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ETUDE DES VIBRATIONS D'UNE COQUE SPHERIQUE
VISCOELASTIQUE SOUS L’ACTION DE DIVERSES PRESSIONS
INTERIEURES VARIABLES EN FONCTION DU TEMPS

par HENRY FAVRE, professeur a I'EPF, Zurich

§ 1. Introduction

Les vibrations des coques sphériques, faites d’une
matiére élastiquement déformable, ont été I'objet de nom-
breuses études théoriques!. Par contre, relativement
peu de recherches ont été faites jusqu’a ce jour sur les
vibrations des coques sphériques non élastiquement défor-
mables, ¢’est-a-dire dont la matiére ne satisfait pas a la
loi de Hooke?. Ce dernier cas est cependant devenu
tres actuel, par P'emploi de plus en plus fréquent des
matiéres plastiques dans I'industrie. Cest la raison pour
laquelle nous avons cru utile d’étudier ici les vibrations
des coques minces sphériques, yiscoélastiques, sous 'ac-
tion d'une pression intérieure variable en fonction du
temps t. Nous nous placerons dans des conditions rela-

! Les titres des publications [1] a [13] de la bibliographic sommaire
re une

placée a la fin de ce mémoire permettront au lecteur de se
idée de la variété de ces études. Les mémoires cités ne représentent
qu'un petit nombre des travaux faits dans ce domaine.

2 Voir par exemple les mémoires [14], [15] et [16].

tivement simples, celles ou tous les points de la coque
sont primitivement immobiles, et ol aucune tension
latente n’existe au moment ol commence la variation
de la pression intérieure. En outre, nous supposerons
que cette variation soit a chaque instant la méme en
tous les points de la face intérieure de la coque, et
qu’elle soit une fonction connue de t. En admettant
que la pression extérieure ne varie ni dans I'espace ni
dans le temps, les points de la surface moyenne subi-
ront des déplacements radiaux, constamment égaux
entre eux. La coque sera donc une couche sphérique
de rayon légérement variable, ot seule une tension de
membrane uniforme, mais fonction du temps, existera,
a exclusion de moments de flexion et de torsion.
D’autre part, nous admettrons que la coque soit faite
d’une matiére ou la relation entre les tensions tangen-
tielles et les glissements est conforme au modéle de
Maasvell, et ou la dilatation cubique est proportionnelle

d la tension normale moyenne.
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Aprés avoir établi les équations fondamentales du
mouvement considéré (§ 2), nous examinerons, dans
le § 3, le cas particulier des vibrations libres, ou la pres-
sion intérieure est constante, égale & la pression exté-
rieure, et ou les conditions initiales du mouvement sont
telles que tous les points de la surface moyenne subis-
sent des déplacements radiaux, constamment égaux
entre eux. Le § 4 sera consacré au cas ou une surpres-
sion intérieure, primitivement nulle, devient brusque-
ment tres U’rande pcndant un temps tres court, pour
rester ensuite constamment nulle. La coque subit alors
une percussion intérieure. Dans le § 5, nous étudierons
les vibrations produites par un accroissement subit de
la pression [,rztérieure qui reste ensutle constante. Enfin,
dans les §§ 6 et 7, seront établies les principales équa-
tions relatives a deux cas de vibrations entretenues,
ot la pression intérieure est chaque fois une fonction
stnusoidale duw temps.
/ Vi

§ 2 f Equations fondamentales// des vibrations d’une
coque sphérique viscoélastique, sous 'action d’une
surpression intérieure, variable en fonction du
temps

Soit r le rayon de la surface moyenne de la coque
considérée, h 'épaisseur, supposée petite par rapport
a r, de cette coque, p sa masse spécifique et p la sur-
pression intérieure, relative a la pression extérieure qui
est supposée constante. Cette surpression p esk une
certaine fonction connue du temps ¢ (fig. 1). Soit encore
u(t) le déplacement radial des p()intt de la surface
moyenne, compté p()slllvem('nt vers lextérieur de la
sphere. L'équation du mouvement d’un élément de

masse ph(rde)® est (fig. 2):

d? ‘ d
ph(rde)? T = plrde)? — 4(chrde) -

r dw
ou o= 4 (1)~ph ;[72), (1)

o(t) désignant la tension de membrane.

Entre l'allongement spécifique g(t) d’un élément de
'are d’un grand cercle de la surface moyenne, et le
déplacement radial w(t), existe la relation géométrique :

g = . g‘_).l

Pour obtenir une relation entre o et g plagons-nous

tout d’abord dans le cas général d'un état de tension
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tridimensionnel. Admettons qu'entre les tensions o,

oy Tepy - .. et les déformations g, ..., Yay, ... exis-
tent les relations suivantes, ot les points désignent, a
deux reprises, les deux équations qu’on obtient en per-

mutant circulairement les indices x, y, z%:

P [1y] = Q' [yals ---» I

a)
P for— o) = 20" [ — 5], - e
|
27 (0x + 0y + 0:) =k (&; + & + &) . (b)

Dans ces relations, P’ et (" sont deux opérateurs
linéaires, que nous choisirons du premier ordre, en
posant :

’ d ; d ;
P =1 - Cy (“ 3 O = d[) —+ ([1 (1; ) ((‘/}

ou chacune des constantes ¢, d,, d; est positive, éven-
tuellement nulle. Le coeflicient k est le module d’élas-
ticité polumétrique ou module de compressibilité de la
matiére. D’apres (a), nous supposons done qu’entre les
tensions tangentielles et les glissements existe une rela-
tion de viscoélasticité linéaire, tandis que d’apreés (b),
nous admettons que la dilatation cubique est propor-
tionnelle 4 la tension normale moyenne.

