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ETUDE DES VIBRATIONS D'UNE COQUE SPHERIQUE
VISCOÉLASTIQUE SOUS L'ACTION DE DIVERSES PRESSIONS

INTÉRIEURES VARIABLES EN FONCTION DU TEMPS

par HENRY FAVRE, professeur à l'EPF, Zurich

§ 1. Introduction

Les vibrations des coques sphériques, faites d'une
matière élastiquement déformable, ont été l'objet de
nombreuses études théoriques l. Par contre, relativement.

peu de recherches ont été faites jusqu'à ce jour sur les

vibrations des coques sphériques non élastiquement
déformables, c'est-à-dire dont la matière ne satisfait pas à la
loi de Hooke2. Ce dernier cas est cependant devenu
très actuel, par l'emploi de plus en plus fréquent des

matières plastiques dans l'industrie. C'est la raison pour
laquelle nous avons cru utile d'étudier ici les vibrations
des coques minces sphériques, viscoélasliques, sous l'action

d'une pression intérieure variable en fonction du

temps t. Nous nous placerons dans des conditions rela-

1 Les titres des publications [l| à [13] .1.' la bibliographie sommaire
placée à la fin de t',; mémoire permettront au lecteur de se taire une
idée fie la variété de ces études. Les mémoires cités ne représentent
qu'un petit nombre des travaux laits dans ce domaine.

2 Voir par exemple les mémoires f!4|, [lâ| el [16].

tivement simples, celles où tous les points de la coque
sont primitivement immobiles, et où aucune tension
latente n'existe au moment où commence la variation
de la pression intérieure. En outre, nous supposerons
que cette variation soit à chaque instant la même en
tous les points de la face intérieure de la coque, et
qu'elle soit une fonction connue de t. En admettant
que la pression extérieure ne varie ni dans l'espace ni
dans le temps, les points de la surface moyenne subiront

des déplacements radiaux, constamment égaux
entre eux. La coque sera donc une couche sphérique
de rayon légèrement, variable, où seule une tension de

membrane umforme, mais fonction du temps, existera,
à l'exclusion de moments de flexion et de torsion.

D'autre part, nous admettrons que la coque soit faite
d'une matière où la relation entre les tensions tangentielles

el les glissements est conforme au modèle de

Maxwell, cl où la dilatation cubique est proportionnelle
à la tension normale moyenne.
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Après avoir établi les équations fondamentales du

mouvement considéré (§2), nous examinerons, dans

le § 3, le cas particulier des vibrations libres, où la pression

intérieure est constante, égale à la pression
extérieure, et où les conditions initiales du mouvement sont
telles que tous les points de la surface moyenne subissent

des déplacements radiaux, constamment, égaux
entre eux. Le § 4 sera consacré au cas où une surpression

intérieure, primitivement nulle, devient brusquement

très grande pendant un temps très court, pour
rester ensuite constamment nulle. La coque subit alors

une percussion intérieure. Dans le § -5, nous étudierons
les vibrations produites par un accroissement subit de

la pression intérieure, qui reste ensuite constante. Enfin,
dans les §§ 6 et 7, seront établies les principales équations

relatives à deux cas de vibrations entretenues,
où la pression intérieure esl chaque fois une fonction
sinusoïdale du temps.

Il
§ 2. Equations fondamentales des vibrations d'une

coque sphérique viscoélastique, sous l'action d'une
surpression intérieure, variable en fonction du
temps

Soit r le rayon de la surface moyenne de la coque
considérée, /( l'épaisseur, supposée petite par rapport
à r, de cette coque, p sa masse spécifique et p la

surpression intérieure, relative à la pression extérieure qui
est supposée constante. Cette surpression p est une
certaine fonction connue du temps t (fig. 1). Soit encore
u(t) le déplacement radial des points de la surface

moyenne, compté positivement vers l'extérieur de la

sphère. L'équation du mouvement d'un élément de

masse p/i(rc/cp)2 est (lig. 2) :

pli(rdy)
dXi
dl2 p{rdy)

Th p — ph

dq>
Mohrd<f)-.J

d2u

dl2 W

ct(() désignant la tension de membrane.
Entre l'allongement spécifique e(t) d'un élément de

l'arc d'un grand cercle de la surface moyenne, et le

déplacemenl radial u(t), existe la relation géométrique :

(2)

Pour obtenir une relation entre a el e, plaçons-nous
loul d'abord dans le cas général d'un élal. île tension

tridimensionnel.
¦ ¦ • j Txy, et

Admettons qu'entre
es déformations e,,

les tensions ox

Y* existent

les relations suivantes, où les points désignent, à

deux reprises, les deux équations qu'on obtient en
permutant circulairement les indices ¦». y,

P'

P'

1

3"

[a, —o>] 2Ç'[e,—s,], ..-,

CT.r + Oy + 0>) K (E.r X £;/ T' E») • (b)

Dans ces relations, P' et Q' sont deux opérateurs
linéaires, que nous choisirons du premier ordre, en

posant :

1 + c, t. Q' d0 X- d, 1 (e)
dt dt '

où chacune des constantes c1, d0, <ft est positive,
éventuellement nulle. Le coefficient k est le module d'élasticité

volumétrique ou module de compressibilité de la
matière. D'après (a), nous supposons donc qu'entre les

tensions tangentielles et les glissements existe une relation

de viscoélasticité linéaire, tandis que d'après (b),
nous admettons que la dilatation cubique est
proportionnelle à la tension normale moyenne.

