

LES CONGRÈS

2e symposium européen des agents inhibiteurs de la corrosion

Ferrare (Italie), 24-26 septembre 1965

Ce symposium, organisé par le Centre d'études de la corrosion Aldo Daccó de l'Institut de chimie de l'Université de Ferrare, est la 29e manifestation de la Fédération européenne de la corrosion.

Renseignements et inscriptions (jusqu'au 15 juin 1965) : Secrétariat du symposium 2 SEIC, Istituto di Chimica, Università, Via Scandiana 25, Ferrara (Italie).

CARNET DES CONCOURS

Concours d'idées pour l'aménagement de la place du Marché à Montreux

Jugement

Le jury chargé d'examiner les projets présentés s'est réuni les 26 novembre, 1er et 2 décembre 1964. Il a décerné les prix suivants:

1er prix, 7000 fr., à MM. Gampert et Hacin, architectes SIA, à Genève.

¹ Communiqué du Secrétariat central.