Revenons maintenant au cas de la coque considéré,
et désignons par x, y deux axes orthogonaux passant
par un point de la surface moyenne et situés dans le
plan tangent, et par z I'axe perpendiculaire aux deux
premiers et passant par ce point. Nous pouvons poser :

Oy =0y =0, O:== 07 Tey = Tye = Tez = 0,
€, —E, — &, €2 /i ()) Yoy = Yyr = Y2z = ()7
et les ¢quations (a) et (b) se réduisent ici aux suivantes :
2
! “ ’ v
P' o] = 20Q’ [e—&.], 3 O=K (2e + &.).

En éliminant €. entre ces deux équations, compte

tenu de (¢), on a finalement la relation cherchée

do de ot
o+ — bog — by di — 0, (3)
ol ) :
- 3ke; 4- Ad,
N7 Bk + 4d,
(4)
b 18,k o 18d,x
= 3k + 4d, 7 3k + 4d,
Voir ||7|, p- 53-5.



Introduisons les expressions (1) et (2) de o et € dans
(3), nous obtenons pour w I'équation :

(5)

“ETIE T rd Tt T Pt g

dBu d*u 2b;du - 2b, 1 ( ‘ ([1))

C’est une équation différentielle linéaire, du troi-
sieme ordre, a coellicients constants, ot le second mem-
bre est une fonction de la surpression p et de sa dérivée
premicre. La solution générale de (5) peut s'¢erire sous
la forme :

u = Cievit + Chevt + Cgevs + F(1), (6)
Ol Y1, Ya, Y3 sont les racines (réelles ou imaginaires) de
I'équation caractéristique

2 | & 2b,

b Uil i i

et o [(t) est une solution particuliere de I'équation

=0, (7)

complete. Cp, Cy, Cy sont des constantes arbitraires.
Ces derniéres se déterminent a laide des conditions
initiales de la vibration, qui doivent done étre au nombre
de trois. Ce fait est intéressant, puisqu’il s’agit d'un
mouvement a un degré de liberté, ot normalement dewx
conditions initiales suflisent. Iaugmentation du nombre
de ces conditions est due au fait qu'il ne s’agit plus
d'une matiere élastiquement déformable, mais d’une
matiere viscoélastique (cette augmentation serait d’ail-
leurs supérieure a 1, si les opérateurs linéaires P’ et ('
étaient d'un ordre plus grand que le premier).

Dans le cas étudié, les conditions initiales seront done
les suivantes :

tlu,) ((1214') 3
()i=0= W; - = iy, — = i, )
i L dt Jy=s 9 AR Jy—o > |

ol 1, tig, i, désignent respectivement le déplacement

inttial, la vitesse initiale et Vaccélération initiale d’un
point de la surface moyenne de la coque. Ainsi, l'accé-
lération initiale contribue également a définir le mouve-
ment, ce qui n'est pas le cas lorsque la matiére est
élastique, ou seuls le déplacement et la vitesse initiales
sullisent. Remarquons encore que la troisieme des con-
ditions (8) peut étre remplacée par la suivante :
(0)i=y = 04, 00 g, désigne la tension initiale. En effet,
lorsqu’on connait cette derniere grandeur, on en déduit
directement la valeur de ii, & Taide de (1), car (pli=o
est également connu.

Nous ferons tous les calculs qui suivent en supposanl
que la relation entre les tensions tangentielles et les
glissements soit conforme au modéle de Maxwell, ce qui
revient a poser, par ('xmnplv pour Tp, el Yy 4

B dy dy vy

T,ry ’*‘ — M

2 - )
G dt de % )

Un tel modéle comprend en effet deux éléments cou-
plés en série: un ressort, dont nous désignons ici la
constante par ( (définie en posant T,, = GT,,) et un
amortisseur, caractérisé par une constante u (définie en
Ay sy

dt

la traction du modele, y., son allongement total (fig. 3 a).

posant T,, = W ). Dans I'équation (9), T, représente

[in comparant (9) a la premiere des relations (a), o
P et " désignent les opérateurs (¢), on en déduit les

valeurs des constantes ¢, d,, d, :

4 117, p- 53-2.

7}5/ o
F X~
G b,
a
R
po <
&y !
M d b,
SO0 E Vo
Txy o
Fig. 3 a. Fig. 3 b.
[ ! y
=g, d= 0, d =uy (10)

et en substituant dans (4), on obtient celles de ay, b,, b; :

4G
(,1:.“6(1+3K>. bo=0, b =6u. (1)

La relation (3) s’éerit donce ici:

do de

"+"1ﬁ‘[’1§,:

clle est également conforme au modéle de Mawsvell, mais
la constante du ressort est ici by /a,;, et celle de 'amor-
tisseur by (fig. 3 b).

L’équation différentielle (5) et I'équation caracté-
ristique (7) deviennent, la seconde apreés division par

ay == 0

d3u d?u 2b, du \

1 ¢ dp
“ap T de T e di — ph (p @ E)’ (13)

1 2%
Yyt oy k) =0. (14)

>
ay a,pr

Les racines Yy, y,, ¥4 de (14) sont, compte tenu de
(11) -

Y1=0,
/ 16p2 | L\ %
. S (1 — o Ok 4(,)) (15)
T2 i, 4G
e ( 5

Yo correspondant au signe -+ devant la parenthese
(...)%, yy au signe —. La solution générale de (13)
est done :

u= C; + Cyevet + Cyevst + F(t). (16)

Remarque. — 11 va de sol que toutes les équations
ci-dessus — et celles que nous établirons dans la suite
de ce mémoire — ne sont valables que lorsque le rap-

port w/r peut étre considéré comme petit par rapport

a 1.