Revenons maintenant au cas de la coque considéré,
et désignons par x, y deux axes orthogonaux passant

par un point de la surface moyenne et situés dans le

plan tangent, et par z l'axe perpendiculaire aux deux

premiers et passant par ce point. Nous pouvons poser :

0, T,.„ TV T£J- 0,CT.r °> CT

S.r E» E, ^0, y,„

T,/:

y.-,. 0,

et les équations (a) et (b) se réduisent ici aux suivantes :

2
P' 22Ç'[e —ç.1, k (2e + e,).

En éliminant e: entre ces deux équations, compte
tenu de (c), on a finalement la relation cherchée :

(3)

fc„= K~

Voir |I7|, p. 53-5.

CT + «j
da
dt ~ 60ê - h f o

1 dt

3kc + H"l

IS,/„K

3k + \d

3k + 44 1

tëdjK
3k + 44

(4)
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Introduisons les expressions (1) et (2) de cr et e dans
(3), nous obtenons pour u l'équation :

d3u d2u
h T> + d?

2 bx du

pr2 dt
¦ix
PX

I

ph r
dp
cil

C'est une équation différentielle linéaire, du
troisième ordre, à coefficients constants, où le second membre

est une fonction de la surpression p et de sa dérivée
première. La solution générale de (5) peut s'écrire sous
la forme :

Cl8Y,< + C2eY-J + C3eY,> -f F(t) (6)

où Yd y*, y;j sont les racines (réelles ou imaginaires) de

l'équation caractéristique

a {Y3 + y2 X
pH ' pH

(7)

et où F(t) est une solution particulière de l'équation
complète. Clt C2, C3 sont des constantes arbitraires.
Ces dernières se déterminent à l'aide des conditions
initiales de la vibration, qui doivent donc être au nombre
de trois. Ce fait est intéressant, puisqu'il s'agit d'un
mouvement à un degré de liberté, où normalement deux
conditions initiales suffisent. L'augmentation du nombre
de ces conditions est due au fait qu'il ne s'agit plus
d'une matière élastiquement déformable, mais d'une
matière viscoélastique (cette augmentation serait d'ailleurs

supérieure à 1, si les opérateurs linéaires P' et Q'
étaient d'un ordre plus grand que le premier).

Dans le cas étudié, les conditions initiales seront donc
les suivantes :

(du\ (d2u\
(u), 0=U0, =Ù„, (-j-fi) (8)dt di'1

où u,, d,, ü„ désignent respectivement le déplacement
initial, la vitesse initiale et Vaccélération initiale d'un
point de la surface moyenne de la coque. Ainsi,
l'accélération initiale contribue également à définir le mouvement,

ce qui n'est pas le cas lorsque la matière est
élastique, où seuls le déplacement et la vitesse initiales
suffisent. Remarquons encore que la troisième des
conditions (8) peut être remplacée par la suivante :

(<t)(=o CT,, où ct„ désigne la tension initiale. En effet,
lorsqu'on connaît cette dernière grandeur, on en déduit
directement la valeur de 'ù„ à l'aide de (1), car (p)i=o
est également connu.

Nous ferons tous les calculs qui suivent en supposant
que la relation entre les tensions tangentielles et les

glissements soit conforme au modèle de Maxwell, ce qui
revient à poser, par exemple pour T.,,, el y,„ '

:

+
u <h,„
G dt

dy,-,,
" äf=0' 9

Un tel modèle comprend en effet deux éléments couplés

en série : un ressort, (IonI nous désignons ici la

constante par G (définie en posant G~r.r,,j et un
amortisseur, caractérisé par une constante p (définie en

posanl t.,„
dYxy

ill
I )aus l'équation l!)i, T.r//représente

la traction du modèle, y,„ son allongement total (fig. 3 a).
Kn comparant à lu première des relations (a), où

P' el Q1 désignent les opérateurs (c), on en dédiùi les

valeurs des constantes r,, d„. (/, :

[17], p.

'»y

Fig1. 3 a.

H

*__

Fie. 3 b

-g, 4 0, 4=p, (10)

et en substituant dans (4), on obtient celles de ax, b„, b1 :

H /. 4G\
^C1 0, &1 6p. (11)

La relation (3) s'écrit donc ici :

de

dt

do
a + 0l Ti 1 ril (12)

elle est également conforme au modèle de Maxwell, mais
la constante du ressort est ici bl/a1, et celle de l'amortisseur

b1 (fig. 3 b).

L'équation différentielle (5) ct l'équation caractéristique

(7) deviennent, la seconde après division par
«1^0:

,lsu d2

It2'1 dt3
- ¦

.1.9.

2b1 du

pr2 dt ~ ph

1 / dp
P + "i Tt

y y
i

y
2*L

"ipr-
H.

(13)

(14)

Les racines y1; y2, y3 de (14) sont, compte tenu de

(11):

Yi <»>

Y2,3

- L(.:^; (3k + 46')
pr2KG v

G
I

4G

3k

(15)

y2 correspondant au signe -f- devant la parenthèse
(...)'2, y3 au signe —. La solution générale de (13)
est donc :

u C1 + C2eY-< + CseY>< + F(t) (16)

/{(•marque. - 11 va de soi que toutes les équations
ci-dessus — et celles que nous établirons dans la suite
île ce mémoire - - ne sont valables que lorsque le rapport

ujr peut être considéré comme petit par rapport
à 1.