/

/

§ 3. Etude des vibrations libres, sans flexion ni torsion,
d’une coque sphérique viscoélastique
On a, dans ce cas, p(t) = 0, et (13) se réduit a I'équa-
tion homogene :
d3u d*u 2by du
& 53 F S5 ° = =
L di3 dt? pl'“’ dt




dont la solution générale est, d’apres (16) :

u=C; + Chevst + Cyevs, (18)
car [(t) = 0.
Nous distinguerons trois cas :
10 *1(7:}13 (3k + 4G) > 1. Cette inégalité est satis-
prikG ‘ =

faite, dans des conditions données, si le rapport p/G
est suffisamment grand, ce qui signifie, puisqu’il s’agit
d’un modeéle de Maxwell, st le réle joué par le frottement
interne est suffisamment faible (fig. 3 a). Les racines y,,
Y5 étant, d’apres (15), imaginaires, posons :

Yoz =P+ iw, (19)

(20)
6 kG prikG %
©= ?\/p (3 + 46) (1 T 16u2(3k + 40))

sont des quantités réelles, la premiére négative, la
seconde positive.

En substituant les expressions (19) de ces racines
dans la solution générale (18), cette derniére, mise sous
forme réelle, peut s’écrire :

w=C; + eP(a cos wl + bsin wt), (21)

ou a et b désignent deux nouvelles constantes arbi-
traires, remplacant C, et C,.

Si I'on introduit la solution (21) dans les conditions
initiales (8), celles-ci deviennent :

Ci+a=u,, Pa+ wb=1i,, (P*—w?) a-+ 2pwb=ii,.

On en tire:

(B% 4 w?) wo — 2P0 + iy

C, = s , .
i, — iy (00— P?) i, + Pii, -
(*_[32+c02’ w (P2 + w?)

Ces wvaleurs, substituées dans (21), donnent la solu-
tion cherchée. On peut d’ailleurs aussi mettre cette der-
niére sous la forme

u=C; + AeP' cos (wt —8), (23)

/
ou ;’1:\/a2+b2: sinS:iv (‘,055:%‘ (24)

Les formules (22) montrent que les constantes Cf,
a, b peuvent étre positives, négatives ou nulles, selon
les conditions initiales. Il en est de méme de sin & et
cos 8. L’angle & peut donc avoir une valeur quelconque,
comprise entre 0 et 21, y compris les limites.

En définitive, le mouvement de la coque est, d’apres
(21) ou (23), une eibration amortie, de pseudo-période
21r/w et de constante d’amortissement B (< 0). L oscil-
lation de la surface moyenne de la coque ne se produit
pas en général d’un coté a Pautre de la surface moyenne
initiale, définie par w, (sphére de rayon r 4 w,), mais
d’un coté a 'autre d’une sphére limite de rayon r 4 €.

16p2 .
20 (3k 4 4G) < 1. Ce cas se produit, dans

pl'gll.'(l‘

des conditions données, si le rapport w|G est suflisam-
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ment petit, c’est-a-dire st le frottement interne est suffi-
samment grand. Les racines Yy,, y; sont, d’aprés (15),
réelles et négatives. La solution (18) est done déja sous
forme réelle. En I'introduisant dans les conditions ini-
tiales (8), on obtient les équations

CiHCot-Co=uo, CoystCoys=ts, Coyit+Coyis=iiy;

d’ott on tire, pour €y, Cy, Cy, les valeurs :

c, = YaYsto— (Y2 + Ya) thp + Tl

Y2Ys

(25)
Ystio — to _ Yollo— 1y
Yo (Ys—Ye) , Ys (Ys— Ya)
Ces constantes peuvent étre positives, négatives ou
nulles. On voit d’apreés (18), puisque y, et y; sont néga-
tifs, qu’il ne s’agit plus d’une vibration, mais d’un

C, = 7 =

mouyement apériodique et amortt, ou u tend vers la
valeur C, lorsque le temps ¢ croit indéfiniment. Cette
valeur n’est en général pas égale a w,.

16p2 : 3
30 o (3x + 4G) = 1. Ce cas est celui de 'amor-

tissement critique. 1’équation caractéristique (14) a,
d’apres (15), une racine double < 0: :

ey vy 9KG 2
y_Yz_Ya—_-‘zu(e‘K'_}_[}(l‘]’ (~))

et la solution générale de (17) est:

u=C; + (Cy + Cgt)ert. (27)

En introduisant (27) dans (8), on obtient trois équa-
tions, d’ot 'on tire :

% e .
2uy — 2ytp +- il
e ) ,

G ="—— o
# (28)
2ytiy — iiy ; — Yo + iy
o e v R e 1. Sa sk
b Y

Ce mouvement est également apériodique et amorti.
Le déplacement radial w tend asymptotiquement vers
la valeur Cy, positive, négative ou nulle, donnée par
(28), lorsque le temps ¢ croit indéfiniment.

Remarque. — 11 serait facile, dans chacun des trois
cas examinés dans ce paragraphe, de calculer o(t), en
substituant successivement les valeurs obtenues pour u
dans la formule (1), ot p = 0. On verrait immédiate-
ment que, dans le premier cas, la tension o tend, dans
une oscillation amortie, vers la valeur limite (0)i—oo = 0.
Dans les deux autres cas, cette tension tend vers la
méme limite, toutefois sans osciller. Comme le caleul
relatif au premier cas — le plus intéressant des trois
— est identique & celul que nous ferons dans le para-
graphe suivant, nous nous dispensons de déterminer ici
o(t) et de discuter cel‘}o fonetion.