//§ 3. Etude des vibrations libres, sans flexion ni torsion,
d'une coque sphérique viscoélastique

On a. dans ce cas, p[l) 0, et (13) se réduil à l'équa-
I ton homogène :

dh,
h dfi

d2u 'Ib, du
— -I- —• - — 0
dt2 ^ pr2 dl (17)

163



dont la solution générale est, d'après (16)

u Cx + C2eY=> + CzcYJ

car F(t) U.

Nous distinguerons trois cas :

16p!

(18)

lo _
pr2K.G

(3k + 46') > 1. Cette inégalité est satisfaite,

dans des conditions données, si le rapport u/G
est suffisamment grand, ce qui signifie, puisqu'il s'agit
d'un modèle de Maxwell, si le rôle joué par le frottement
interne est suffisamment faible (fig. 3 a). Les racines y2,
y:î étant, d'après (15), imaginaires, posons :

Y2,3 ß ± i"

3k6
2u (3k X 46)

kG

Vp(3k + 4G)
1

P?,2kG

16p2(3k + 4G)

(19)

(20)

sont des quantités réelles, la première négative, la
seconde positive.

En substituant les expressions (19) de ces racines
dans la solution générale (18), cette dernière, mise sous
forme réelle, peut s'écrire :

u C\ X e$l (a cos cot + b sin coi) (21)

où a et i désignent deux nouvelles constantes
arbitraires, remplaçant C2 et C3.

Si l'on introduit la solution (21) dans les conditions
initiales (8), celles-ci deviennent :

C1 X o a„, ßn

On en lire :

(ß2
Ci-

2$X_
ÇT-T^T2

co6 ù0! (ß2 —co2)<7

2ß(i„ + ii0

2|3co&: ll„.

CO2) u0 ¦

u0

ßi-

b
(co2 — ß2) dp X ßü„

CO (ß2 + CO2)

Ces valeurs, substituées dans (21), donnent la solution

cherchée. On peut d'ailleurs aussi mettre cette
dernière sous la forme

C1 X Ae?» cos (cot — 5)

A \ sin 6
A

COS 8
a
A

(23)

(24)

Les formules (22) montrent que les constantes 6\,
a, b peuvent être positives, négatives ou nulles, selon
les conditions initiales. Il en est de même de sin S et
cos 5. L'angle 6 peut donc avoir une valeur quelconque,
comprise entre 0 et 2tt, y compris les limites.

En définitive, le mouvement de la coque est, d'après
(21) ou (23), une vibration amortie, de pseudo-période
2tt/co et de constante d'amortissement ß (<0). L'oscillation

de la surface moyenne de la coque ne se produit
pas en général d'un côté à l'autre de la surface moyenne
initiale, définie par u„ (sphère de rayon r -\- u„), mais
d'un côté à l'autre d'une sphère limite de rayon /¦ X (-\.

If lu2- p;4 (3k -,- 46) < 1. Ce cas se produit, dans

conditions données, si le rapport u/6' est suffisam¬

ment petit, c'est-à-dire si le frottement interne esl

suffisamment grand. Les racines y2, y3 sont, d'après (15),
réelles et négatives. La solution (18) est donc déjà sous
forme réelle. En l'introduisant dans les conditions
initiales (8), on obtient les équations

C1+C2+C3=u0, r2y2+C3y3=!if,, 6'2y22+6'3y2:ä=ü„,

d'où l'on tire, pour (\, C2, C3, les valeurs :

Ci y2y3u0 — (y2 + y3) 4 + u.

X,
ysd„

y2 (y3 — Ya)

y2y3

c8
y2u„ — u„

y3 (y3 — Yz)

(25)

Ces constantes peuvent être positives, négatives ou
nulles. On voit d'après (18), puisque y2 et y3 sont négatifs,

qu'il ne s'agit plus d'une vibration, mais d'un
mouvement apériodique et amorti, où u tend vers la
valeur C1, lorsque le temps t croît indéfiniment. Cette
valeur n'est en général pas égale à u,..

S" ^X (3k
pr2KG x 46) 1. Ce cas est celui de Yamor-

tissement critique. L'équation caractéristique (14) a,
d'après (15), une racine double < 0 :

Y y2 Ya
3k6

2p(3k + 46)

et la solution générale de (17) est :

u CÎ+ (C2XC3t)eYX

26)

(27)

En introduisant (27) dans (8), on obtient trois
équations, d'où l'on tire :

C,

Ci

2yù„-

Y"u0 — lyu0
yz

Un
c.

(2E

- YÙO + Ü.Q

y- y
Ce mouvement est également apériodique et amorti.

Le déplacement radial u tend asymptotiquement vers
la valeur Cx, positive, négative ou nulle, donnée par
(28), lorsque le temps l croit indéfiniment.

Remarque. — Il serait facile, dans chacun des trois
cas examinés dans ce paragraphe, de calculer cr(t), en
substituant successivement les valeurs obtenues pour u

dans la formule (1), où p 0. On verrait immédiatement

que, dans le premier cas, la tension ct tend, dans

une oscillation amortie, vers la valeur limite (ct)i co 0.

Dans les deux autres cas, cette tension tend vers la
même limite, toutefois sans osciller. Comme le calcul
relatif au premier cas — le plus intéressant des trois
— est identique à celui que nous ferons dans le
paragraphe suivant, nous nous dispensons de déterminer ici
ait) et de discuter cette fonction.

/

lefue,§ 4. Vibrations d'une coque sphérique viscoélastiq
dans le cas où une surpression intérieure,
primitivement nulle, devient brusquement très grande,
pendant un temps très court, pour rester ensuite
constamment nulle

Il s'agit donc ici d'une percussion intérieure ou d'un
choc intérieur. La fonction p(t) est par exemple
représentée par la courbe de la ligure 4 a, qui ne comprend
que des ordonnées positives (ou nulles), mais cette
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condition n'est nullement nécessaire. Nous désignons
par At la durée (très petite) du choc, qui commence
au temps t — At et se termine au temps f 0.
Introduisons la percussion P par unité de surface, en

posant :

P p (t) dt. (29)

hi

Cette quantité P est supposée avoir une valeur positive

et finie. Une telle percussion peut être par exemple
produite par une très courte oncle de forte surpression,

immédiatement suivie d'une très courte (mais plus
faible) onde de dépression, se propageant dans un gaz
à l'intérieur de la sphère et provenant d'une explosion
au centre.

D'après la théorie classique du choc, cette percussion
n'engendre, pendant l'intervalle At, aucun changement
appréciable de position de l'élément de masse l.h.p
sur lequel elle est appliquée. Elle crée par contre une

du
brusque variation de la vitesse

dt
Cela signifie que u et aussi e, d'après (2), restent

sensiblement nuls, pendant l'intervalle de temps considéré.

Le ressort du modèle de Maxwell, représentant
la relation (12), ne s'allongera donc pas, et aucune
tension de membrane ct ne se produira pendant l'intervalle

At (fig. 3 b). On aura donc u 0, ct 0 (—At f=
^= t :=? 0) et, en particulier :

(u)i=0 !(„ 0, et (cr), „ ct„ 0, (30)

u0 et ct„ désignant les valeurs de la vitesse u cl de la
tension er immédiatement après le choc.

.Multiplions maintenant (1) par dt et intégrons entre
les limites — At et 0 :

/ Odt 7yj
-Ai 'n \—Ai

/ pdt — ph
d2u

T2 ill
—Al

d'où puisque ct

21,

0 et

phd„

¦¦ 0, la relation :

-A(

P
ph

(31)

du
ûo désignant la valeur de la vitesse -r- au temps f 0.

D'autre part, puisque (cr)(=0 0, (p)t=o 0, l'équation

(1) donne, pour t 0 :

°=2Â °-pA u,-. d'où 4 0, (32)

ii„ étant l'accélération immédiatement après le choc.
A partir du temps t 0, p(l) est identiquement nul,

et la coque est animée d'une vibration libre, dont les
conditions initiales sont précisément définies par (30),
(31) et (32). Nous admettrons que l'on ait affaire au.

premier cas du § 3, celui où les valeurs (15) des racines

y2, y3 de l'équation caractéristique (14) sont imaginaires,
c'est-à-dire où

16p.2
-,4(3k + 4G)>1.

Les formules (21) et (23) restent inchangées :

(33)

t/v/;

p-0

P=fp(t)dt
.At

,p-o
<At a)

X XX

X*

co >l x-

<t(t

>-e-> <

0l

x X->K-

c

Fig. 4 a, b, c. — Courbes représentant la surpression p,
le déplacement radial u et la tension a, en fonction du
temps t, dans le cas d'une percussion intérieure P.

C1 + e& {u cos cot + b sin cot)

Cj + AeP' cos (cot — S)
(34)

mais les valeurs (22) de Cx, a, b, et celles (24) de A,
sin 8, cos S deviennent, compte tenu de (30), (31) et (32) :

(35)

-.— i sin 6 .-„ : > cos 8 aw— ô ' (36)
p/ico p2 -(- coa p2 + co2 v

Pour nous placer dans un cas plus précis, supposons
que co2 — ß2 soil positif, c'est-à-dire, d'après (20), que

8p2

pr2KG

c ißP
ül —

PA(P 2 + co2)
'

2ßP
)' b

(co2 —
~

p/ico (ß2

ß2)

+
P

co2l 'ph (ß2 + CO2

— sin 8
CO2 — ß2 .'R 2ßco

ß2 + co- ß2 + CO2

r: (3k + 4G) > 1. (37)

La condition (33) est à fortiori satisfaite et les
formules (34), (35), (36) sont donc applicables. Mais on a

maintenant : sin 8 > 0, cos 8 < 0 (car ß est négatif).
L'angle 8 est ainsi compris entre tt/2 el tt. 11 est d'ailleurs

d'autant plus voisin de tt/2 que la valeur absolue
de ß est plus petite, c'est-à-dire, d'après (20), que le

rapport p/G est plus grand.
La fonction u(t) est représentée par la courbe de la

figure 4 b, dessinée en supposant que | ß | soit notablement

plus petit que co 5.