- s
§ 4. Vibratio?'s d’ux,ge coque sphérique viscoéla/?i

dans le/cas ou' une surpression intérieure //
tivement nulle, devient brusquement trés g¥ande,
pendant un temps trés court, pour rester
constamment nulle

Il s’agit done ict d'une percussion intérieure ou d'un
choc intériewr. La fonction p(t) est par exemple repré-
sentée par la courbe de la figure 4 @, qui ne comprend

que des ordonnées positives (ou nulles), mais cette



condition n’est nullement nécessaire. Nous désignons
par At la durée (trés petite) du choce, qui commence
au temps t=-— At et se termine au temps t= 0.
Introduisons la percussion P par unité de surface, en
posant :

P=1ptdt. (29)
)

Cette quantité P est supposée avoir une paleur posi-
tive et finte. Une telle percussion peut étre par exemple
produite par une trés courte onde de forte surpres-
sion, immédiatement suivie d’une trés courte (mais plus
faible) onde de dépression, se propageant dans un gaz
a I'intérieur de la sphére et provenant d’une explosion
au centre.

D’apres la théorie classique du choe, cette percussion
n’engendre, pendant I'intervalle At, aucun changement
appréciable de position de I'élément de masse 1.h.p
sur lequel elle est appliquée. Elle crée par contre une

— . du
brusque variation de la vitesse 5

Cela signifie que u et aussi g d’aprés (2), restent
sensiblement nuls, pendant I'intervalle de temps consi-
déré. Le ressort du modele de Maasell, représentant
la relation (12), ne s’allongera donc pas, et aucune
tension de membrane o ne se produira pendant l'inter-
valle At (fig. 3 b). On aura donc u=0,0=0 (—At =

=1=10) et, en particulier :
(u)l:u = U, = 0, et (O‘)/:U — O, = 0, (30)

u, et o, désignant les valeurs de la vitesse u et de la
tension o immédiatement aprés le choc.

Multiplions maintenant (1) par dt et intégrons entre
les limites — At et 0 :

0

‘ 1
| odt = ‘)-:L ( [ pdt — ph dlu dt)
—At = : g

d’ot, puisque o =0 et (c%:)l:ig’ la relation :

r » .
0= 5 (P — p/m,,) yoou U, = o , (31)
du
t, désignant la valeur de la vitesse 2 & temps ¢ = (.

D’autre part, puisque (0),—, = 0, (p)i—» = 0, I'équa-

tion (1) donne, pour ¢ = 0 :

d?u

r \ .. . £
OZﬂ[O*Ph (ﬁ[z)lzu]' d’ou ﬂ (32)

ii, étant 'accélération immédiatement apres le choc.

A partir du temps ¢ = 0, p(t) est identiquement nul,
et la coque est animée dune ¢ibration libre, dont les
conditions initiales sont précisément définies par (30),
(31) et (32). Nous admettrons que Uon ail affaire au
premier cas du § 3, celut oi les valeurs (15) des racines
Yo Ya de Uéquation caractéristique (14) sont imaginaires,
¢’est-a-dire on

16p2

St (B + 46) > 1. (33)

Les formules (21) et (23) restent inchangdées :

?/7//‘/
i
|
a
P=[p(t)at
_ 4t
p=0 |io p=0 o

[ ar
b a)
uft)

Iig. 4 a, b, ¢. — Courbes représentant la surpression Ds
le deplacement radial u et la tension o, en fonction du
temps ¢, dans le cas d'une percussion intérieure P,

w=C; 4+ Pl (a cos wt + bsin wi) I
(34)
= C; + AePt cos (wt —8), l

mais les valeurs (22) de Cy, a, b, et celles (24) de A,
sin 8, cos 8 deviennent, compte tenu de (30), (31) et (32) :

. -
T ph (B4 w?) y
2 (3)
e @y P
@ oh (B* + w?) phw (P? + w?
r . w? — B2 2Pw 5
— P/T), sin & = 627_'_72: cos & = ’323_—002- (36)

Pour nous placer dans un cas plus précis, supposons
que w?*— P% soit positif, c’est-a-dire, d’apres (20), que

Sp2 =
S (B o+ 46) > (37)

La condition (33) est a fortiori satisfaite et les for-
mules (34), (35), (36) sont donc applicables. Mais on a
maintenant : sin 8 > 0, cos & << 0 (car B est négatif).
[’angle & est ainsi compris entre /2 et . 1l est d’ail-
leurs d’autant plus voisin de /2 que la valeur absolue
de B est plus petite, c’est-a-dire, d’apres (20), que le
rapport p/G est plus grand.

La fonction u(t) est représentée par la courbe de la
figure 4 b, dessinée en supposant que | B | soit notable-
ment plus petit que w °.

® Les courbes des figures 4 a, 4 b, 4 ¢, ainsi que celles des figures 5 a,

5b, 5¢ qm interviendront plus loin, ne se rapportent pas a des cas

]nuh mais sont <|mp]x ment des esquisses, dont le but est de mettre
en ¢vidence les principaux caractéres des phénomeénes étudiés.
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On voit que la courbe oscille en s’amortissant —

d'un coté a lautre d'une droite parallele a I'axe ¢,
située a la distance Cy(> 0) de cet axe. La fonction u(t)
passe donc alternativement par des maxima et des

P)

v . o
minima, dont les abscisses ¢/, ¢ + —» ¢ + . sont
w

__!
w
les racines positives de I'équation, obtenue en égalant
a zéro la dérivée de la premicre des expressions (34)
de w:

Pt [(Ba + wb) cos wt + (Pb— wa) sin wt] = 0,

ou, compte tenu de (35) :

w
t" désignant la plus petite de ces racines.
Les valeurs des maxima successifs du déplacement u
sont done, d’aprés la seconde des formules (34) :