5 Les courbes des figures 4 a, 4 b, k c, ainsi que celles des figures 5 a,
5 ft, 5 c qui interviendront plus loin, ne se rapportent pas à des cas
précis, mais sont simplement des esquisses, dont le but esl de mettre
en évidence les principaux caractères des phénomènes étudiés.
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On voit que la courbe oscille — en s'amortissant —
d'un côté à l'autre d'une droite parallèle à l'axe t,
située à la distance C1(> 0) de cet axe. La fonction u(t)
passe donc alternativement par des maxima et des

minima, dont les abscisses t t T ' t sont

les racines positives de l'équation, obtenue en égalant
à zéro la dérivée de la première des expressions (34)
de u :

eP' [(ßa -p coi) cos cot -f- (ßb — coo) sin cot] 0

ou, compte tenu de (35) :

to- cot
GO

ß
(38)

t' désignant la plus petite de ces racines.
Les valeurs des maxima successifs du déplacement u

sont donc, d'après la seconde des formules (34) :

(«max)! 6\ + AeP'' • COS («t' 8)

(Wmax)2 C1+ AA' ' X) .cos (wt> _ 5)

et celles des minima :

("min)i C1 — Ae v œ
'

• cos (cot' — S)

PI'' + —1
(«mm)2 Cx Ae \ w ' ¦ COS (cot' 8)

39)

(40)

Le plus grand des maxima est («max)i et le plus petit
des minima (umiii)i-

Calculons encore la tension de membrane. En utilisant

(1), où p 0, on obtient après simplifications, à

l'aide de la première des formules (34), compte tenu
des valeurs (35) de a et b :

''(ß2 X2lP

2ha>
cp' • sin cot (41)

La courbe de la figure 4 c représente la fonction CT(t).

Cette courbe oscille d'un côté à l'autre de l'axe t, en
s'amortissant. La tension ct passe alternativement par

TT
des maxima et des minima, dont les abscisses t*, t* + -¦

o— co
» -TT

t —i sont les racines positives de 1 équation,
co ' l

obtenue en égalant à zéro la dérivée de (41) :

r(ß2 + co2)P
2ht

cP' (ß sin cot + co cos cot) 0

co
tg COt TT (42)

t* désignant la plus petite d'entre elles G.

Les valeurs des maxima successifs de la tension ct

sont donc :

r(ß2 + co2)/J

2Aco(CTui;ix)l sut co/

r(ß2
2//00

2)P Pf'* i -)>

e
{ *>> ¦ sin cot*

Lea équations (38) et (42) montrenl que
t' 4- l*

(43)

e1 que,

dans lea condil ions admises, (' /* _ s— i car B est négatif.

et celles des minima

(CTmîn)

(0"rnin 12

co2)P f»(<« + D
2Aco

r(ß2 + co2)P P('* + £)
2/tco

sin cet

sm cot
1

(44)

Le plus grand des maxima est (o"max)i et le plus petit
des minima (0]nin)i- La première de ces valeurs représente

la plus grande traction subie par la matière
pendant la vibration, tandis que la seconde est la plus
grande compression.

Une rupture éventuelle de la cocpie peut se produire,
soit par des fissures créées au temps t* par la traction
(amax!j, soit par un vouement engendré, au temps

TT
t* 4- — > par la compression (CTmin)-,. Mais elle peut égale-

co

ment se produire après un certain nombre d'oscillations,
par suite d'un épuisement de la matière, dû aux variations

répétées de ct.

§ 5. Cas où les vibrations de la coque sont dues à un
accroissement subit de la pression intérieure, qui
reste ensuite constante

Supposons que, dans un très petit intervalle de temps
At, qui commence au temps t — At et se termine au
temps f 0, la surpression intérieure, primitivement
nulle, croisse brusquement de zéro à la valeur positive
finie pc, pour rester ensuite indéfiniment constante
(fig. 5 a). Contrairement au cas étudié § 4, il n'y a pas
ici de percussion, de sorte qu'on a, d'après (30) et (31),
en posant P 0 :

0. ct„ 0 0. 45)

En outre, l'équation (1) donne, pour t 0, puisque
(a)t=0 ct„ 0 et (p), „ p„ :

0
2A Po' p;' (dïh d'où ii„ -r (46)

D'autre part, pour t =: 0, l'équation différentielle (13)
s'écrit, puisque p(t) p„ :

d3,, il2,, 2b, du n„
-L — 4- —•1 dl3 dl2 ' pr2 dl ph

(47)

Supposons d'abord seulement que les racines y„, y3 de

l'équation caractéristique (14) soient imaginaires (rappelons

que Yi 0), c'est-à-dire, d'après (15), que

Hip2
~2kG (3K + !iG) > 1

pr
(48)

Ceci exige, dans des conditions données, que le

rapport p/G soit suffisamment grand, donc que le frottement

interne soit suffisamment faible. La solution de

l'équation homogène étant (21) ou (23), la solution
générale de l'équation complète (47'i peut être mise sous
l'une ou l'autre des deux formes :

Ci
/»./¦-/

'y-r + cß' (a cos cot -f- b sin
12pi

con

Ci
p„r2l
I2[xh

X -IcP' cos ^cot 8 s

(49)
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Vor t
où -0 est une solution particulière de (47), b1 étant

égal à 6p., d'après (11).
En introduisant la première des expressions (49) de

u dans les conditions initiales (8), où l'on pose u0 0,

ii.j 0, il, -j, conformément à (45) et (46), on

obtient les trois équations :

,¦2

Ci II. P,r^
12p/i + ßa + co/; 0

(ß2 —co> + 2ßco6 p/t'

d'où les valeurs des constantes C1, a, ft :

Ct
pÄ (ß2 + CO2) '

1 +
WW

ßpr
6u

b
^-P2)l2pß ßP»

(50)

p/tco (ß2 4- co2)

et, en substituant dans (24), celles de 4, sin S, cos 8

Bp,,

phaùC
sin 5

1 —(co2 —ß2
Pr

12pß
B.C

cos 8
l1+ 6p. ]

ß
ßpr2 p2r4

- % + & + "2>
144p2

C= (ß2 + co2j^.