(Umax); = C; + AePV . cos (wt' — 3),
r 27
V4 — 2()
(“mux>2 = Cl + :16"3( (*’) - COS (OO[I = 8\, (")‘))
et celles des minima :
o
4 — :
(“min)l = Fl — ;l(’ﬁ( CO) . oS (OO[, —38),
(e+2 (40)
(umin)y = C; — Ae @/ . cos (wt' —8),

Le plus grand des maxima est (umax); et le plus petit
des minima (wmin);-

Calculons encore la tension de membrane. En utili-
sant (1), o p = 0, on obtient apres simplifications, &
laide de la premiére des formules (34), compte tenu
des valeurs (35) de « et b:

r(B% + w?)P

o= —— S Pt . sin ot . (41)
2hw 3

La courbe de la figure 4 ¢ représente la fonction oft).
Cette courbe oscille d'un coté a 'autre de I'axe ¢, en
s’amortissant. La tension o passe alternativement par

. w . ™

des maxima et des minima, dont les abscisses (*, 1* 4+
2

 + = sont les racines positives de 'équation,

obtenue en égalant a zéro la dérivée de (41):

r(B? + w?)P - :
EQ/I(,\) — Pt (B sinwt + w cos wt) =0,

0
u w

5

t* désignant la plus petite d’entre elles ©.

tg wt = — (42)

Lies valeurs des maxima successifs de la tension o
sont donc :

,.(|32 ’E’ wz)p

(O'm:ux‘)l - eP™* . osin wot* .

2hw
B’ )1 B 27T

‘ r(B2 - )P (/t I w) . . (43)

Omax)s = — — ¢ - s1n ot

( max)g oo ’

: 3 = [
% Les équations (38) et (42) montrent que g = = ;; el que,
dans les conditions admises, (7 ;Tw, % _JT;. car B esl négatil,
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et celles des minima :

T

-(R2 _| 2 [ —

r(B% + w?)P ﬁ( ) -
<0miu11 == B = .6 “ sin oot™ i

2he
3
(R2 _|_ 2\ D t* + —
(O’min\; =1 ”‘Bi')‘l 7(‘07 ’P (‘B( w) ’ Sil] CO[' ‘] (44)
- Zhw

Le plus grand des maxima est (omax); et le plus petit
des minima (oy,);. La premiére de ces valeurs repré-
sente la plus grande traction subie par la matiére pen-
dant la vibration, tandis que la seconde est la plus
grande compression.

Une rupture éventuelle de la coque peut se produire,
soit par des fissures crédes au temps (* par la traction
(Omax)y, soit par un gotlement engendré, au temps

., T . . ,
t* 4 o par la compression (omiy);. Mais elle peut égale-
o )

ment se produire aprés un certain nombre d’oscillations,
par suite d’un épuisement de la matiére, dit aux varia-
tions répétées de o.

§ 5. Cas ou les vibrations de la coque sont dues a un
accroissement subit de la pression intérieure, qui
reste ensuite constante

Supposons que, dans un trés petit intervalle de temps
At, qui commence au temps { = — At et se termine au
temps ¢t = 0, la surpression intérieure, primitivement
nulle, croisse brusquement de zéro a la valeur positive
finie p., pour rester ensuite indéfiniment constante
(fig. 5 a). Contrairement au cas étudié § 4, il n’y a pas
ici de percussion, de sorte qu'on a, d’apres (30) et (31),
en posant P = 0:

w, =0, o,=0, i, =0. (45)

En outre, I'équation (1) donne, pour ¢t = 0, puisque
(@)imo = 0, = 0 et (plico = po:

d?u)

r 5 R e Po 46
0 = o [Pe— ph (W,)/:“ y dlou i, = pj (46)

[Y’autre part, pour ¢t = 0, I'équation différentielle (13)
s’éerit, pulsque p(t) = Po.
d3u d2u 2by du Po

=2, (47)

i =
Wap Az T o2 dt  ph

Supposons d’abord seulement que les racines y,, y, de
Uéquation caractéristique (14) soient imaginaires (rappe-
lons que y; = 0), c’est-a-dire, d’aprés (15), que

16p2

= (3x + 4G) 4. (48
PI""K([HKT R (28]

Ceci exige, dans des conditions données, que le rap-
port u/G soit suflisamment grand, done que le frotte-
ment interne soit sullisamment faible. La solution de
I"équation homogene étant (21) ou (23), la solution
générale de I'équation compléte (47) peut étre mise sous
'une ou T'autre des deux formes :

) perit _ ) -
w=0C; -+ Ilh/i —+ Pt (@ cos wt 4 b sin wt)
(49)
i par®t |
=Cy + 120k - AeP cos (wt 8),




.I’
17I

éoal a Gp, d’apres (11).

est une solution particuliere de (47), b, étant

En introduisant la premiére des expressions (49) de
w dans les conditions initiales (8), o l'on pose u, = 0,

Do . . 4 o
=0y, = :_)7, conformément a (45) et (46), on
L

obtient les trois équations :

C;4+a=0, 1)“}—!—Ba+wh*()
_ Po
2 63 9 205
(B Na + 2Pwb = oh |

d’ou les valeurs des constantes Cy, a, b:

(1+ Per ) p. (1+ 9?1'2) o

C. — G L \ (im
T 9 2\ 7 - T IR2 L 52} 2
ph (B + FEET | g,
Il — (w? —B2) F))E] Bro
A BN iob
B phw (B + w?) 7

et, en substituant dans (24), celles de A, sin &, cos & :

[1—wr—p e 3

Bp., .
:ph.(SC’ sin 8 = B
Per*
cos & = ( - 6u ) ” (51)
- BCc 7

. | ,.2 y ) pll 1%
ou B = ['1 T pﬁu* (B% +4 w?) UHUL} ?

C = (B + w¥)t.

Pour nous placer dans un cas plus précis, supposons
maintenant que
42

oy (3 46) > L. (52)

L’inégalité (48) est a fortiori satisfaite, et les for-
mules (49), (50), (51) sont donc applicables. Comme la
condition (37) Pqt éoalement satisfaite, on reconnait
d’autre part que w? — P? est positif (voir § 4). En outre,
on vérifie facilement que I'inégalité (52) peul. se mettre

sous la r()FlIlc SLliVElHL(‘,:

LB g (53)
l)u

Les formules (51) montrent alors que sind < 0,
cos & < 0, car B << 0. L’angle & est donc compris entre
m et 31r/2. 11 est d’autant plus voisin de  que la valeur
absolue de B est plus petite, c’est-a-dire, d’apreés (20),
que le rapport u/G est plus grand.

La fonction u(t) est représentée par la courbe de la
figure 5 b, dessinée en supposant que | B | soit notable-
ment plus petit que w. On voit que cette courbe oscille
—— en s’amortissant — d’un coté a 'autre d’une droite
oblique, dont l’(n‘dunm"(: a lorigine €, et le coeflicient

por’
angulaire tg o = = 120k sont positifs. Le déplacement w
passe done alternativement par des maxima et des
minima jusqu’d une valeur de ¢ telle, que 'amplitude
des oscillations soit devenue trop faible, relativement a
I'inclinaison o de la droite, pour permettre I'existence

Fig. 5a, b, c. — Courbes représentant la surpression p,
le déplacement radial w et la tension o, en fonction du
temps (, dans le cas ou les vibrations sont produites par
un aceroissement subit de la pression intérieure, qui reste
ensuite constante.

de ces valeurs extrémes. A partir de ce moment, la
courbe u(t) tend de plus en plus a se confondre avec la
droite oblique, en continuant cependant a osciller d’un
coté a lautre de cette droite.

Les abscisses 0, ¢/, " ., classées dans l'ordre crois-
sant, des minima et des maxima de la fonction u(?),
sont données par la racine nulle et par les racines posi-
tives de I'équation transcendante, obtenue en égalant

a zéro la dérivée de w7 :

DgFe

12uh + ePt[(Ra -+ wb) cos oot + (Pb—cca)sinet] = 0. (54)

Les valeurs (max);, (Umax)s, des maxima succes-
sifs de w sont donc respectivement, d’aprés la seconde
des formules (49) 8:

Pol’ 2

C,+ 190k + AePt - cos (wt’' —3B),

1) "-[l// (r5)
(11 | 1 }_‘ 1 B((// . (‘()S (wt,’, B 8) ,
................................. 5
. . il ; S
7 On peut démontrer que, dans les conditions admises, vV =
, > om B
1w =
@

511 est facile de montrer que, sile rapport W/Goest Lres grun(l,
¢'est-d-dire si la valeur absolue de P est trés petite, on a approxima-
tivement :

2pp . Trpo 2po | 3Trpo
= phwt ' 24hcop’ {wmax), = pho! " 24hwp’
2p0 STTripo
Ehw“ ".’-thtf:ﬁ'

Ces valeurs forment une progression arithmétique croissante, de
™Eip,
12hwu

(te max)y

(Lmax)y =

raison trés petite et égale a -
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et celles (wmin);, (tmin)s, des minima :

p a2

0, C;—+ 190k + AeP” . cos (wt” — &),

pbrﬂ L AP G s (56)
g Ae cos (ot ),

C, +

La figure 55 montre que (umin); = u, = 0 est la
seule valeur nulle de u, et que tous les autres minima
sont positifs, car (umin); << (Umin)y << . ..

Calculons encore la tension o. En substituant la pre-
miére des expressions (49) de w dans la formule (1),
Pon pose p = p, = const., on obtient, en tenant compte
des valeurs (50) de « et b, aprés simplifications :

ou

o7 = ],_)L;I" {1 — ePt (cos oot — % sin coi)J : (57)

Cette formule peut aussi étre mise sous la forme :

gy = %I;: [1 — DePt cos (cot — A)J )
ou
(B* + w0?)* : —P (58)
.D = T’ sin A — m 5
&
cos A = BT mi)Té'

On voit que sin A > 0, cos A > 0,dou 0 < A < ,T)I

L’angle A est d’ailleurs d’autant plus petit que | B |
Pest lui-méme.
La courbe de la figure 5 ¢ représente la fonction oft).

Cette courbe oscille — en s’amortissant — d’un c¢oté
a lautre d’une droite parallele a Daxe ¢, située a la
: Do .

distance 9 (> 0) de cet axe. La tension o passe

donc alternativement par des minima et des maxima,
dont les abscisses sont données par la racine nulle et
les racines positives de ’équation suivante, obtenue en
égalant a zéro la dérivée de (57):

2 2
Z(B;[‘T::)Po ePt . sinwt = 0. (59)

. . . . T 2T
Ces racines sont respectivement égales a 0, —» —,
W W

. Les valeurs des maxima de la tension o s’obtien-
e 31T

nent en posant successivement f=— —; —— ., par
®
exemple dans la formule (58), ce qui donne :
P
rop v
wmn=WJL+WX
3mp (60)
rop il
(omzlx)g = T;Tll‘ (1 + R ) ’

Quant aux valeurs des minima de cette tension, on
. , 2w 4w
les obtient en posant successivement ( = 0, ~—, ——, .
® W

dans la méme formule, d’on :

: omp
(O_Lniu)z = il (] —g T:J >

(Umin)l = 0; .4’/1- )
ip (61)
rop =
(Omin)g = % (1 —e ),

Le plus grand des maxima est donc (omay); et le plus
petit des minima (omiy); = 0. La premiére de ces deux
derniéres grandeurs représente la plus grande traction
subie par la matiére pendant la vibration. On remar-
quera qu’'a aucun moment, la. coque subit une com-
pression. Il n’y a donc pas de risque qu'un voilement
se produise.