(51)

Pour nous placer dans un cas plus précis, supposons
maintenant que

4p2
-Aë(3K + 4G)>l (52

L'inégalité (48) est à fortiori satisfaite, et les

formules (49), (50), (51) sont donc applicables. Comme la

condition (37) est également satisfaite, on reconnaît
d'autre part que co2 — ß2 est positif (voir § 4). En outre,
on vérifie facilement que l'inégalité (52) peut se mettre
sous la forme suivante :

I
ßpr
6u > 0. (53)

Les formules (51) montrent alors que sin 8 < 0,

cos 8 < 0, car ß < 0. L'angle S est donc compris entre

tt et 3tt/2. Il est d'autant plus voisin de tt que la valeur
absolue de ß est plus petite, c'est-à-dire, d'après (20),

que le rapport p/G est plus grand.
La fonction u{l) est représentée par la courbe de la

figure 5 b, dessinée en supposant que | ß soit notablement

plus petit que co. On voit que cette courbe oscille

— en s'amortissant - d'un côté à l'autre d'une droite
oblique, dont l'ordonnée à l'origine (\, et le coefficient

p,.r2
angulaire Ig a ¦„ sont positifs. Le déplacement u

I2p/i ' '

passe donc alternativement par des maxima cl des

minima jusqu'à une valeur de I telle, que l'amplitude
des oscillations soit devenue trop faible, relativement à

l'inclinaison a de la droite, pour permettre l'existence

pff)
P=Po

7=0 Jt
Jas^f à)

r
_ï

LOr(t)

Ô)

>*~-

max

7-0 !¦_.___i. i_ -5-

- -\*

.(<fmin),

Fig. 5 o, b, c. — Courbes représentant la surpression p,
le déplacement radial u et la tension o", en fonction do

temps t, dans le cas où les vibrations sont produites par
un accroissement subit de la pression intérieure, qui reste
ensuite constante.

de ces valeurs extrêmes. A partir de ce moment, la

courbe u(t) tend de plus en plus à se confondre avec la

droite oblique, en continuant cependant à osciller d'un
côté à l'autre de cette droite.

Les abscisses 0, t', t", classées dans l'ordre croissant,

des minima et des maxima de la fonction u(t),
sont données par la racine nulle et par les racines
positives de l'équation transcendante, obtenue en égalant
à zéro la dérivée de u 7

:

2

!'.f, -feP<[(ßa + Go&)costot+(ß&—cca) sin cot] 0. (54)

Les valeurs (tfm«\)i, (umax)2, des maxima successifs

de u sont donc respectivement, d'après la seconde

des formules (49) 8
:

C-i + 'pPj + AeP ¦ cos (cot' — 8)

Cl + TIpV +-l(,p'"' ' cos (cot'"-6)

r
On peut démontrer que, dans les conditions admises, /' \

co
M 11 esi Facile de montrer que, si le rapport M/G est 1res grand,

c'est-à-dire si la valeur absolue de B est très petite, on a approximativement

:

2j>„ 3irt*po
((/max).

p/fco2
'

24A.com

((Mil in'

[u m;ix)2

2po Öttt'po
pft-co* 24/fcoM '

p/ico- 2 f/(top

Ces valeurs forment une progression arithmétique croissante, de

TTT-/)„
Ï2Âcop '

TT'-/'.
raison 1res petite et égale a t~
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et celles (umin)1, (umm)2, des minima :

P„rHr
0, cx

Ci

12pA

P(,r2t""
12uÄ

.-leß!" ¦ cos (cot" — 8),

T Ae?""" ¦ cos (cot"" — 8),
(56)

La figure 5 b montre que (umm)i u„ 0 est la
seule valeur nulle de u, et que tous les autres minima
sont positifs, car [um^ < (wmin)2 < • • • ¦

Calculons encore la tension ct. En substituant la
première des expressions (49) de u dans la formule (1), où
l'on pose p p„ — const., on obtient, en tenant compte
des valeurs (50) de a ct b, après simplifications :

rpo
2h cos cot - sin cot) (57)

Cette formule peut aussi être mise sous la forme :

— De?" cos (cot — A)
rpo
2h

D
(ß2 + co2)^

A
(ß2 + co2)^'

(58)

""""- (pa + W2)y2

On voit que sin A > 0, cos A > 0, d'où 0 < A < y
L'angle A est d'ailleurs d'autant plus petit que | ß |

l'est lui-même.
La courbe de la figure 5 c représente la fonction cr(t).

Cette courbe oscille — en s'amortissant — d'un côté
à l'autre d'une droite parallèle à l'axe t, située à la

distance -kt (> 0) de cet axe. La tension a passe

donc alternativement par des minima et des maxima,
dont les abscisses sont données par la racine nulle et
les racines positives de l'équation suivante, obtenue en
égalant à zéro la dérivée de (57) :

r(ß2 + co2) p„ „VM
Jh " e?" ¦ sin cot 0. (59)

n ¦ ¦ ïï 2ltLes racines sont respectivement egales a 0, — > —>
co co

Les valeurs des maxima de la tension a s'obtien-
TT 3tT

nent en posant successivement t
co co par

exemple clans la formule (58), ce qui donne :

(Cmax)l — o, \1

(0-m;,x)2

2Ä

r0p
2h

(60)

Quant aux valeurs des minima de celte tension, on
_ 2tt 4tt

les obtient en posant successivement t 0,

dans la même formule, d'où :

r„p

co co

)i 0,

r„p
(Ojninja — 2/( ^

•111

'Lts$\

4rrf3 (61)

Le plus grand des maxima est donc (crmnx)i et le plus
petit des minima (cmin)! 0. La première de ces deux
dernières grandeurs représente la plus grande traction
subie par la matière pendant la vibration. On remarquera

qu'à aucun moment, la coque subit une
compression. Il ny a donc pas de risque qu'un vouement
se produise.