Une rupture éventuelle de la coque peut étre causée
par des fissures créées, au temps t = Tr/e, par la trac-
tion (Omas);. Une rupture peut aussi avoir lieu apres
un certain nombre d’oscillations, par suite d'un épuise-
ment de la matiére, di soit aux variations répétées de
o, soit a des valeurs de u (c’est-a-dire de €) dépassant
certaines limites.

§ 6. Vibrations engendrées par une suppression inté-
rieure, fonction sinusoidale du temps. Cas ou la
valeur moyenne de cette surpression est nulle

Admettons que la surpression soit primitivement nulle

(p(t) = 0, pour t < 0), mais qu’a partir du temps ¢t = 0,

on ait (fig. 6) :
plt) = posin ()5 (= 0) (62)

po est Pamplitude et v la pulsation de cette surpression
perturbatrice.

Le déplacement et la vitesse initiaux sont nuls,
comme dans le cas précédent. I’accélération initiale
Iest également, car (p)i—, = 0. On a donc:

Uy == O, lp = 0 > il(. = 0 3 (63)

D’autre part, pour ¢t = 0, I’équation différentielle (13)
s'éerit icl :
Bu  du

2b; du Do
=T e SUL s N
ded ' di2

N (sinvt + aqvcosvt) . (64)

1y

Admettons par exemple — c’est le cas le plus inté-
ressant — que les racines y,, Yy de U'équation caractéris-
tique (14) soient imaginaires, ¢’est-a-dire, d’apres (15),
que

16p2
p_l'zKE(—; (3k + 46) > 1. (65)

La solution générale de (64) peut alors étre mise sous
t=)
I'une ou 'autre des deux formes :

u = C} + Pt (a cos wt + bsin wt) + csin (vt— o) I

(66)
= C; 4 AeP! cos (et — &) + ¢ sin (vt — 9). ’

ou B, w ont les valeurs (20), Cy, a, b, A, & sont des
constantes dépendant des conditions initiales, et ou
¢sin (vt — @) est une solution particuliére. Pour déter-
miner les constantes ¢ et @, substituons cette derniére
solution dans (64). On en tire, aprés quelques trans-
formations, en prescrivant aux coelficients de sin v et
cos vt d’étre nuls et en tenant compte de (11) et (20) 9 :

/ 1\ %
l,'? 2 ’{* 9 0
( =K u~) i

¢ = VT

h 12 N2 R’
p/IV l(bﬁf F‘V2> + I:lEJ

12
lg o = s
= 12 1
ortv | —2) Fu— ]

? En calculant également sin @ et cos ¢, on reconnait sans peine
que sing® >0, —1 <cosp <1, dou 0 < < 1, La valeur (67
)
de tg ¢ détermine done a elle seule I'angle .




3k + 4G
3G

oun F= (68)

Le mouvement défini par (66) est une gibration entre-
tenue ou, dans chacune des deux expressions de u, les
deux premiers termes représentent le mouvement naturel
et le troisieme la eibration forcée. Le mouvement naturel,
qui dépend seul des conditions initiales, est formé de
deux composantes : un déplacement constant C; 10 et une
oscillation amortie. La vibration forcée est par contre
une oscillation harmonigue, qui dure donc indéfiniment.
¢ est I'amplitude, et — ¢ la phase initiale, de cette
dernieére oscillation. On voit que lorsque le temps ¢
devient tres grand, seuls le premier et le troisiéme
termes de chacune des deux expressions (66) de u
subsistent.

Il est facile de vérifier qu'en faisant tendre p vers
I'infini et v vers w dans les deux formules (67), ¢ tend
vers Uinfini et tg ¢ prend la forme indéterminée (0 x c0)—1.
A la limite, on a donc affaire & un cas de résonance.
Cela n’a rien de surprenant, car la matiére de la coque
satisfait alors a la loi de Hooke (voir fig. 3 a, ot p = oo,
ainsi que (b), §2) et la pulsation v de la surpression
perturbatrice est égale a celle, w, de la vibration natu-
relle.

Revenons au cas ol W+ 0o, v # w, et supposons
que l'on ait calculé ¢, @ a l'aide des formules (67), (68).
Introduisons la premiére des deux expressions (66) de u
dans les conditions initiales (8). On obtient, compte tenu
de (63), les trois équations

Ci+a—csing=0, Pa-+wb+cvcosp=0,
(% — w?) a + 2Pwb + cv2sing =0,

d’ou P'on tire :

C [(B? + w? —v2) sin ¢ + 2PBv cos @] ¢
= S P2 + e
vsin ¢ — 2B cos @) cv
a = ( *—(P‘rﬂ;zfq))* ) (69)
p* 4w
; [(B? — w?) cos ¢ — PBv sin @] cv
) = 0 —— —
o (B 1 o) |
10 On peut démontrer que, dans les conditions admises, €' est

nécessairement positif,

et en substituant ces valeurs dans (24), on peut déter-
miner celles de A, sin &, cos & (on verrait que ces deux
derniéres quantités peuvent étre positives, négatives,
ou nulles).

Calculons encore la tension de membrane o. En subs-
tituant la premiére des expressions (66) de w dans
I’équation (1), on obtient, compte tenu de (62):

o= )’71 {— phebt {[([32— w*)a + 2Bwb] cos wt
4+ [(B2— w?) b—2Bwa] sin wt} + posinvt (70)
+ phev? sin (vt — q>)] .