Une rupture éventuelle de la coque peut être causée

par des fissures créées, au temps t tt/co, par la traction

(cjmax)i- Une rupture peut aussi avoir lieu après
un certain nombre d'oscillations, par suite d'un épuisement

de la matière, dû soit aux variations répétées de

c, soit à des valeurs de u (c'est-à-dire de e) dépassant
certaines limites.

§ 6. Vibrations engendrées par une suppression inté¬
rieure, fonction sinusoïdale du temps. Cas où la
valeur moyenne de cette surpression est nulle

Admettons que la surpression soit primitivement nulle
(p(t) 0, pour t < 0), mais qu'à partir du temps t 0,
on ait (fig. 6) :

p(t) p0 sin (Vt) ; (t^0) (62)

p0 est l'amplitude et v la pulsation de cette surpression
perturbatrice.

Le déplacement et la vitesse initiaux sont nuls,
comme dans le cas précédent. L'accélération initiale
l'est également, car (p)t o 0. On a donc :

u„ 0 ù„ 0 il,, 0 (63)

D'autre part, pour t ^ 0, l'équation différentielle (13)
s'écrit ici :

d3u d2u 26j du p„
¦ 11? + Tt2 + pl-2 dt pl (sin vt -f- OjV cos vt) (64)

Admettons par exemple — c'est le cas le plus
intéressant — que les racines y2, y3 de l'équation caractéristique

(14) soient imaginaires, c'est-à-dire, d'après (15),

que
Ifip-

P7-2kG
(3k + 4G) > 1. (65)

La solution générale de (64) peut alors être mise sous
'une ou l'autre des deux formes :

(66)
Cj + cP' (a cos cot X b sin cot) + c sin (vt — <p)

(\ + ,4cP' cos (cot — 8) -f- c sin (vt — 9)

où ß, co ont les valeurs (20), Cx, a, b, A, S sont des

constantes dépendant des conditions initiales, et où
c sin (vt — 9) est une solution particulière. Pour
déterminer les constantes c et 9, substituons cette dernière
solution dans (64). On en tire, après quelques
transformations, en prescrivant aux coefficients de sin vt et
cos vt d'être nuls et en tenant compte de (11) et (20) 9

:

1\MFV Po

tg9

phv
\pr2 ' p-

12

M '

P' 2v [£-")*- 1"

(67)

9 V,n calculant également sin 9 el (mis 9, on reconnaît sans peine
((ne sin 9 > U, — 1 < 00s 9 < 1, d'où 0 < 9 < TT, La valeur (67)
de lg 9 détermine clone à elle seul«' l'angle 9.
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pL T/i ^ X, ^ % ^ rA _ % >

k-%- ^ -%

Fig. G.

\P(0
V.9. *k.^ Tk .*. M..^M. ^ TA

fäLS*
Fi?. 7.

F
3k + i.G

3kG (68)

Le mouvement défini par (66) est une vibration entretenue

où, dans chacune des deux expressions de u, les

deux premiers termes représentent le mouvement naturel
et le troisième la vibration forcée. Le mouvement naturel,
qui dépend seul des conditions initiales, est formé de

deux composantes : un déplacement constant Cx 10 et une
oscillation amortie. La vibration forcée est par contre
une oscillation harmonique, qui dure done indéfiniment.
c est l'amplitude, et —9 la phase initiale, de cette
dernière oscillation. On voit que lorsque le temps
devient très grand, seuls le premier et le troisième
termes de chacune des deux expressions (66) de u

subsistent.
Il est facile de vérifier qu'en faisant tendre p vers

l'infini et v vers co dans les deux formules (67), c tend

vers l'infini et tg 9 prend la forme indéterminée (0x°°)—L
A la limite, on a donc affaire à un cas de résonance.

Cela n'a rien de surprenant, car la matière de la coque
satisfait alors à la loi de Hooke (voir fig. 3 a, où p 00,
ainsi que (b), § 2) et la pulsation v de la surpression
perturbatrice est égale à celle, co, de la vibration naturelle.

Revenons au cas où p ^ 00, v ^ co, et supposons
que l'on ail calculé c, 9 à l'aide des formules (67), (68).
Introduisons la première des deux expressions (66) de u

dans les conditions initiales (8). On obtient, compte tenu
de (63), les trois équations

é\ X a — c sin o 0a — csinc

a2\(ß2-

d'où l'on tire

ßa -f coè + cv cos 9 :

2ßco6 X cv2 sin 9 0,

=0,

„ __
[(ß2 + to2 — v2) sin 9 -f 2ßv cos 9]

1 " ß2 + CO2

(v sin 9 — 2ß cos 9) cv
a ~

ß2 +~o3* "

[(ß2 — co2) cos 9 — ßv sin 9] cv
b

CO (ß2 + CO2

(69)