Cette formule peut étre mise aussi sous la forme :

TP

~ 2h

o [A'eﬁ‘ cos (wt —8') + B’ sin (vt — q)’)]» (71)

ou la détermination de A’, B’, &', ¢’ n’offrirait pas de
difficulté. On voit qu'en définitive o(t) est formé de
deux termes : le premier représente une oscillation amor-
tie de la tension, provenant du mouvement naturel de
la coque, le second est une oscillation harmonique, causée
par la vibration forcée définie plus haut.

En étudiant la fonction (71), on reconnaitrait que
des tensions négatives (compressions) se produisent
d’abord sporadiquement, puis périodiquement. Une
rupture de la coque par voilement est donc ici posstble.

§ 1. Vibrations engendrées par une surpression inté-
rieure, fonction sinusoidale du temps. Cas ou la
valeur moyenne de cette surpression est différente
de zéro

Supposons par exemple que la surpression intérieure
soit primitivement nulle (p(t) =0, pour t < 0), mais
qua partir du temps ¢ =0, on ait (fig. 7):

p(t) = po (1 —cosvt) 5 (t==0) (72)

po est & la fois Pamplitude et la valeur moyenne de cette
surpression perturbatrice, dont la pulsation est v.
Comme dans le cas du § 6, on a icill:

us =10, =10, ip=0. (73)

D’autre part, pour ¢ = 0, Péquation différentielle (13)

_devient :

Bu d*u . 2bydu p,

“gstae Tordt =iy (1—cosvt+avsinvt). (74)

Si nous admettons comme précédemment que [es
racines Y, Ys de Uéquation caractéristique (14) soient
imaginaires, cest-a-dire que la condition (65) soit
satisfaite, la solution générale de (74) peut se mettre
sous I'une ou lautre des deux formes :

— B"jt Bt 108 ool bsi !
= 10 - T2uh -+ ePt (a cos wt + b sin wt)

— ¢ cos (vt — @) (75)

> -2
=C;+ ,l)(.)‘ﬁ -+ AePtcos (cwt—8)—ccos (vt—9),

ol B, @ ont les valeurs (20) et ou Cy, a, b, A, & dépen-
dent des conditions initiales.

i <([3u) & daill . I ((I/)) o
{“3 f=1 s d atlleurs aussy nul, car ({l s = .
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por’t
12uh
cos (vt —— @) dans (74), on obtient pour ¢ et @

En substituant la solution particuliére

exactement les mémes valeurs que précédemment, a

savoir celles données par les formules (67) 12,

Il s’agit done d'une eibration entretenue, ot le mouge-

ment naturel — qui dépend seul des conditions initiales —
est représenté par le premier et le troisieme des termes
de chacune des expressions (75) de u, et ou la vibration
forcée est représentée par le second et le quatrié¢me
de ces termes. On voit que le mouvement naturel est
formé des deux mémes composantes que précédem-

ment. Par contre, la vibration forcée comprend non

seulement une oscillation harmonique — ¢ cos (vt — @)
. ™ . ,
= csin (vl — 5 — @), analogue a celle déja rencontrée
2
o3t

§ 0, mais encore la composante Les trois

12uh
premiers termes des expressions (75) de w sont respec-
tivement les mémes — aux valeurs des constantes Cysa,
b, A, 8 prés — que les trois seuls termes figurant dans
les formules (49) du § 5. Le quatriéme terme de (75)
provient du fait que, dans le cas étudié ici, la surpres-
sion n'est pas une constante (égale a p,), mais est une
fonetion sinusoidale du temps, dont la valeur moyenne
est p,.

Il serait facile de déterminer les constantes Ci, a, &
de (75), a T'aide des conditions initiales (8), compte tenu
de (73), puis les valeurs de A, sin 8, cos 8, en utilisant
les formules (24).

Dans le cas particulier o p = oo, ¢’est-a-dire ou la
matiére satisfait a la loi de [Hooke, la résonance se pro-
duit si v = 0, comme précédemment.

Esquissons encore le calcul de la tension o. Suppo-
sons de nouveau P £ co, v # w, et admettons que l'on
ait déterminé ', @, b comme nous I'avons dit plus
haut. En substituant la premiére des expressions (75)
de w dans (1), on obtient apres quelques transforma-
tions :

)')” " " & " ~0o
o= "//1 14 A"ePlcos (cot—8") + B sin (vi—@")|» (76)

yr

ou A" B, 8", 9" se déterminent facilement. Le premier
]'/),, 5 o

terme W de cette formule, qui est constant, provient
2h

de la valeur moyenne p, de la surpression (il est nul
dans le cas étudié § 6). Le second terme représenle une
oscillation amortie de la tension, et a son origine dans
le mouvement naturel de la coque. Le troisitme est
une oscillation harmonique de o, engendrée par la com-
posante — ¢ cos (v — @) de la vibration forcée.

. o . rpPo
l{(‘ll]ﬂl'([ll()ll.\' t‘llflll (Ill a cause (lll I)['(‘]HI(‘I' terme

2h
de (76), qui est positif et représente la tension statique
due a la pression moyenne p,, les risques d’existence
de compressions importantes sont moins grands que
dans le cas du § 6, ot ce terme n’existe pas. (Cest done

¥ g est également compris entre 0 et .
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probablement seulement lorsque les conditions ne sont
pas trop ¢loignées de celles de la résonance (p/G assez
grand, v relativement peu différent de w), quun voile-
ment de la coque risque de se produire.

Zarich, le 25 mars 1965,
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