10 Un peut démontrer que, duns les eundilinns admises, C\ est
néeessairement positif.

et en substituant ces valeurs dans (24), on peut déterminer

celles de .4, sin 8, cos 8 (on verrait que ces deux

dernières quantités peuvent être positives, négatives,

ou nulles).
Calculons encore la tension de membrane ct. En

substituant la première des expressions (66) de u dans

l'équation (1), on obtient, compte tenu de (62) :

a Th -phe?" [(ß2 — co2)a + 2ßco&]coscot

32 — co2) b — 2ßcoa] sin cot! + p0 sin vt

+ p/icv2 sin (vt — 9)

(70)

Cette formule peut être mise aussi sous la forme

rp0_

2h
A'e?1 cos (cot — 8') + B' sin (vt — 9') (71)

où la détermination de A', B', 8', 9' n'offrirait pas de

difficulté. On voit qu'en définitive o{t) est formé de

deux termes : le premier représente une oscillation amortie

de la tension, provenant du mouvement naturel de

la coque, le second est une oscillation harmonique, causée

par la vibration forcée définie plus haut.
En étudiant la fonction (71), on reconnaîtrait que

des tensions négatives (compressions) se produisent
d'abord sporadiquement, puis périodiquement. Une

rupture de la coque par vouement est donc ici possible.

§ Z. Vibrations engendrées par une surpression inté¬
rieure, fonction sinusoïdale du temps. Cas où la
valeur moyenne de cette surpression est différente
de zéro

Supposons par exemple que la surpression intérieure
soit primitivement nulle (p(t) 0, pour t < 0), mais

qu'à partir du temps t 0, on ait (fig. 7) :

pit) p„ (1 — cos vt) ; (t^Ö) (72)

p0 est à la fois l'amplitude et la valeur moyenne de cette

surpression perturbatrice, dont la pulsation est v.

Comme dans le cas du § 6, on a ici n :

0 ù0 0, ii0 0 (73)

D'autre part, pour t ^ 0, l'équation différentielle (13)

devient :

d?u d2u 2b. du p,
aXh3+Ti2+p?-d,=2Ti('i-cosvl + a^smvt)- (/4>

Si nous admettons comme précédemment que les

racines y2, y3 de l'équation caractéristique (14) soient

imaginaires, c'est-à-dire que la condition (65) soit

satisfaite, la solution générale de (74) peut se mettre
sous l'une ou l'autre des deux formes :

u (i + Ï2p/t + eP' (a cos cot + b sin cot)

¦ c cos (vt — 9)
p,.r2t

Cx X jX -\- AeP'eos (00/ — 8) — ccos (vt — 9)

(75)

où ß, co ont les valeurs (20) et où C\, a, b, A, 8 dépendent

des conditions initiales.

Ihi\
dP) t.

est d'ailleurs aussi nul, car
''L
di Ji
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En substituant la solution particulière
p„r2t
12p/i

cos (vt — 9) dans (74), on obtient pour c et 9
exactement les mêmes valeurs que précédemment, à

savoir celles données par les formules (67; 12.

Il s'agit donc d'une vibration entretenue, où le mouvement

naturel — qui dépend seul des conditions initiales —
est représenté par le premier et le troisième des termes
de chacune des expressions (75) de u, et où la vibration
forcée est représentée par le second et le quatrième
de ces termes. On voit que le mouvement naturel est
formé des deux mêmes composantes que précédemment.

Par contre, la vibration forcée comprend non
seulement une oscillation harmonique —c cos (vt — 91

c sin (vt — „

S 6, mais encore

analogue à celle déjà rencontrée

pT-t
la composante ,-=r Les troislzpft

premiers termes des expressions (75) de u sont
respectivement les mêmes — aux valeurs des constantes Cx,a,
b, A, 8 près — que les trois seuls termes figurant dans
les formules (49) du § 5. Le quatrième terme de (75)
provient du fait que, dans le cas étudié ici, la surpression

n'est pas une constante (égale à p0), mais est, une
fonction sinusoïdale du temps, dont la valeur moyenne
est p„.

Il serait facile de déterminer les constantes Cx, a. b

de (75), à l'aide des conditions initiales (8), compte tenu
de (73), puis les valeurs de A, sin S, cos 8, en utilisant
les formules (24).

Dans le cas particulier où p 00, c'est-à-dire où la
matière satisfait à la loi de Hooke, la résonance se
produit si v co, comme précédemment.

Esquissons encore le calcul de la tension ct. Supposons

de nouveau p 7^ 00, v ^ co, el admettons que l'on
ail déterminé Cv a, b comme nous l'avons dit plus
haut. En substituant la première des expressions (75)
de u dans (1), on obtient après quelques transformations

:

rpj,
2/i

1 + .l'VP'cos (cot —5") + ß"sin (vt- 9") 76

où .1", B", 8", 9" se déterminent facilement. Le premier

terme „,-de celle formule, qui est constant, provient
de la valeur moyenne p„ de la surpression (il est nul
dans le cas étudié § 6). Le second terme représente une
oscillation amortie de la tension, el a son origine dans
le mouvement naturel de la coque. Le troisième est
une oscillation harmonique de ct, engendrée par la
composante — c cos (vt — 9) de la vibration forcée.

Remarquons enfin qu'à cause du premier ternie >
Po

2h

de (76), qui esl positif et représente la tension statique
due à la pression moyenne p„, les risques d'existence
île compressions importantes sont moins grands que
dans le cas du Sj (i, où ce tenue n'existe pas. C'est donc

probablement seulement lorsque les conditions ne sont
pas trop éloignées de celles de la résonance (p/G assez

grand, v relativement peu différent de co), qu'un vouement

de la coque risque de se produire.

Zurich, le 25 mars 1965.
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